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Although coevolution is widely recognized as an important evolutionary process for pairs of reciprocally specialized species, its 
importance within species-rich communities of generalized species has been questioned. Here we develop and analyze mathemat- 
ical models of mutualistic communities,  such as those between plants and pollinators or plants and seed-dispersers to evaluate 
the importance of coevolutionary selection within complex communities. Our analyses reveal that coevolutionary selection can 
drive significant changes in trait distributions with important consequences for the network structure of mutualistic communities. 
One such consequence  is greater connectance caused by an almost invariable increase in the rate of mutualistic interaction within 
the community. Another important consequence  is altered patterns of nestedness. Specifically, interactions mediated by a mech- 
anism of phenotype matching tend to be antinested when coevolutionary selection  is weak and even more strongly antinested 
as increasing coevolutionary selection favors the emergence of reciprocal specialization. In contrast, interactions mediated by a 
mechanism of phenotype differences tend to be nested when coevolutionary selection is weak, but less nested as increasing 
coevolutionary selection favors greater levels of generalization in both plants and animals. Taken together, our results show 
that coevolutionary selection can be an important force within mutualistic communities, driving changes in trait distributions, 
interaction rates, and even network structure. 
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Coevolution has been demonstrated to be an important force 
shaping the evolution and ecology of tightly interacting pairs 
of species. For instance, theoretical studies suggest that interac- 
tions generating intense coevolutionary selection can favor the 
evolution of sexual reproduction under some circumstances (Otto 
and Nuismer 2004; Agrawal 2006; Salathe et al. 2008; Lively 
2010) and even modest levels of coevolutionary selection can fa- 
vor transitions between ploidy levels (Nuismer and Otto 2004), 
levels of local adaptation (Gandon et al. 1996; Lively et al. 
2004; Gandon and Nuismer 2009), or patterns of mate choice 
(Nuismer et al. 2008). In addition to contributing to such evo- 
lutionary transitions, both theoretical and experimental studies 
suggest that coevolution shapes predator–prey and epidemiologi- 

cal dynamics (Abrams 2000; Burdon and Thrall 2000). Together, 
this body of work clearly demonstrates that when pairs of species 
interact tightly and persistently, coevolution is a potent ecological 
and evolutionary force. 

Although the importance of coevolution in tightly special- 
ized pairwise interactions is widely recognized, its significance 
for species-rich communities, which include more generalized 
interactions—such as those between plants and their pollina- 
tors or seed dispersers—is much debated. In short, this debate 
centers on the extent to which coevolution between individual 
pairs of species remains important and influential when any given 
species likely interacts with many other species, each of which 
may impose conflicting selection pressures (Hougeneitzman and 
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Rausher 1994; Iwao and Rausher 1997; Stinchcombe and Rausher 
2001; Strauss and Irwin 2004). In the face of so many potentially 
conflicting selection pressures it is often argued that pairwise co- 
evolution becomes unimportant and species interactions evolve 
through only a diffuse mechanism (Iwao and Rausher 1997). 
A resolution to this debate has been slow in coming primarily 
because studying coevolution within complex multispecific com- 
munities of generalized species is a formidable empirical and 
theoretical challenge. 

Recently, significant strides have been made in better un- 
derstanding  the  structure,  function,  and  evolutionary  origin 
of  highly  diversified  communities  of  mutualists  by  estimat- 
ing  summary  statistics  that  describe  the  patterns  of  interac- 
tion among community members and the distribution of phe- 
notypes characterizing interacting species. This approach has 
revealed that mutualistic communities of plants and their pol- 
linators or seed dispersers show repeated and predictable pat- 
terns. Specifically, such communities tend to be nested such 
that  the  more  specialized pollinator  or  disperser  species  in- 
teract with the most generalized plant species and vice versa 
(Bascompte et al. 2003; Bascompte and Jordano 2007). Put dif- 
ferently, within a nested community the most specialized part- 
ners (animals or plants) interact only with proper subsets of 
those partner species interacting with the most generalized ones. 
In addition, the traits of the species within these communities 
tend to be convergent, such that both animal and plant species 
have more similar phenotypes for traits relevant to mutualistic 
interactions than expected by chance (Bascompte and Jordano 
2007). Finally, traits of interacting species tend to be comple- 
mentary meaning that those species within the community that 
do interact with one another have similar phenotypic values for 
the traits involved in the mutualistic interaction (Bascompte and 
Jordano 2007). Although it is generally thought that these pat- 
terns are generated by a combination of species abundances, 
trait distributions, and phylogenetic history (Guimarães et al. 
2007; Rezende et al. 2007; Santamarı́a and Rodrı́guez-Gironés 

tion represents only a small fraction of total evolutionary change, 
it has pervasive influences on levels of trait complementarity and 
convergence. Because this study assumed a fixed network struc- 
ture, however, a key question remains unanswered: does coevolu- 
tionary selection itself drive changes in the network structure of 
mutualistic communities? 

In an effort to address this gap in our understanding, we de- 
velop and analyze a very general quantitative genetic model that 
allows the network structure of mutualistic communities to itself 
evolve and coevolve. Specifically, we use our model to address 
the following questions: (1) Does coevolutionary selection in- 
crease the connectance and overall interaction rate of mutualistic 
communities? (2) Under what conditions does coevolutionary se- 
lection promote the convergence and matching of traits mediating 
mutualistic interactions? (3) Does coevolutionary selection alter 
levels of nestedness within mutualistic communities? 
 
 

The General Model 
We model the evolution and coevolution of NA  animal and NP 

plant species living in sympatry. Each animal species i has a 
fixed population size of nA,i , and each individual is characterized 
by a single phenotype y. Similarly, each plant species i has a 
fixed population size nP,i , and each individual is characterized 
by a single phenotype z. Individuals encounter one another at 
random and individual fitness is assumed to depend on the abiotic 
environment and mutualistic interactions. 

Specifically, we assume that the fitness of an individual of 
animal species i with phenotype y is given by 
 

W A,i ( y) = exp[−γA ( y − θA,i )2 ](1 + ξA,i π( y, z)),  (1a) 
 
and that the fitness of an individual of plant species i with pheno- 
type z is given by 
 

W P,i (z) = exp[−γP (z − θP,i )2 ](1 + ξP,i π( y, z)). (1b) 

2007; Bluthgen et al. 2008; Krishna et al. 2008; Verdú and The first term in (1) measures the reduction in fitness caused 
Valiente-Banuet 2010; Fontaine et al. 2011), it is also possible 
they are the product of coevolution (Thompson 2005; Guimarães 
et al. 2011). 

Only one previous study has explored how coevolution 
shapes these commonly observed properties of mutualistic com- 
munities (Guimarães et al. 2011). In this study, coevolutionary 
models were built upon a scaffold defined by patterns of inter- 
action observed within real mutualistic communities. This study 
revealed that coevolution plays an important role within mutual- 
istic communities by increasing levels of trait complementarity 
and convergence; a result previously predicted by Kiester et al. 
(1984) and by verbal arguments (Thompson 2005). Specifically, 
Guimarães et al. (2011) showed that although pairwise coevolu- 

by deviating from the optimal phenotype favored by the abiotic 
environment for animal species i (θA,i ) and for plant species i 
(θP,i ), with larger values of γ indicating a greater sensitivity of 
fitness to deviations from the optimum. The second term in (1) 
captures the fitness benefit accrued by encountering and success- 
fully interacting with a mutualistic individual with phenotype z 
(for animals) or y(for plants). Specifically, if the individuals in- 
teract successfully (which occurs with probability π), the fitness 
of the focal individual is increased by ξj,i . 

