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The self-adjointness of an evolution operator �� corresponding to the model of the flat FRW universe

with massless scalar field and cosmological constant quantized in the framework of loop quantum

cosmology is studied in the case �> 0. It is shown that, for �<�c � 10:3‘�2
Pl , the operator admits

many self-adjoint extensions, each of the purely discrete spectrum. On the other hand for � � �c the

operator is essentially self-adjoint, however the physical Hilbert space of the model does not contain any

physically interesting states.
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I. INTRODUCTION

Among various approaches to the unification of general
relativity and quantum physics, loop quantum gravity
(LQG) [1,2] is one of the most promising. Its symmetry
reduced version, loop quantum cosmology [3], offers a
qualitatively new picture of an early universe evolution
[4] and may provide a mechanism of solving long-standing
problems in modern cosmology [5,6]. However, although
the number of works using the heuristic methods of mim-
icking the quantum evolution by an appropriately con-
structed classical mechanics [7] is rapidly growing, not
so much effort has been dedicated so far to the investiga-
tion on a genuinely quantum level. The rigorous studies of
these aspects are in fact restricted just to models either in
vacuo [8,9], or admitting massless scalar field as the only
matter content [10–13]. The number of works attempting
to include the cosmological constant� is even smaller [14]
and the rigorous analysis of the quantum universe dynam-
ics within the precise loop quantum cosmology (LQC)
model [15] was done only for negative �, a case not
favored by the observations.

This article is an attempt to partially fill this gap, by
addressing the question of whether, in the presence of the
positive cosmological constant, the physical evolution de-
fined by the methods currently applied in LQC [16] is
unique. There, one treats the constrained system as a free
one, evolving with respect to the scalar field regarded as an
internal time. The evolution is generated by a so-called
evolution operator (further denoted as�). On the technical
level the definiteness and uniqueness of the evolution
reduces to the existence and the uniqueness of the self-
adjoint extensions of �. In the previously investigated
models this operator always admitted a unique extension
[17,18], which ensured a unique evolution. The positive �
however acts like a negative unbounded potential, thus one

cannot immediately expect the same answer for the models
with �> 0. Here we analyze in detail the self-adjointness
of�, showing in particular that, for�<�c, where�c is a
certain critical value (of the Planck order) it in fact admits a
family of extensions. This property is crucial for further
studies of the universe dynamics [19].
The paper is organized as follows. In Sec. II we briefly

recall the basic features of the model and introduce the
elements relevant for our investigation. Next, in Sec. III we
determine the number of self-adjoint extensions of �
corresponding to, respectively, the subcritical (0<�<
�c, Sec. III A) and supercritical (� � �c, Sec. III B) value
of �, by probing the dimensionality of the deficiency
spaces of � [20] via the method presented in [21]
(Sec. IV). The properties of the physical Hilbert spaces
built of the spectral decomposition of � are briefly ana-
lyzed for both the subcritical and supercritical case in
Secs. IV and V. The article is concluded with Sec. VI,
where the results are summarized and their physical con-
sequences as well as the direct extensions are briefly
discussed.

II. THE MODEL

Here we consider a model of a flat isotropic universe
with positive cosmological constant �> 0 and a free
scalar field as a matter content (see Appendix A in [10]).
Its classical and kinematical description (in a loop quanti-
zation) is a direct analogy of the one used for the model
with �< 0 [15].
The considered spacetime admits a foliation (parame-

trized by a time t) by isotropic 3-surfaces � and the metric

g ¼ �N2dt2 þ a2ðtÞoq; (2.1)

where oq is a unit (fiducial) Cartesian metric on the surface
�, N is a lapse function, and aðtÞ is a scale factor. To
describe the spacetime we use the canonical formalism,
first selecting the fiducial triad oeai orthonormal with re-
spect to oq (and the cotriad o!i

a dual to it), next introducing
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the canonical Ashtekar variables: connections Ai
a and tri-

ads Ea
i , which upon partial fixing of the gauge freedom can

be represented just by a pair of canonically conjugated
variables: the connection c and triad p coefficients,

Ai
a ¼ cV�ð1=3Þ

o
o!i

a; Ea
i ¼ pV�ð2=3Þ

o

ffiffiffiffiffi
oq

p
oeai ; (2.2)

where Vo is the fiducial (with respect to oq) volume of a
certain comoving cubical region V introduced to regulate
the divergences of the action and the Hamiltonian. The
coefficients c and p are global degrees of freedom.

