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Abstract 

Macrourid fish are one of the most abundant marine species on continental margins 

worldwide. Although they play an important role in the ecosystem, little is known about 

their overall biology. We report here a large dataset of the most abundant macrourid in 

Mediterranean waters, Trachyrincus scabrus, showing the main population and 

reproductive characteristics. The study was based on 3239 specimens collected 

between 300 and 1500 m depth on the northwestern Mediterranean in 2003-04 and 

2008-09. The population showed a depth-related structure with the largest individuals 

at 1100 m depth and the smallest (i.e., immature) at shallower depths. Macroscopic 

and microscopic analyses of the gonads showed that T. scabrus has a highly seasonal 

reproductive pattern. Spawning females were found during winter when the organic 

matter fluxes were highest on the continental slope. T. scabrus is a batch spawner with 

group-synchronous oocyte development and present low average fecundity of 14191 

oocytes.  
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Introduction 

 

Macrourids are one of the most abundant fish families found on continental slopes 

worldwide (Marshall 1965; Bergstad 1990), playing an important role in the bathyal 

food web (Merrett and Haedrich 1997). Most research has concentrated on a few 

species because of the commercial interest of certain species, such as Macrourus 

berglax (Haedrich and Merrett 1988; Murua and Motos 2000) and Coryphaenoides 

rupestris (Bergstad 1990; Gordon and Swan 1996; Kelly et al. 1996). The overall 

ecology of the family, however, is still largely unknown despite its relevance in terms of 

biomass. There are eight macrourid species in the Mediterranean Sea (Moranta et al 

2007), which inhabit depths between 200 m and 3000 m. Some aspects of the 

distribution, size range, reproduction and feeding habitats of these species have 

already been studied (D'Onghia et al. 1999; Carrasson and Matallanas 2002; Moranta 

et al. 2008). Trachyrincus scabrus occurs at depths between 300 and 1600 m in the 

Mediterranean Sea (Stefanescu et al. 1992) and is one of the most important 

continental slope species in terms of abundance and biomass (Stefanescu et al. 1993; 

Tecchio et al. 2011). This species constitutes an important fraction of the total discards 

generated by deep-sea bottom trawling in the northwestern Mediterranean (Sánchez et 

al. 2007). Like other macrourids, Trachyrincus scabrus feeds on epibentic and infaunal 

invertebrates down to 800 m depth (Macpherson 1979), while below 1000 m depth, 

individuals exhibit a preference for benthopelagic prey (Carrasson and Matallanas 

2002). 

 The water masses of the Mediterranean are considered oligotrophic and are 

characterized by a constant high temperature (~13ºC) below 200 m depth, high salinity, 

low light and no oxygen limitation (Hopkins 1985; Sardà et al. 2004). These physico-

chemical factors are thought to condition the success of adaptive processes of species 

that inhabit deep-sea environments, leading to slow growth, low metabolic rates and 

low fecundity (Gage and Tyler 1991; Childress 1995; Tyler and Sumpter 1996; Merrett 

and Haedrich 1997; Company and Sardà 1998; Ramirez-LLodra 2002; Company et al. 

2003; Priede et al. 2003). These biological characteristics translate into less plasticity 

and higher vulnerability to environmental change and fishing pressure (Koslow et al. 

2000; Herring 2002; Roberts 2002). In this context, T. scabrus highlights the 

increasingly significant impact that fishing has on deep-sea fish populations. A clear 

decrease in body size of this species at higher latitudes has been observed in the 

Mediterranean Sea as a result of the intensive trawling carried out by the fishery 

targeting the deep-sea red shrimp Aristeus antennatus in part of the bathymetric range 

of T. scabrus (Moranta et al. 2007). In contrast, in the Alboran Sea basin, where the 
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open slope remains unexploited below 500 m depth, T. scabrus has a broader length 

range in which larger individuals predominate (Moranta et al. 2007). 

 There is little information on seasonality phenomena in deep-water fish species 

due to the difficulty of repeating sampling consistently at such great depths and the 

high economical cost involved. However, it is very important to determine the 

seasonality and duration of the reproductive processes of a species in order to 

understand its population dynamics and evolutionary adaptation to the environment 

(Marshall and Browman 2007; Lowerre-Barbieri et al. 2011). Although T. scabrus is 

important both in terms of abundance and biomass, its reproductive characteristics are 

still mostly unknown. Motais (1960) analyzed the variation of the annual 

gonadosomatic index of T. scabrus in the Ligurian Sea, showing high values in 

February. Additionally, two more studies included data on reproduction; D’Onguia et al. 