Whether an encounter between an individual animal and 
plant leads to a successful interaction depends on the phe- 
notypes (y and z) of the interacting individuals. We consider 
two possible functional relationships between the traits of the 
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interacting species. The first functional relationship, which we 
refer to as the “phenotype matching” model (e.g., Nuismer et al. 
2005; Kopp and Gavrilets 2006), assumes that the probability of 
successful interaction decreases with increasing distance between 
the phenotypes of the interacting individuals such that 

 
π = exp[−α ( y − z)2 ]. (2a) 

assumption. Specifically, we will assume that the additive genetic 
variance for trait y in animal species i has a fixed value Gy,i , and 
that for trait z in plant species i a fixed value Gz,i . With this as- 
sumption, and the additional assumption that selection is weak, it 
is possible to use the classical quantitative genetics equation 
 

1 ∂ W̄ 
 
 

This model corresponds to a scenario where successful in- 

6x̄  = G x W̄ ,  (3) 
∂ x̄ 

 

teraction depends on the match between animal and plant trait 
as could be the case for plant and animal phenology in both 
dispersal and pollination mutualisms (Jordano et al. 2003; Ole- 
sen et al. 2010; Campbell et al. 2011) or proboscis and corolla 
lengths in some pollination mutualisms (Agosta and Janzen 2005; 
Santamarı́a and Rodrı́guez-Gironés 2007; Stang et al. 2007). The 
second functional relationship, which we refer to as the “pheno- 
type differences” model (e.g., Nuismer et al. 2007), is a general- 
ized version of what is often referred to as the “threshold model” 
in the ecological literature and assumes the probability of success- 
ful interaction decreases as the phenotype of the plant individual 
increases relative to the phenotype of the animal individual such 
that 

 
π = 1/(1 + exp [−α ( y − z)]) (2b) 

to predict how the population mean trait values of each species 
will change as a consequence of selection (Lande 1976; Gavrilets 
1997; Nuismer et al. 2010). In equation (3), x̄  is the population 
mean value of trait y (in animals) or trait z (in plants), and W̄  is the 
population mean fitness of the species. To make further progress 
using equation (3), we must calculate the population mean fitness 
of each species (W̄ ) within the community. 

The first step toward calculating the population mean fitness 
of each species is to determine the expected fitness of individuals 
with specific phenotypes. Assuming that individuals encounter 
one another at random, this is relatively straightforward. Specifi- 
cally, the expected fitness (Ŵ ) of an individual of animal species i 
with phenotype y is given by 

Ŵ A,i ( y) = exp[−γA ( y − θA,i )2 ] 
 

This model corresponds to a scenario where successful inter- 
action depends on the degree to which the animal trait surpasses 

⎛ 
N P  ¸

 × ⎝  f P, j
 j =1 

⎞
 (1 + ξA,i π)8z, j dz⎠ .
 

(4a) 

that of the plant trait as might be the case for fruit and beak size 
in a dispersal mutualism (Lambert 1989; da Silva and Tabarelli 
2000) or proboscis and corolla length in some pollination mutu- 
alisms (Inouye 1980; Borrell 2007; Anderson and Johnson 2009; 

 
and the expected fitness of an individual of plant species i with 
phenotype z is given by 

Ŵ P,i (z) = exp[−γP (z − θP,i )2 ] 
Anderson et al. 2010). These two models (matching and differ- 
ences) correspond to the unidirectional and bidirectional axes of 
vulnerability recognized by Abrams (2000) for predator–prey in- 
teractions. 

⎛ 
N A  ¸

 × ⎝  f A, j
 j =1 

⎞  
(4b) (1 + ξP,i π)8y, j dy⎠ .

 

Together, the fitness functions (1) and interaction functions 
(2) determine the probability that individuals survive to matu- 
rity. Those individuals that survive are then assumed to mate at 
random within their species and produce offspring. The next gen- 
eration is formed by sampling nA,i  offspring of animal species i 
and nP,i  offspring of plant species i. Because the detailed genetic 
assumptions underlying reproduction differ between our analyti- 
cal approximation and individual based simulations, these details 
will be explained within the sections devoted to each of these 
approaches. 

 
 

Analytical Approximation 
To gain analytical insight into the influence of mutualistic co- 

In equations (4), the sums are taken over the number of inter- 
acting species and weighted by the frequency of each interacting 
species j, where this frequency is given by fi, j  = ni, j / 

.Ni       ni, j . 
Weighting by species frequencies captures the fact that encounters 
with abundant species are more likely than encounters with rare 
species. The terms φz,i or φy,i in (4) are the phenotype frequency 
distributions within species i. 

To evaluate the integrals in (4), we assume the sensitivity of 
fitness to phenotypes is not too strong. Specifically, we assume 
that the parameters γ and α are of small order ε such that terms of 
O(ε2 ) and greater can be ignored (e.g., Nuismer et al. 2010). With 
this assumption, equations (4) can be readily evaluated (Mathe- 
matica notebook available upon request) as can the population 
mean fitness for each animal species 

evolution on community structure, we pursued an approximation 
to our general model. This approximation requires an important 

¸
 W̄ A,i  = Ŵ A,i φy,i dy,  (5a)
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and each plant species 
¸

 W̄ P,i  = Ŵ A,i φz,i dz. (5b) 

matching model—interaction efficiency falls as average animal 
and plant phenotypes diverge and as phenotypic variation in- 
creases both within and among species. Greater insight into the 
role coevolution plays in shaping the interaction efficiency of mu- 

Substituting (5) into (3) and ignoring terms of order O(ε2 ) and 
higher, yields equations for the change in population mean phe- 
notypes for all species within the community (Appendix 1). Sur- 
prisingly, these equations reveal that the distribution of species’ 
abundances has no effect on deterministic coevolutionary dynam- 
ics of the interacting species, influencing evolution only through 
its impact on the rate of genetic drift. 

The equations for the change in trait means within each 
species provide a complete description of evolutionary change 

tualistic communities can be obtained by substituting the equilib- 
rium expressions for Ȳ , Z̄ , Vȳ , and Vz̄  found in Appendix 3 into 
(6). Evaluating the resulting expression numerically shows that 
increasing the average strength of coevolutionary selection in- 
creases the interaction efficiency of the community at equilibrium 
(Fig. 1A). 

For those interactions mediated by phenotypic differences, 
we find that the interaction efficiency is 

1 α 2
 

within communities. However, using even these relatively simple 
equations to study the evolutionary and coevolutionary dynamics 
of entire communities requires studying a system of NA  + NP 

equations, which is intractable for communities of even modest 
species richness. Fortunately, the problem can be greatly sim- 
plified by making a change of variables from the trait means of 
the individual species to the statistical moments that describe the 
distribution of trait means within plants and within animals (Ap- 
pendix 2). Remarkably, this change of variables reveals that—to 
leading order—the coevolutionary dynamics of the entire commu- 

E = 
2 
− 

4 
( Z̄ j  − Ȳi ) + O (ε ). (7) 

Equation (7) reveals that unlike mutualistic interactions me- 
diated by the matching model, interactions mediated by the phe- 
notypic differences model are independent of the variance within 
and among species. Instead, interaction efficiency falls as the ex- 
pected value of plant population mean phenotypes increases rela- 
tive to the expected value of animal population mean phenotypes. 
Despite this difference between the specific factors contributing 
to interaction efficiency in the matching and difference models, 

nity can be described by recursion equations for only six statistical substituting the equilibrium expressions for Ȳ and Z̄  derived in 

moments, irrespective of the number of species in the commu- 
nity. Analysis of these statistical moments reveals that mutualis- 
tic communities evolve to a stable equilibrium described by rela- 
tively simple expressions (Appendix 3). In the following sections, 
we use these equilibrium expressions to predict how coevolution 
changes three important properties of mutualistic communities: 
interaction efficiency, convergence, and complementarity. 

