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Analysis of a three-component model phase diagram by catastrophe theory:
Potentials with two order parameters
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In this work we classify the singularities obtained from the Gibbs potential of a lattice gas model with three
components, two order parameters, and five control parameters applying the general theorems provided by
catastrophe theory. In particular, we clearly establish the existence of Landau potentials in two variables or, in
other words, corank-2 canonical forms that are associated witthyperbolic umbilic D, 4, its dual the
elliptic umbilic, D _,, and theparabolic umbilic By catastrophes. The transversality of the potential with two
order parameters is explicitly shown for each case. Thus we complete the catastrophe-theory analysis of the
three-component lattice model, initiated in a previous p&apéys. Rev. B57, 13 527(1998].
[S0163-182899)00713-4

I. INTRODUCTION canonical form of the unfolding of are isomorphic Then
we can replace the origin&l function by this canonical un-

The importance of phase transitions with several ordefolding. If not, we can state that thi¢ function is not sus-
parameters is very well known in different branches ofceptible to being studied by CT.
physics? A great amount of theoretical work has been done CT has not been usually applied in a rigorous way by
in order to understand and construct accurate phase di&king into account all concepts and theorems needed for its
grams. As is well known, two different approaches are usuforrect implementation. The catastrophe program proposed
ally employed, one more phenomenological by introducing€re Provides a very useful asystematiovay to explore,
Landau polynomial potentials which try to describe experi-€x@mine and classify, with not very much computational ef-
mental singular behaviors and the second one applying cdo't S'F‘gu'a”“es and ge’?e“’" behaviors of physical systems.
tastrophe theoryCT) (also known as singularity thecty) In particular, we empha5|ze the §tudy of_transversallty of the
and thus adopting a more methodological point of view.aCtuaI thermodynamical potentials which guarantees that

Even in the second case there are several ways to deal Witﬂose simple forms(polynomial potentials or canonical
- : Y : orms) represent indeed up to a diffeomorphism the original
phase transitions and diagrams. Most works adopting th

. . ) : . ﬂwermodynamical potential, this fundamental aspect being
second point of view start with the canonical unfoldings asmany times not properly considered. Thus some Landau

given and base their treatments on the effect of perturbationg,,\vnomia) potentials utilized to describe phase transitions
leading to preserving or not the internal symmetry of thej, the |iterature may claim phenomenological value but may
system considered or, in other words, they focus their analynot claim to have a direct connection with the real thermo-
sis in the symmetry-breaking character of some phase trafgynamical potential, which is generally nonpolynomial, un-
sitions. The procedure we adopt here is different since Weess the CT analysis of the latter, including transversality, is
begin with a thermodynamic potentidgfor example, the performed.
Gibbs potential assuming a mean-field approach, and we Following our CT program we do not need to invoke any
apply an algorithm or program according to the generakonvention(for example, delay or Maxwell conventipin
mathematical theorems established by CT, in order to extra@rder to classify degenerate or nondegenerate critical points
all the topological information of the original thermodynam- on the state variables space. Both conventions are not intrin-
ics potential. In a recent paper we have applied this CT prosic to CT. Only when we deal with the time evolution or
gram to a three-component model phase diagram and wghen dynamical considerations about the physical system
have found for a one order-parameter potential the highesire considered, could a given convention be advisable. In
singularity with codimension five to be theigwamor Ag  particular, when the order of a phase transition needs to be
catastrophé. determined a convention is necessary because the transition
Our CT program could be very briefly stated as follows. occurs when an appropriate separatrix in the control param-
Let H(x,7) be a real function of state variables eter space is crossed.
=(Xq,...,X,) and control parametersr=(my,...,m). Here we will focus our attention on the lattice-gas model
Then we must first pick a pointxg, ) such thatx, is a  for a system with three components which simulates, in par-
degenerate critical poindf H and we consider the unfolding ticular, a binary fluid mixture. A wide literature has already
h(x,m)=H(X+Xq,7m+ 79) —H(Xq,mg) and g(x)=h(x,0) been devoted to it from different points of vigRefs. 6—10,
to translatex, to the origin of coordinates. Second, we cal- and references thergirrestricted to the case with one order
culate the determinacy and codimensiongdfom thek jet ~ parameter. In fact, very few studies with these methods can
of g,j%(g), and, third, we study thk transversality oh. If be found for phase transitions with two order parameters.
this function isk transversal we can affirm th&t and the  This is rather surprising since the Landau potential for the
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three-state Potts model, which is a particularly important CT will be applied to theﬁ(x,y,a,b,c,yx,ﬂy) function
three-component model, has long been known to have twg, classify the corank-2 singularities, at the generic point
order pararT_\eterE.We shall perform acomple_te CT study of (x,,y,) Which moves on the triangle,>0y,>0 and 1

