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Abstract. A fully automatic method is proposed to produce an en-
hanced image from a very noisy sequence consisting of a translating
object over a background with a different translational motion. The
method is based on averaging registered versions of the frames in which
the object has been motion-compensated. Conventional techniques for
displacement estimation are not adequate for these very noisy se-
quences, and thus a new strategy has been used, taking advantage of a
simple model of the sequences. First, the local spatiotemporal spectrum
is estimated through a bank of multidirectional, multiscale third-order
Gaussian derivative filters, yielding a representation of the sequence that
facilitates further processing and analysis tasks. Then, energy-related
measurements describing the local texture and motion are easily ex-
tracted from this representation. These descriptors are used to segment
the sequence according to a local joint measure of motion and texture.
Once the object of interest has been segmented, its velocity is estimated
applying the gradient constraint to the output of a directional bandpass
filter for all pixels belonging to the object. Velocity estimates are then
used to compensate the motion prior to the average. The results ob-
tained with real sequences of moving ships taken under very noisy con-
ditions are highly satisfactory, demonstrating the robustness and useful-
ness of the proposed method. © 2000 Society of Photo-Optical Instrumentation
Engineers. [S0091-3286(00)01906-1]

Subject terms: image enhancement; noisy sequences; joint transforms; image
segmentation; motion estimation.
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1 Introduction

Image sequences contain highly redundant temporal in
mation that can be used for restoration, resolution impro
ment, or enhancement of the scene. One particularly sim
case is a sequence of a still scene taken under time-var
degradations, such as random turbulence or noisy co
tions. The effects of turbulence1 or noise2,3 can be dimin-
ished by simply averaging several frames, which tends
cancel the random variations.

Most image sequences, however, contain some mot
This motion causes different frames to contain the sa
object of interest but shifted and, possibly, rotated a
scaled, thus providing slightly different views of the obje
This fact has been used to reduce aliasing and then to
prove resolution,4–6 especially in sparse sampling arra
used in infrared imaging systems for low-noise situatio
In general, motion prevents the direct temporal integrat
of the frames, and hence it is difficult to reduce lar
amounts of noise. In these cases, it is necessary to d
mine the motion of the object of interest to compensate
it, prior to integration.
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Image motion or optical flow estimation is an ill-pose
problem,7 usually giving noisy results even in noise-fre
sequences.8 Recent results suggest that an optimal strate
is to simultaneously estimate motion and segment the
quence according to its motional contents.9,10 This strategy
is more robust than a direct estimation of optical flow. Su
methods usually segment the sequence according to mo
and compute optical flow iteratively~using algorithms like
expectation/maximization!, each step refining the previou
one.11 They have been successfully tested in complex
quences that include rotations and scaling, but that are
of noise. They are computationally expensive, since
convergence is usually slow. Other methods have been
posed for the simultaneous estimation of multiple opti
flow present in the same spatial location,12 which are opti-
mal when the sequence can be locally expressed as
linear superposition of several motion signals~additive
transparency!. This is not the case of our image sequenc
~as explained below!, because there are not multiple m
tions at the same spatial location except at the occlus
boundaries, where the signal is not simply described as
linear superposition of several motion signals.

In this paper we consider the case of sequences con
ing an object of interest undergoing translational moti
against a background undergoing a different translatio
1457© 2000 Society of Photo-Optical Instrumentation Engineers
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motion, and with a very low signal-to-noise ratio due to t
poor imaging conditions. The absence of relevant rotati
or scaling of the target allows applying more robust me
ods than in the general case. This type of sequences
great interest in certain applications, like ground-bas
maritime surveillance systems.

The method applied for image enhancement is based
a visual representation of the image sequence that prov
an estimate of the local spatiotemporal spectrum.13 This
generic scheme of representation was previously develo
as a first multipurpose stage of sequence processing
was inspired by human vision and that facilitates furth
analysis and processing. In particular, it helps to segm
robustly, very noisy sequences according to their text
and motion contents, a task where our visual system sh
high performance. After segmenting the moving object,
estimate its velocity by applying a modified version of
method for optical flow estimation based on the same r
resentation of the image sequence and therefore invol
little additional cost.13 The estimated velocity is then use
to register the object in all frames, which are finally int
grated to improve the signal-to-noise ratio.

We have tested the performance of each step of
method with synthetic test sequences contaminated
spatiotemporal noise of the same power as the original
quence~signal-to-noise ratio of 0 dB!. The method is able
to detect and segment the moving object, and to estimat
velocity reliably. It was also tested with real sequences
quired from maritime surveillance~infrared and visible!
imaging systems. The results show a remarkable enha
ment in all cases.

2 Method

The method for image-sequence enhancement has bee
veloped for a particular class of sequences that consist o
object of interest moving against a background and c
taminated with spatio-temporal noise, so that the visibi
of the target is very low. Concretely, these are the m
assumptions about the sequences for which this metho
applicable:

1. There is one object of interest, ortarget, which is
undergoing a smooth translation motion, i.e., the i
age velocity of all the points belonging to the obje
is the same at a particular time~i.e., there are no
noticeable rotations or scaling!, and it varies slowly
in time.

2. The object is against a background that is also und
going a smooth translation motion, different from th
motion of the target. We consider a static backgrou
as the particular case of zero velocity.

