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Unusual viral ligand with alternative interactions is
presented by HLA-Cw4 in human respiratory syncytial
virus-infected cells

Susana Infantes1, Elena Lorente1, Juan José Cragnolini2, Manuel Ramos3, Ruth Garcı́a1, Mercedes Jiménez4,
Salvador Iborra3, Margarita Del Val2,3 and Daniel López1,4

Short viral antigens bound to human major histocompatibility complex (HLA) class I molecules are presented on infected cells.

Vaccine development frequently relies on synthetic peptides to identify optimal HLA class I ligands. However, when natural

peptides are analyzed, more complex mixtures are found. By immunoproteomics analysis, we identify in this study a

physiologically processed HLA ligand derived from the human respiratory syncytial virus matrix protein that is very different from

what was expected from studies with synthetic peptides. This natural HLA-Cw4 class I ligand uses alternative interactions to the

anchor motifs previously described for its presenting HLA-Cw4 class I molecule. Finally, this octameric peptide shares its

C-terminal core with the H-2Db nonamer ligand previously identified in the mouse model. These data have implications for the

identification of antiviral cytotoxic T lymphocyte responses and for vaccine development.
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Proteolytic degradation of newly synthesized viral proteins in the
cytosol by the combined action of proteasomes and degradative
peptidases is the first step in the recognition of virus-infected cells
by cytotoxic T lymphocytes (CTLs).1 This processing generates pep-
tides of 8–10 residues that are translocated to the endoplasmic
reticulum lumen by transporters associated with antigen processing,
and these short peptides assemble with human major histocompat-
ibility complex (HLA) class I heavy chain and b2-microglobulin.
Typically, this interaction is made possible by two major anchor
residues at position 2 and the C terminus of the antigenic peptide,2,3

which are deeply accommodated into specific pockets of the antigen
recognition site of the HLA class I molecule.4,5 Finally, stable trimo-
lecular peptide–HLA-b2–microglobulin complexes are transported to
the cell membrane and presented for CTL recognition.6

The human respiratory syncytial virus (HRSV),7 a Pneumovirus of
the Paramyxoviridae family is an enveloped virus containing a
negative-sense, single-stranded RNA genome encoding 11 proteins.
This virus is the single most important cause of serious lower
respiratory tract illnesses such as bronchiolitis and pneumonia in
infants and in young children.8–10 HRSV also infects people of all ages
but mainly poses a serious health risk in immunocompromised
individuals11,12 and in the elderly.13,14 Although the immune mechan-

isms involved in HRSV disease and protection are not fully under-
stood, CD8+ T lymphocytes are required to clear virus-infected cells.15

In recent years, several HRSVepitopes restricted by different HLA class
I molecules have been identified using the CTL of seropositive
individuals.16–20 However, all these experiments were performed
with synthetic peptides and no identification of natural epitopes was
performed. Two previous studies on the identification of the natural
peptides that are endogenously processed in living cells from the HIV
gp160 glycoprotein and then presented by murine MHC (major
histocompatibility complex) class I molecules have shown multiple
additional ligands differing from the optimal antigenic synthetic
peptide.21,22 Thus, further studies on the natural peptides involved
in the antiviral CTL response are required. To date, only two naturally
processed HRSV ligands have been reported.23 We are interested in
extending the study of the natural peptides responsible for HRSV
antiviral response. By means of a comparative immunoproteomics
analysis of peptide pools isolated from both uninfected and virus-
infected cells, this report identifies an unusual HLA ligand different
from that predicted by bioinformatics tools. These results underscore
the need to study the peptides produced by physiological processing,
as the natural situation may be different from that defined with
synthetic peptides.
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RESULTS

Identification of endogenously processed HLA ligands derived from
HRSV in infected human cells
The strategy used in this study was adapted from the identification of
HLA-B27 ligands from stable transfectants expressing individual
bacterial proteins as reported previously.24,25 First, HLA-bound pep-
tide repertoires were isolated from cells either infected or not infected
with HRSV. Next, both peptide pools were fractionated by high-
performance liquid chromatography (HPLC) in consecutive runs and
under identical conditions to reduce alterations in peptide elution
patterns. Analysis of every HPLC fraction from each peptide pool was
performed by matrix-assisted laser desorption/ionization mass spec-
trometry (MALDI-TOF MS). Each spectrum of a single HPLC
fraction of HRSV-infected cells was compared manually with the
correlative (i), two previous (i�1 and i�2) and two following (i+1,
and i+2) fractions of uninfected cells. This technique allows the
selection of peptides found only in HRSV-infected cells. The corre-
sponding MS/MS spectrum of each differential peptide was obtained,
and its amino-acid (aa) sequence was assigned with bioinformatics
tools. The sequences were validated by comparison with the MS/MS
spectrum of the corresponding synthetic peptide.