the case with two order parameters, which is the maximum.y v ~0. CT conventionally uses the origin of coordi-
number for this model. The starting point will be the exactpates as the point where singularities occur. Therefore, we

mean_-fleld G'.bbs pot_ent|al. ) .__shall translate the functioH in order to have the singulari-

This work is or_gamzed as follows: In Sec. |l we qescr'be.ties at the origin. This translated function is written now as
the thermodynamical potential to be analyzed, give its physi-
cal interpretation, and apply the CT program to the potential
previously introduced by considering the singularities with
corank equal to 2 and establish the elementary catastrophes
associated. In Sec. Ill, we analyze in more detail the Potts o
model as a particular case. The last section is devoted to a —H(X0,Y0,80,D0,Co, x,0:My,0)

discussion of the previous results. ®)

h(x,y,a,b,c, uy ,,uy)=ﬁ(x+x0,y+yo,a+ ag,b+bg,c

+Coy xt My 0s iyt My 0)

Il. ANALYSIS OF THE GIBBS POTENTIAL WITHIN THE and the germ of the unfoldiny is
FRAMEWORK OF CATASTROPHE THEORY

In the mean-field theory, the Gibbs potential is a function 9(xy)=h(xy.0.0.0.00. ©
of the concentration of two of the three components andNow according to the CT program proposed in our previous
depends on three thermodynamical parameters, which can Ipapet and mentioned in the Introduction, the following steps
taken as the temperature and the chemical potentials of thgill be developed for our problem.
two components, and on three molecular parameters. The
phase diagram deduced from this function is an accurate de- 5 congition for a degenerate critical point at the origin
scription of the system, except close to tfraulti)critical ] } ] . i
points, where fluctuations become important and alter sig- The first step is to write the conditions for which the
nificantly the mean-field theory predictions. For this reason@rigin of coordinates (0,0) is a degenerate critical point with
the Gibbs potential has been the basis for determining thgorank equal to 2 off. This can be done by equating all the

overall phase diagrath'® first and second partial derivatives gfto zero at the point
Let us consider the reduced form of the Gibbs potential0.0) (hypothesisX.o)—thus the Hessian of the gergwvan-
according to Ref. 9 ishes as well. This leads to five conditions among the vari-
ables and parametexg,Yo,a9,b0,Co, 50, @aNduy o. From
G(x,y,z,a,b,c)=ayzt+bxz+cxy+xInx+ylny+zinz, that system of five equations the following relations can be

(§0)] extracted:

where the parameteis,b,c are related to some molecular 1 1

interaction parameters; the variabley,z are the mole frac- A== (25 +Yo ), bo==(z5+xY),

tions defined byx=N,/N,y=N,/N, andz=N,/N,N=N, 2 2

+Ny+ N, being the number of total moles ah, N, and

N, the moles of each component. The following constraint 1,1

among the three variables is therefore required: CO:E(XO +Yo ), @)

x+y+z=1, with 0<x,y,z<1. (2 and

This potential has a wide range of applicatigns, covering in 1

particular the physics of binary fluid mixturé$* txo=5(—YoZo *—XoZo 1+ ZoXg T+ YoXo D)
From the constraint Eq2), we build a new functiom of x0T 0% T0%0 T RTo T I0T0

two variables such that

+Inxy—Inzg,
H(x,y,a,b,c)=ay(1—x—y)+bx(1—x—y)+cxy+xInx 1
+ylny+(1—x—y)In(1—x—vy). (3) #y,ozz(—yo251_X0251+Zoy51+xoy61)
The mean-field theory prescription is then to minimize the +Inyy—Inzo, %)

nonequilibrium Gibbs potential H w,X— u,y,
_ with the definition zy=1—x,—Yy>0. Equations(7) give
H(X,y,a,b,C, ux, uy) =ay(l—x—y)+bx(1=X—y)+CXy  rise to a surface with parametexg and y, fulfiling the
xInx+ylny+(1-x—y) E:gr(l)(;mon for a degenerate critical point with corank 2 at