 
INTERACTION EFFICIENCY 
Using our assumption that the probability of successful mutual- 
istic interaction does not depend too strongly on the traits of the 
interacting individuals (α of small order ε), it is possible to ap- 
proximate the proportion of all encounters between plant and ani- 
mal individuals that result in successful interactions; we term this 
quantity the “interaction efficiency” of the community. Interaction 
efficiency is a quantitative measure of community connectance, 
and these two measures are generally strongly correlated (results 
not shown). For the matching model, the interaction efficiency is 

 
E ≈ 1 − α((Ȳ  − Z̄ )2 + Vȳ  + Vz̄  + V̄ y + V̄z ) + O (ε2 ),   (6) 

 
where Ȳ and Z̄  are the expected population mean phenotypes of 
all animal species and all plant species respectively, Vȳ   and Vz̄ 

are the variance in population mean phenotypes among all animal 
and plant species respectively, and V̄ y  and V̄ z  are the expected 
phenotypic variance within animal species and plant species re- 
spectively (Appendix 4). Thus, equation (6) reveals that—for the 

Appendix 3 into (7) demonstrates that mutualistic coevolution 
mediated by the difference model also invariably increases the 
interaction efficiency of the community (Fig. 2). 

 
CONVERGENCE 
Our analytical approximation can also be used to evaluate how 
mutualistic coevolution shapes trait convergence within mutualis- 
tic communities. Again, assuming that the probability of success- 
ful interaction depends only weakly on the traits of the interacting 
individuals, it is possible to derive approximate expressions for 
the variance in population mean phenotypes among the subset of 
animal and plant species that interact with one another. Large val- 
ues of these variances indicate weak convergence whereas small 
values of these variances indicate strong convergence. For the 
matching model, we find that the variance in population mean 
phenotypes among animal species that successfully interact with 
plant species is 
 

V [ ȳ t ] ≈ Vȳ (1 − 2αVȳ ) + O (ε2 ),  (8a) 
 
and among plant species that successfully interact with animal 
species is 
 

V [z̄t ] ≈ Vz̄ (1 − 2αVz̄ ) + O (ε2 ),  (8b) 
 
where primes indicate values within the bivariate distribution of 
successfully interacting individuals. Substituting the equilibrium 
expressions for Vȳ , and Vz̄  found in Appendix 3 into (8) reveals 
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A  

Fitness consequences to 
plant 

 

B Figur e  2.  Analytical predictions for equilibrium interaction effi- 
ciency for the differences model as a function of the average 
fitness consequences of interactions for plants and animals. Co- 
evolution is most intense when average fitness consequences are 
great for both plants and animals. Parameter values are identical 
to Figure 1. 

 
For those interactions mediated by phenotypic differences, 

we find that the variance in population mean phenotypes among 
animal species observed to interact with plant species is 

 
V [ ȳ t ] ≈ Vȳ  + O (ε2 ),  (8c) 

 

C and among plant species observed to interact with animal species 
is 

 

V [z̄t ] ≈ Vz̄  + O (ε2 ),  (8d) 
 
 
 
 
 
 
 
 
 

Fitness consequences to plant 
 

Figur e 1.  Analytical predictions for equilibrium values of (A) inter- 
action efficiency, (B) convergence, and (C) complementarity for the 
matching model as a function of the average fitness consequences 
of interactions for plants and animals. Coevolution is most intense 
when average fitness consequences are great for both plants and 
animals. Parameter values: α = 0.03, γA = 0.005, γP = 0.005, VθA = 
8, VθP  = 8, nA = 1000, and nP = 1000. 

 
 

two important conclusions. First, the level of convergence in plants 
and animals is decoupled: changing parameters unique to plant 
species have no impact on convergence of animal traits and vice 
versa (Fig. 1B). Second, increasing the strength of coevolutionary 
selection imposed on animals by plants increases the convergence 
of animal traits and vice versa (Fig. 1B). 

where primes indicate values within the bivariate distribution of 
successfully interacting individuals. As with interactions medi- 
ated by phenotype matching, substituting the equilibrium expres- 
sions for Vȳ , and Vz̄   found in Appendix 3 into (8) reveals that 
convergence in plants and animals is decoupled. In contrast to 
interactions mediated by phenotype matching, however, levels 
of convergence are independent of the strength of pairwise co- 
evolutionary selection imposed by the interacting species and 
are instead solely a function of populations sizes and stabiliz- 
ing selection: pairwise coevolution plays no role in shaping the 
convergence of such interactions. 

 
COMPLEMENTARITY 
In addition to allowing us to study how coevolution shapes inter- 
action efficiency and convergence, our analytical approximation 
makes it possible to determine how coevolution changes levels 
of complementarity between interacting species. Specifically, our 
approximation allows us to calculate the correlation between the 
mean phenotypes of those animal and plant species that success- 
fully interact. For interactions mediated by phenotype match- 
ing, the correlation between the mean phenotypes of interacting 
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animals and plants is 

ρ ≈ , 
V (1

 

 
 

2αVȳ Vz̄ 

2αV )
√

V (1 

 

 
 

2αV ) 
+ O (ε ). (9a) 

ual animal and plant is calculated, fitness values are transformed 
into probabilities of survival by dividing individual fitness by the 
maximum individual fitness within the species. Subsequently, a 

ȳ − ȳ z̄ − z̄ 
random number is drawn for each individual and only those indi- 

Substituting the equilibrium expressions for Vȳ  and Vz̄  found 
in Appendix 3 into (9) and evaluating numerically, demonstrates 
that mutualistic coevolution decreases the correlation between the 
traits of interacting species whenever interactions are mediated by 
phenotypic matching (Fig. 1C). 

In contrast, for those interactions mediated by phenotypic 
differences, the correlation between the mean phenotypes of in- 
teracting animal and plant species is 

 
ρ ≈ 0 + O (ε2 ). (9b) 

 
Thus, equation (9) demonstrates that when interactions are 

mediated by phenotype differences and the probability of success- 
ful interaction is not too sensitive to the traits of interacting indi- 
viduals, the traits of interacting animal and plant species should 
be uncorrelated. 

In summary, our analytical results predict that coevolution 
should always increase the interaction efficiency of mutualistic 
communities irrespective of the underlying mechanism of inter- 
action (i.e., matching vs differences). In contrast, whereas coevo- 
lution mediated by phenotype matching increases trait conver- 
gence and decreases trait complementarity, coevolution mediated 
by phenotype differences has no effect on these metrics. Although 
these analytical results provide valuable insight, they rely on sev- 
eral important assumptions such as fixed additive genetic variance 
and phenotypes that are not too divergent. Perhaps more impor- 
tantly, our analytical approach does not allow us to evaluate how 
coevolution influences nestedness, one of the most commonly 
studied properties of mutualistic networks (Bascompte et al. 2003; 
Vázquez et al. 2009; Fortuna et al. 2010; Joppa et al. 2010). For 
these reasons, we complement our analytical approximations with 
individual-based simulations that relax the key assumptions of our 
analytical model and allow nestedness to be easily calculated. 

 
 

Individual-Based Simulations 
Simulations tracked individual animals and plants over a life cy- 
cle consisting of (1) abiotic selection, (2) biotic selection, and (3) 
random mating and reproduction. Abiotic and biotic selections 
were implemented by calculating the fitness of each individual 
animal and plant using equations (1–2) under the assumption that 
η encounters occur between randomly selected animal and plant 
individuals within each generation. When an encounter occurs, 
fitness benefits of the mutualism accrue only if the interaction is 
successful, with success requiring that a randomly drawn num- 
ber is less than the value of π calculated for the encountering 
individuals using equation (2). Once the fitness of each individ- 

viduals with a fitness exceeding this random number survived to 
the next stage of the life cycle. 