(1996) for the Ionian Sea and Massutí et al. (1995) for the western Mediterranean Sea. 

However, the reproductive period of this species was not clearly defined in either of 

these two studies because of the small number of mature individuals captured. No data 

related to reproductive strategy and fecundity were available prior to our study.  

 The main objective of this study was to define the seasonal trends in population 

structure and reproductive biology of T. scabrus in the northwestern Mediterranean 

Sea. The research is based on the analysis of the bathymetric size distribution, 

spawning period, ovarian organization, fecundity type and fecundity values. These data 

can be used to develop appropriate management measures to ensure the sustainability 

of this species as a potential deep-sea fishery resource in the Mediterranean Sea.  

 

 

Materials and methods  

 

Study area and sampling strategy 

 

The samples were collected in 87 bottom trawls carried out in the Blanes canyon 

(41º34´N, 02º50´E) and on the adjacent open slope (41º15´N, 02º48´E) as part of two 

multidisciplinary nationally funded projects, RECSII and PROMETEO (Fig. 1). During 

the RECS project, samples were obtained every month and a half on board the R/V 

García del Cid and the F/V Montse III and Verge del Vilar. Sampling was conducted 

from April 2003 to May 2004 at depths between 300 and 900 m (Table 1) where 

maxima abundance of immature individuals were present. To sample the reproductive 

individuals, seasonal sampling was conducted on board the R/V García del Cid from 

November 2008 to November 2009 at depth intervals of 150 m between 900 and 1500 



 

4 
 

m depth (PROMETEO project) (Table 1). The bathymetric range covered was 300 to 

1500 m, and thus the entire depth range interval of this species was sampled. Samples 

were obtained using a commercial fishing net covered with a cod-end of 12 mm stretch 

mesh on board fishing vessels and with a modified commercial fishing net – Otter Trawl 

Maireta System (OTMS, Sardà et al., 1998) – with the same cod-end mesh size on 

board the research vessel. 

 All individuals were measured to the nearest 0.5 cm anal length (AL) and 

weighed to the nearest gram using a marine scale (P15 S-182/5). Sex was determined 

by macroscopic examination of the gonad. The individuals collected during the 

PROMETEO project were used for studying the reproductive biology. The gonads were 

macroscopically classified into a five-stage maturity scale according to their external 

appearance and using the standardized terminology in Brown-Peterson et al. (2011): I: 

immature; II: developing-regenerating, III: spawning capable, IV: active spawning, and 

V: regressing. Gonads were then dissected and preserved in 10% buffered 

formaldehyde for histological analyses.  

 

Data analyses 

 

All the data were normalized to an area of 1 km2 using the vessel trawling speed and 

average horizontal opening of the gear. On trawls above 1200 m depth, the SCANMAR 

system was used to determinate the arrival and departure of the net from the bottom, 

as well as the horizontal and vertical opening of the net. For the deepest samples (i.e., 

1350 and 1500 m), net opening was obtained from the average of all other trawls 

conducted during the same cruise. 

 Size-frequency distributions of individuals were plotted in relation to depth and 

season. After standardization of samples from each trawl to a 1 km2, data was pooled 

by the bathymetric ranges used in this study (i.e., every 150 to 175 m) and by season. 

All data were tested for normality using the Shapiro-Wilk’s test. For data that did not 

satisfy the assumptions of normality, even after transformation, non-parametric 

Kolmogorov-Smirnov tests were used to determine differences in size distribution by 

depth. Differences in size between males and females were determined using a Mann-

Whitney U test and the sex ratio by depth was analyzed with a Yates corrected chi-

square test. In the laboratory, all the gonads were weighed to the nearest 0.001 g. The 

gonadosomatic index (GSI) was calculated as the ratio between gonad weight (Wg) 

and the gonad-free weight of the individual, where Tw was the total individual weight: 

GSI 	Wg / Tw	 	Wg 100. Seasonal variations in gonad maturity were 

investigated pooling all the mature females from PROMETEO project.  
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The length at first maturity was defined as the anal length at which 50% of the 

females were mature, considering all females in the developing stage (stage II), and 

onwards, to be mature. The relationship between maturity and length was fitted to a 

logistic equation (Ashton 1972): P e^ α βL / 1 e^ α βL , where P is the 

predicted mature proportion, α and β are the coefficients of the logistic equation and L 

is the anal length in cm.  