XIN(L=X=y) = wX—pyy, (@)

with respect tox andy, where u, and u, are related to
differences between the chemical potentials of the three With the hypothesig,,, the 3-jet ofg (Taylor expansion
components. truncated beyond terms of degreeaBound the point (0,0) is

B. Classification of the germg
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FIG. 1. Regions fox®—xy? potentials(inner trianglé and for
x3+xy? potentials(three outer trianglésn x,yoz, space. FIG. 2. Phase diagram showing the corank-2 instability surface.
The intersection of the plane and the surface gives one of the three

_ 1 L, o, 1 L, 1 , branches of the boundary between #ie- xy? andx®— xy? poten-
i*(9)= 5X3( —Xo “+2Zp%)+ EXZYZO + EXVZZO tials. The diagonal corresponds to the three-state Potts m&isd.
text).
1 2, 2 9 -
Y (Yo R, © cod(j3(g))=cod x>~ xy?) =3,
This 3-jet can be considered now as an homogenous polyno- cod(j3(g))=cod x3+xy?)=3, (12)

mial of degree equal to 3 and can be rewritten as ) ) )
and we observe that the behavior of the codimension of the

i%(g)=a;x3+ax?y+azxy’+a,y°, (10 3-jet is discontinuous according to Fig. 1. Indeed, when the
] P s point (Xqy,Yo) crosses the inner triangle the codimension of
with a;=(1/6)(—x,“+2,%), ax=a3=(1/2)z,° and a;  the 3-jet jumps to infinity. The codimension is only finite
=(1/6)(— Yo > +2, %) We know from singularity theory that when what we could call hypothesss, is fulfilled, that is,
a general non-null homogeneous polynomial of degree 3 is
equivalent by a linear transformation to one and only one of 21=(1-2%0)(1—2yy)(1—22,)#0. (12
the following germs:x3—xy?, x3+xy?, x?y and x3.1516
We must remark that theseandy are not to be identified
with the initial physical variables, though they are linearly
related to them. The application of this lemma to Ef) to
classify the 3-jet is given in Appendix A and here only the
final conclusions will be summarized:
(1) If (1 —2%0)(1—2y0)(1—225) =0 thenj®(g)~x?y,
(2 If (1=2x0)(1~2y0)(1-22)>0 then i*(g)~x® +bax?y?+byxy>+bsy*, (13
3) |Jfrx(yl ’—2x0) (1—2y0)(1—22,)<0 then j3(g)~x3 where now the coefficients are found to be

On the contrary, i%;=0, corresponding to the sides of the
inner triangle, the gerny is not 3-determinate and we have
to increase the order of its jet by one more degree to explore
4-determinacy. We have that

j4(g) =a;x3+ ax?y+agxy?+ayS+ byx*+ b,ox3y

—xy?.

All of these three cases can be collected in a plot shown in
Fig. 1. In Fig. 1 we display in thegy,zg space the regions 3 3. __3
for thex3+xy? germs and in Fig. 2 the separatrices between bs=2"13, bs=(yo"+2,7)/12.
regions with different codimensions in parameter space. Th@g pefore, in order to classify the 4-jet gfwe invoke again
separatrixx,=1/2, say, in conjuction with the equations de- 3 |emma of the singularity theorgee Appendix A In all of
fining the instability surfac€7) gives rise to the plane-a;  the subcases examined the 4-jet is equivalent to the canonical
+ho+¢o=2, used in Fig. 2 to find the separatrix in param- germ x2y+y*, it is 4-determinate and its codimension is
eter space, which is a hyperbola branch. equal to 4.