Fig. 1 Sample frame of a typical sequence that has been taken
from a static CCD camera in the visible range, and that corresponds
to a ship translating to the left.
1458 Optical Engineering, Vol. 39 No. 6, June 2000
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3. The resulting sequence is contaminated with wh
spatiotemporal noise of high power~in extreme
cases, the same power as the signal!.

Figure 1 shows a frame of a typical sequence that c
sists of a ship translating from right to the left, and that w
taken with a visible-light CCD camera under noisy con
tions. The ship is both blurred and highly corrupted
noise, making its recognition difficult.

The proposed method obtains an enhanced versio
the object of interest automatically, following these ste
~1! segmenting the object of interest;~2! estimating the
velocity of the object and hence the displacements betw
frames; and~3! averaging motion-compensated versions
the frames together.

The high level of noise present in our sequences ma
the two first steps critical and especially difficult, requirin
highly robust methods. Therefore, we have avoided us
standard techniques relying on the analysis of static fram
only ~like segmentation by thresholding, or displaceme
estimation by correlation or block matching!. Instead, the
proposed method uses local spatiotemporal frequency
formation at each point in the sequence. The main stage
the method, displayed in the block diagram of Fig. 2, a
the following:

1. The local spatiotemporal spectrum of the sequenc
estimated through a bank of multidirectional, mul
scale spatiotemporal bandpass filters. This produc
visual representation of the image sequence13 that fa-
cilitates further analysis tasks.

2. The target is segmented from the background, us
spatiotemporal descriptors derived from the above
sual representation of the sequence.14 These descrip-
tors are defined at each point as local measurem
of the energy in each frequency band, and hence
the texture-motion energy in each location.15 These
descriptors are an extension of those used previou
in multichannel static texture segmentation.16–19 In

Fig. 2 Block diagram of the proposed method for image enhance-
ment from noisy sequences.
erms of Use: http://spiedl.org/terms
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Fig. 3 Generation of synthetic test sequences: (a) moving object filled with a synthetic fractal noise
texture; (b) background consisting of a different sample of the same fractal noise; (c) additive spa-
tiotemporal Gaussian white noise; (d) resulting frame.
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this dynamic case, differences in velocity, texture,
both are the key features to discriminate the tar
from the background.

3. The target’s velocity is estimated for each frame,
compute its displacements and to register it in
different frames. Velocity is estimated using a mod
fied version of a previously developed method f
probabilistic multichannel optical flow estimation.13

Optical flow is estimated by applying the gradie
constraint20 to the output of a directional bandpa
filter, chosen to respond mainly to the moving obje
and thus eliminating a great amount of noise. In a
dition, since the prior segmentation has already
tected the points of the target, which share the sa
velocity, combining gradient constraints in this larg
number of points strongly improves the robustne
and accuracy of the velocity estimate.

4. The motion is compensated for every image so t
the object appears registered, making possible th
nal integration of all frames to give a single enhanc
image of the object of interest.

We give a detailed explanation of these stages in the
pticalengineering.spiedigitallibrary.org/ on 04/26/2013 T
lowing subsections. To test and optimize these stages
have generated synthetic test sequences imitating real o
but that constitute an extreme case where the only cu
segment the object is motion. The patterns used for
object and the background, displayed in Figs. 3~a! and 3~b!,
respectively, are different samples of the same spatial f
tal noise with power spectra proportional to 1/f s

2 , wheref s

is the radial spatial frequency. An ensemble of test
quences has been generated translating the object an
background with different velocities, and adding differe
amounts of spatiotemporal Gaussian white noise@Fig.
3~c!#. A frame of one of the resulting sequences~with
SNR50 dB! is shown in Fig. 3~d!, where the object is in-
visible to the eye. The object becomes clearly percepti
however, when the sequence is displayed in motion.

2.1 Local Spectrum Estimation

The local spectrum has been estimated using a ban
linear, multidirectional, multiscale spatiotemporal bandp
filters. For this purpose we have applied a previously
veloped scheme for visual representation of image
1459Optical Engineering, Vol. 39 No. 6, June 2000
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quences that was designed as a multipurpose preproce
stage to facilitate many image-sequence processing
analysis applications.13

The basis functions of this scheme are spatiotemp
third-order Gaussian derivatives along specified spatiot
poral directions~GD3!. Gaussian derivatives have bee
used by different authors21,22 to model the early linear
stages of the visual system. These filters have their tun
~peak! frequencies distributed over the surface of a sph
~more generally, over an ellipsoid! for a given scale. The
basis functions can be expressed as linear combination
the separable functions obtained by third-order~partial! dif-
ferentiation of a spatiotemporal Gaussian. The general
pression, in the spatiotemporal frequency domain, for
separable basis GD3 is the following:

]3g~x,y,t !

]x32k2 l ]yk ]t l
↔
F

~ j 2p f x!
32k2 l~ j 2p f y!k~ j 2p f t!

l

3 G~ f x!G~ f y!G~ f t!, ~1!

where↔
F

means Fourier transformation, (f x , f y , f t) are the
frequencies along the~two! spatial and the temporal axe
and g(x) @with Fourier transformG( f x)# is the following
basic 1-D Gaussian function:

g~x!5
1

A2ps
expS 2

x2

2s2D↔F G~ f x!5expF2
s2

2
~2p f x!