 

Histological analysis 

 

In order to confirm the macroscopic determination of maturity stage, a subsample of 

gonads was analyzed histologically. Samples (n = 200) were embedded in paraffin 

blocks and sectioned at 7 μm. These sections were stained with Harris’ Haematoxylin 

and Eosin. In addition, to obtain a more comprehensive understanding of the gonad 

anatomy, 50 ovaries were embedded in resin, cut at 3 μm intervals and stained with 

periodic acid Schiff's hematoxylin metanil yellow (Quintero-Hunter et al. 1991). We 

applied the criteria in Brown-Peterson et al. (2011) with some modifications to classify 

the ovarian maturity stage. Primary vitellogenic oocytes and secondary vitellogenic 

oocytes were described as early vitellogenic oocytes, and tertiary vitellogenic oocytes 

were classified as advanced vitellogenic oocytes. The diameters of 100 oocytes from 

each developmental stage were measured with Sigma Scan Pro4 and the size range of 

the different oocyte developmental stages was calculated.  

 

Oocyte analysis and fecundity 

 

A total of 53 gonads, covering all ovary developmental phases, were selected for 

analyzing the oocyte-size frequency distribution. A small subsample of approximately 

0.07 g from each gonad was stained with Rose Bengal and then filtered through a 125-

μm sieve. Oocytes smaller than this size were not considered in the analysis. The 

filtered subsamples were photographed using a Canon camera attached to a binocular 

(Leyca MZ12) microscope. These photographs were analyzed by ImageJ image 

analysis software (Thorsen and Kjesbu 2001). 

Total fecundity was defined as the total number of advanced vitellogenic 

oocytes present in the ovary at any time (Hunter et al. 1992). Twenty five individuals in 

the spawning capable (III) and actively spawning (stage IV) phases were selected to 

estimate fecundity with the gravimetric method. A subsample of the whole ovary was 

weighed to the nearest 0.001 g and the number of mature oocytes was counted using 

image analysis software ImageJ (Thorsen and Kjesbu 2001). Batch fecundity was 
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estimated by counting the hydrated oocytes manually (Hunter et al. 1985). Total (F) and 

batch (BF) fecundity were calculated as: F Oi/Wi Wo; BF Oh/Wi Wo, where 

Oi is the number of oocytes in the advanced vitellogenic stage and all the following 

stages, Oh is the number of hydrated oocytes, Wi is the weight of the ovary subsample, 

and Wo is the ovary weight. In addition, relative total fecundity and batch fecundity 

were estimated by dividing the two parameters by the gonad-free weight of the fish. 

 

 

Results 

 

Distribution and size composition 

 

A total of 3239 individuals were collected, ranging between 2 and 20 cm anal length 

(AL). The population had a “V-shape” structure in relation to increasing depth (Fig. 2). 

The largest fish were found at intermediate depths of the distribution range between 

900 and 1050 m. An increase in individual size with depth was observed from 300 to 

1050 m depth, while below this depth the individual size slightly decreases. The 

Kolmogorov-Smirnov test showed significant differences in the size-frequency 

distribution between all depths except in the individuals distributed between 900 and 

1050 m and 1200 m and 1350 m depths (Table 2). In addition, adults and juveniles had 

different bathymetric distribution patterns (Fig. 2): the juveniles were concentrated 

between 300 m and 800 m depth, while adults were distributed mainly between 900 m 

and 1500 m. Individuals where the sex could not be determinate by macroscopic 

examination of the gonads were considered as immature and, hence, juveniles. 

Females were significantly larger than males (Mann-Whitney U-test, U=436433, 

N1=915, N2=1076, P= < 0.0001). No significant differences in sex ratio were observed 

at any depths (Yate corrected chi-square, p > 0.05). Males predominate in individuals 

between 10 and 16 cm, whereas females were predominant in the larger size classes 

(>16 cm) (Fig. 3). The sex proportions for each depth are shown in percentages in 

Table 3. The overall sex ratio was 1:0.85 for females vs males.  