Individuals that survive abiotic and biotic selection mate at 
random within their species and produce offspring. Specifically, 
for each species, two individuals are selected at random as mates, 
and an offspring individual is then formed by drawing a random 
value from a gaussian distribution with a mean equal to the av- 
erage phenotype of the two parents and a variance equal to 0.05. 
Mating continues in this way until a new offspring population of 
size nA,i (for animals) or nP,i (for plants) is assembled; the parental 
generation then dies. Thus, although population sizes of animal 
and plant species vary over the life cycle, reproduction always 
returns each species to its fixed carrying capacity, with the carry- 
ing capacity of each species drawn at random from a lognormal 
distribution (see below). 

Simulations were run for both the phenotype matching model 
and the phenotype differences model, with 635 simulations run 
with α equal to 0.02 and another 6125 simulations run with α equal 
to 2.0. The first set of simulations (α = 0.02) was performed to 
evaluate whether our analytical results were robust when our as- 
sumption that interactions did not depend too strongly on the phe- 
notypes of interacting individuals held but other assumptions (e.g., 
fixed additive genetic variance) were violated. This set of simu- 
lations used the parameter ranges shown in Table S1. The second 
set of simulations (α = 2.0) was performed to evaluate whether 
our analytical results remained robust when their assumptions 
were grossly violated (e.g., interaction outcome strongly depen- 
dent on traits, rapidly evolving genetic variance) and to explore 
how network metrics impossible to calculate with our analytical 
model (e.g., nestedness) were shaped by coevolution. This second 
set of simulations used the parameter ranges shown in Table 1. 
In addition to these simulations—which used randomly selected 
parameters—we ran numerous individual simulations with deter- 
ministically selected parameters for a more thorough exploration 
of certain cases. 

Each simulation run was initiated by setting model param- 
eters and assigning phenotypes to individuals. Phenotypes of in- 
dividuals were set to the abiotic optimum of their species plus a 
random perturbation drawn from a uniform distribution on {–0.01, 
0.01}. Each simulation was then run for between 1000 and 2000 
generations, with simulated observational experiments of encoun- 
ters between animals and plants conducted in every generation. 
Simulated observational experiments recorded the outcome (i.e., 
whether an interaction was successful or not) of 5000 or 25,000 
random encounters between animals and plants; species identi- 
ties and individual phenotypes were recorded for all successful 
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Ta b l e  1 .  Parameters used within individual-based simulations. 
 

Parameters          How selected                                                                         Distribution 
 

Generations         Fixed at 1000                                                                        NA 
Sampled              Fixed at 5000                                                                        NA 
NA                                  Fixed at 50                                                                            NA 
NP                                   Fixed at 50                                                                            NA 
α                       Fixed at 2.0                                                                           NA 
nA,i and nP,i  Value selected at random and independently for each 

species 
θA,i  and θP,i Value selected at random and independently for each 

species 

Lognormal1 with mean 7.0 and variance 0.3 
 
Gaussian with mean 0 and variance drawn from a 

uniform distribution on {1.0, 6.0} 
γA and γP  Value selected at random and applied to all species Uniform with range {0, 0.5} 
ξA,i  and ξP,i  Value selected at random and independently for each 

species 
Gaussian2 with mean drawn from a uniform on range 

{0,1} and variance 0.001 
 

1 Values were truncated at a maximum population size of 29,999 individuals to maintain computational efficiency. 
2 Values were truncated at a minimum value of 0 because negative values represent antagonistic rather than mutualistic interactions. 

 
interactions. This information was used to calculate network sum- 
mary statistics such as interaction efficiency, connectance, con- 
vergence, complementarity, and nestedness. In the following sec- 
tions, we use the results of these ≈7000 simulations to explore 
how coevolution shapes the network properties of mutualistic 
communities. 

 
 

INTERACTION EFFICIENCY AND  CONNECTANCE 
For each simulation, we calculated the interaction efficiency of 
the mutualistic community as well as the more standard index 
of interaction density, connectance. Specifically, interaction ef- 
ficiency was calculated as the proportion of random encounters 
between individuals that resulted in successful interaction (i.e., 
had fitness consequences) whereas connectance was calculated 
in the standard way by summing the entries of the binary in- 
teraction matrix and dividing this sum by the dimension of the 
matrix (NA  × NP ). Thus, interaction efficiency measures the 
overall rate of interaction within the community whereas con- 
nectance measures the proportion of possible interactions be- 
tween animal and plant species within the community that were 
observed. 

Taken together, our simulations confirm our analytical pre- 
diction that interaction efficiency increases with the strength of 
coevolutionary selection. Specifically, when the probability of 
successful interaction did not depend too strongly on the phe- 
notypes of the interacting individuals (α = 0.02), agreement be- 
tween analytical predictions and simulation results was quantita- 
tive (Figs. S1, S2). When the probability of successful interaction 
was quite sensitive to the phenotypes of the interacting individu- 
als (α = 2.0), strongly violating the assumptions of our analytical 
model, our analytical prediction was still upheld, although in this 
case agreement with simulations was only qualitative (Fig. 3; first 

row). Because most studies focus on connectance rather than in- 
teraction efficiency, we also used our simulations to evaluate how 
connectance changes as a function of the strength of coevolu- 
tionary selection. As suggested by our analytical and simulation 
results for interaction efficiency, connectance also increases as 
coevolutionary selection becomes more intense (Fig. 3, second 
row). 
 
 
CONVERGENCE 
In addition to interaction efficiency and connectance, we evalu- 
ated the convergence of the mutualistic community by calculating 
the phenotypic variance of animals and plants that were observed 
to successfully interact in simulated observational experiments. 
As described in the analytical results, large variances correspond 
to weak convergence and small variances to strong convergence. 
As predicted by our analytical results, in communities where mu- 
tualisms are mediated by a mechanism of phenotype matching, 
increasing the strength of coevolution increases the convergence 
of the community (Fig. 3; rows 3–4 and Fig. S1). In contrast, 
for mutualisms mediated by phenotype differences, our analyti- 
cal prediction that convergence is decoupled from the strength of 
coevolution only holds when α is small (Fig. S2). When the out- 
come of interactions depends more strongly on the phenotypes 
of individuals, our analytical prediction breaks down, and con- 
vergence increases with the strength of coevolutionary selection 
(Fig. 3, rows 3–4). 
 
 
COMPLEMENTARITY 
Our analytical results predict that mutualisms mediated by 
phenotype matching will exhibit positive complementarity, but 
that  complementarity  will  decrease  as  coevolutionary  selec- 
tion increases. In contrast, our analytical results predict that 
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Figur e 3.  The relationship between the average strength of coevolutionary selection (α × ξA × ξP ) and various network metrics calculated 
in generation 1000 for the 6125 simulations run using the parameter values described in Table 1. Each point represents the result of a 
single simulation run and the gray line is the best-fit linear model. The left-hand column shows results for the matching model and the 
right-hand column results for the differences model. 
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Figur e  4. The relationship between  the average strength  of coevolutionary  selection (α × ξA  × ξP ) and nestedness calculated in 
generation 1000 for the 6125 simulations run using the parameter values described in Table 1. Each point represents the result of a 
single simulation run and the gray line is the best-fit linear model. The left-hand column shows results for the matching model and the 
right-hand column results for the differences model. 

 
mutualisms mediated by phenotype differences will not exhibit 
complementarity, no matter what the strength of coevolutionary 
selection. 