2G .
~2!

There are 10 independent GD3s at each scale, which
respond to all possible combination of indices 0< l<3 and
0<k<32 l . A very efficient implementation using 1-D
convolution masks is possible, since the set of partial
rivatives is separable. The directional filters needed to
tain good samples of the local spectrum are easily obta
from the set of partial derivatives through linear combin
tion, a general property of directional derivatives close
related with the steerability of derivative filters23,24:

]3g~x,y,t !

]h0
5(

l 50

3

(
k50

32 l S 3
l D S 32 l

k D cosN2 l 2k u0 sink u0

3sinN2 l w0 cosl w0

]3g~x,y,t !

]x32k2 l ]yk ]t l , ~3!
1460 Optical Engineering, Vol. 39 No. 6, June 2000
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whereh0 is the spatiotemporal direction of differentiation
which is determined by its spherical angular coordina
(u0 ,w0).

Table 1 contains the spherical angular coordinates of
10 directions in the frequency domain that we have cho
to place the directional GD3 channels, at each scale. F
channels are placed in the static plane, defined byf t50, all
their centers~tuning frequencies! havingw5p/2 in spheri-
cal coordinates, and being equally spaced in azimuth. F
channels are placed in a dynamic plane parallel to the s
plane. If we want to maintain the same amount of over
in azimuth for these five dynamic channels as for the st

ones, then it follows thatw5arcsin5
8 for this dynamic

plane.~Each channel has two lobes, but whereas the f
static channels yield a total of eight lobes in one sin
static plane, dynamic channels produce five lobes in
positive dynamic plane, and five more lobes in anoth
negative plane placed symmetrically with respect to the
gin.! The remaining ~10th! channel is placed on the
temporal-frequency axis.

The highest frequency scale is placed at a radial tun
frequency of half the Nyquist frequency~1/4 cycle/sample!.
The GD3 filters have been implemented efficiently usi
the small 1-D~nine-tap! convolution masks shown in Tabl
2, obtaining high-fidelity approximations of the theoretic

Table 1 Spherical angular coordinates of the directions where the
10 directional GD3s are placed at each scale.

u w

0 1
2 p

1
4 p

1
2 p

1
2 p

1
2 p

3
2 p

1
2 p

0 arcsin 5
8

2
5 p arcsin 5

8
4
5 p arcsin 5

8
6
5 p arcsin 5

8
8
5 p arcsin 5

8

— 0
Table 2 One-dimensional nine-tap convolution masks corresponding to the Gaussian prefilter (g0)
and their derivatives of first (g1), second (g2), and third order (g3), and to a five-tap cubic B-spline
filter. Only the positive-axis coefficients are shown, since g0 , g2 , and the cubic B-spline are even, and
g1 and g3 are odd.

g0 g1 g2 g3

Cubic
B-Spline

3.616E21 0 23.254E21 0 0.375

2.400E21 22.072E21 24.084E22 4.107E21 0.25

6.968E22 21.203E21 1.468E21 23.534E22 0.0625

9.066E23 22.347E22 5.036E22 28.794E22 —

4.437E24 21.541E23 6.428E23 21.934E22 —
erms of Use: http://spiedl.org/terms



the
n
n,
es

e
s is
ng
wn
ng
y
ral

gni

for
as
for
it is
lti-
l

this
ncy

ca
or-
s a
mi-
re i
dif-

cial
pat
at
and
the

ral
-
of

llel
um
e

in
n be
f the

x-
or
be

nce

is
de-
ase,
he
l to

d a

has
re-

ex
in
ese
m-
g to
gy
du-
ra-
the
at
ith
the
w-
oral

air.
ur-

vel,

nted
ing

age
ding

nnel
are

Nestares et al.: Automatic enhancement of noisy image sequences . . .

Downl
frequency responses~to better than 30 dB!. Once the re-
sponse to the separable~partial! derivative filters is ob-
tained, it is straightforward to obtain the response to
directional ones, applying Eq.~3!. Coarser scales have bee
obtained using an efficient pyramidal implementatio
where the same set of filters corresponding to the fin
scale is applied to successive subsampled versions~in space
and time by a factor of 2! of the original sequence. Th
filter used to avoid aliasing in the subsampling operation
the five-tap cubic B-spline shown in Table 2. The resulti
distribution of channels in the frequency domain is sho
in Fig. 4. This schematic view displays one slice includi
one spatial frequency axis (f x) and the temporal-frequenc
axis (f t). Channels corresponding to three spatiotempo
scales are represented by level curves of uniform ma
tude response.

This implementation introduces a delay of 4 frames
the highest resolution level. The delay is multiplied by 2
we move to coarser resolution levels. If the delay
coarser scales becomes critical for some applications,
possible to use a version of the filter bank that uses mu
resolution only in space,13 so that the maximum tempora
delay is always 4 frames. The main disadvantage of
version is that the samples of the spatiotemporal freque
domain are not evenly distributed.

2.2 Segmentation

The target is segmented by unsupervised pixel classifi
tion, consisting of an automatic grouping of the pixels c
responding to the moving object. This process require
local description of specific features that serve to discri
nate between object and background. One such featu
precisely motion, since object and background display
ferent motions in the sequences of interest.