 

Reproductive patterns and size at first maturity 

 

Six different ovary stages of Trachyrincus scabrus were described based on the 

maturity scale defined by Brown-Peterson et al. (2011). The characteristics of each 

gonad developmental stage for this species are shown in Table 4 and Fig. 4. Early 

stage II and stage VI could not be differentiated at the naked eye and so histological 
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sections were needed to classify the reproductive maturity stage of these gonads. 

However, because not all the samples were classified microscopically and because 

misclassifications could have occurred in the macroscopic staging, stages II and VI 

were merged to analyze the seasonality of the spawning stage. The seasonal 

evaluation of female maturity stages showed that T. scabrus females have a highly 

seasonal reproductive cycle. Mature females (III-IV) are present from autumn to winter 

(Fig. 5). During autumn, most of the females started the vitellogenic process and there 

was a high percentage of females in the developing and spawning capable stages. The 

actively spawning females (IV) were observed mainly in winter and constituted up to 

43% of the population. Developing-regenerating (II-VI) females occurred mainly in 

spring and summer. In all seasons, except winter, individuals with stage II-VI gonads 

represented more than 50% of the sampled population. The highest gonadosomatic 

index (GSI) values were observed in winter (Fig. 6), coinciding with the spawning 

period. The bathymetric distribution of the different female developmental stages during 

the reproductive period (winter) showed that the highest percentage of active spawning 

females was found at 1050 m depth. However, females showing gonads with the other 

developmental stages were most abundant at 900 m depth, where the highest number 

of individuals was found (Table 5). On the other hand, the individual size distributions 

by season are in agreement with the reproductive characteristics of the species. Early 

recruitment individuals were  observed in spring, 2-3 months after the end of the 

spawning period (winter). During the next autumn, this cohort was sampled and the 

individual size of recruits was in the range of 4-7 cm AL (Fig. 7). The size of first 

maturity was estimated as follows: the proportion of mature females (stages II, III, IV 

and V) (Fig. 8) was fitted to a logistic curve. The estimated mean anal length (L50) at 

which 50% of females was mature was 11.8 cm. 

 The oocyte size-frequency distribution is shown in Fig. 9. Females with gonads 

in stage II had a single cohort of oocytes with diameters from 125 to 275 μm (Fig. 9a), 

including oocytes in primary growth, cortical alveoli and early vitellogenic oocyte 

stages. Females with gonads in stage III (Fig. 9b) had a single cohort of larger oocytes 

(375-675 μm) composed of advanced vitellogenic oocytes and gerrminal vesicle 

migration oocytes, when present. In contrast, gonads in stage IV (Fig. 9c) showed a 

bimodal distribution: smaller oocytes (500-675 μm) were composed of advanced 

vitellogenic oocytes, and larger oocytes (775-925μm) were in the germinal vesicle 

migration or hydration stages, and so would be the next batch to be spawned. There 

was therefore synchronous oocyte development within the ovary.  

 

Fecundity 
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The fecundity of 25 individuals were calculated by counting all oocytes with diameters 

larger than 337 µm (average size of advance vitellogenic oocytes), which clearly marks 

the oocyte development threshold that determines the potential fecundity. Fecundity 

values ranged from 4187 to 43643 oocytes for females measuring between 13 cm and 

18 cm. The fecundity values ranged from 4187 to 26111 oocytes in all the females 

except one female of 16 cm that had higher fecundity (43643 eggs). Batch fecundity 

was estimated to be in the range of 2582 to 9489 oocytes. Relative total fecundity and 

relative batch fecundity were estimated at 82.9 and 33.7 oocytes per gram of female 

(gonad free weight) respectively (Table 6). The results indicate that fecundity is not size 

dependent (r2 = 0.50, F1,23 = 1.23, P = 0.45) (Fig. 10a), as there was high individual 

variability in the fecundity-size relationship. In contrast, there was a significant positive 

correlation between gonad weight and total fecundity (r2 = 0.46, F1,23 = 19.71, P < 

0.001: including all individuals; r2 = 0.61, F1,22 = 34.71, P < 0.001: except for the above-

mentioned outlier) (Fig. 10b). No relationship was observed between batch fecundity 

and size (r2 = 0.02, F1,10 = 0.18, P = 0.68). 