To explore the robustness of this prediction, we evaluated 
how coevolution shaped complementarity for our simulated ob- 
servational experiments by calculating the correlation between 
traits of interacting animals and plants. When interactions de- 
pended only weakly on phenotypes (α = 0.02), our analytical 
results were supported for both the matching and differences mod- 
els (Figs. S1, S2). In contrast, as phenotypes became increasingly 
important to the outcome of interactions, our analytical predic- 
tions broke down for the phenotype differences model. Specifi- 
cally, when α became large (α = 2.0), mutualistic communities 
mediated by phenotype differences exhibited positive levels of 
complementarity that decreased as the strength of coevolution in- 
creased (Fig. 3, row 5). Although our analytical prediction breaks 
down for the phenotype differences model, our overall qualitative 
predictions remain intact: complementarity is stronger for inter- 
actions mediated by phenotype matching than those mediated by 
phenotype differences and decreases as mutualistic coevolution 
becomes stronger. 

 
 

NESTEDNESS 
Finally, we used our simulation results to explore how coevo- 
lution shapes the nested structure of mutualistic communities. 
Specifically, we quantified nestedness for our simulations by cal- 
culating the nestedness metric based on overlap and decreasing 

fill (NODF) metric (Almeida-Neto et al. 2008) for the binary 
interaction matrices generated through simulated observational 
experiments. Raw NODF scores were corrected by subtracting 
the average NODF score of 100 randomized interaction matrices 
and then dividing by the average NODF score of the randomized 
interaction matrices (Bascompte et al. 2003). Each randomiza- 
tion was performed by generating a new matrix that maintained 
the observed connectance, but assigned 1’s at random with a 
probability proportional to the product of the interacting species 
abundances. This randomization procedure corrects observed 
nestedness scores for contributions made by lognormal species 
abundance distributions, and thus isolates only the contributions 
made by coevolved distributions of trait values in animals and 
plants. 

Our analyses of simulated data revealed that corrected NODF 
scores for interactions mediated by phenotype matching tend to be 
negative whereas corrected NODF scores for interactions medi- 
ated by phenotypic differences tend to be positive (Fig. 4). In ad- 
dition, our simulations revealed that coevolution tends to decrease 
nestedness for interactions mediated by both phenotype matching 
and phenotype differences (Fig. 4). Specifically, a significant neg- 
ative relationship exists between the strength of coevolutionary 
selection and NODF for both models, although this relationship 
is generally weaker for the phenotype matching model than the 
phenotype differences model. Greater insight into the role mu- 
tualistic coevolution plays in driving patterns of nestedness can 
be gained by plotting nestedness values as a function of time. 
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Figur e  5.  The distribution of mean phenotypes among species (left-hand panels) and the network topology (right-hand panels) for a 
community of 60 animal species and 60 plant species where interactions are mediated by phenotype matching. The top panels derive 
from simulations conducted with weak coevolutionary selection (ξ̄ A = 0.1, ξ̄ P = 0.1) whereas the bottom panels derive from simulations 
conducted with strong coevolutionary selection (ξ̄ A = 0.9, ξ̄ P = 0.9). The connectance and corrected NODF scores for each community are 
indicated by C, NA , and NP within each panel. Corrected NODF scores in the top 2.5% or bottom 2.5% of the null distirbution are indicated 
by asterisks. Trait distributions and network topology were assessed during the final generation of the simulations (G = 500). Population 
sizes of animal and plant species were drawn from a lognormal distribution with mean 7.0 and variance 0.3 other parameters were: α = 
10.0, γA = 0.02, γP = 0.02, VθA = 5, VθP  = 5, VξA  = 0.001, and VξP  = 0.001. Network topology and statistics were calculated from a sample 
of 36,000 interactions observed during generation 500. 

 
Investigation of many such time courses shows that initially, 
and prior to any coevolution, interactions mediated by pheno- 
type matching tend be antinested (corrected NODF < 0) whereas 
interactions mediated by phenotype differences tend to be pos- 
itively nested (corrected NODF > 0). As coevolution proceeds 
over time, however, nestedness decreases. 

To further explore why mutualistic coevolution reduces the 
nested structure of communities in some cases, we studied how 
the topology of network graphs describing the interaction matrix 
derived from simulated observational experiments was influ- 
enced by the strength of coevolutionary selection. When inter- 
actions are mediated by phenotype matching and coevolution- 
ary selection is weak, communities tend to be less nested than 
expected by chance (antinested), with significant levels of re- 
ciprocal specialization between groups of species with simi- 
lar trait values (Fig. 5A). As coevolutionary selection becomes 
stronger, however, mutualistic coevolution can break the commu- 
nity into discrete groups of reciprocally interacting plants and 
animals (compartments) generating even stronger antinested 
structure (Fig. 5B). Interestingly, this increase in compartmental- 
ization is accompanied by increasing connectance generated by 
the coevolution of very high levels of interaction within individual 
compartments. 

In contrast, when interactions are mediated by phenotype dif- 
ferences and coevolutionary selection is weak, network topologies 
are more nested than expected by chance with specialized species 
interacting primarily with more generalized species (Fig. 6A). 
This nested pattern emerges simply because the phenotype dif- 
ferences model allows individual animals with large trait values 
to interact with a larger range of plant species than those ani- 
mals with small trait values. Similarly, plant species with small 
trait values can interact with a larger range of animal species 
than can plants with large trait values. When coevolutionary se- 
lection is relatively weak, plant and animal trait values exhibit 
substantial variation in trait values (Fig. 6A, left panel) and it is 
this variation that produces the nested pattern. As coevolutionary 
selection becomes stronger, however, the nested pattern of mutu- 
alistic networks is eroded, resulting in communities that may ex- 
hibit only a weakly nested structure or even an antinested structure 
(Fig. 6B). Strong coevolutionary selection erodes the nested struc- 
ture of such communities because it favors plants and animals with 
generalized traits (i.e., plants with small traits and animals with 
large traits)—given sufficiently strong coevolutionary selection, 
trait variation is reduced to the point where all species have an 
approximately equal chance of interacting with any other species 
(Fig. 6B). 
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Figur e  6.   The distribution of species mean phenotypes (left-hand panels) and the network topology (right-hand panels) for a com- 
munity of 60 animal species and 60 plant species where interactions are mediated by phenotype differences. The top panels derive 
from simulations conducted with weak coevolutionary selection (ξ̄ A = 0.1,ξ̄ P = 0.1) whereas the bottom panels derive from simulations 
conducted with strong coevolutionary selection (ξ̄ A = 0.9,ξ̄ P = 0.9). The connectance and corrected NODF scores for each community are 
indicated by C, NA , and NP within each panel. Corrected NODF scores in the top 2.5% or bottom 2.5% of the null distribution are indicated 
by asterisks. Trait distributions and network topology were assessed during the final generation of the simulations (G = 500). Population 
sizes of animal and plant species were drawn from a lognormal distribution with mean 7.0 and variance 0.3 other parameters were: α = 
10.0, γA = 0.02, γP = 0.02, VθA = 5, VθP  = 5, VξA  = 0.001, and VξP  = 0.001. Network topology and statistics were calculated from a sample 
of 36,000 interactions observed during generation 500. 

 
 

Discussion 
Our analyses reveal that coevolutionary selection can be a power- 
ful force, even in large, complex communities. Specifically, our 
results show that coevolutionary selection drives changes in net- 
work structure, distributions of traits, and even the pattern of inter- 
actions within the community itself. That coevolutionary selection 
has such strong effects in our model is surprising for two reasons. 
First, each species in our model encounters all other species at ran- 
dom, and thus has the potential to interact with many other species 
within each generation. Second, we assume the probability that 
individuals interact depends on only a single “key” trait such 
as phenology or body size. As a consequence, our model makes 
trade-offs across interactions with multiple species inevitable, vir- 
tually guaranteeing that each species experiences extreme patterns 
of conflicting selection pressure. Thus, even though our model 
explicitly integrates two of the factors frequently used as argu- 
ments for why coevolution should be irrelevant in large commu- 
nities of generalists (Hougeneitzman and Rausher 1994; Rausher 
1996; Iwao and Rausher 1997; Stinchcombe and Rausher 2001), 
as with other recent studies (e.g., Wade 2003, 2007; Guimarães 

 
 
et al. 2011), our results show the contrary: coevolution matters, 
and it matters a lot. 