Our system is a constrained one, with the diffeomor-
phism and Gauss constraints automatically satisfied by a
gauge choice. The only nontrivial constraint is a
Hamiltonian one:

C ¼ NðCgr þ C�Þ; (2.3a)

Cgr ¼ � 1

�2

Z
V
d3xð"ijke�1EaiEbjFk

ab � �2�Þ; (2.3b)

C� ¼ 8�Gp�ð3=2Þp2
�; (2.3c)

where e :¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffij detEjp
, Fk

ab is the curvature of Ai
a: F

k
ab

:¼
2@aA

k
b þ "kijA

i
aA

j
b, � is the Barbero-Immirzi parameter,

and p� is the canonical momentum of the scalar field �.

The quantization process is a direct application of the
methods of LQG, following in particular the Dirac pro-
gram consisting of the following steps: (i) The system is
first quantized on the kinematical level, with the constraint
ignored. (ii) Next the constraint is promoted to a quantum

operator Ĉ defined in some domain of the kinematical
Hilbert space H kin identified in the previous step, and
(iii) the physical Hilbert space H phy is built out of the
states annihilated by it. Finally, (iv) the evolution picture is
provided by selecting an internal time (in our case this role
is played by �) and defining the family of observables
parametrized by it. In a slightly weaker sense, the evolution
is defined by the unitary mapping between the spaces of
‘‘initial data.’’ In the cases considered here it corresponds
to a map:

R 3 � � �ð�; �Þ 2 H kin; � 2 H phy: (2.4)

Our goal here is the verification of the existence and
uniqueness of such mapping.

The particular realization and the results of each of these
steps is the following:

(i) To assess the geometry degrees of freedom we
construct the analog of an LQG holonomy-flux alge-
bra consisting of the holonomies along the straight
lines and fluxes along the unit square surfaces, then
proceed with the quantization method used for LQG.
The resulting kinematical gravitational Hilbert space
is

H gr ¼ L2ð �R; d�BohrÞ; (2.5)

where �R is a Bohr compactification of the real line.

The basic operators are holonomies ĥð�Þ and unit
fluxes (or ‘‘triads’’) p̂. A particularly convenient
basis ofH gr consists of the eigenstates of p̂ labeled
by v 2 R as follows:

p̂jvi ¼ ð2��‘2Pl
ffiffiffiffi
�

p
Þ2=3sgnðvÞjvj2=3jvi; (2.6)

where � is the LQC area gap [22]. In this basis the
scalar product is given by

hc jc 0i ¼ X
v2R

�c ðvÞc 0ðvÞ: (2.7)

The matter degrees of freedom are quantized via
standard methods of quantum mechanics. In particu-

lar, the basic operators are the field �̂ and its mo-
mentum p̂� and the matter Hilbert space is spanned

by the eigenstates of �̂. The completeH kin has thus
the form

H kin ¼ H gr �H �; H � ¼ L2ðR; d�Þ:
(2.8)

(ii) The constraint (2.3) is first reexpressed in terms of
holonomies and fluxes which are next promoted to
operators. At present there are several prescriptions
existing in the literature, which differ in the technical
details: choice of the lapse, factor ordering, and
symmetrization of an operator. In this paper we study
three of them introduced in [10,11,24] and denoted,
respectively, by APS, sLQC, andMMO prescriptions
(specified in the points below). In all of these cases
the quantum constraint can be brought to the form

1 � @2� þ�� � 1; �� :¼ �o ��VðvÞ;
(2.9)

where an action of the operator �o equals

�½�oc �ðvÞ ¼ fþðvÞc ðv� 4Þ � foðvÞc ðvÞ
þ f�ðvÞc ðvþ 4Þ; (2.10)

with the form of fo;� depending on the particular

prescription used and given respectively by
(i) APS:

f�ðvÞ ¼ ½Bðv� 4Þ��ð1=2Þ ~fðv� 2Þ½BðvÞ��ð1=2Þ;
(2.11a)

foðvÞ ¼ ½BðvÞ��1½fþðvÞ þ f�ðvÞ�; (2.11b)

VðvÞ ¼ �G�2�
jvj
BðvÞ ; (2.11c)

where [25]
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~fðvÞ ¼ ð3�G=8Þjvjjjvþ 1j � jv� 1jj; (2.12a)