 

 

Discussion 

 

A seasonally and bathymetrically extended trawl survey was carried out in order to 

collect a large number of specimens of the macrourid fish species Trachyrincus 

scabrus. The results of the study show that the reproductive and population 

characteristics are related to the depth range of this species. We present here, for the 

first time for this species, data on size at first sexual maturity, entire gonad maturity 

cycle, reproductive strategy and fecundity, and thus contribute to a better 

understanding of the biology and ecological role of this important species. The 

information on the biology of T. scabrus enhances our general understanding of the 

biological responses of the species that inhabits physico-chemically variable 

environments, such as the continental margins (Levin and Dayton 2007), and provides 

further insight into the effects of such variable environments on the population 

distribution and reproduction processes of these species.  

 The population structure showed a clear depth-related pattern in size 

distribution: the average individual size increased down to 1100 m depth. The increase 

of individual size by depth was described as a “bigger-deeper” phenomenon and has 

been observed in many deep-sea fish species. (Polloni et al 1979; Stefanescu et al 

1992; Merret and Headrich 1997; Murua 2003; Sardà et al 2009). However, below 1100 
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m depth, this species showed a slight “smaller-deeper” trend. There are two possible 

causes for the change in size trends around 1100 m. First, fish might migrate 

ontogenetically from shallow to deep waters, as has been observed in other continental 

margin species (Macpherson and Duarte 1991; Massutí et al. 1995). Company et al. 

(2001) and Puig et al. (2001) suggest that the bathymetric size structure of several 

decapod crustacean species could be related to the presence of high concentrations of 

particulate matter within the nepheloid layers at around 400 m depth, which could 

generate a favorable area for the recruitment of these crustacean species. In the area 

where T. scabrus samples were taken, an intermediate bottom nepheloid layer was 

recorded at 400-600 m depth (Zúñiga et al. 2009). The fact that T. scabrus recruits are 

mainly concentrated at 400-600 m suggests that the frontal system could play an 

important role in the population structure of T. scabrus in our study area. The second 

possible explanation could be related to the fact that there is less food availability 

below 1100 m (Sardà and Cartes 1993; Stefanescu et al. 1993), resulting in the 

decrease in size down to 1500 m depth (maximum depth distribution of the species). In 

fact, T. scabrus changes its feeding habits below 1000 m depth (Carrasson and 

Matallanas 2002), which coincides with the change in the size distribution pattern. 

From 200 to 800 m depth, the diet of  T. scabrus is rather stenophagous, feeding 

heavily on decapods that live buried on the mud (Macpherson 1979). However, below 

1000 m depth, this species shows a benthopelagic diet with a slight preference for 

bathypelagic prey such as copepods and mysids (Carrasson and Matallanas 2002). 

 The concept of continuous biological processes linked to the theoretically 

constant deep-sea environment has been revised over the last decades, and both 

seasonal and continuous reproductive patterns have been found in continental slope 

fish species (Morales-Nin et al. 1996; Rotllant et al. 2002; Porcu et al. 2010). Tyler et 

al. (1982) and Gage and Tyler (1991) postulated that seasonal reproductive processes 

are a response to the natural fluctuations in environmental factors. In the study area, 

Zuñiga et al. (2009) showed that there is high seasonal variability in downward fluxes 

of larger particles, with higher values in autumn and winter. T. scabrus has a marked 

seasonal reproductive cycle, and spawning females are mainly present in the winter 

months, coinciding with the seasonal fluxes of organic matter from the photic zones. 

Massutí et al. (1995) found post-spawning females in the western Mediterranean in the 

spring months. Although these authors did not find spawning females, their data on the 

reproductive period of T. scabrus in the western Mediterranean are in agreement with 

our data. In contrast, a study conducted in the central Mediterranean Sea found 

spawning females in August and January (D'Onghia et al. 2000), which suggests that 

the breeding season differs depending on the region. This implies that environmental 
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conditions could play an important role in determining the reproductive processes of 

this deep-sea species. Based on the assumption that reproductive cycles have adapted 

to fluxes of organic matter from the photic zone (Herring 2002; Company et al. 2003), 

autumn is the period in which energy reserves are accumulated to enhance fish 

condition for the reproductive phase. Accordingly, the highest gonadosomatic index 

values and spawning females were mainly observed in winter. However, the low levels 

of nutrients sinking down to the deep sea from the euphotic layers may not be enough 

for fish to invest in reproduction every year. A high percentage of non-spawning 

females (30%) was found also during the spawning period. Massutí et al. (1995) did not 

find spawning females even though the sampling was conducted in the depth range at 

which reproductive females of T. scabrus are most abundant. Taking into account the 

data from the two studies, we suggest that not all individuals of this species breed 

every year. This phenomenon has been described in other deep-sea fish species, such 

as Hoplostethus atlanticus (Bell et al. 1992) and the macrourid Coryphaenoides 

acrolepis (Drazen 2002). Biannual spawning could be an adaptive response to the low 

food availability in deep-sea habitats, particularly in the oligotrophic Mediterranean Sea 