In addition to demonstrating that coevolution can be impor- 
tant even in species-rich communities of generalists, our results 
show that coevolution shapes properties of mutualistic networks. 
Specifically, our results show that mutualistic coevolution almost 
invariably increases the connectance of communities. Given the 
importance of connectance for community stability (Dunne et al. 
2002), this general result suggests that those communities with 
a long history of mutualistic coevolution may be more stable to 
perturbation than those lacking a long history of coevolution- 
ary interaction. Our results also demonstrate that coevolution in- 
fluences patterns of specialization within complex communities, 
which has important consequences for nestedness. When inter- 
actions are mediated by a mechanism of phenotype matching, 
intense coevolutionary selection can promote increased levels of 
reciprocal specialization by breaking an initially generalized com- 
munity into independent modules containing variable numbers of 
species (e.g., Fig. 5B). In contrast, when interactions are mediated 
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by a mechanism of phenotype differences, coevolution can cause 
initially nested communities to evolve toward a state of extreme 
generalization where all species tend to interact equally with all 
others and specialists are quite rare (e.g., Fig. 6B). 

The differences we observe across models suggest that com- 
munities where interactions are mediated primarily by a mecha- 
nism of phenotype matching should tend to be more specialized 
and less nested than those communities where interactions are 
mediated primarily by a mechanism of phenotype differences. 
Comparing our simulated values of nestedness with values cal- 
culated from previously compiled mutualistic networks (Fortuna 
et al. 2010) is intriguing in this context. Specifically, within our 
simulated data, the average raw value of NODF for communities 
mediated by matching is {53.79 ± 11.82}, whereas the average 
value for communities mediated by differences is {84.19 ± 3.30}. 
These values agree well with raw values of NODF calculated for 
seed dispersal {55.28 ± 18.49} and pollination {70.04 ± 14.32} 
mutualisms, respectively. Although this comparison offers tanta- 
lizing hints that different mechanism may be involved in these 
different types of mutualisms, it is premature to draw any firm 
conclusions based on this crude comparison of raw NODF scores. 

Our results provide interesting predictions for how traits 
should be distributed within mutualistic communities. When in- 
teractions are mediated by a mechanism of trait matching and 
coevolutionary selection is weak or absent, trait values in animal 
and plant species should be highly variable (nonconvergent) and 
traits of interacting animal and plants species should be positively 
correlated (pairwise complementary). As coevolutionary selec- 
tion intensifies, however, variation in the trait values of animal 
and plant species is reduced (convergence) and correlations be- 
tween traits of interacting species are weakened (low pairwise 
complementarity). This occurs because as trait variation is re- 
duced within animals and plants, traits play a less significant role 
in determining whether any two species interact, simply because 
all species within a guild tend to have similar trait values and 
thus become equally likely to interact with any other species. In 
contrast, when mutualistic interactions are mediated by a mech- 
anism of phenotype differences, the intensity of coevolutionary 
selection has no impact on levels of traits variation within animals 
and plants and only a relatively weak influence on correlations 
between traits of interacting species. 

The predictions our model makes for trait distributions within 
animals and plants, and among interacting species, refine previ- 
ous verbal arguments (Thompson 2005) and model predictions 
(Guimarães et al. 2011). Whereas previous work predicted mu- 
tualistic coevolution should favor trait convergence (reduced trait 
variation within animals and plants) and trait complementarity 
(positive correlations among traits of interacting species), our re- 
sults suggest that this need not always be the case. Specifically, 
our results show that when interactions are mediated by a mech- 

anism of phenotypic differences, rather than the mechanism of 
phenotype matching assumed in previous work and verbal argu- 
ments, convergence and complementarity are unlikely to evolve. 
This result is important because phenotype differences are likely 
a common mechanism mediating mutualistic interactions within 
natural communities of pollinators and dispersers. Second, and 
more technically, the study of Guimarães et al. (2011) measured 
complementarity using the quantity –log(τ) where τ is the mean 
pairwise difference between animals and plants. As long as ani- 
mals and plants have similar trait values, this measure indicates 
high levels of complementarity even if there is no variability 
in trait values within either animals or plants. In contrast, we 
have used a more traditional product moment correlation to mea- 
sure complementarity. Consequently, if there is no trait variability 
within animals or plants, complementarity is zero even if the trait 
values of animals and plants are perfectly matched. Which of 
these measures is the more useful measure of complementarity 
is unclear and likely depends on the particular question being 
addressed. 

Although our results are, in many respects, quite general, 
they do rely on several important assumptions. Perhaps the most 
obvious of these is that the population density of each species is re- 
turned to its individual carrying capacity at the end of each gener- 
ation. This assumption allowed us to maintain species abundance 
distributions that were distributed lognormally as observed in 
natural communities (Hubbell 2001), but also precluded dynamic 
feedbacks between demography and evolution. Because lognor- 
mal distributions are known to have important consequences for 
patterns of nestedness (Bluthgen et al. 2008; Krishna et al. 2008), 
we felt it was useful to fix this property of the community. Another 
potentially important assumption of our models is that interactions 
between all animals and plants depend on a single “key” trait. 
Although clearly an oversimplification, this assumption may be 
appropriate for communities where a single trait such as phenol- 
ogy or body size plays a dominant role in shaping the likelihood 
of interactions (Levey 1987; Stang et al. 2006). However, it might 
be unrealistic for highly diversified mutualisms where selective 
pressures of different pollinator or seed dispersers “target” dif- 
ferent plant traits (Gó mez et al. 2011). Finally, we assumed that 
evolution resulted only from the combined action of drift, abi- 
otic selection toward some optimum trait value, and selection 
imposed by mutualistic interactions. Consequently, our results ig- 
nore potentially important consequences of selection generated by 
competitive or reproductive interactions within animals or within 
plants (Johnson and Steiner 2000; Fenster et al. 2004) and ig- 
nore the potentially important influence of gene flow from other 
communities (Thompson 2005). 

In summary, our results show that coevolution can have im- 
portant consequences for the structure and function of highly 
diverse and species-rich communities of mutualists. Thus, our 
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results do not support claims that coevolution is ineffectual or 
unimportant in species-rich communities characterized by gener- 
alized interactions (Hougeneitzman and Rausher 1994; Iwao and 
Rausher 1997; Stinchcombe and Rausher 2001; Strauss and Irwin 
2004). At the same time, however, our results show that the 
specific consequences of coevolution for community structure 
and function depend on the particular mechanism of coevolution 
that predominates (matching vs differences) as well as its overall 
strength. Thus, attempts to implicate coevolution or demonstrate 
its importance in the wild using network metrics or other sum- 
mary statistics are likely to be challenging. Furthermore, there 
are many reasons other than coevolution for communities to be 
nested or to exhibit trait complementarity or convergence (San- 
tamarı́a and Rodrı́guez-Gironés 2007; Bluthgen et al. 2008; Kr- 
ishna et al. 2008). Only by fusing more sophisticated data sets 
that include quantitative rates of interaction and estimates for the 
fitness consequences of individual interactions with model based 
statistics (e.g., Bertorelle et al. 2010; Beaumont 2010; Csillery 
et al. 2010) will it likely be possible to robustly infer anything 
about the coevolutionary process within natural communities of 
mutualists. 
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Appendix 1 
EQUATIONS FOR THE CHANGE IN TRAIT MEANS  OF 
ANIMAL  AND  PLANT SPECIES 
Matching model 
For the matching model, we find that the change in the mean 
phenotype of animal species i is 
 

6 ȳi  = G A,i (ψ A (θA,i  − ȳi ) + SA,i ( Z̄  − yi )) + δ A,i ,   (A1) 
 
and the change in the mean phenotype of plant species i is 
 

6z̄i  = G P,i (ψP (θP,i  − z̄i ) + SP,i (Ȳ  − zi )) + δP,i ,   (A2) 
 
where  the  expected  value  of  animal  population  mean  phe- 

Evolution 61:1823–1834. 
Olesen, J. M., J. Bascompte, Y. L. Dupont, H. Elberling, C. Rasmussen, and notypes  is 

Z̄  = 
.N P

 
Ȳ  = 
.N A       f A, j ȳ j    and  plant  mean  phenotypes  is 

 
P. Jordano. 2010. Missing and forbidden links in mutualistic networks. 
Proc. R. Soc. B Biol. Sci. 278:725–732. 

Otto, S. P., and S. L. Nuismer. 2004. Species interactions and the evolution of 
sex. Science 304:1018–1020. 