A single viral HLA ligand differentially detected in HRSV-infected
cells
B27-C1R-transfected cells were used as the starting point because they
express high levels of HLA-B27 and minimal levels of other HLA class
I molecules. B27-C1R cells were incubated with the Long strain of
HRSV and assayed at different times for the presence of HRSV
antigens by flow cytometry. The results shown in Figure 1 indicate
that after 2 weeks, the transfectant cell line incubated with the virus,
but not the mock-infected control, was expressing HRSV F and/or G
proteins. Similar results were obtained at longer time periods after
infection (data not shown). Thus, a B27-C1R-transfectant cell line
persistently infected with HRSV was obtained in the same manner as
previously reported for Epstein–Barr-transformed human B-cell
lines.26 HLA-bound peptide pools were then isolated from B27-C1R

cells and HRSV-infected B27-C1R cells. Next, a comparative analysis
of MALDI-TOF MS was carried out. A total of 22 ion peaks that were
detected in different HPLC fractions of the HRSV+ cell line but not in
uninfected controls were analyzed by electrospray ionization ion trap
MS/MS (data not shown). Only one ion peak with an m/z of 422.9 was
assigned to the viral aa sequence AITNAKII, spanning residues 188–
195 of the HRSV matrix protein (Figure 2, upper panel). A search in
the human proteome database failed to identify any human protein,
confirming the viral origin of this peptide. The theoretical assignment
was confirmed by identity with the MS/MS spectrum of the corre-
sponding synthetic peptide (Figure 2, lower panel). Thus, these results
indicate that an HRSV ligand is endogenously processed and pre-
sented by an HLA molecule of the B27-C1R cell line.

HRSV M188–195 is a non-canonical HLA-Cw4 ligand
Following a similar strategy to that used in this study, in recent years,
several hundred HLA-B27 ligands have been identified by immuno-
precipitation with the W6/32 monoclonal antibody (mAb) of HLA-
B27–peptide complexes using the B27-C1R cell line (summarized in
the SYFPEITHI database: http://www.syfpeithi.de3). This MHC class I
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Figure 1 Persistent infection of the B27-C1R cell line by HRSV. The B27-

C1R cell line was infected with the Long strain of HRSV at an MOI of 2 PFU

per cell, incubated for 2 h at 37 1C and then washed. A mock-infected

control was included as the negative control. Cells were then cultured for 2
weeks and stained with the polyclonal FITC-labeled anti-HRSV Ab that

recognizes HRSV F and G proteins. Samples were analyzed by FACS (B27-

C1R mock infected, upper panel; and HRSV-infected B27-C1R cells, lower

panel).
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Figure 2 Identification of the M188–195 ligand in infected cell extracts by

mass spectrometry. The MS/MS fragmentation spectrum was obtained after

quadrupole ion trap mass spectrometry of the ion peak at m/z 422.9 of the

extract of B27-C1R cells infected with HRSV (upper panel) and the

corresponding synthetic peptide (lower panel). The vertical axis represents
the relative abundance of the parental ion and each fragmentation ion

detected. Ions generated in the fragmentation are detailed, whereas the

sequence deduced from the indicated fragments is shown in the upper left

box of each respective panel.
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molecule binds peptides to Arg at position 2 and basic, aliphatic or
aromatic C-terminal residues.27 The HRSV matrix 188–195 ligand
AITNAKII identified in Figure 1 does not have the canonical HLA-B27
anchor motifs. One possibility is that it could be an unusual HLA-
B27-restricted ligand. To test this hypothesis, MHC/peptide complex
stability assays were carried out using transporter associated with
antigen processing (TAP)-deficient RMA-S cells transfected with
HLA-B27. Figure 3a shows that in contrast to a control HLA-B27
viral ligand, the influenza virus nucleoprotein (NP) peptide, induction
of complexes with the HRSV matrix 188–195 peptide was not
detected. Thus, this viral ligand does not bind to HLA-B27.