(Margalef 1986) 

 The highest percentage of active spawning females was found at 1050 m (46% 

of total females), but the other female maturity stages (i.e., reproductive stages II, III, IV 

and V) were mainly concentrated at 900 m depth, indicating that females may migrate 

to deeper areas (from 900 to 1050 m) to spawn. However, our knowledge of the role 

played by environmental factors and of species interactions in the deep sea is still too 

limited to describe a spatio-temporal correlation between the environmental conditions 

and the biological response (Aguzzi et al. 2010). 

 The reproductive strategy of T. scabrus shows discontinuous oogenesis with 

synchronous development of vitellogenic oocytes. Image analysis shows that there is 

one cohort of oocytes in mature ovaries. Two groups of oocytes are only observed 

when final maturation of oocytes occurs: a group of large oocytes in the hydration 

phase and a group of smaller oocytes in the advanced vitellogenic and germinal vesicle 

migration stages that form the next batch to be spawned during the following spawning 

event. We believe that primary growth oocytes, due to their small diameter, could have 

escaped through the mesh (<125 µm) used to process the samples for image analysis. 

This is corroborated by the histological characteristics of females in stage IV (Fig. 4d, 

e), in which primary growth oocytes were found. Therefore, this species could be 

considered a batch spawner with group-synchronous oocyte development, in which two 

distinct populations of oocytes appear at the same time: one forming the potential 

fecundity for the current spawning season and the other forming the oocyte population 
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for future spawning seasons (Murua and Saborido-Rey 2003). This type of ovarian 

organization has also been found in other macrourid species, such as Coryphanoides 

rupestris (Alekseyev et al. 1991; Kelly et al. 1996) and Macrourus berglax (Murua and 

Motos 2000), and is related to species with a relatively short spawning period, in which 

the accumulation of yolk depends mainly on body reserves (Murua et al. 2003).  

 Deep-sea fish generally show low fecundity in comparison with shallower 

species (Gage and Tyler 1991; Merrett and Haedrich 1997; Herring 2002). T. scabrus 

has determinate fecundity and batch spawning (Tyler and Sumpter 1996) with values 

between 4187 and 43643 eggs. Two macrourid fish that are larger than T. scabrus, 

Coryphaenoides rupestris and Macrourus berglax, show fecundity ranges between 

11083 and 55175 oocytes (Kelly et al. 1996) and between 14400 and 73220 oocytes 

(Murua and Motos 2000) respectively. In contrast, the absolute individual fecundity of 

smaller macrourid species, such as Coelorinchus coelorhincus and Nezumia 

sclerorhynchus, has been estimated between 1320 and 8897 and between 964 to 3553 

oocytes per female respectively on the Mediterranean Sea (D’Onguia et al. 2008). 

Fecundity values are related to several factors, such as food supply (Treasure 1981), 

population density (Bagenal 1973), allocation of energy to reproduction (Kennedy et al. 

2007) and fish size (Merrett 1994). In the present study, in contrast to the results 

obtained in other macrourids species (D’Onguia et al, 2008), no significant relationship 

between fish size and fecundity was observed. Similarly, Alekseyev et al. (1991) did not 

find a clear positive relationship between length and relative fecundity in 

Coryphaenoides rupestris, but rather they found relatively high variability in fecundity 

for the same size range. This could be because sampling was conducted during the 

spawning season and some of the fish sampled could have spawned at least one batch 

of oocytes before they were sampled (Murua et al. 2003). In our study, the results 

indicate a strong correlation between gonad weight and total fecundity, as the gonad 

weight explained 61% of the individual variability in fecundity. Hence, gonad weight 

appears to be an appropriate indicator for quantifying the reproductive condition of T. 

scabrus. 