BðvÞ ¼ ð27=8Þjvjjjvþ 1j1=3 � jv� 1j1=3j3:(2.12b)

(ii) sLQC:

f�ðvÞ ¼ 3�G

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vðv� 4Þp ðv� 2Þ; (2.13a)

foðvÞ ¼ 3�Gv2=2; (2.13b)

VðvÞ ¼ �G�2�v2: (2.13c)

(iii) MMO:

f�ðvÞ ¼ Cgðv� 4Þs�ðv� 2Þ
� g2ðv� 2Þs�ðvÞgðvÞ;

foðvÞ ¼ Cg2ðvÞ½g2ðv� 2Þs2�ðvÞ
þ g2ðvþ 2Þs2þðvÞ�;

VðvÞ ¼ 8�G�2�

27

g6ðvÞ
jvj ;

(2.14)

where

gðvÞ ¼ jj1þ 1=vj1=3 � j1� 1=vj1=3j�1=2;

(2.15a)

s�ðvÞ ¼ sgnðv� 2Þ þ sgnðvÞ; (2.15b)

C ¼ �G=12: (2.15c)

In all listed prescriptions the operators �o and ��

are well defined in particular for " ¼ 0 (see the
detailed discussion in [26] for APS and [24] for
MMO).
At this point it is worth noting that for all the above
cases the operator �o is of the general form

�o ¼ �bðvÞðĥþ2 � ĥ�2ÞaðvÞðĥþ2 � ĥ�2ÞbðvÞ;
(2.16)

where ĥ�jvi ¼ jvþ �i and for large v the product
[27]

aðvÞb2ðvÞ ¼ ð3�G=4Þv2 þ constþ oð1Þ: (2.17)

In fact, all the symmetric orderings considered so far
in LQC literature (see [16,18] for examples) pre-
serve the form (2.16) and correspond just to different
distribution of v dependence between the functions
a and b while preserving the property (2.17). This
implies that between the orderings (and regulariza-
tions) of that class the coefficients fo;� differ just by

a function behaving asymptotically like constþ
oð1Þ. On the other hand, the term VðvÞ in (2.9) is
affected just by the choices of the regularization and

for the different ones its exact form differs just by
oð1Þ.

(iii) Given the constraint operator in the form (2.9), one
can find the physical Hilbert space, for example, by
the group averaging techniques [28]. For that, how-
ever, one needs to know the spectral decomposition
of ��, thus its self-adjoint extension(s).
Before going to this step let us note that the structure
of �� and (2.9) provides the natural division of the
domain of v onto the subsets (the lattices)

L " ¼ f"þ 4n;n 2 Zg; " 2 ½0; 4½ (2.18)

preserved by the action of ��. This division is
naturally transferred to the splitting of H phy onto
superselection sectors. In consequence it is enough
to fix a particular value of " and work just with the
restriction of the domain of �� to functions sup-
ported on L" only.
Further restriction comes from the fact that the con-
sidered system does not admit parity violating inter-
actions. In consequence, the triad orientation
reflection v � �v, being a large gauge symmetry,
provides another natural division onto superselection
sectors, namely the spaces of symmetric and anti-
symmetric states. For the rest of this work we select
the sector corresponding to symmetric states with
" ¼ 0. The studies are however straightforward ex-
tendable to all other sectors, as we discuss at the end
of each section. Our particular choice allows one to
further restrict the support of the functions toLþ

" :¼
L" \ Rþ.

(iv) A way of finding the physical Hilbert space and
defining an evolution alternative to group averaging
[and for the form of the constraint (2.9), equivalent to
it [29] ] is a reinterpretation of the system as a free
one evolving along the scalar field playing the role of
an internal time. The similarity of (2.9) with the
Klein-Gordon equation

½@2���ðv;�Þ ¼ �½����ðv;�Þ (2.19)

allows one to directly apply the standard quantum
mechanical methods for solving it. Such structure, in
particular, introduces yet another splitting onto
superselection sectors corresponding to positive
and negative energies out of which we select the
positive sector. In consequence, we can immediately
write down the evolution between the initial data
states on the constancy surfaces of �, belonging to
the projection ofH gr onto the space spanned by the
positive part of the spectrum of ��,

U�o;�:P���0H gr ! P���0H gr;

½U�o;���ðv;�Þ ¼ eið���oÞ
ffiffiffiffiffiffi
��

p
þ�ðv;�oÞ;

(2.20)
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where the operator P���0 is the projection onto the

positive part of the spectrum and
ffiffiffiffiffiffiffiffi
��

p þ is the
square root of �� on the space P���0H gr. For the

evolution to be well defined and unitary, however,
the operator �� needs to be self-adjoint. Thus, the
problem of the definiteness of the evolution reduces
to the question about the self-adjointness of ��,
which we will investigate in the next section.