The equivalence between the 3-jet and the canonical
germs implies that their codimensions are equal. Thus we
have that

bi=(xg3+253)/12, by=2,%3, bs=2,%2,

C. Determinacy and codimension ofg(x,y)

Once we have shown that the 3-jet is equivalent to the
codj3(g))=cod x?y) =, canonical germg®+xy?, and the 4-jet toc’y +y*, itis clear
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that as these germs are 3- and 4-determinate, the 3-jet amehd they arek-transversal unfoldings for ak>0 of x3
4-jet will be also 3- and 4-determinate, respectively. Then—xy? and x3+xy?, respectively. Now the bifurcation sets

g~x3—xy? (for 3;<0), g~x3+xy? (for 3,>0) both
with cod(@)=3, and g~x%y+y* (for 3,=0) but with

areBg =Bp X R*andBg,=Bp  XR%
In both cases, we can affirm that there is a change of

cod(@)=4. These equivalences exist up to an unknowngoordinates(a diffeomorphism ¢, ) such thatg= (x*

change of coordinates, so that here and in the following the
variablesx andy have no physical interpretation and may be

regarded as dummy variables.

D. Canonical unfoldings of the germsx3+xy? and x%y+y*

It is well known from CT that{[x],[y],[x?]} is a basis
for the quotient vector spacegx,y)/A(x3—xy?) and
X YAOC+xY?) and  {[x].[y].D<].[y*]} for
(x,y)A(x?y+y*. Moreover, thek transversal(for all k
>0) canonical unfolding of the canonical fonai—xy? (el-
liptic umbilic, D_,) and its dualx®+xy? (hyperbolic um-
bilic, D, ,4) and x?y+y* (parabolic umbilic Ds), are, re-
spectively,

X3—Xy2+ N X+ Aoy + A gX2,
X3+ Xy2+ N X+ Aoy + A gX2,
and

X2y + YA+ N X+ Ny + N gX2+ A4y,

The corresponding bifurcation diagrams are well known
in the singularity theory/ and can be seen in any of the

standard books on this thedhEquations governing such
bifurcation diagrams are

Bp ,:3°—y*+ N1 +2\x=0, —2xy+\,=0,
3x2+x\3+Yy2=0,
Bp, ;3 +y*+ N +2hx=0, Xy+\,=0,

3x2+x\3—y2=0,
and

Bp:2Xy+ A1+ 2\gx=0, x*+4y°+N\,+2Ny=0,

6y3+y)\4+ 6)\3y2_ X2+ )\3)\4: O,

which are obtained by equating to zero the first derivatives

and Hessian ofj in each case.

E. Canonical five unfolding of g

Since h has five parameters, the preceding unfoldings
have to be extended with two or one irrelevant parameters i
order to apply the isomorphy theorem. Thus, for example

for the canonical unfoldingg®+ xy?, the two new unfold-
ings denoted by3; and B, can be written as

,81(X,y,7\1, . ,)\5):X3_Xy2+)\1x+)\2y+)\3xz

(14
and

o Ng) =X XYZH N XNy + A gx?
(19

BZ(Xiy!)\l! .

XY?)- ¢(x,.y, and the same holds fox®+xy?. Conse-
quently,

Bi(XY N1, hg)=S3— S+ N S+ Aot +Ng52  (16)

and

Ez(x,y,)\l, P ,)\5):SS+ St2+ )\15+ )\2t+)\332, (17)

where §,t) = @(Xowo)(x'y)* is a three-tranversal unfolding of

g with five parameters. Moreover, for the bifurcation sets we
have thathl= Bg, and Bs,=Bg, A similar reasoning can

be used for the canonical unfoldingly+y*+\;x+\,y
+ X\ 3x2+\4y? but now we have only one irrelevant param-
eter.

Finally, these canonical unfoldings gineed to be related
to the functionh or translated Gibbs potential. This is shown
explicitly in next subsection through the so-called transver-
sality condition.