Small-medium hydrated oocytes with a large oil globule usually have pelagic 

development (Merrett and Haedrich 1997). In our study area, mature T. scabrus 

females were found to spawn their eggs in the winter season at their intermediate 

depth range (i.e., 900-1050). Based on our results, early recruits (i.e., 2 to 3 cm AL) 

first appear in spring, 3-4 months after the spawning period (winter), at their shallowest 

distribution depth (i.e., 400-600 m). Immature individuals (4-7 cm AL) were most 

abundant in autumn, and also at shallow depths nine months after the spawning 
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period. This species was found to migrate ontogenetically to deeper depths, where 

reproduction takes place.  

 Analyzing population parameters in relation to reproduction is essential for 

understanding the biology of this species and developing effective fisheries 

management measures (Kjesbu and Kjesbu 2009). In this study, we characterized the 

population and reproductive biology of T. scabrus. Although this species is currently not 

of commercial value, an integrated management strategy for a potential future fishery 

should be developed within an ecosystem approach.  
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Fig. 1 Locations of the bottom trawl fishing stations in the RECS and PROMETEO 

projects (bathymetric data from Canals et al. 2004, using ESRI® ArcMap™9.3). 
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Fig. 2 Bathymetric length distribution of Trachyrincus scabrus by sex. White bars = sex 

indeterminate; grey bars = females; blacks bars = males. 
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Fig. 3 Proportion of Trachyrincus scabrus males and females by size class (each class 

represented by 0.5 cm). Grey bars = female; blacks bars = males. 

 

 

 

 

Fig. 4 Oocyte development in Trachyrincus scabrus: (a) primary growth stage (pg) 

oocyte; (b) cortical alveoli oocyte; (c) early vitellogenic oocyte; (d) advanced 

vitellogenic oocyte; (e) germinal vesicle migration oocyte; (f) postovulatory follicle 

(POF). c: cytoplasm; ca: cortical alveoli; ch: chorion; mn: migratory nucleus; n: nucleus; 

o: oil droplets; y: yolk vesicles. Scale = 0.50 µm.  
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Fig. 5 Ovary maturity stages by season for Trachyrincus scabrus. II-VI: developing-

regenerating stage, III: spawning capable stage, IV: actively spawning stage, V: 

regressing stage. 

 

 

 

 

Fig. 6 Gonadosomatic index of Trachyrincus scabrus by season (mean ± SD value). 
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Fig. 7 Seasonal length-frequency distribution of Trachyrincus scabrus. White bars = 

sex indeterminate; grey bars = females; blacks bars = males. 
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Fig. 8 Size at first maturity represented as a logistic curve of mature females (%) as a 

function of size class. 
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Fig. 9 Oocyte diameter distribution in (a) the developing stage, II, (b) the spawning 

capable stage, III, and (c) the spawning stage, IV. Each figure corresponds to an 

individual fish. 
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Fig. 10 Relationship between the total fecundity (number of advanced oocytes/female) 

and a) anal length (cm), and b) gonad weight (g).  
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Table 1 Depth range, vessel, dates, number and sweet area of hauls and number of Trachyrincus scabrus specimens 

caught during the oceanographic cruises conducted within the RECS and PROMETEO scientific projects 

 

Cruise 
 

Ship 
 

Data 
 

Depth range 
(m) 

 

No. of  
hauls 

 

No. of  
individuals 

Sweet area 
(km2) 

 

RECS I Verge del Vilar 14 April 2003 584-600 2 3 0.69 
RECS II Montse III 29 May 2003 576-667 3 74 0.88 
RECS III García del Cid 7-8 June 2003 500-854 4 65 0.80 
RECS IV Montse III  20 August 2003 364-700 3 85 0.93 
RECS V Montse III 30 September 

2003 
502-631 3 48 

1.05 

RECS VI García del Cid 28 October- 
12 November 2003 

300-1315 9 237 0.56 

RECS VII Verge del Vilar 17 December 2003 402-512 3 111 0.98 
RECS VIII Montse III 3 February 2004 384-384 3 27 0.7 
RECS IX Verge del Vilar 10 March 2004 567-640 2 29 0.96 
RECS X Montse III 21 April 2004 585-695 2 43 1.01 
RECS XI García del Cid 12-13 May 2004 540-1100 4 192 0.76 
PROMETEO I García del Cid 30 October- 

2 November 2008 
900-1500 4 270 0.24 

PROMETO II García del Cid 28 February- 
8 March 2009 

900-1500 12 552 0.78 

PROMETEO III García del Cid 11-14 May 2009 900-1500 9 455 0.74 
PROMETEO IV García del Cid 7-9 September 