III. EXTENSIONS OF THE EVOLUTION
OPERATOR

To start with, we note that the operator �� defined via
(2.9) and (2.19) is symmetric on the domainD of the finite
linear combinations of eigenstates jvi of p̂, a set which is
itself dense in H gr. To check whether �� is furthermore
essentially self-adjoint, we follow the method specified in
[20,21], finding its deficiency indexes.

The first step is the identification of the deficiency sub-
spaces U� defined as the spaces of (kinematically) nor-
malizable solutions c� to the equation

½��c
��ðvÞ ¼ �ic�ðvÞ: (3.1)

The dimensions of U� are exactly the deficiency indexes
needed to verify the self-adjointness. By inspecting the
form of �� provided in (2.9), (2.10), (2.11), (2.12),
(2.13), (2.14), and (2.15) and taking into account the sym-
metry, we note that any solution c� to (3.1) is uniquely
determined via its value c�ðv ¼ 4Þ. The spaces U� are
thus at most one-dimensional and nontrivial only when the
solutions are normalizable.

To verify this property of c� we first analyze their
asymptotes. To start with, we rewrite the equation (3.1),
being the 2nd order difference equation, in a 1st order
form, introducing

~c �ðvÞ :¼ c�ðvÞ
c�ðv� 4Þ

� �
: (3.2)

In this notation the considered equation takes the form

~c �ðvþ 4Þ ¼ AðvÞ ~c�ðvÞ; (3.3)

where, applying the notation introduced in Eqs. (2.9) and
(2.10), one can write the matrix A as

A ðvÞ ¼
foðvÞ��VðvÞ	i

fþðvÞ � f�ðvÞ
fþðvÞ

1 0

 !
: (3.4)

The next step is expressing ~c�
as a linear combination of

the appropriately selected asymptotic functions (further
denoted as c�

�
) and rewriting (3.3) as the equation for

the coefficients of that combination. At this point we
note that the preliminary numerical inspection shows
qualitatively different asymptotic behavior of c� depend-
ing on whether the value of � is below or above certain
(found analytically [31]) critical value �c related to the

critical energy density �c [10] or the area gap� as follows:

�c :¼ 8�G�c ¼ 3=ð�2�Þ: (3.5)

In consequence, the more detailed analytical treatment
requires considering these two cases separately. Since the
energy density operator has been shown to be bounded by
�c [11,26] and the cosmological constant carries a residual
gravitational energy, it is natural from the physical point of
view to restrict the consideration just to �<�c, although
for completeness we will also dedicate some attention to
the � � �c case.

A. Subcritical �

In this case, as asymptotic functions we select c�
�

defined as

c �
�
:¼ jvj�1e�i!ð�Þjvj; (3.6)

where !ð�Þ 2�0; �=4½ equals [32]

!ð�Þ ¼ 1

2
arccos

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2��

3

s �
¼ 1

2
arccos

� ffiffiffiffiffiffi
�

�c

s �
: (3.7)

With that choice we define the vector of coefficients for
each pair of consecutive points on Lþ

0 ,

~c �ðvÞ ¼ Bðv� 4Þ ~��ðvÞ; (3.8)

where the transformation matrix B is defined as

B ðvÞ :¼ cþ
�
ðvþ 4Þ c�

�
ðvþ 4Þ

cþ
�
ðvÞ c�

�
ðvÞ

 !
: (3.9)

Having that, we can rewrite the equation (3.3) as follows:

~��ðvþ 4Þ ¼ B�1ðvÞAðvÞBðv� 4Þ ~��ðvÞ
:¼ MðvÞ ~��ðvÞ: (3.10)

The exact coefficients of the matrixMðvÞ can be calculated
explicitly. The property relevant for us is that for each of
the prescriptions listed in Sec. II it features the following
asymptotic behavior (identified via calculating the series
expansion):

M ðvÞ ¼ 1þ Oðv�2Þ; (3.11)

whereOðv�nÞ denotes a matrix, whose coefficients asymp-
totically behave like Oðv�nÞ. This implies immediately
(see Sec. 4 of [21]) the existence of the limit

lim
n!1 ~��ð4nÞ ¼: ~��; (3.12)

such that

~��ðvÞ ¼ ~�� þ ~Oðv�1Þ: (3.13)

In consequence,

c�ðvÞ ¼ ðcþ
�
ðvÞ; c�

�
ðvÞÞ � ~�� þOðv�2Þ: (3.14)
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This, together with the fact that c� is well defined and
finite everywhere, implies that their norm with respect to
the inner product (2.7) is finite.