F. k transversality of the translated function h

Now we return to the translated Gibbs potentiaio es-
tablish its relation with the unfolding af studied above. The
condition for the existence of this relation is its transversal-
ity. Since we will be dealing with the physical functidnits
arguments will be the original physical variables, to be dis-
tiguished from the dummy variables used before. The vector
space of the transversality,,, is defined by the first partial
derivatives ofh with respect to the five parameters according
to

Vi =(D,h(x,y,0,0,0,0,0—D,h(0,0,0,0,0,0,0,
D,h(x,y,0,0,0,0,0—D,h(0,0,0,0,0,0,0,
DCh(vaaovoyoaolo_ DCh(01010101010101

D, h(x,y,0,0,0,0,0-D, h(0,0,0,0,0,00,

DMyh(x,y,O,O,O,O,O— Dﬂyh(0,0,0,0,0,0,0)M , (18

where (- - -}z means all the linear combinations with real
coefficients.

Let us analyze the transversality of the unfolding
(x,y,a,b,c, uy,uy). As was mentioned in the Introduction,
this study is carried out in order to show that the function
and the canonical unfolding of the gergnare isomorphic.
The vector space of the transversaliy,, is defined by Eq.

(18) and reads in our case
Vi=(—yX—y?+yZy—yoX— Yoy, — X* = Xy+XZg— XX
~XoY . XY+ XYoT XY, =X, ~Y)R - (19

Our next step is to prove thhtis three or four transversal,
according to each case. For this goal, we invoke one of the
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main theorems ok transversality which states thlawill be  where we have introduced the complex variabtex+iy.
k transversal when the following algebraic condition isThe permutation symmetry is obviously generated by the

met1516 . ) s _ e
' discrete rotationg—e'(™z and the reflectiorz—z. The
temperature perturbation preserves the symmetry and be-
longs to the vector spade,y)/A(j3(g)). Hence, it must be

which is fulfilled in our case fok=23 or 4. This requirement x2+y2=z z The corresponding unfolding is

is proved in Appendix B with the hypothesks, and 3

#0 or 2,=0, respectively. We finally conclude thhtis a

three- or four-transversal unfolding @f with five param- B+ 24 Nz22=x3— 3xy2+ A (x2+y?), (25)
eters. Moreover, by using the main theoremkdransversal-

ity, and for the three-transversal cagg,and 3, are isomor-

phic to h, that is, there are three diffeomorphisms and awhere\ is a monotonic function of the temperature, at least,
perturbation of parameters depending og,{o) for each in a neighborhood oT .

(X,Y)=A(g)+Vu+(x,y)< 1, (20)

casesuch that Now there arises the problem that the unfolding &%),
. being a section of the complete unfolding Bf 4, contains
h(x,y,a,b,c,uy,uy) =H(X+Xq,y+Yg,a+ag,b+bg,c potentials with one minimum and three saddle pointa if

>0 or with one maximum and three saddle pointa #0.
These potentials are not bounded below nor have the three
minima to be expected in this model. We must recall here the
local character of CT and the discussion in Ref. 1. There we
=53 st NS+ Nt + N 3s? remarked that the global character of these potentials can
only be established by a numerical study over the entire
T 200,y5) (310, s 4y, (21) range of the variables andy. Thus one finds that they in-
where the diffeomorphisms take the following expressions: 9€€d have three minima, far from the point (0,0) and distrib-
uted symmetrically, if we keep the temperature in a neigh-
Pixguye)(X:Y58,D,C, phy p1y) = (U0 N1, - . Ns), borhood ofT,. For a large value of only the minimum at
(0,0) survives. This is physically sensible, for at high tem-
perature only the symmetric disordered phase can remain.
The temperaturd@ . precisely signals the point at which the
symmetric disordered phase becomes unstable and disap-

+Cos My T My0: My T Hy0)

—H(X0,Y0,20,b0,Co, kx,0, 1,0

(P(xo,yo)(uav): (Sat):

Mxg.y0) (30, C s ty) = (N1 - - Ns), (22 pears. Potentials for various situations are plotted in Fig. 3.
with Note that forT>T, the three minima converge to (0,0),
eventually merging there. Since their depth decreases as the
Yixg vy (%:,0,0,0,0,0=(x,y,0,0,0,0,0. (23)  depth of the minimum at (0,0) increases, there must be a

value of T such that they are equal. If we adopt the Maxwell

All of these diffeomorphisms preserve the origin of coordi- convention then we have a first-order phase transition. This
nates. Moreover, concerning the bifurcations, we have thathase transition is known to occur in this model in space
Mxgyy) (Br) =Bo_, X R2 or 7 v 1(Bp)=Bp, X R2. Simi-  dimensiond=4 and almost certainly fal=3."° In d=2 the
lar expressions can be written for the four-transversal casePhase transition is definitely of second oréfewhich means -
that the mean-field theory potential with which we started is
insufficient in low dimensions to describe accurately the real
character of the possible phase transitions.