The C1R cell line has been widely used as a transfection recipient in
functional studies of MHC class I genes because it barely expresses
HLA-A and HLA-B molecules, as it is derived from a normal Epstein–
Barr virus-transformed B-cell line modified by several rounds of
mutagenesis and immunoselection with anti-HLA Abs and comple-
ment.28 A later study29 demonstrated that, in this heterozygous cell
line, the chromosomic region encoding HLA-A3, Bw62 and Cw3 class
I molecules is deleted; meanwhile, the expression of HLA-B35 and
HLA-Cw4 is weakly positive and that of HLA-A2 appears to be
negative.29 Thus, new MHC/peptide complex stability assays using
TAP-deficient RMA-S cells transfected with each HLA molecule of the
C1R cell line were performed. No HLA stabilization was detected
using either HLA-A2+ (Figure 3b) or HLA-B35+ (Figure 3c) cells.
These data indicate that the AITNAKII peptide is not restricted by
these HLA molecules. In contrast, the M188–195 synthetic peptide
induced similar numbers of HLA-peptide surface complexes as a well-
known HLA-Cw4 ligand, C4CON (Figure 4, upper left panel). The
consensus peptide-binding motif for HLA-Cw4 is Tyr or Phe at
peptide position 2.30,31 Thus, the M188–195 octamer is an unusual
HLA-Cw4 ligand.

Identical binding hierarchy to human and mouse MHC class I
molecules in two nested viral peptides
Interestingly, the M187–195 NAITNAKII nonamer has been described
as an H-2Db-restricted CTL epitope,32 and it has the canonical anchor
motifs for Db molecules.33 Therefore, two viral peptide species of
different lengths that share the same antigenic core and differ only in
the additional N-terminal residue were bound to either HLA-Cw4- or
H-2Db-presenting molecules in the respective infected cells. Next,
binding of the AITNAKII octamer and the related nonamer was tested
in these two MHC class I molecules. The results indicate that both

peptides stabilize significant surface MHC–peptide complexes in
HLA-Cw4 (Figure 4, upper left panel)- or H-2Db (Figure 4, upper
right panel)-positive cells. In addition, the relative MHC class I affinity
of both peptides was evaluated. Both peptides bound to MHC class I
molecules in the range commonly found among natural ligands
(Figure 5). The nonamer efficiently stabilized HLA-Cw4 (Figure 5,
left panel) and H-2Db (Figure 5, right panel) cells, with a C50 for MHC
binding of 1.5±1mM and 2±1mM, respectively. MHC class I mole-
cules on both cell lines were stabilized B10-fold less efficiently with
the octamer (Figure 5), but still in the range of optimal ligands.

Figure 3 HLA stabilization assay with the HRSV M188–195 synthetic peptidic ligand. (a) Stability at the cell surface of HLA-B27, (b) HLA-A2 (b) or (c)

HLA-B35, of RMA-S cells transfected with each of these HLA class I molecules, respectively, was measured by flow cytometry. The indicated peptides were

used at 200mM. The mAbs used were ME1 (anti-HLA-B27, panel a), PA2.1 (anti-HLA-A2, panel b) and W6/32 (anti-HLA monomorphic, panel c). The

results, calculated as FI (see the ‘Methods’ section)±s.d., are the mean of 2–4 independent experiments.
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Figure 4 HLA stabilization assay with HRSV M188–195 and M187–195

synthetic peptides. Stability at the cell surface of HLA-Cw4 (upper left

panel) or H-2Db (upper right panel) of the respective RMA-S-transfectant

cells was measured by flow cytometry. The indicated peptides were used at

200mM. The mAbs used were W6/32 (anti-HLA monomorphic, left panel)
and 34-5-8S (anti-H-2Db right panel). A representative experiment with

HLA-Cw4 RMA-S cells was depicted in the bottom panel. The coded used as

in follows: isotypic control (shaded histogram), C4CON peptide (thick line)

and M188–195 peptide (thin line). The data, calculated as in Figure 3, are

the mean of 2–5 independent experiments.
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Surprisingly, both the octamer and the nonamer bound efficiently to
HLA-Cw4 molecules, in spite of the lack of canonical anchors for
interaction with the presenting molecule.

In summary, the two peptides show identical binding patterns in
both human and mouse cells.

