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Renormalization group approach to chiral symmetry breaking in graphene
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We investigate the development of a gapped phase in the field theory of Dirac fermions in graphene with
long-range Coulomb interaction. In the large-N approximation, we show that the chiral symmetry is only
broken below a critical number of two-component Dirac fermions N,=32/7, that is exactly half the value
found in quantum electrodynamics in 2+1 dimensions. Adopting otherwise a ladder approximation, we give
evidence of the existence of a critical coupling at which the anomalous dimension of the order parameter of the
transition diverges. This result is consistent with the observation that chiral symmetry breaking may be driven
by the long-range Coulomb interaction in the Dirac field theory, despite the divergent scaling of the Fermi

velocity in the low-energy limit.
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I. INTRODUCTION

The fabrication of single layers of carbon with atomic
thickness has provided us with a laboratory to explore new
physics,? as the electrons in this so-called graphene behave
at low energies as massless Dirac fermions, displaying coni-
cal valence and conduction bands.® Apart from its quite in-
teresting properties from the applied point of view, the new
material offers the possibility of studying an electron system
that is a variant of quantum electrodynamics (QED) in the
strong-coupling regime with unusual features as shown, for
instance, in Refs. 4-8.

A remarkable feature of this field theory of electrons in
graphene is its scale-invariant character.” This means for
practical purposes that, while many-body corrections give
rise, in general, to dependences on the high-energy cutoff,
these are susceptible of being reabsorbed into the definition
of physical quantities. Consequently, some of the parameters
of the theory may have a nontrivial scaling in the low-energy
limit. The quasiparticle weight is, for instance, renormalized,
and it would be driven to zero if its flow were not arrested by
the divergence of the Fermi velocity in the infrared.'? This
marginal behavior leaves anyhow an imprint in the quasipar-
ticle decay rate'' with an unconventional dependence on en-
ergy which has been observed experimentally.'?

An important phenomenon that may take place in a sys-
tem of massless Dirac fermions is the opening of a gap in the
regime of strong interaction. In this respect, the case of QED
in 241 dimensions can serve as a good example, in which
the original U(N) chiral symmetry of the theory with N
massless two-component Dirac fermions is spontaneously
broken below a critical number of flavors N,.!3 This chiral
symmetry breaking (CSB) has been also studied in graphene
by a number of analytical'*'® as well as numerical
methods.?*?3 The conclusion to be drawn from different ap-
proaches is that a gap can open up in the Dirac spectrum,
though the effect may only appear below some critical value
of N and above some critical interaction strength. In this
picture, there remain, however, important questions to be ad-
dressed, related to the effect of the above-mentioned scaling
of the parameters in the model. We point out, in particular,
that the strength of any four-fermion interaction in the Dirac
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field theory has to be measured relative to the weight of the
kinetic energy that scales with the Fermi velocity. Then, it is
crucial to clarify whether the divergence of this parameter in
the infrared may prevent the CSB even for a small number of
Dirac fermions.

In this paper we apply renormalization group methods to
study the CSB in the field theory of Dirac fermions in
graphene. We consider that this electron system is governed
at low energies by the Hamiltonian

H= iUFf dri(r)y - Vis(r)

&2 1
a f i, f Prpr)——p(ry), (1)
8 |1'1

- 1'2|

where {#;} is a collection of N/2 four-component Dirac
spinors, ;= v, and p(r)=;(r) yoi;(r). The matrices 7,
satisfy {vy,,7,}=2 diag(1,-1,-1) and can be conveniently
represented in terms of Pauli matrices as 5
=(03,0307,030,) ® 03, where the first factor acts on the two
sublattice components of the graphene lattice. Our aim is to
elucidate whether a term of the type

Pu(T) = h(r) ih(x) (2)

is generated spontaneously in the Hamiltonian of the electron
system. A convenient way to address this question is to look
at the susceptibility built from that operator, that is, at the
correlator

I(q,w) =i f dte'(Tp,(q,1)p,,(- q,0)). (3)

—oo

I1(q, w) is actually a response function measuring the reac-
tion of the system under a slight difference of scalar potential
in the two sublattices of the graphene lattice. A divergence of
I1(0,0) at some particular value of the coupling constant can
be interpreted as the signal that p,, is getting a nonvanishing
expectation value, which is, in turn, the signature of the
opening of a gap in the Dirac spectrum.
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FIG. 1. Quantum corrections to the vertex built from i in the
large-N approximation, where the interaction between electrons is
taken as the RPA dressed Coulomb potential (thick wavy line).