The natura(and o|de§tgenera"za’[ion of the |Sing model Landau pOtentialS for the three-state Potts model that are
consists of taking a site variable which can take three equivadounded below have appeared in the literatdr@:"* They
lent states instead of two, constituting the three-state Pot@'® commonly derived by renormalization-group arguments.
model.(Similarly, one can define thg-state Potts modellt ~ In particular, it has been shown that fdr3 the only RG
has Comp|ete permutation symmetry among the three Staté'@,'evant term furthEr from the cubic is the quartic symmetric
yielding a Gibbs potential corresponding to Ed) with a  term (x*>+y?)2=(z 2. It is even possible to prove with the
=b=c, Fig. 2, leaving as the only parameter the temperapowerful methods of @ conformal field theory that this
ture T. The corank-2 instability occurs fof,=1/9=0.1111 term, in addition to the cubic term, constitute a well-defined

and the corresponding potential is the , germ. The three- | andau potential? So the potentiat(z3+?3)+(z7)2 seems
parameter unfolding Eq14) contains the possible perturba- to be adequate for this model. In fact, due to the addition of
tions of temperature or chemical potentials. Since in thehe quartic term, it exhibits the same behavior as the total
three-state Potts model only the temperature perturbation isonpolynomial potential displayed in Fig. 3. In any event,
allowed we must have a one-parameter unfolding. Its form isve must remark that the quartic term does not belong to the
best deduced by symmetry argumelftse can substitute germ, as calculated before. However, it could well arise from
the germ by the symmetric form a more refined Gibbs potential, namely, of the type obtained
o with cluster variation methods, especially if symmetry ar-
22+ 2°=x3—3xy?, (24)  guments are invoked like in Ref. 12.

Ill. THE THREE-STATE POTTS MODEL
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FIG. 3. Potentials for the three-state Potts model at various temperatures.

IV. CONCLUSION We must say a few words about natural generalizations.

We have analyzed the possible modes of instability amélcstead of limiting ourselves to three components we could

) o : ; ._Well envisage the case gfcomponents. This would include
further singularities of the mean-field theory Gibbs potentlalmost models ever considered in the physics of phase transi-

for a three-component modej in the case thgt two order P&ions. The most symmetric case is thestate Potts model
rameters are needed for their description. Since the case Q\P ' ’

one order parameter has been already studied in Ref. 1, th h essential advantage of increasiggis that mean-field
studv of this Gibbs potential is now complete. We .ha’vet eory becomes more accurate—in fact becoming exact for
y b piete. space dimensiod=2 if q=4.8 A Landau potential for the
found that three new catastrophes take place, namely, th state Potts model witlq—1 order parameters is alread
hyperbolic umbilic D4, its dual theelliptic umbilic, D_,, Enown20 Presumably, the rigorouspstudy of the highe)ét
and theparabolic umbilic Dy, catastrophes. Thearabolic - ’ . .
umbilic Fr)was codimensiocn 45 which ispthe higrl?est we Cancorank instabilities of theq component Gibbs potential
reach in the case of two co;nrol arameters, unlike the casWOUId produce a germ equal to the cubic term of that Landau
of one control parameter studiedpin Ref 1 \;vhere codimenﬁmemial’ as for the three-state Potts model. The correspond-
sion five was reached. The germ and unfolding ofaliiptic ing singularities e>I2<£|b|t the interesting feature of having
umbilic catastrophe are precisdigomorphic t9 those of the modular parameters already forq=4. There would cer-

three-state Potts model, which is the model with the highesttalnly be a flock Of. other sm_gularlyes with the same corank
and the same or higher codimension, and with lower corank.