2009 
900-1500 

14 640 0.64 

PROMETEO V García del Cid 24-31 October 
2009 

900-1500 
10 408 0.70 

       

 
 
 
Table 2 Kolmogorov-Smirnov distance (d) for the comparison of Trachyrincus scabrus size frequencies between depth 

ranges 

Depth (m) 300-450 450-625 625-800 900 1050 1200 
 

1350 
 

 

450-625 0.39*       
625-800 0.77* 0.46*      
900 0.97* 0.72* 0.30*     
1050 0.97* 0.69* 0.30* 0.21    
1200 0.96* 0.57* 0.30* 0.52* 0.38*   
1350 0.79* 0.47* 0.31* 0.57* 0.46* 0.23  
1500 0.87* 0.52* 0.55* 0.80* 0.73* 0.40* 0.31* 

 
 

* Significant values of d. (p < 0.05) 

 
 
 
Table 3 Percentage of females and males over total mature individuals captured of Trachyrincus scabrus by each 

sampling depth 

Depth (m) 300-450 450-625 625-800 900 1050 1200 1350 
 

1500 
 

 

Female (%) 25 51 55 57 57 51 47 61 
Male (%) 75 49 45 43 43 49 53 39 
No. of  
individuals 
 

4 68 40 783 537 512 32 18 
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Table 4 Macroscopic and microscopic descriptions of the developmental stages in the female Trachyrincus scabrus 

reproductive cycle 

Stage Macroscopic features 
 

Microscopic features 
 

I. Pre-growth Ovaries small and translucent 
 

Only present PG oocytes (59-158 µm) (Fig 4a) 
 

II. Developing Larger and thicker ovaries, 
whitish in color  

Presence of PG, CA (153–216 µm) and EVtg(173–
285 µm) characterized by early small proteinaceus 
granules in the periphery and appearing after a 
small oil droplets (o) (Fig 4b) in the center of the 
cytoplasm (Fig. 4c) 
 

III. Spawning 
capable 

Ovaries increase considerably in volume. 
Oocyted visible to the naked eye  

Most of the ovary occupied with AVtg (275–571 µm). 
Big size proteinaceus granules distributed randomly 
in the cytoplasm mixing around the oil droplets (Fig. 
4d). PG also present  
 

IV. Active spawning Full ovary with hydrated oocytes visible Presence of PG, GVM (519-747 µm) and hydrated 
stage oocytes (707-1040 µm) (Fig 4e)  
 

V. Regressing Ovary flaccid and reddish. Predominant 
blood vessels and empty space 
 

Characterized by presence of PG oocyte, recent 
POF and widespread atresia (Fig 4f) 

VI. Regenerating Ovary closer and pinkish Oogonia and PG. Few atresia and old POF 
presented 
 

 

AVtg = advance vitellogenic oocyte; CA = cortical alveolar; EVtg = early vitellogenic oocyte; GVM = germinal vesicle 
migration; PG = primary growth oocyte; POF = postovulatory follicle 

 
 
 
Table 5 Percentage of maturity stages in relation to depth of capture Trachyrincus scabrus during winter (i.e., the 

season in which there are most mature females) 

Maturity stage (%) 
 

 

Depth intervals (m) 
 

 

300-450 450-625 625-800 900 1050 1200 1350 1500 
 

Stage II 0 2 6 70 11 11 0 0 
Stage III 0 0 11 44 22 11 0 11 
Stage IV 0 0 0 34 46 15 5 0 
Stage V 0 0 0 68 24 8 0 0 
No. of individuals 
 

0 1 4 73 33 15 2 1 

 

In bold; the highest percentage of each reproductive stage at different depths 

 
 
 
Table 6 Fecundity data for Trachyrincus scabrus species 

Parameters No. of individuals Range 
 

X  ± SD 
 

 

Total fecundity 25 4189-43644 14191 ± 8998 
Relative total fecundity 25 2413-23628 82 ± 52 
Batch fecundity 12 2582-9489 5571 ± 2098 
Relative batch fecundity 12 18-76 33 ± 16 

 
 

Total fecundity (number of advance oocytes/female), batch fecundity (hydrated oocyte/female), relative total fecundity 
(number of advance oocytes/gr of female gonad free), relative batch fecundity (number of hydrated oocytes/gr of female 
gonad free) 
 

 