Combining the above observation with the structure of
eigenspaces discussed earlier, we conclude that the defi-
ciency spaces U� are both one-dimensional. Therefore
[20,21] the operator �� is not essentially self-adjoint,
although it admits a family of self-adjoint extensions.
Each extension corresponds to the unitary transformation

U: Uþ ! U�: (3.15)

Since U� are one-dimensional, the only possible trans-
formations which map the normalized cþ into the space
U� are as follows:

cþ � U�cþ ¼ ei�c�; (3.16)

where c� is also assumed to be normalized. The family of
possible extensions is thus labeled by one parameter � 2
½0; 2��.

The above result can be extended in a straightforward
way to other superselection sectors labeled by ". The
particular form of the extension and the details of its result
depend on the prescription used. For the MMO one, since
the triad orientations (positive and negative v) separate
(see the detailed discussion in [8,24]), one can always
restrict the consideration to v > 0. In consequence, the
space of solutions to (3.1) is again one-dimensional and
the deficiency functions are uniquely determined by their
value at v ¼ ". Thus, the analysis of the asymptotics
described above can be applied in this case without any
modifications providing exactly the same result as for " ¼
0.

For the remaining two prescriptions, the situation is
slightly more complicated. Namely, for generic " the ei-
genspaces of �� corresponding to any eigenvalue, includ-
ing �i, are two-dimensional. Also to verify their
normalizability, one needs to check the asymptotics inde-
pendently for positive and negative v. Nonetheless it can
still be done by direct application of the method used for
" ¼ 0 to each of the limits. The result is the same, although
while analogs of (3.12) are still well defined (and the rate of
convergence is the same), generically

lim
n!1 ~�ð"þ 4nÞ � lim

n!1 ~�ð"� 4nÞ: (3.17)

As for " ¼ 0 all the solutions to (3.1) are normalizable.
Now however dimðUþÞ ¼ dimðU�Þ ¼ 2, so the self-
adjoint extensions of �� are now labeled by the elements
of the Uð2Þ group.

Restricting the studies to the symmetric functions does
not change the result for " � 2 as the parity reflection
maps the lattice L" onto L4-", disjoint from the original
one. In the only exceptional case " ¼ 2, the symmetry
imposes an additional constraint between the values of
the eigenfunctions at v ¼ 2 and v ¼ �2. In consequence,

the eigenspaces are again one-dimensional and the results
are exactly the same as for " ¼ 0.
At this point it is also worth noting that the modifications

to the evolution operator introduced by different choices of
ordering of the (quite general) class discussed at the end of
point (ii) of Sec. II do not affect the asymptotic properties
ofM (3.10), that is (3.11) remains true. In consequence, the
above results extend also to these more general situations.

B. Supercritical �

In the case � � �c, it is convenient to introduce the
following change of representation for a general super-
selection sector ":

c ðvÞ � ~c ðvÞ ¼ ð�1Þðv�"Þ=4c ðvÞ: (3.18)

It is trivial to note that the kinematical inner product (2.7)
between transformed functions is given by a formula iden-
tical to (2.7). On the other hand, the examination of the
form of�� provided by (2.9), (2.10), (2.11), (2.12), (2.13),
(2.14), and (2.15) shows that it transforms into

�� ! ~�� ¼ ���c�� þ AðvÞ1; (3.19)

where AðvÞ is always finite and decays as Oðv�2Þ, thus
AðvÞ1 is a compact operator. This feature allows immedi-
ately to apply Kato’s perturbation theory [33] and the self-
adjointness of�� for� 
 0 [18] to conclude that for� �
�c the operator �� is also essentially self-adjoint.