Differential conformation of HRSV octamer and nonamer peptides
bound to the HLA-Cw4 molecule
Only one crystal structure of HLA-Cw4, in complex with the peptide
QYDDAVYKL, has been described previously.34 This C4CON peptide
is anchored to four specificity pockets in the binding groove. The A
pocket interacts with both the terminal NH2 and the side chain of the
P1 Gln residue (Figure 6a). The B pocket interacts with the P2 Tyr
residue. HLA-Cw4 presents an E pocket located on the side of the a1
helix, formed mostly by residues from the a1 helix and the b-sheet
platform that bind the P7 Tyr side chain of the peptide. Finally, the F
pocket forms the COOH-terminal boundary of the cleft and is
incompletely filled by the side chain of P9 Leu. Modeling of both
HRSV nonamer and octamer peptides in complex with HLA-Cw4 was
performed on the basis of the existing X-ray structure of the
QYDDAVYKL–HLA-Cw4 complex (Figure 6a). The CO Ile residue
of both peptides interacted with the C-terminal F pocket as did
the P9 Leu of the QYDDAVYKL peptide (Figures 6b and c). In the
HRSV nonamer, P3 Ile and P7 Lys must be accommodated into the B
and E pockets, respectively, with residues 4–6 and 8, respectively,
bulging out of the peptide-binding cleft (Figure 6b). In this
HRSV nonamer, the existence of P1 Asn allows recovery of the
interaction of the amide group of P1 Gln with the HLA-Cw4 molecule
shown by the crystallographic data (Figures 6a and b). The shorter
lateral chain of Asn versus Gln allows inclusion of the small Ala
residue in the P2 position with little variation in peptide conforma-
tion. In contrast, in the octamer, the P1 Ala terminal NH2 group
interacts identically with the equivalent groups of either Gln of
QYDDAVYKL or Asn of the nonamer peptide. The interactions of
the terminal NH2 group and the lateral chain of CO with the HLA
molecule stretch the octameric peptide, and thus either P2 Ile or P6

Lys cannot be accommodated as in the nonameric peptide. These
losses in interaction of the 8mer to HLA may explain the differences
between the octamer and the nonamer detected in the MHC stabiliza-
tion assay (Figure 5).

To demonstrate that the 8mer and 9mer viral peptides are bound
with different registers to HLA-Cw4 molecules, new MHC/peptide
complex stability assays with monosubstituted Ala analogs of HRSV
matrix peptides were carried out. The exchange for Ala of the Ile
residue that serves as anchor motif, but not the P3 Thr that is solvent
exposed, abolished the interaction with the MHC of the octamer
(Figure 7, left panel) but not with the nonamer (Figure 7, right panel).
The additional anchor interactions with the HLA molecule of P1 Asn,
and P7 Lys in the 9mer, that were absent in the octamer as suggested

1.0

1.5

2.0

2.5

-9 -8 -7 -6 -5 -4 -3
[Peptide], log M

M188-195
M187-195

1.0

1.5

2.0

2.5

3.0

F
lu

or
es

ce
nc

e 
In

de
x

HLA-Cw4

-9 -8 -7 -6 -5 -4 -3
[Peptide], log M

H-2Db

RSV M188-195 16 ± 12 22 ± 8

RSV M187-195 1.5 ± 1 2 ± 1

Peptide HLA-Cw4 H-2Db

C50 (μM)

F
lu

or
es

ce
nc

e 
In

de
x

M187-195

Flu NP

M188-195

Flu NP

Figure 5 Binding affinity to MHC of HRSV M188–195 and M187–195

synthetic peptides. Synthetic peptides HRSV M188–195 (squares), M187–

195 (circles) and Flu NP (negative control, triangles) were titrated on cells

expressing HLA-Cw4 (left panel) or H-2Db (right panel), and stabilization of

MHC was measured by flow cytometry. The data, calculated as in Figures 3

and 4, are the mean of 3–5 independent experiments. The calculated C50

values (see the ‘Methods’ section)±s.d. are shown below.

QYDDAVYKL

P1

P2

P7
P9

NAITNAKII

P1

P3
P7

P9

AITNAKII
P2 P8

P1

Figure 6 Modeling of HLA-Cw4-bound conformations of peptides C4CON

(QYDDAVYKL), HRSV M188–195 (NAITNAKII) and M187–195 (AITNAKII).

Backbone atoms of the indicated HLA-Cw4-bound peptides are displayed as

ribbon tubes (a, QYDDAVYKL; b, NAITNAKII; and c: AITNAKII). Atoms are

represented by sticks with the following color scheme: blue, nitrogen; red,

oxygen; green, carbon atom. The peptide residues that interact with the

HLA-Cw4 pockets are indicated. The HLA-Cw4 protein is not displayed. The

figure was prepared using the PyMOL program. A full color version of this

figure is available at the Immunology and Cell Biology journal online.