We will take advantage of the power of the renormaliza-
tion group to characterize the possible singular behavior of IT
as a function of e?/vy. For this purpose, we concentrate on

the corrections to the vertex built from i, as shown in Figs.
1 and 3. In the process of renormalization, p,, may get, in
general, an anomalous dimension 7,2, modifying the naive
scaling of the susceptibility,

I1(q.0) ~ |q|'7277. (4)

In what follows, we apply different approaches for the deter-
mination of Y2 in order to establish the existence of a sin-
gular behavior in the long-distance scaling of the susceptibil-
ity IT.

II. LARGE-N APPROXIMATION

We can go beyond the usual perturbative approach in the
coupling /vy by taking formally a large number N of fer-
mion flavors to perform then the sum of all the diagrams that
arise to leading order in a 1/N expansion. If we think of all
possible contributions to the expectation value {p,,(q)y(k
+q)#'(K)), it is clear that the leading corrections in 1/N are
given by the iteration of the exchange of electron-hole
bubbles in the interaction between the i and ' fields. This
amounts to adopt the random-phase approximation (RPA) for
the dressed Coulomb interaction represented in Fig. 1. Intro-
ducing the polarization x(q,®,), we get for the correspond-
ing vertex function

. - d*p d
H%M=nﬂ2j
n=0

w
(277_)2 2_7TBG0(p’ wp) YOGO(p +q, (1)1,)

e’ <ez)((p— K, w,- wk)>”
2[p - K| 2/p - K| ’

(5)

where G, stands for the free Dirac propagator. We recall that,
in the case of N two-component Dirac fermions, x(q,w,)=
2, 202 2
—(N/16)q?/ Jviq? -,
An interesting feature of the sum in Eq. (5) is that, while
a high-energy cutoff A has to be imposed to make the inte-
grals finite, all the terms show the same degree of logarith-
mic dependence on the cutoff. By passing to imaginary fre-
quency i®,=w,, we can compute the divergent contribution
to the vertex as
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Q2m)? 2 (@, +vpp?) ">

w22/ (Md(ugp))
= 70+707T",/2NE( 1) n v | |
n=0 F(l +£> FIP

8 arccos(g)
=Nt W8 rj;‘%A (6)

where g=(N/32)e?/v . We note that the singularity at g=1 is
only apparent, as the function in Eq. (6) can be continued
analytically to g>1 by taking arccos(g)=i log(g+g?>—1).
In this way, we end up with an expression of the vertex that
becomes sensible for arbitrarily large values of the effective
coupling.

The divergence of the vertex I" at large A has to be re-
moved by absorbing the dependence on the cutoff into the

scale Z,2 of the composite field #.>* However, this is not
the only field redefinition to be accomplished, as the finite-
ness of the full Dirac propagator demands the introduction of
a cutoff-dependent scale for the Dirac field, such that (A)
=ZL1/,/2(A) Uren- The electron self-energy can be actually found
in Ref. 10 to dominant order in the 1/N approximation, pro-
viding the result

—

( 2- gzarccosg T
2+ >
g 1-g* g

8
Zy=1+—5— )logA (7)

N

The cutoff independence of the vertex I' must be guaran-

teed after multiplication by Z,, and the scale Z, of the com-

posite field. We define the renormalized vertex as Iy,

=ZpZ,I'. By imposing the finiteness of I'.,, we obtain to
leading order in the 1/N expansion