IV. THE SPECTRAL PROPERTIES FOR � <�c

For subcritical values of �, we have shown in Sec. III A
that the evolution operator�� admits (in the principal case
" ¼ 0 considered here) a one-parameter family of exten-
sions��. Each of these extensions defines an evolution via
(2.20) with �� replaced by ��. In order to identify the

physical Hilbert space H phy
� corresponding to each exten-

sion, we need to know (the positive part of) the spectrum of
��. Here we analyze some properties of it, as well as the
eigenspaces corresponding to its elements.
Let us start with the eigenfunctions. By inspection one

can easily notice that the analysis of the asymptotics of the
deficiency functions performed in Sec. III extends directly
to any eigenfunction corresponding to any complex eigen-
value, with the same form of the asymptotic functions (3.6)
and convergence rates (3.13). In consequence, every eigen-
function of �� is explicitly normalizable, being thus an
element of H gr. This in turn implies that the spectrum of
each �� is purely discrete.
To identify the spectra Spð��Þ, we first determine the

domain of each extension, applying the theorem X.2 of
[20]. It follows from it that the domain D� of �� in our
case equals

D � ¼ fc þ cþ þU�cþ; c 2 D; c� 2 U�g; (4.1)

where U� is given by (3.16). On the other hand, D� is
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spanned by those of the (normalized) eigenfunctions e!ðvÞ
whose eigenvalues! 2 Spð��Þ. As the eigenfunctions are
normalizable, the ones selected by that condition also
belong to D�. Since the original domain D of �� is (a
Cauchy completion with respect to the graph norm of) a
space of finite linear combinations of jvi, only the term
cþ þU�cþ contributes to the asymptotics of the ele-
ments D�. In consequence, D� is spanned by (all and
only) the eigenfunctions e! which converge to a combina-
tion cþ þU�cþ for some cþ 2 Uþ.

The above selection criterion, although precise, is not
convenient for practical purposes. To bring it to a simpler
form, we remind that all the eigenfunctions, including the
deficiency functions and e!, converge to linear combina-
tions of c�

�
. Furthermore, as �� is a real operator, the

limit of e! is necessarily of the form

e!ðvÞ ¼ �ð!Þ½ei	ð!Þcþ
�
ðvÞ þ e�i	ð!Þc�

�
ðvÞ� þOðv�2Þ;

(4.2)

where �ð!Þ 2 C and the phase shifts 	ð!Þ 2 ½0; 2��.
Obviously the term cþ þU�c� has the same form of
the limit, up to an additional rotation by a global phase.
Furthermore, the transformation 	 ! 	� � corresponds
just to change of sign. In consequence, there is a one to one
correspondence between the parameters � and 	 2 ½0; �½
which thus uniquely label the extensions.

As one needs just to compare the asymptotic behavior of
the eigenfunction against the functions of a very simple
analytic form, the classification with respect to 	 is much
better suited for practical applications, like e.g. the explicit
identification of the spectra of the extended operators, as
well as for finding the bases of the physical Hilbert spaces.
One has to remember, however, that this classification is
just a more convenient form of the previous one, not an
alternative to it.

The above results, derived for the superselection sector
" ¼ 0, generalize easily to other sectors, although the
exact results depend (as in the studies of Sec. III A) on
the particular prescription. Namely, for the MMO prescrip-
tion, due to nondegeneracy of the eigenspaces of ��, the
analysis presented in this section can be repeated exactly,
giving exactly the same results. For the remaining two
prescriptions, one has to introduce slight modifications
taking into account the twofold degeneracy of the eigen-
values. In particular, the label of the extension inherited
from the label of the unitary transformation U (3.15) via
(4.1) is now an element of the Uð2Þ group. All the eigen-
functions of�� are however again explicitly normalizable,
and the ones spanning a particular extension are selected
by the condition that a given eigenfunction e! belongs to
D� iff there exists cþ 2 Uþ such that the considered
eigenfunction converges to a combination cþ þU�cþ,
where U� is a transformation (3.15) corresponding to a
particular value of the label � 2 Uð2Þ.