Natural HLA-Cw4 ligand without anchor motifs
S Infantes et al

561

Immunology and Cell Biology



by the modeling of Figure 6, could compensate the loss of P3 Ile by Ala
exchange and explain the stabilization of the A3–9 (Ala-Ile) 9mer.

DISCUSSION

The results reported in this study show that the octamer 188–195
derived from the HRSV matrix protein is efficiently processed in
HRSV-infected cells. This ligand is presented by the MHC class I
molecule Cw4 using alternative interactions to the anchor motifs
previously described for this MHC class I molecule. In addition, this
octameric peptide coincides with the C-terminal core of a putative
H-2Db-restricted CTL nonameric epitope previously identified in the
mouse model.

In a previous study that involved culturing virus-infected cells with
stable isotope-labeled aa expected to be anchor residues for the HLA
allele of interest and then performing immunoprecipitation of MHC
molecules and two-dimensional nanoscale liquid chromatography-
mass spectrometry analysis, one HRSV ligand for each HLA-A2 or
HLA-B7 class I molecule was identified.23 In our current study, which
uses similar cell numbers and a more classical and cheaper approach,
one HRSV HLA ligand was also identified. Isotope labeling of anchor
residues strongly favors detection of peptides with canonical anchors.
Thus, artificial biases are introduced when using such a directed
methodology in these difficult studies, and unusual viral ligands
such as M188–195 may pass undetected. In addition, the identification
of one viral ligand per heterozygous HLA-A, HLA-B and HLA-C cell
line in both previous23 and current studies of HRSV-infected cells
could indicate immunodominant selection of ligands or only low
coverage of identified peptides. Thus, future studies using new high-
resolution mass spectrometers are required to clarify this point.

Furthermore, our detection of an endogenously presented natural
viral peptide without the HLA-Cw4 anchor motifs reveals the limita-
tions of predictive methods for identifying natural MHC class I
ligands and T-cell epitopes. These analytical algorithms may not be
sufficiently accurate and their cautious use is highly recommended. At
present, B50 endogenously processed HLA-Cw4 ligands derived from
cellular proteins have been identified with Tyr or Phe at peptide
position 2 as the anchor motif.30,31 In contrast, there are very few
studies identifying viral HLA-Cw4 ligands or CTL epitopes. The
peptide NVFPIFLQM spanning residues 54–62 of the human papillo-
mavirus 18 L1 protein was eluted from purified HLA-Cw4
molecules.35 This viral peptide, with N-terminal Asn followed by
a relatively small residue in the P2 position, resembles nonameric Db

ligand NAITNAKII derived from the HRSV matrix protein, which also
binds to Cw4 as a synthetic peptide. Probably, the first three residues
of both nonameric viral peptides bind similarly to HLA-Cw4, with the
hydrophobic residues in position 3 occupying the B pocket of the HLA
molecule as suggested by our modeling (Figure 6). In addition, two
HIV HLA-Cw4-restricted epitopes have been previously reported in
gp120 (FNCGGEFF, residues 377–383)36 and in the protease (QYD-
QIPIEI, residues 58–66).37 As the novel viral ligand AITNAKII found
in our current study, two of these three ligands did not show the
consensus peptide motif for binding to HLA-Cw4. Thus, the use of
predictive algorithms based on parameters such as MHC class
I-binding motifs for identifying natural viral HLA class I ligands
and T-cell epitopes may not be pertinent to some MHC class I
molecules, such as HLA-Cw4.

Our study also reveals that the natural 8mer presented by HLA-Cw4
almost coincides with a published 9mer presented by murine Db class
I molecule. Past studies have shown interspecies cross-reactivity of
MHC class I epitopes. These included 5, 3 and 1 ligands shared by a
human and a rhesus macaque, a rhesus macaque and a mouse, as well
as by two different chimpanzee MHC class I molecules, respectively.38–40

The pairs of cross-reactive MHC-presenting molecules differed by
6–42 residues, and had marked differences in the sequence and
structure of the peptide-binding groove. Yet, in all published cases,
the peptide motifs of the cross-reactive MHC class I molecules were
very similar. Our study presents a striking distinctiveness from the
previous interspecies cross-reactivity reports, because the two present-
ing molecules, human HLA-Cw4 and mouse H-2Db that have up to
52 residue differences in the a1a2 peptide-binding domains, have very
different anchor motifs.30,31,33 Thus, no similar anchor motifs are
required between interspecies cross-reactive MHC class I molecules to
bind very similar ligands. Finally, this finding shows the complexity
and plasticity of interactions in MHC–peptide complexes.