Rausher, M. D. 1996. Genetic analysis of coevolution between plants and their 
natural enemies. Trends Genet. 12:212–217. 

Rezende, E. L., P. Jordano, and J. Bascompte. 2007. Effects of phenotypic 
complementarity and phylogeny on the nested structure of mutualistic 
networks. Oikos 116:1919–1929. 

Salathe, M., R. D. Kouyos, and S. Bonhoeffer. 2008. The state of affairs in 
the kingdom of the Red Queen. Trends Ecol. Evol. 23:439–445. 

Santamarı́a, L.,  and  M.  A.  Rodrı́guez-Gironés. 2007.  Linkage rules  for 
plant-pollinator networks: trait complementarity or exploitation barri- 
ers? PLOS Biol. 5:354–362. 

Stang, M., P. G. L. Klinkhamer, and E. van der Meijden. 2006. Size constraints 
and flower abundance determine the number of interactions in a plant- 
flower visitor web. Oikos 112:111–121. 

———. 2007. Asymmetric specialization and extinction risk in plant-flower 
visitor webs: a matter of morphology or abundance? Oecologia 151:442– 
453. 

Stinchcombe, J. R., and M. D. Rausher. 2001. Diffuse selection on resistance 
to deer herbivory in the ivyleaf morning glory, Ipomoea hederacea. Am. 

j =1  f P, j z̄ j .  The  compound  parameters  ψi  = 2γi    and 
Si  j  = 2αξi, j      measure the strength of stabilizing abiotic selection, 
and the strength of selection caused by mutualistic interactions, 
respectively. Finally, the term δi,j  measures the change to the 
population mean phenotype caused by genetic drift and is a 
random variable with mean zero and variance Gi, j /ni, j . 
 
Phenotype differences/threshold model 
For the phenotype differences model, we find that the change in 
the mean phenotype of animal species i is 
 

6 ȳi  = G A,i (ψ A (θA,i  − ȳi ) − SA,i ) + δ A,i ,  (A3) 
 
and the change in the mean phenotype of plant species i is 
 

6z̄i  = G P,i (ψP (θP,i  − z̄i ) + SP,i ) + δP,i ,  (A4) 
 
where all parameter are as defined for the matching model with the 
exception of S  , which takes the value    αξi, j         for the phenotype 2(2+ξi, j ) 

Nat. 158:376–388. differences model. 
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Appendix 2 
EQUATIONS FOR THE CHANGE IN THE DISTRIBUTION 
OF TRAIT MEANS  WITHIN  ANIMALS  AND  PLANTS 
Remarkably, making only the additional assumptions that species 
mean trait values do not become too divergent, the strength of 
abiotic selection (ψ) is equal across species within guilds, and 

single generation: 
 

6Ȳ  = G A (S̄ A + ψ A (θ̄ A − Ȳ )),  (A11) 
 
 

6 Z̄  = G P (−S̄ P + ψP (θ̄ P − Z̄ )),  (A12) 
 

G A
 

that additive genetic variance is equal across guilds, our results 
show that the evolution of the distributions describing plant and 
animal species mean trait values can be completely described 

6Vȳ  = 2G A ψ A (C [ ȳ , θA ] − Vȳ ) +    
A 

 
G P 

,  (A13) 

using recursions for only six moments irrespective of the number 
of species in the community 

 

 
Matching model 
The evolutionary dynamics of communities where mutualisms 
are mediated by trait matching are completely described by the 
following set of six recursion equations, each of which describes 
the change in a statistical moment, which occurs over a single 
generation: 

 
6Ȳ  = G A (S̄ A ( Z̄  − Ȳ ) + ψ A (θ̄ A − Ȳ )),  (A5) 

 
 

6 Z̄  = G P (S̄ P (Ȳ  − Z̄ ) + ψP (θ̄ P − Z̄ )),  (A6) 
 
 

G A 

6Vz̄  = 2G P ψP (C [z̄, θP ] − Vz̄ ) +   ,  (A14) 
P 

 
 

6C [ ȳ , θA ] = G Z ψ A (Vθ A  − C [ ȳ , θA ]),  (A15) 
 
 

6C [z̄, θP ] = G P ψP (VθP  − C [z̄, θP ]). (A16) 
 
 

Appendix 3 
EQUILIBRIUM SOLUTIONS FOR THE DISTRIBUTION 
OF TRAIT MEANS 
Matching model equilibrium 
The equilibrium distribution of trait means describing commu- 
nities where mutualisms are mediated by trait matching is com- 
pletely described by the following set of six equations: 

6Vȳ  = 2G A (ψ A C [ ȳ , θA ] − (S̄ A  + ψ A )Vȳ ) +     ,   (A7) S̄ A θ̄ P ψP  + θ̄ A ψ A (S̄ P + ψP ) n A  Ȳ̂  =
 

 

S̄ P 
 
ψ A + 

 

(S̄ A + ψ A )ψP 
,  (A17) 

 
6Vz̄  = 2G P (ψP C [z̄, θP ] − (S̄ P + ψP )Vz̄ ) + 

 
G P 

,   (A8) 
n P 

Z̄̂  =
 

 
S̄ P θ̄ A ψ A + θ̄ P ψP (S̄ A + ψ A ) 

S̄ A ψP  + (S̄ P + ψP )ψ A 

 
S̄ A + ψ A + 2ψ2 n A Vθ

 

 
 
,  (A18) 

6C [ ȳ , θA ] = G A (ψ A Vθ A  − (S̄ A + ψ A )C [ ȳ , θA ]),  (A9) V̂ ȳ  =  
  

A  A  ,  (A19) 

 
 

6C [z̄, θP ] = G P (ψP VθP  − (S̄ P + ψP )C [z̄, θP ]),  (A10) 

2n A (S̄ A + ψ A )2 

 

ˆ S̄ P + ψP  + 2ψ2 n P Vθ
 

Vz̄  =    P  P  ,  (A20)  
where Vȳ  and Vz̄  are the variance among animal and plant species 

2n P (S̄ P + ψP )2 

mean trait values, respectively, Vθ A    and VθP    are the variance 
among animal and plant phenotypic optima, respectively, S̄ A and 
S̄ P  are the expected values of the parameter Si,j  for animals and 

 

Ĉ [ ȳ , θA ] 
 
= 

S̄
 
ψ A 

A + ψ A 

 
ψP

 

 
Vθ A 

 
,  (A21) 

plants, respectively, n A  and n P  are the harmonic means of an- 
imal and plant population sizes, and C [ ȳ , θA ] and C [z̄, θP ] are 

Ĉ [z̄, θP ] =  
S̄ P + ψP 

VθP . (A22) 

the covariance between species mean trait values and phenotypic 
optima favored by stabilizing selection in animals and plants, 
respectively. 