8 2 arccos g 77)
Zp=1l-——|2+—"—F7— log A. (8)
v WzN( gNl-g* ¢ o

The knowledge of Z,» can now be used to determine the
anomalous scaling of the susceptibility II(q,®). This cor-
relator involves two composite operators i, and it can be
made cutoff independent by multiplying each of them by
their renormalization factor. The finite susceptibility is then
Hren(q,w):ZszH(q,w). A renormalization group equation
can be obtained for II, relying on the independence of the
susceptibility on A in the renormalized theory.”* We obtain
from the invariance of Il

a ]
A£+ﬁ(g)a—g—2n,z I(q,») =0 ©))

with the anomalous dimension
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FIG. 2. (Color online) Phase diagram obtained to leading order
in the 1/N approximation, showing the regime with massless Dirac
fermions (m=0) and the phase with CSB (m #0).

dlog Z
T (10

and B(g)=dg/dlog A. In the bare theory with a cutoff A, it
follows from dimensional analysis that the susceptibility II
can be written in terms of a dimensionless function ®(x) as
I1(q,0)=(|q|/vs)P(vs|q|/A). Then, neglecting in a first ap-
proximation the scaling of the effective coupling, the solu-
tion of Eq. (9) implies that I1(q,0)~ (|q|/v)(velq|/ A)27%
with the behavior anticipated in Eq. (4).
The anomalous dimension obtained from Eq. (8) is

8 (2 2 arccos g f) (11)

ERN T T8 g
and it turns out to be a monotonous, increasing function of g.
This means that, provided that it gets sufficiently large, there
may exist a critical value g, at which II(q,0) becomes sin-
gular in the limit q— 0. The divergence of this susceptibility
implies a long-wavelength instability, which can be inter-
preted as the development of a nonvanishing expectation

value of . On the other hand, the value of g. depends, in
general, on the number of flavors N. We can draw then a
boundary marking the onset of CSB in (N, g) space. This line
of transition, characterized by the condition 1—27¢2=0, is
shown in Fig. 2.

The expression in Eq. (11) leads to the existence of a
critical number of flavors N, above which CSB cannot take
place. If we let g— in that equation, we approach the
maximum value of 7,2 from which we find N.=32/7. It is
very suggestive that this critical N is precisely half the value
obtained in QED in 2+1 dimensions."? Technically, the
methods used to derive N, in each model cannot be easily
compared, as QED is not a scale-invariant field theory in that
number of dimensions. On intuitive grounds, however, one
can understand the relation between the two values of N, as
the photon propagating in QED has two different degrees of
freedom. This may explain that twice the number of flavors
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FIG. 3. (Color online) Self-consistent diagrammatic equation for

the vertex I'(q;k), equivalent to the sum of ladder diagrams built
from the iteration of the bare Coulomb interaction (thin wavy line).

are needed there to equally screen the interaction, in com-
parison to our model with just the scalar Coulomb potential.

III. LADDER APPROXIMATION

We resort now to an approach that can better capture the
behavior of the system to the right of the phase diagram of
Fig. 2. For this purpose, it is pertinent to adopt a self-
consistent approximation in the calculation of the vertex I,
equivalent to the sum of ladder diagrams, by which the most
divergent logarithmic dependences are taken into account at
each perturbative level.” The approach is encoded in the
self-consistent equation shown in Fig. 3. The perturbative
solution leads to a power series in the effective coupling A\
=¢%/87v r» Where the term of order N diverges, in general,
with the high-energy cutoff as log"(A). The important point
is that the set of diagrams considered in this way allows to
implement a consistent renormalization of the theory, where
Z, is free of nonlocal divergences, making possible a pre-
cise computation of the anomalous dimension 7.

A solution of the equation in Fig. 3 has been given in Ref.
26 regularizing the momentum integrals with an infrared and
a high-energy cutoff. Here, in order to facilitate the calcula-
tion of the divergences of the vertex I', we define instead the
field theory by analytic continuation to spatial dimension d
=2—e€. After integration in the frequency variable, the self-
consistent equation for the vertex takes the form

Ll 1

d’p
['0;k) = yy+ 2\ WF(O;p m|p_ K

where the dimensionful coupling A is given in terms of an
auxiliary momentum scale p by Ag=\p€ (see below). Thus,
powers of log A are traded by poles at €=0 in the different
perturbative contributions, which are easier to compute. In
principle, Eq. (12) could also afford a nonperturbative reso-
lution, but the computation of the anomalous dimension
would be complicated then as this is obtained from the resi-
due of the 1/ € pole. Unfortunately, a closed equation for that
quantity cannot be written from Eq. (12), which couples the
equations for the coefficients of the different powers of e.
This is otherwise a natural consequence of the regularization
of the diagrams, since the interdependence of the different
poles is a key property of a renormalizable theory, as we
illustrate below.