In most cases, the natural MHC class I ligand is assumed to be the
one that has the canonical anchor sites, the minimal length and the
optimal antigenicity when tested as a synthetic peptide. Two related
studies of the endogenous processing of the HIVenvelope glycoprotein
would fence this hypothesis. The first study identified two peptide
species of different lengths that share the same antigenic core asso-
ciated with the Dd-presenting molecule in infected cells.21 These
species were the optimal decapeptide and, unexpectedly, a nonamer
that lacked the correctly positioned NH3

+-terminal residue to bind the
Dd molecule. Notably, both were equally antigenic for specific CTLs.
Similarly, the second study involved the analysis of the same envelope
glycoprotein and identified a nested set of three natural H-2Ld class I
ligands of 15-aa, 10-aa and 9-aa in length with identical C-terminal
core:22 the nonamer with the canonical anchor motif for binding to Ld

and two additional unexpected species with either one or six N-
terminally extended residues. Notably, the peptide with 6 N-terminally
extended residues was 10-fold less antigenic but more abundant in
infected cells than the core 9 residues peptide. In line with these
reports, our current study reveals that the natural octameric ligand
obtained from HLA-Cw4+-infected cells is not the optimal MHC class
I-binding peptide, as indicated by its lower in vitro affinity to HLA-
Cw4 molecules compared with the nonamer that has one N-terminal
additional residue. If assays with truncated overlapping synthetic
peptides had been used, as is often the case in vaccine development,
the nonamer but not the natural octamer would have been defined as
the optimal HLA-Cw4 class I ligand. Thus, the extrapolation of either
antigenicity or MHC-binding strength is not sufficient to identify
natural viral MHC class I ligands. These limitations may apply to
the previous definition of the nonameric M187–195 peptide as a
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Db-restricted CTL epitope.32 In that study, the truncated overlapping
synthetic peptides strategy was used. Both M187–195 and M188–195
peptides induced significant interferon-g production by CD8+ T cells,
which was slightly higher for the nonamer, in agreement with the Db-
binding data shown in Figure 5. As the nonamer fits the canonical
length for an MHC class I epitope and was predicted by every
computer algorithm used, it was defined as the optimal epitope by
the authors of the study.32 The M188–195 peptide without an N-
terminal residue would bind to H-2Db molecules as other peptides
lacking the N-terminal-binding residue do, as they have been endo-
genously identified bound to other MHC class I molecules,21,41

indicating that canonical MHC–peptide interactions in the P1 pocket
are not always necessary for endogenous peptide presentation. Thus,
only the detection of one or both peptides in the pool of Db ligands in
infected murine cells will determine the exact nature of the HRSV
matrix epitope.

Collectively, the results in the current report highlight the importance
of analyzing natural peptides that result from the endogenous processing
of viral proteins. This analysis is fundamental for a detailed under-
standing of MHC class I-restricted immunity and future vaccine design.

METHODS

Cell lines and Abs
B27-C1R is a transfectant42 of the human lymphoid cell line HMy2.C1R (C1R)

with low expression of its endogenous class I molecules.28,29 RMA-S is a TAP-

deficient murine cell line.43 RMA-S-transfectant cells expressing HLA-A2,44

HLA-B27,45 HLA-B3546 and HLA-Cw447 have been described previously. All

cell lines were cultured in RPMI 1640 supplemented with 10% fetal bovine

serum and 5�10�5
M b-mercaptoethanol. The Abs used in this study were the

polyclonal fluorescein isothiocyanate anti-HRSV, which recognizes HRSV F

and G proteins (Chemicon International, Temecula, CA, USA), and the mAbs

34-5-8S (specific for H-2Db),48 W6/32 (specific for a monomorphic HLA-A,

HLA-B, HLA-C determinants),49 PA2.1 (specific for HLA-A2)50 and ME1

(specific for HLA-B27, B7, Bw22).51

Synthetic peptides
Peptides were synthesized in a peptide synthesizer (model 433A; Applied

Biosystems, Foster City, CA, USA) and purified by reversed-phase HPLC.