Motion can be described taking into account the spe
form that takes the spatiotemporal spectrum of a given
tern undergoing uniform translation. It is well known th
this spectrum is confined to a plane, whose azimuth
elevation depend on the orientation and modulus of

Fig. 4 Schematic view of the directional GD3 channels, as a
contour-level plot, in a slice of the 3-D spatiotemporal Fourier space
corresponding to (fx ,f t).
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velocity, respectively.25 More precisely, this plane is given
by

f xvx1 f yvy1 f t50, ~4!

where (f x , f y , f t) are the components of the spatiotempo
frequency vector, and (vx ,vy) the components of the ve
locity vector, respectively. The spatiotemporal spectrum
such a moving pattern is formed by the projection, para
to the temporal frequency axis, of the 2-D spatial spectr
of the spatial pattern~which is contained in the static plan
given by f t50! onto the plane given by Eq.~4!. Patterns
undergoing different motions will have their spectra
separated planes. Thus, each pixel in the sequence ca
characterized using measurements of the local energy o
spatiotemporal spectrum~joint texture-motion descriptors!.
The local spatiotemporal spectrum will be different for pi
els belonging to regions undergoing different motions
having different textures. Local spectrum descriptors can
directly obtained from the representation of the seque
described in Sec. 2.1.

2.2.1 Local spectrum energy descriptors

The GD3 filter bank samples the local spectrum, but it
not convenient to use the direct output of the filters as
scriptors, since these outputs depend on the local ph
and thus they are not shift-invariant. This problem is t
same as in static texture discrimination, where it is usua
apply a nonlinearity at the output of the filter bank16,19,26to
obtain shift-invariant descriptors. Thus, we have extende
previous method for static texture segmentation19 to the
present problem of spatiotemporal segmentation. It
been shown that the complex modulus produces better
sults than the energy and other tested nonlinearities.27

This can be implemented by first obtaining compl
samples of the local spectrum, using a pair of filters
phase quadrature, and then computing the moduli of th
complex samples. However, to avoid designing and co
puting the responses to the quadrature pair correspondin
each GD3 filter, we have followed an approximate strate
that uses only the responses of the GD3 filters. The mo
lus of a complex sample obtained through a pair of quad
ture filters is equivalent to that of the response to one of
filters, previously shifted in the frequency domain so th
its peak coincides with the zero frequency, and filtered w
an appropriate ideal lowpass filter. In our case, since
GD3 filters are not perfectly bandlimited and the ideal lo
pass filter has been approximated using a spatiotemp
separable cubic B-spline filter~see Table 2!, the result is
not exactly the same as the modulus of the quadrature p
Nevertheless, it is a very good approximation for our p
poses.

Figure 5 illustrates how the signal~modulus! is distrib-
uted across the 10 channels of the highest frequency le
for the background~a! and the object~b! of the synthetic
test sequence of Fig. 3. The channel energy is represe
by two opposite spheres centered at the channel’s tun
frequency, and whose size is proportional to the aver
modulus of the channel response inside the correspon
region ~background or object!. The graph in panel~a! cor-
responds to the average energy distribution of each cha
in the static background. In this case, the static channels
1461Optical Engineering, Vol. 39 No. 6, June 2000
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most excited~bigger spheres!, but dynamic channels als
display a moderate amount of energy, coming from
spatiotemporal additive white noise. The moving object~b!
displays a clearly different distribution of energy. Her
most static channels are excited solely by the spatiotem
ral white noise. In addition, two dynamic channels, whi
are close to the plane given by the translation velocity
the object, exhibit higher responses~bigger spheres!, while
those dynamic channels that are far away from that pl
are not excited by the target, but only by the white no
~smaller spheres!. The approximately constant size of th
smaller spheres in both cases is the result of the w
noise.

These spatiotemporal spectral descriptors seem to
able to characterize, and hence to discriminate, regions
dergoing different translational motions, even under
tremely noisy conditions, such as in the example sho
here. Although Fig. 5 shows the average, over all pixels
the sequence belonging to the background~a! or target~b!,
it is worth noting that the descriptors are defined at e
point, on the basis of a local spatiotemporal neighborho
whose size is adapted to the frequency band accordin
the multiresolution scheme.

Fig. 5 Schematic view of the average energy of the finest-scale
channels for the two regions, (a) background and (b) moving object,
of the synthetic test sequence of Fig. 3. Each channel is repre-
sented by a pair of spheres centered at its tuning frequency, whose
radius is proportional to the average energy inside the correspond-
ing region.
1462 Optical Engineering, Vol. 39 No. 6, June 2000
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2.2.2 Selection of the best feature channels

As we have just seen, descriptors obtained from the mo
lus ~square root of the energy! of the channel responses ca
be used to discriminate between regions having differ
textures and/or motions. Each spatiotemporal location
the sequence is then characterized by a set
10 (orientations)33 (scales)530 descriptors, which are
the responses of the channels that are sampling the l
spectrum. The number of components of this feature ve
~30! is too large, making the computational cost of segm
tation almost unaffordable. Moreover, as shown in Fig.
many of the channels will not contribute to discrimina
object from background, but can even increase the segm
tation errors ~in particular for channels dominated b
noise!. Therefore, we have included an additional step, c
sisting of selecting a reduced number~four! of channels
providing maximum discrimination. This selection im
proves the segmentation and greatly reduces the comp
tional cost.