We resort then to an iterative resolution of Eq. (12), by
which we can obtain a recursion between consecutive orders
in the power series for the vertex
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F(O;k)=7’o|:1 +E7\8Fn(k)]- (13)

n=1

It can be easily seen that the momentum dependence of the
different orders takes, in general, the form

a,
|k|ne‘

T, (k) = (14)

Inserting the nth term of the series in the right-hand side of
Eq. (12), we get

Ay dp a, 1 1

=2
|K|(+De @) |p|*|p| |p - K|

" F(1+n—6>

d’p 2
"I em? ~ <1+ne>
\"77]._‘ T

x—1/2(1 _ x)(—l+ne)/2

1
) fo dx[(p —K)2x + p2(1 —x)]*e?

1,(n+l )
€
1 2 a
— 4 €2 n
2\57( ™ F<1+n6> [k e e
2

1
1
X JO dxx[l+(n+])e]/2(1 _ x)i+ar (15)

After performing the integral in the x parameter, we find the
relation

Apy =pn+1(5)an (16)

ne 1 —ne 1-€
(55

[ €2
pa(e) = 2\’/7_7(47T) 4 r( T5 o l)e)r(l i nzjf) .

with

2
(17)

In this approach, the bare vertex function can be written in
compact form as

T0:k) =+ 902 N2 pj(e), (18)

n=1 |k|n6j:1

where p is a momentum scale introduced to get the dimen-
sionless coupling A=p~°\.

In the ladder approximation, it can be easily seen that
Zy=1. On the other hand, the renormalization factor Zyp
must have the general structure
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©

Zp=1+2,

n=1

€N

" (19)

The position of the different poles is determined by requiring
the finiteness of I'.,=Z2I" in the limit €— 0. From the ex-
pression in Eq. (18), we can obtain the power series

ci(N) ==X =1log(2)A? = 2 log?(2)\> — {%61og3(2)

+ ég(3)]>\4 - [2—010g4(2) + 10g(2)§(3)])\5

_ {%10?(2) +610g%(2)£(3) + 11—65(5):|)\6 .

CZ(}\) = %)\2 + 10g(2))\3 + glogz(Z))\4 + |:23_210g3(2)
+ é§(3)]7\5 + {24 log*(2) + glog(2)§(3)])\6 P
1 1 3 29
c3(M) =~ 37\3 - 510g(2)>\4 - 510g2(2)7\5 - [€10g3(2)

1 6, ...
+16§(3)]>\+ ,

1 1 7
— —Z\4, = 5. 1002 6, ...
cy(\) = 24)\ + 610g(2))\ + 12log (2N + -+,

1 1
cs(\) =- E)\S - ﬂlog(Z))\ﬁ + o,
1 6
cs(\) = %)\ + 0o, (20)

and so on, with the next ¢,(\) starting each time with one
more power of the coupling.

Of all the poles, only the first can contribute to the anoma-
lous dimension 7,2. This is because the theory at d # 2 has a
finite limit A — o and the cutoff only appears from the need
to define the units of dimensionful quantities such as p. The
implicit dependence N\~ A\, leads to A(IN/JIA)=e\ and,
following Eq. (10),

dlog Z
= ARIOEEE G da (21)
IN O\ d\

In principle, the right-hand side of Eq. (21) can contain con-
tributions from higher order poles in Eq. (19), but these will
vanish provided that dc,,;/d\=c,(dc,/d\), identically for
every n.”’ These are key constraints in order to have a renor-
malizable theory, since they guarantee the finiteness of y,2 in
the limit e—0. Quite remarkably, we have checked that
those relations are indeed satisfied in our case, up to the
order A® for which we have computed the exact expression of

Zi/,z.
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FIG. 4. (Color online) Plot of the absolute value of the coeffi-
cients c(l”) in the expansion of ¢;(\) as a power series in the cou-

pling A.