The monosubstituted Ala analogs of HRSV matrix peptides were named

according to the position of the substituted residues (Ala-Ile or Ala-Thr)

and their length. Thus, A2–8 refers to the octamer of sequence AATNAKII. The

correct molecular mass of peptides was established by MALDI-TOF MS, and

the correct composition of HRSV peptides was determined with quadrupole

ion trap micro-HPLC.

Isolation of HLA-bound peptides
HLA-bound peptides were isolated from 2�109 B27-C1R-transfectant cells

either infected or not infected with HRSV. Cells were lysed in 1% Igepal CA-

630 (Sigma-Aldrich, St Louis, MO, USA), 20 mM Tris/HCl buffer, 150 mM NaCl,

pH 7.5, in the presence of a cocktail of protease inhibitors. HLA–peptide

complexes were isolated by affinity chromatography of the soluble fraction with

the W6/32 mAb. HLA-bound peptides were eluted at room temperature with

0.1% aqueous trifluoroacetic acid, concentrated with Centricon 3 (Amicon,

Beverly, MA, USA), and fractionated by HPLC, as described previously.24,25

MALDI-TOF MS
HPLC fractions were analyzed using a MALDI-TOF mass spectrometer (Reflex

IV, Bruker Daltoniks, Bremen, Germany). The samples were dried down using a

SpeedVac system (Savant Global Medical Instrumentation, Ramsey, MN, USA)

and reconstituted in 1ml of TA buffer (33% aqueous acetonitrile, 0.1%

trifluoroacetic acid). One-fifth of the volume was loaded onto an MTP 384

massive 384-well MALDI insert (Bruker Daltoniks), and allowed to dry at room

temperature. The remainder of each HPLC fraction was stored at 4 1C. Thereafter,

0.6ml of matrix solution (a-Cyano-4-hydroxycinnamic acid (Bruker Daltoniks)

at 3 mg ml�1 was added to the MALDI insert and allowed to dry at room

temperature. MS data were acquired in the mass range of 400–3000 Da

in a reflector-positive mode at 25 kV and analyzed using the Flex Analysis

software version 2.0 (Bruker Daltoniks). Each spectrum was externally

calibrated using the Peptide Calibration Standard Mixture (Brucker Daltoniks,

product no. 206195) to reach a typical mass measurement accuracy

of o25 p.p.m.

Electrospray ion trap MS analysis
Peptide sequencing was carried out by quadrupole ion trap electrospray MS/

MS on a Deca XP LCQ instrument (Thermo Electron, San Jose, CA, USA)

coupled to micro-HPLC (Biobasic C18 column 150�0.18 mm2, Thermo

Electron). The eluents used were the following: A, 0.5% acetic acid in water

and B, 80% acetonitrile containing 0.5% acetic acid. The gradient was 0–40% B

in 24 min and 40–100% B in 5 min, with a flow rate of 1.5ml per min. The MS/

MS mode focused on each hypothetical parental peptide, previously selected by

MALDI-TOF analysis and comparison, with an isolation width (m/z) of 1.5 Da

was used.52 The charge and the mass of ionic species were determined by high-

resolution sampling of the mass/charge rank. Collision energy and ion-

precursor resolution were improved to optimize the fragmentation spectrum.

MS spectra were processed using both Bioworks Browser (version 3.3.1 SP1)

and Proteome Discovered 1.0 software (both from Thermo Electron) using the

National Center for Biotechnology Information non-redundant (NCBInr)

protein database (July 2008 versions) within the taxonomy parameters of

Homo sapiens and viruses. No enzyme specificity was selected. The peptide and

MS/MS tolerances were set at ±0.4 and ±0.8Da, respectively. In addition, the

corresponding synthetic peptide was prepared, and its MS/MS spectrum was

used to confirm the assigned sequence of the HRSV ligand.