The method to select of the most representative chan
relies on the characteristic features of our input sequen
which contain a moving object against a larger backgrou
either static or undergoing a different motion. As shown
Fig. 6, the statistics of the channel responses can pro
useful information for selecting them. This figure compar
the moduli of two of the ten channels corresponding to
finest scale, for a frame of the test sequence of Fig. 3. O
channel@Fig. 6~a!# is well tuned to the target motion, an
therefore displays higher values~brighter gray levels! in the
region occupied by it. Conversely, it tends to show low
responses~darker gray levels! in the background region
and therefore, this channel can be useful for discriminat
between object and background. Interestingly, this d
crimination capability is reflected in its histogram, whic
displays@Fig. 6~b!# ~1! a big lobe near the origin, corre
sponding to pixels in the background, and~2! a long tail
extending towards higher values, which accounts for
strong responses given by the~fewer! pixels belonging to
the object. Channels dominated by noise, and hence
appropriate for segmenting the sequence@Fig. 6~c!#, display
the big lobe near the origin, but not the long tail.

Therefore, a good selection criterion is to pick tho
channels whose histograms display longer tails~i.e., con-
tain some strong responses!. This feature is appropriately
characterized by conventional statistical normalized m
ments, like skewness or kurtosis. As shown in the exam
of Fig. 6, both skewness and kurtosis are significan
higher~by a factor of nearly 3! for the upper discriminating
channel than for the lower one@see values in Figs. 6~b! and
6~d!#.

We have checked that both moments produced rea
able results in channel selection for our test sequences
we finally adopted kurtosis because it produced sligh
better results. The number of selected channels is a tr
off between having as much information as possible an
low computational cost. We found that those four chann
~among the total of 30! having the highest kurtosis pro
duced good segmentation results for our sequences
reasonably low cost.
erms of Use: http://spiedl.org/terms
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Fig. 6 Moduli of the analytic channel responses and their corresponding histograms (with skewness
and kurtosis values) for two typical channels: (a) and (b), a channel well tuned to the moving object; (c)
and (d), a channel tuned equally to the object and the background.
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2.2.3 Clustering

The resulting feature vectors, composed of the modul
the outputs of the four selected channels, are used to
ment the sequence into two classes~object and back-
ground!, using the standardk-means clustering algorithm.28

We found that it is convenient to normalize the modulus
every channel independently, between 0 and 1, so tha
selected channels enter with equal weight in the cluste
process.

The clustering is performed frame by frame, because
velocity of the translating object can change slowly in tim
This strategy permits us to initialize the clustering alg
rithm with the cluster centers found in the previous fram
which are very likely to be close to the present centers, t
reducing the number of iterations significantly for mo
frames. Finally, the segmentation results are refined by
tial median filtering~window size 11311! of each seg-
mented frame, which removes possible small isolated
gions with a high probability of corresponding t
segmentation errors.

Results of segmentation for the synthetic test seque
~Fig. 3! are presented in Fig. 7. Both the original~a! and
segmented~b! frames include the true border, overlaid o
them to facilitate the visual localization of the target. Gr
pixels in the segmented image have been assigned to
background, and the white pixels to the object. The tar
has been successfully segmented from the backgroun
our fully automatic method. The few segmentation err
are concentrated along the boundaries of the object,
cause the finite spatial support of the filters is mixing info
mation from object and background. The average perc
age of pixels correctly segmented was 98% for an ensem
of synthetic test sequences with different levels of no
pticalengineering.spiedigitallibrary.org/ on 04/26/2013 T
-

e

-

e

e

y

-

-
e

and different velocities of the object and the backgrou
which is a highly satisfactory result.

2.3 Velocity Estimation

After segmenting the target, the next step consists in e
mating its displacement between consecutive frames, wh
is necessary to register the object in all frames. For t
purpose we estimate the velocity of the pixels inside
region occupied by the object, using an optical flow es
mation algorithm.13 Although there are other, simpler tech
niques~estimating the displacements of the segmented a
through correlation, matching, etc.!, they are less robust
since segmentation results may be too noisy~particularly in
real sequences with very low SNR! to estimate accurately
the displacements of the segmented target. In our case
optical flow estimation is performed by a specially adap
version of a probabilistic multichannel method,13,29 which
is based on the visual representation of the sequence
ready obtained~see Sec. 2.1!, thus requiring little additional
cost. This step is performed frame by frame, and it p
duces a robust and accurate estimation of the transla
velocity of the object~and of its associated covariance m
trix! for each frame.