The other important check we have made along the way is
that Z,» does not contain nonlocal divergences proportional
to log(|k|/p), which appear at intermediate stages of the cal-
culation. In the case of the simple pole, we have the result to
order \3

ci(N) ==X =1log(2)A? =2 log?(2)\> - (13—610g3(2)

+ %g(3)>>\4 - (53—()10;;4(2) + log(2)§(3)>)\5

- (iﬁlogS(z) +61og*(2)¢(3) + %g@)xé

9604 98 1
_( =108 (2) + S log (IB) + = £0)
3 L (262144
+ 4log<2>as>)x (—315 log’(2)

+ 53210g“(2)§(3) +210g(2)(3) + 6 og*(2)4(5)

9 81 O
+ 2565(7)))\ +O(\). (22)
The general term of this series does not have a simple ex-
pression, but one can still obtain numerically higher orders
of the perturbative expansion to determine the behavior of
the function ¢;(\). Thus, we have computed the coefficients
c(l”) of the power series in \ up to order \'®, what is enough
to establish their exponential growth with n. The results are
displayed in Fig. 4, showing that

-c(N) = E o"\" + regular terms. (23)

n=1

A best fit of the asymptotic behavior at large n gives the
value a=4.5.

The important point is the evidence that the anomalous
dimension 2 obtained from Eq. (21) must have a singular-
ity at a finite value of the effective coupling N\*=1/a. As one
approaches this value from below, the anomalous dimension
gets arbitrarily large, meaning that the opening of a gap is the
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effect that has to prevail in the system near N, in spite of the
upward renormalization of the Fermi velocity at low
energies.”® This applies, in particular, to the theory with
small number of flavors, implying that, to the right of the
phase diagram in Fig. 2, CSB should take place above a
critical coupling e?/8mvr=1/a(=0.2).

IV. CONCLUSION

In this paper we have applied renormalization group
methods to analyze the development of a gapped phase in
graphene, taking advantage of the scaling properties of the
theory of interacting Dirac fermions in the two-dimensional
(2D) system. In this regard, an important effect that may
question the breakdown of the chiral symmetry is the diver-
gence of the renormalized Fermi velocity at low energies. In
principle, the downward scaling of the effective coupling
e?/vp can prevent to remain above the line of the transition
in Fig. 2, even in cases where the nominal value of the cou-
pling places the model inside the region with m # 0. Similar
objection for the CSB can be applied to additional local four-
fermion interactions, as their relative strength is always to be
measured with respect to the scale of the kinetic energy. One
may argue, however, that, in a statistical formulation of the
problem, there has to be a critical temperature for the transi-
tion to the gapped phase. The temperature is also a relevant
scale arresting the renormalization of the Fermi velocity at
low energies. Then, it is feasible that the renormalized cou-
pling ¢*/vy may still keep a sufficiently large value to force
the transition at the critical energy scale.

We note that our results in the large-N approach establish
that, for the physical value N=4, graphene would remain in
the gapless phase even for the largest values of the effective
coupling attained in vacuum (e?/4mvp~2.2). This is in
agreement with the fact that no evidence of transition to an
insulating state has been found in free-standing graphene.
The other important conclusion is that CSB must exist any-
how at sufficiently small values of N, given the evidence we
have obtained of a critical coupling at which the anomalous
dimension of the order parameter diverges. This result could
explain the observation of a transition in Monte Carlo simu-
lations of the long-range Coulomb interaction in the 2D
system. 202!

A natural prediction from our analysis is that the gapped
phase should emerge at some point in the way from N=4 to
N=1. The spin projection can be frozen, for instance, by
applying a magnetic field, and it is actually very appealing to
think that the metal-insulator transition observed in that case
in graphene may rest on this effect of CSB. It remains to be
seen whether quenching also the Dirac-valley degree of free-
dom could lead to an insulating state for accessible values of
€?/vy, in accordance with the results of this study.
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