V. PHYSICAL HILBERT SPACE FOR � � �c

For these cases we have proved in Sec. III B that the
operator �� is essentially self-adjoint. Also the form
(3.19) of �� after the representation change (3.18) sug-
gests that qualitatively its spectrum should resemble
Spð��0 Þ, where �0 ¼ �c �� 
 0. Thus, we expect the
whole spectrum to be quite rich. In particular, the essential
part of it equals just Spesð���0 Þ. As Spesð��0 Þ equals
either Rþ (for �0 ¼ 0) or is empty (�0 < 0) [18]
Spesð��Þ is purely nonpositive. On the other hand, since
only P��>0H gr enters (2.20), only the positive part of

Spð��Þ is relevant from the physical point of view. From
the above reasoning it follows immediately that it has to be
purely discrete [34]. In this section we will study exactly
this part. The analysis will be again restricted just to the
superselection " ¼ 0 and the symmetric functions.
The discreteness of the positive part of the spectrum

implies that the eigenfunctions corresponding to it have to
be explicitly normalizable. One can show, however, that no
such function exists at least for selected prescriptions and
superselection sector. Indeed, from (2.9) and (2.10) and the
positivity of fo;�ðvÞ and �cVðvÞ � foðvÞ for v � 4 fol-

lows that the solution to the equation ��c !;� ¼ !2c !;�

satisfies the relation

jc !;�ðvþ 4Þj � �VðvÞ � foðvÞ þ!2

fþðvÞ jc !;�ðvÞj

� f�ðvÞ
fþðvÞ jc !;�ðv� 4Þj

� �cVðvÞ � foðvÞ
fþðvÞ jc !;�ðvÞj

� f�ðvÞ
fþðvÞ jc !;�ðv� 4Þj: (5.1)

This and the fact that for the chosen superselection sector
all the eigenfunctions c ! are determined by their initial
values c !ðv ¼ 4Þ implies

jc !;�ð4Þj ¼ jc 0;�c
ð4Þj ) jc !;�ð8Þj � jc 0;�c

ð8Þj; (5.2)

thus, defining the ratios

�!;�ðvÞ :¼ �c !;�ðvÞ=c !;�ðv� 4Þ; (5.3)

we have

�!;�ð8Þ � �0;�c
ð8Þ: (5.4)

Furthermore, �!;� satisfy the equation [following directly

from (2.9) and (2.10)]

�!;�ðvþ 4Þ ¼ �VðvÞ � foðvÞ þ!2

fþðvÞ � f�ðvÞ
fþðvÞ

1

�!;�ðvÞ ;
(5.5)

which together with [following from (2.11), (2.12), (2.13),
(2.14), and (2.15)] positivity of f�ðvÞ and�cVðvÞ � foðvÞ
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for v � 4 implies

8 v � 8: �!;�ðvÞ � �0;�c
ðvÞ ) �!;�ðvþ 4Þ

� �0;�c
ðvþ 4Þ: (5.6)

In consequence, by induction we have

jc !;�ð4Þj � jc 0;�c
ð4Þj ) 8 n 2 Zþ:jc !;�ð4nÞj

� jc 0;�c
ð4nÞj: (5.7)

On the other hand, taking as c�ðvÞ the functions

c þðvÞ ¼ ð�1Þv=4ffiffiffiffiffiffijvjp ; c�ðvÞ ¼ ð�1Þv=4ffiffiffiffiffiffijvjp lnjvj; (5.8)

one can perform the analysis of the asymptotics analogous
to the one in Sec. III A, showing that

c 0;�c
ðvÞ ¼ ð�1Þv=4ffiffiffiffiffiffijvjp ðc1 þ c2 lnjvjÞ þOðv�3=2 lnðvÞÞ;

(5.9)

where, due to the existence of both
Q1

n¼n0
Mð4nÞ andQn0

n¼1 Mð4nÞ�1 [where M is an analog of the matrix de-
fined in (3.10)] for some large enough n0, and the fact that
the eigenfunction is uniquely determined by its value at
v ¼ 4, at least one of the coefficients c1, c2 does not
vanish.

From the relations (5.7) and (5.9) we see that for� � �c

none of the eigenfunctions corresponding to the positive
eigenvalues are normalizable. In consequence, the positive
part of the spectrum of �� is empty, thus the physical
Hilbert spaces corresponding to those values of � are
trivial.

This result cannot be immediately extended to the re-
maining superselection sectors as for some prescriptions
and values of " the validity of the inequalities (5.1) and
(5.2) (generalized to include the initial data at two points)
as well as the statement of nonvanishing of jc1j þ jc2j
might be affected near v ¼ 0 by the different behavior of
the functions f�, fo, B there. Therefore we cannot exclude
the existence of the normalizable eigenfunction in those
cases. One can see however that, as up to the transforma-
tion (3.18), the eigenfunctions have the same asymptotic
properties as the (corresponding to the negative eigenval-
ues) eigenfunctions of �� for � 
 0. In consequence, all
the normalizable eigenfunctions have to decay exponen-

tially (�>�c) or like Oðv�3=2 lnðvÞÞ (� ¼ �c).
Furthermore, due to the form of coefficients of �� (2.10)
they have to enter this behavior already at jvj � 4. This is
possible only for low values of ! as for the larger ones the
term!2 is a dominating one at jvj 
 4, which again forces
the behavior similar to the asymptotic one. In consequence,
any possible normalizable eigenfunctions necessarily cor-
respond to small eigenvalues and are peaked near the
classical singularity.