The optical flow algorithm is based on the classical g
dient constraint,20 which is obtained under the assumptio
that intensity levels in the sequence can change their p
tion but remain constant over time, so that the derivative
the image with respect to time is zero. In traditional me
ods, the gradient constraint is set up at each spatiotemp
location (x,y,t) as follows:

sxvx1syvy1st50, ~5!
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where (sx ,sy ,st) is the spatiotemporal gradient of the inp
sequences, and (vx ,vy) is the 2-D velocity vector. How-
ever, differentiating discrete sequences is numerically
stable and requires some regularization, such as prefilte
with a lowpass filter, to obtain good results. Since bo
filtering and differentiation are linear operations, it tur
out that prefiltering and then differentiating is equivalent
filtering with the derivative of the prefilter. If the regula
izing prefilter is chosen to be a Gaussian filter, then s
tiotemporal gradients are obtained by filtering the seque
with the appropriate Gaussian derivative filters. Therefo
in our case the subscript on the input sequences means that
the sequence is filtered with the corresponding Gaus
derivative filter.

In the original multichannel method,13 the gradient con-
straint is applied to the output of a set of direction
second-order Gaussian derivative~GD2! filters. This strat-
egy increases robustness, since the gradient constrai
applied to the meaningful events in the sequence extra

Fig. 7 Segmentation results for the synthetic test sequence: (a)
original frame; (b) results of segmentation with two classes. The
edge of the true object is overlaid in both images.
1464 Optical Engineering, Vol. 39 No. 6, June 2000
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by the GD2 filters, such as bars, edges or texture. Equa
~5! takes then the specific form

sh0h0xvx1sh0h0yvy1sh0h0t50, ~6!

where h0 is the direction vector along which the secon
derivative is taken. This unique constraint does not per
one to solve for the two components of the image veloc
(vx ,vy) at each point, and thus different methods ha
been proposed to obtain additional constraints~equations!
to solve for the 2-D velocity. In our case, the object h
been previously segmented and, according to the assu
tion of pure translation, all pixels in the object share t
same velocity. Thus, it is possible to combine all their c
responding constraints, which gives the following overd
termined linear system:

Av5b, with A5S sh0h0x
0 sh0h0y

0

sh0h0x
1 sh0h0y

1

A A

sh0h0x
N21 sh0h0y

N21

D ,

v5S vx

vy
D , b52S sh0h0t

0

sh0h0t
1

A
sh0h0t

N21
D , ~7!

where the superscript covers all theN points previously
assigned to the target by the automatic segmentation.
solve this system using least squares, which gives an
mate of the velocity (ṽ) and of its associated covarianc
matrix (Cv):

ṽ5S ṽx

ṽy
D5~ATA!21ATb, ~8!

Cv5~ATA!21
1

N21 (
i 50

N21

~sh0h0x
i ṽx1sh0h0y

i ṽy1sh0h0t
i !2.

~9!

Covariance matrices are important because they are
confidence measures of the velocity estimates, which
very useful for combining estimates from differe
sources,13 ~spatiotemporal locations,30,31 channels, etc.!.

The system in Eq.~7! may be set up for different direc
tional GD2 channels, obtaining different estimates that c
be combined to obtain a unique less noisy estimate~as is
done in the original method13!. In this particular applica-
tion, we use only one GD2 channel, which is chosen to
tuned to the target motion~i.e., the GD2 channel with the
strongest response to the object!. Estimating the velocity at
the output of a directional channel tends to increase
aperture problem, because the range of orientations is
ited at the output of the filter. However, this effect is n
too severe in our case, for two reasons:~1! the GD2 filters
are not very selective in orientation, and~2! there is a large
number of points from which the gradient constraint
erms of Use: http://spiedl.org/terms
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combined, making highly likely the presence of differe
orientations, and thus diminishing the aperture problem.
the other hand, the great advantage of using a directio
channel tuned to the object is that a large amount of nois
eliminated before estimating the velocity, and it also he
minimize the influence of the background velocity~which
can be important for pixels near the border of the targe!.

The channel selected for the velocity estimation

placed on the dynamic plane, given byw5arcsin5
8 in the

frequency domain, so that only the azimuth is tuned
obtain maximum energy response to the object. This
achieved by evaluating the channel energy response
function of the azimuth of the center frequency, and find
the azimuth of the channel giving maximum response. T
function can be represented as a curve that can be e
obtained, since the energy response of derivative chan
placed at arbitrary values of azimuth~directions in general!
can be interpolated theoretically from the responses o
reduced set of channels because derivative filters
steerable.24 The responses of five GD3 channels in the d
namic plane are available~Sec. 2.1!, from which it is pos-
sible to obtain five energy measurements correspondin
the object~averaging the modulus of the response to
analytic channels across all pixels in the region correspo
ing to the object!. In theory, we would need more than nin
measurements to obtain an accurate approximation of
interpolation,24 but we found that using the five availab
measurements produces good results for all tested
quences. Furthermore, the precision required in azim
tuning is not critical for this application.

The graph in Fig. 8 shows the results of interpolation
the same test sequence used previously. The five ave
energy measurements are marked with stars and circle
the object and the background, respectively. The interp
tion curves are obtained by applying theoretical interpo
tion functions for the case of five harmonics~see Appendix
F in Ref. 24!. The background curve~dashed! is almost
constant, and is below the one for the target. Since in
case the background is static, there is no preferred di
tion, and the motional energy is only due to noise. T
curve corresponding to the target~dotted! shows a clear
maximum close to the theoretical azimuth~marked by the

Fig. 8 Interpolation of the five energy measurements for the regions
segmented as background (circles, dotted line) and as object (stars,
dashed line) as a function of the azimuth, for the test sequence in
Fig. 3. The azimuth corresponding to the true maximum for the ob-
ject velocity of (4/3,21/5) cycles/pixel is shown as a vertical line.
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vertical line! corresponding to the direction of the obje
velocity, (4/3,21/5) pixels/frame~known in this synthetic
sequence!.