MHC/peptide stability assays
The following synthetic peptides were used as controls in complex stability

assays: KPNA2 (GLVPFLVSV, HLA-A2 restricted),53 Flu NP (SRYWAIRTR,

HLA-B27 restricted),54 EBNA3 (YPLHEQHGM, HLA-B35 restricted)55 and

C4CON (QYDDAVYLK, HLA-Cw4 restricted).56 RMA-S transfectants were

incubated at 26 1C for 16 h in RPMI 1640 medium supplemented with 10%

heat-inactivated fetal bovine serum. Thereafter, they were washed and incu-

bated for 1 h at 26 1C with various peptide concentrations in the medium

without fetal calf serum, transferred to 37 1C and collected for flow cytometry

after 4 h. MHC expression was measured using 100ml of hybridoma culture

supernatant containing mAbs ME1 (anti-HLA-B27), PA2.1 (anti-HLA-A2),

W6/32 (anti-HLA monomorphic) or 34-5-8S (anti-H-2Db) as described

previously.57 Samples were acquired on a FACSCanto flow cytometer (BD

Biosciences, San Jose, CA, USA) and analyzed using CellQuest Pro 2.0 software

(BD Biosciences). Cells incubated without the peptide had peak fluorescence

intensities close to background staining with the secondary Ab alone. The

fluorescence index was calculated at each time point as the ratio of mean

channel fluorescence of the sample to that of the control incubated without

peptide. Binding of HRSV matrix peptides was also expressed as C50, which is

the molar concentration of the peptide yielding 50% of the maximum

fluorescence obtained at the concentration range between 100 and 0.001mM.

Molecular dynamics
Starting structures. The native C4CON HLA-Cw4-binding peptide was taken

from chains A, B and C 1qqd PDB file. The HRSV M187–195 peptide bound to

the HLA-Cw4 model was build with the MODELLER9v7 program using the

PDB 1qqd file as template. The HRSV M188–195 peptide was modeled by

removal of the N-terminal Arg residue from the previous HRSV M187–195

peptide model. Protonation states of ionizable groups for the three systems

were calculated using the H++ server (http://biophysics.cs.vt.edu/H++).58,59

The positions of hydrogen atoms, standard atomic charges and radii for all the

atoms were assigned according to the ff03 force field.60 The complexes were

immersed in cubic boxes of TIP3P water molecules large enough to guarantee

that the shortest distance between the solute and the edge of the box was larger

than 13 Å.61 Counter ions were also added to maintain electro neutrality.

Three consecutive minimizations were performed: (1) the first minimization
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involving only hydrogen atoms, (ii) the second only the water molecules and

ions and (iii) the entire system.

Simulation details. Starting minimized structures, prepared as stated before,

were simulated in the fixed pressure P, temperature T, and number of atoms

N (constant-NPT ensemble) using Periodic Boundary Conditions and Particle

Mesh Ewald to treat long-range electrostatic interactions. The systems were

then heated and equilibrated in two steps: (1) 200 ps of molecular dynamics

heating the whole system from 100 to 300 K and (2) equilibration of the entire

system during 1.0 ns at 300 K. The equilibrated structures were the starting

points for the 10-ns molecular dynamics simulations at constant temperature

(300 K) and pressure (1 atm). The SHAKE algorithm was used to keep bonds

involving H atoms at their equilibrium length, allowing a 2-fs time step for the

integration of Newton’s equations of motion. ff03 and TIP3P force fields, as

implemented in the AMBER 10 package (http://ambermd.org/, AMBER Soft-

ware Administrator, CCB Graduate Program, University of California, San

Francisco, CA, USA), were used to describe the proteins, peptides and water

molecules. Sample frames at 20-ps intervals from the molecular dynamics

trajectory were subsequently used for the analysis.

Interaction energies analysis. Effective binding-free energies between the pep-

tides and HLA-Cw4 were estimated using the MM-GBSA approach as

implemented in the AMBER 10 package.62 The MM-GBSA method approaches

the free energy of binding as a sum of a molecular mechanics (MM) interaction

term, a solvation contribution thorough a generalized Born (GB) model and a

surface area (SA) contribution to account for the non-polar part of solvation.

In addition, to better characterize peptide–protein interactions, an energy

decomposition analysis in a pairwise manner (between the peptides residues

and HLA-Cw4 residues) was performed using a cutoff of 5 Å from the peptides.

The polar contribution to salvation-free energies was calculated with GB,

whereas the non-polar contribution was estimated to be proportional to the

area lost upon binding using the linear combinations of pairwise overlap

method to calculate accessible surface areas.63 These calculations were per-

formed for each snapshot from the simulations using the appropriate module

within the AMBER 10 package.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
We thank Drs E O Long (National Institute of Allergy and Infectious Diseases,

NIH, Rockville, MD, USA), M Takiguchi (Center for AIDS Research,

Kumamoto University, Kumamoto, Japan) and JA López de Castro (Centro de
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