VI. CONCLUSIONS

We have considered the evolution operator �� defining
the evolution of the isotropic flat universe with massless
scalar field and positive cosmological constant quantized
within the framework of loop quantum cosmology. For the
investigation three exact forms of the operator correspond-
ing to particular prescriptions [10] (APS), [11] (sLQC),
and [24] (MMO) were selected. Our main goal was the
verification of its self-adjointness as the condition neces-
sary to generate a unique unitary evolution in the
Schrödinger picture. We also investigated the properties
of the Hilbert spaces defined by the spectra of possible self-
adjoint extensions of ��. All the results were derived
analytically, without resorting to the numerical methods.
The results of the studies happen to depend on the value

of the cosmological constant �. Namely, one can divide
the set of its values onto two regions separated by the
critical value related with the critical energy density [10]
via the equality �c ¼ 8�G�c for which the properties of
�� are qualitatively different.
For 0<�<�c (denoted as subcritical) �� admits

many self-adjoint extensions, each of them defining in-
equivalent (at least at the mathematical level) unitary
evolution. The extensions are labeled by the elements of
the Uð1Þ or Uð2Þ group, depending on the superselection
sector. In particular, once the studies are restricted to the
symmetric functions only, the groups of labels G are

G ¼
8<
:
Uð1Þ; MMO;
Uð2Þ; APS and sLQC; " � 0; 2;
Uð1Þ; APS and sLQC; " ¼ 0; 2:

(6.1)

Once the self-adjoint extensions were identified their
spectral properties were also studied. It was shown that
the spectrum of each extension is discrete, thus the physi-
cal Hilbert space spanned by the set of normalizable ei-
genfunctions of ��.
Although the primary objective of investigation was

three particular forms of the evolution operator following
from particular choices of factor ordering and regulariza-
tion, the above results generalize immediately to a quite
general class of orderings, namely the ones for which �o

takes the form specified by (2.16) and (2.17).
For � � �c (supercritical) we found the relation with

the operators �� for � 
 0, which allowed one to show
that the evolution operator is essentially self-adjoint, thus
generating a unique unitary evolution. Further studies have
shown however that for the superselection sector " ¼ 0 the
positive part of the spectrum of �� is empty, thus the
physical Hilbert space defined by it is trivial. This situation
might change in other superselection sectors. There how-
ever, even if nontrivial, the Hilbert space does not admit
any physically interesting states. Also the generalization to
other factor orderings and regularizations of �� is not
straightforward as it is not obvious that the relation
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(3.19) will hold [with AðvÞ1 being of the trace class] for
every choice admitted by the form (2.16) of �o.

The result of the above paragraph is analogous to the
properties of the scalar field energy density operator per-
formed in [26], where it was shown that for � � �c the
absolutely continuous part of the spectrum of that operator
is entirely nonpositive and the eigenfunctions correspond-
ing to the positive elements of the spectrum (necessarily
belonging to its discrete part) are peaked about v ¼ 0.

In the subcritical case �<�c the existence of nonun-
ique extensions implies, in particular, that the quantum
evolution of the system is not explicitly unique.
However, the detailed studies of its dynamics show [19]
that in the semiclassical regime the dynamical predictions
are surprisingly unique and in the limit v ! 1 consistent
with the (unique) analytic extension of the classical
trajectory.

To conclude, let us note that the results regarding self-
adjointness directly extend (with the exception of the case
� ¼ �c) to the cases of different topologies (K ¼ �1), as
the terms in�� present in such models are subleading with
respect to the term �VðvÞ. Furthermore applying the

methods presented here, one can easily show that for the
models � ¼ 0 and K ¼ �1 (defined in [13]) the evolution
operator also admits nonunique extensions. By the relation
(3.19) this result applies also to � ¼ �c, K ¼ þ1. On the
other hand, the same argument and [17] imply the self-
adjointness for � ¼ �c, K ¼ �1.
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