It is important to note that there is no need to comp
explicitly the response to the directional GD2 channe
since the spatiotemporal gradient (sh0h0x ,sh0h0y ,sh0h0t) of
such channels is easily obtained from the representa
using the separable basis of GD3~i.e., from the sequence
filtered with all the partial GD3 derivatives! through the
following linear combinations13:

sh0h0x5h0x

2 sxxx1h0y

2 sxxy1h0t

2 sttx12h0x
h0y

sxxy

12h0x
h0t

sxxt12h0y
h0t

sxyt , ~10!

sh0h0y5h0x

2 sxxy1h0y

2 syyy1h0t

2 stty12h0x
h0y

syyx

12h0x
h0t

sxyt12h0y
h0t

syyt , ~11!

sh0h0t5h0x

2 sxxt1h0y

2 syyt1h0t

2 sttt12h0x
h0y

sxyt

12h0x
h0t

sttx12h0y
h0t

stty , ~12!

where (h0x
,h0y

,h0t
) are the components of the direction

vectorh0 , given that its modulus is one (uh0u51).

2.4 Registration and Integration

The last step is the registration of the moving object and
integration of all registered frames to increase the SN
Registration can be achieved using the velocities, estima
in the previous stage, frame by frame. However, a furt
refinement of the velocity estimates of each frame is p
sible, by taking advantage of the assumption that the ve
ity of the object does not have large variations along
sequence. One simple strategy would be averaging the
locity estimates within a temporal window, but a more i
telligent combination of velocities is possible on taking in
account the covariance matrices, which will produce
more robust and accurate estimate.13,29–31The combination
of a set of estimates of the velocity fromN consecutive
frames,vi5$( ṽxi

,ṽyi
)%, taking into account their associate

covariance matrices (Cvi
), results in the following new es

timate for the velocity~assuming that the different est
mates are uncorrelated!:

ṽ5S (
i 50

N21

Cvi

21D 21S (
i 50

N21 ṽxi

sui

2 1
ṽyi

suv i

(
i 50

N21 ṽxi

suv i

1
ṽyi

sv i

2
D , ~13!

wheresui

2 , suv i
, andsv i

2 are the components of the cova

riance matrix:

Cvi
5S sui

2 suv i

suv i
sv i

2 D . ~14!
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The graph in Fig. 9 displays the horizontal~circles! and
vertical ~squares! estimates of the velocity as a function
frame number, before~open symbols! and after~filled sym-
bols! the temporal combination, for a synthetic test s
quence with 0-dB SNR. The actual velocity of the object
constant for all frames: (4/3,21/5) pixels/frame, and thes
two components are represented as two continuous line
the graph. The horizontal velocity component has been
derestimated. This may have been caused by a bias in
estimate as a result of the simplified noise model that
sumes noise-free spatial gradients.13,29 The velocity esti-
mates are much more stable after the temporal comb
tion, which eliminates much of the noise present in ea
single-frame estimate.

Finally, the frames are motion-compensated using bi
ear backward interpolation, based on the displacements
dicted by the velocities estimated in the previous step.
linear interpolation introduces a slight lowpass filteri
effect, as can be appreciated in Fig. 10. This figure co
pares the original noise-free object~a!, the object in one of
the noisy frames~b!, and the result of integrating the 2
central frames using the actual velocity~c! and using the
velocity estimates provided by our method~d!. Even if we
use the actual velocity, there is some blurring effect due
the bilinear interpolation@compare images in Figs. 10~a!
and 10~c!#. The result obtained by applying all the steps
the automatic method@Fig. 10~d!# is satisfactory: the targe
is clearly visible, although blurred, mainly in the horizont
direction, as a result of the slight underestimation of t
velocity component. Nevertheless, the shape and mos
the texture of the original object appear clearly in the fin
result. It must be also considered that this test case co
sponds to a very extreme situation with SNR50 dB @see
Fig. 10~b!#.

3 Results

We have applied this method to real sequences of s
recorded with static ground-mounted cameras for marit
surveillance. The sequences were taken using either a
frared camera operating in the 8- to 12-mm range, or a
conventional CCD camera operating in the visible ran
These sequences were severely affected by noise in

Fig. 9 Estimates of the horizontal (circles) and vertical (squares)
velocity for every frame of the test sequence, before (open symbols)
and after (solid symbols) the combination in a temporal window of
nine frames. Also shown in continuous lines are the real horizontal
and vertical velocities of (4/3,21/5) cycles/pixel.
1466 Optical Engineering, Vol. 39 No. 6, June 2000
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duced by the system and~mainly! by bad atmospheric con
ditions. In these sequences, the observed ship is transla
without appreciable rotation or scaling, therefore satisfy
the assumptions of the method. We present here res
from two visible and one infrared sequence. The enhan
images are compared with one of the original frames.