 
Phenotype differences/threshold model 

 
Phenotype differences/threshold model equilibrium 
The equilibrium distribution of trait means describing communi- 
ties where mutualisms are mediated by phenotype differences is 
completely described by the following set of six equations: 

S̄ 
The evolutionary dynamics of communities where mutualisms 
are mediated by phenotype differences are completely described 
by the following set of six recursion equations, each of which 
describes the change in a statistical moment, which occurs over a 

A ˆ = θA + 
A 

 

S̄ P 
Z̄̂  = θ̄ P − 

P 

,  (A23) 
 
 
,  (A24) 
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ψ A + 2ψ2 n A Vθ
 between y and z in the multivariate distribution describing in- 

V̂ ȳ  =      A A  ,  (A25) 
2n A ψ2 

 
ψP  + 2ψ2 n P Vθ

 

teracting pairs of species. From this information the correlation 
between traits of interacting species can be easily calculated. 

V̂z̄  =      P P  ,  (A26) 
2n P ψ2 

 
Ĉ [ ȳ , θA ] = Vθ A ,  (A27) 

Matching model 
For the matching model, the means, variances, and covariance 
of the multivariate distribution describing pairs of successfully 
interacting species are 

 
 
 

Appendix 4 

Ĉ [z̄, θP ] = VθP . (A28)  
E [ ȳ t ] = 

 
E [ f t 

 
( ȳ ) · ȳ ] = 2α Z̄ Vȳ  − Ȳ (−1 + 2αVȳ  + αVz̄ ), 

(A32) 

DERIVATION FOR THE BIVARIATE DISTRIBUTION 
DESCRIBING INTERACTING PAIRS OF INDIVIDUALS 
Our goal in this section is to derive the expected correlation, 
or complementarity, between the traits of plants and pollinators 
that successfully interact. Thus, we must derive formulae for the 

E [z̄t ] = E [ f t (z̄) · z̄] = 2αȲ Vz̄  − Z̄ (−1 + αVȳ  + 2αVz̄ ), 
(A33) 

 
V [ ȳ t ] = E [ f t ( ȳ ) · ( ȳ − E [ ȳ t ])2 ] = Vȳ (1 − 2αVȳ ), (A34) 

variances and covariance of the bivariate distribution describing 
the mean trait values of interacting plant and animal species. This 
goal is facilitated by assuming that levels of phenotypic variance 

 

V [z̄t ] 
 

= E [ f t (z̄) · (z̄ − E [z̄t ])2 ] = Vz̄ (1 − 2αVz̄ ),  (A35) 

within species are small and that the distributions of trait means 
within guilds are Gaussian. 

We begin by calculating the probability that an animal species 
with mean phenotype ȳ and a plant species with mean phenotype 
z̄ encounter one another and interact successfully. This probability 
is equivalent to the frequency of interacting pairs of species with 

Cov[ ȳ , z̄] = E [ f t ( ȳ ) · f t (z̄) · ( ȳ − E [ ȳ t ])(z̄ − E [z̄t ])] = 2αVȳ Vz̄ . 
(A36) 

 

where E[•] indicates an expectation, V[•] indicates a variance, and f 
t (·) is a frequency among paired individuals. Thus, the correla- 
tion between traits of interacting species is given by 

2αVȳ Vz̄
 

traits y and z in the multivariate distribution describing successful ρ = ,     . (A37)  
interactions: 

 
 
 
f t ( ȳ , z̄) = f ( ȳ ) f (z̄) 

 
 
π( ȳ , z̄) 
π̄ 

 
 
 
. (A29) 

Vȳ (1 − 2αVȳ )
√

Vz̄ (1 − 2αVz̄ ) 
 
 
Phenotype differences/threshold model 

In (A1), f ( ȳ ) is the frequency of animal species with mean trait 
value ȳ , f (z̄) is the frequency of plant species with mean trait value 
z̄, π( ȳ , z̄) is the probability of successful interaction between two 

For the phenotype differences model, the means, variances, and 
covariance of the multivariate distribution describing pairs of in- 
teracting species are 

species with trait values ȳ and z̄, and π̄ is the expected probability 
of successful interactions taken over all plant and animal species. 
Thus, π̄ also defines the interaction efficiency of the plant–animal 
network. 

To calculate the correlation between traits of interacting 
species, we must also calculate the frequency of animal species 

 

E [ ȳ t ] = E [ f t ( ȳ ) · ȳ ] = Ȳ  + 
 
 
E [z̄t ] = E [ f t (z̄) · z̄] = Z̄ − 

αVȳ  ,  (A38) 
2 

 
αVz̄ 

,  (A39) 
2 

with mean phenotype ȳ  and plant species with mean phenotype 
z̄ within the bivariate distribution describing interacting pairs of 
species. These frequencies are given by 

. 
π( ȳ , z̄) 

. 

V [ ȳ t ] = E [ f t ( ȳ ) · ( ȳ − E [ ȳ t ])2 ] = Vȳ ,  (A40) 
 
 
V [z̄t ] = E [ f t (z̄) · (z̄ − E [z̄t ])2 ] = Vz̄ ,  (A41) 

f t ( ȳ ) = f ( ȳ ) Ez̄ 
 
 

f t (z̄) = f (z̄) E ȳ 

 

π̄ 
. 
π( ȳ , z̄) 

.
 

π̄ 

,  (A30) 
 
 
,  (A31) 

 
 

Cov[ ȳ , z̄] = E [ f t ( ȳ ) · f t (z̄) · ( ȳ − E [ ȳ t ])(z̄ − E [z̄t ])] = 0. 
(A42) 

 
Thus, the correlation between traits of interacting species is given 

where all  parameters and  variables are  as  defined for  (A1). by 
Equations (A1–A3) can now be used to calculate the expected 
values of y and z, the variances of y and z, and the covariance 

 

 
 
ρ = 0. (A43) 
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Appendix 5 
DERIVATION FOR THE INTERACTION EFFICIENCY OF 
THE ANIMAL–PLANT  NETWORK 
Here we derive the expected interaction efficiency of the mutu- 
alistic network for interactions mediated by the matching model 
and interactions mediated by the phenotype differences model. 
Because we have assumed that each plant individual (not species) 
interacts with only a single animal individual each generation, 
the interaction efficiency of the mutualistic network is simply the 
expected probability of interaction: 

where Vy,i  and Vz, j  are the phenotypic variances within animal 
species i and plant species j, respectively. Evaluating the sums in 
(A2) results in our final simplification: 
 

E = 1 − α((Ȳ A − Z̄ P )2 + Vȳ  + Vz̄  + V̄ y + V̄z ),   (A46) 
 
where V̄ y  and V̄z   are the expected phenotypic variance within 
animal and plant species, respectively. 
 
 
Phenotype differences/threshold model 
Evaluating the integrals in (A1) for the phenotype differences 

NY       N Z    . ¸ ¸ . model under the assumption that α is small results in 
E = 
. .

 
i =1  j =1 

f A,i  f P, j π( y, z)φy,i φz, j dyd z . (A44)  
 
NY       N Z . 

1 α 
. 

Matching model 
Evaluating the integrals in (A1) for the matching model under the 
assumption that α is small results in 

E = 
. .

( f A,i  f P, j
 

i =1  j =1 
2 
− 

4 
(z̄ j  − ȳi ) . (A47) 

 
NY       N Z 

Evaluating the sums in (A4) results in our final simplification: 

E = 
. .

( f A,i  f P, j (1 − α(( ȳi  − z̄ j )2 + Vy,i  + Vz, j )),  (A45) 
i =1  j =1 

1 
E 

2 
− 

 

4 
( Z̄ P − Ȳ A ). (A48) 
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