The first sequence is 100 frames long and was ta
with a visible camera. The ship is translating from right
the left, with a mean horizontal velocity of about 1 pixe
frame~estimated manually as an average velocity from
global displacement between the first and last frames!. Fig-
ure 11~a! plots the estimates of the horizontal and vertic
velocity components at each frame, being approximat

Fig. 10 Results after the integration step for the test sequence: (a)
original moving object; (b) noisy frame; (c) integration using the real
velocity to register the object; (d) integration using the estimated
velocities.
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constant and equal to the mean velocity estimated ma
ally. Figure 11~b! displays one of the original frames
where most details of the ship are lost or masked by no
The result after applying our fully automatic method
shown in Fig. 11~c!. The image has been strongly e
hanced, the target displays now many details that were
visible in the original frame, and the SNR is much high
There is again a blurring effect that comes from both
bilinear interpolation and errors in the displacement estim
tion.

An original frame of the second visible sequence,
frames long, is shown in Fig. 12~b!. The ship is translating
from right to left with an average horizontal velocity o
about 0.7 pixels/frame~estimated manually!. The horizon-
tal estimated velocities in the graph of Fig. 12~a! oscillate
around this average value, between 0.5 and 1 pixel/fra
The vertical velocity component is approximately equal
zero. The noise level is similar here to that in the previo
sequence, making the recognition of details difficult, es
cially on the right side of the ship. These details are clea

Fig. 11 Results for the first real sequence of a ship taken from a
static CCD camera in the visible range: (a) plot of the horizontal
(dashed line) and vertical (dotted line) velocities of the object at
each frame; (b) subregion of original middle frame; (c) final en-
hanced image.
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visible, however, in the final enhanced image, Fig. 12~c!. In
addition, the hull of the ship appears more uniform~almost
noise-free!.

The last example corresponds to a sequence 25 fra
long, taken with the infrared camera, where the ship
translating from left to the right at an average horizon
velocity of 0.9 pixels/frame. The estimated velocities a
close to this average value, as shown in the graph in
13~a!. An original frame and the resulting enhanced ima
both in inverse video~hot areas darker!, are also shown in
Figs. 13~b! and 13~c!, respectively. The original frame i
slightly less noisy than in the visible case, since atm
spheric conditions affect infrared images less. Neverthel
there is again a great improvement in the resulting ima
Four vertical bars that seem to be funnels, which w
hardly visible in the original image@Fig. 13~b!#, appear
clear in the enhanced image@Fig. 13~c!#.

4 Conclusions

We have developed a fully automatic method that produ
an enhanced image of an object from a very noisy
quence, where the object is subject to a smooth tran
tional motion. This is achieved by the well-known tec
nique of averaging several frames to reduce the rand

Fig. 12 Results for the second real sequence of a ship taken from a
static CCD camera in the visible range: (a) plot of the horizontal
(dashed line) and vertical (dotted line) velocities of the object at
each frame; (b) subregion of original middle frame; (c) final en-
hanced image.
1467Optical Engineering, Vol. 39 No. 6, June 2000
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noise, but since the object is moving, it is necessary
estimate and compensate motion before averaging.
task is not trivial, even when the object is simply transl
ing, due to the high level of noise, which makes the ap
cation of conventional techniques to estimate the displa
ments impractical.

An optimal solution is the simultaneous estimation a
segmentation of the image velocity, using algorithms l
expectation/maximization~E/M!.11 This solution is appli-
cable to general models of image sequences includ
translation, rotation, and scaling. Indeed, these meth
have proven very useful for noise-free images. Howev
they are usually very costly, they have critical paramet
that have to be finely tuned, the convergence is usu
slow, and the final result depends critically on the init
condition. Given the large amount of noise present in
sequences, we have taken advantage of the simple tra
tion model of the sequences to apply a more efficient
robust technique. We segment the pixels according to
local spatiotemporal spectrum as a reliable description
the local texture-motion content, which is possible due
the simple translational model of sequences of interest.
clustering is then performed using a simple clustering al

Fig. 13 Results for a real sequence of a ship taken from an infrared
imaging system in the range of 8 to 12 mm: (a) plot of the horizontal
(dashed line) and vertical (dotted line) velocities of the object at
each frame; (b) subregion of original middle frame; (c) final en-
hanced image.
1468 Optical Engineering, Vol. 39 No. 6, June 2000
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rithm ~k-means!. The results obtained in segmentation
synthetic test sequences, with different amounts of no
and different translation velocities of the object and t
background, confirm the robustness of this strategy~mean
percentage of correctly segmented pixels greater t
98%!.

The velocity of the target can then be estimated robus
since the segmentation process has grouped together a
pixels sharing the same motion. Other segmentation str
gies not based on motion~e.g., based on the intensity leve!
will produce poor results due to noise, and can group
gether pixels having different motion, thus spoiling the r
bust estimation of the velocity. Additional robustness
achieved by estimating the optical flow at the output o
directional bandpass filter, in the spatiotemporal freque
domain, tuned to the moving object, which minimizes t
effect of noise as well as the potential contamination
responses due to the background at the occlusion bo
aries.

The velocity estimates are then used to register the
ject along all the frames. Once the target is registered,
the frames are averaged to reduce the noise, producin
enhanced image of the object. The excellent results
tained in real sequences from maritime surveillance s
tems~both visible and infrared! demonstrate the validity o
the approach and the usefulness of the method.
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