symmetry, and generally shc_)w three and even four _phas\t;Ve leave to the entrepreneurial reader the exploration of this
coexistence. The total potential for the models belonging tq

the hyperbolic umbilicclass do not have more than one local eFdIe_ss world of mathematical entities and their physical ap-
o e ication.

minimum and therefore they cannot give rise to phase coex

istence. The phase structure for tparabolic umbilic is

fairly complicated and can be seen in any of the standard

books about CT!’ Finally, it is remarkable that with two

order parameters the highest codimension 5, which should This work has been supported by DGICYT-Spain with

give rise to even more complex singularities, is not reachedGrant Nos. PB96-0887, PB96-0651-C03-01, and PB95-0071.
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APPENDIX A fact this case is related to the well-known Potts model, a

The application of the lemma of CT to EQ.0) to classify more detailed analysis of this case will be addressed in Sec.

the 3-jet can be carried out in a systematic way considering 'For the 4
the following subcasedA) if a,#0 (that is, d/y#1—X,),
then the auxiliary cubic equation of E(L0), obtained by
dehomogenizing the polynomial, is given by

-jet &,=0), the following subcases can be con-
sidered:

(D) if a4#0 (that is, 2/o#1—Xg), then we take the
auxiliary cubic equation

a a
0= —+ _2t+ —3t2+t3. (A1) 0=a1+a2t+a3t2+a4t3. (A5)

a a
A 4 Equation(A5) can have only three real roots of which two

Its discriminant is defined a$§=(tl—t2)2(t2—t3)2(t3 are equal. With the linear transformation
—t,)2, wheret;, t,, andt; are the roots of the cubic equa-

tion (Al). It can be expressed as Yl=u=—astixtagy, v=—tx+y (A6)
A2= — ap®r — 272+ 18pqr— 4+ p? 2 mg;ltl the single root and, the double root of Eq(A5),

1 i3 .
Xo %Yo 42 (1= 2%0)(1—2y0)(1-22,) J7(g)ytuv) =uv”. (A7)

T add
48a, The value for the double rod} is easily obtained from Eq.

(A2)  (A5) and its derivative with respect to the variatilsince

. . . both equations are satisfied for:
with the following definitions:;p=—as/a,, g=a,/a, and

r=—aj/a,. Notice the following subcases: _ _ _
(A,) Eq. (Al) has three equal real rootaaf=0); this _ oy Sy 1V 2X(~1+Y0) 2o
subcase is not possible becayse-0,
(A) Eqg. (A1) has three real roots but two of them are —2y, if xo=1/2,
equal(that is,Ai=0); in this subcase,3(g) and the mono-

> 2(3a,a,—a2) 2%2

mial x% are equivalent or, in mathematical ternjs(g) -1 it yo=1/2,
~x2%y (that is, the 3-jet and the monomial are equal up to a ={ 2Xo (A8)
change of coordinates which essentially implies that 1
#0), _1+§ if zg=1/2.
(A3) Eq. (A1) has three distinct real rooighat is, A2 0
>0) andj3(g)~x3—xy?, and One can further obtaity and it coincides with, only on the
(A,) Eg. (A1) has two conjugate complex roofthat is, vertices of the triangle, where a concentration vanishes.
A2<0) and thenj3(g) ~x3+xy?, Therefore, this situation, which would lead to a different sin-

(B) if a,=0 anda,#0 (that is, 3p=1—x, and X,#1  gularity with 3-jetu®, is actually outside the domain we
—Yo), then Eq.(A1) is replaced now by the auxiliary equa- consider.
tion We can write the 4-jet in the new variables as

i*(9) ¥(u,v)=uv?+cu*+cuv + cau?v?+ cuuv s+ csv?,

a a
0= —t+ 212413 (A3) (A9)
a;

S y. where the new coefficients are linear combinations of the
and its discriminant is written as b;. Only the sign of the nonzero, coefficient is needed

5 3. 20 since, according to the mentioned lemma, the 4-jet is equiva-
AS=—-40°+p°g°=K(X0,Y0)(2—3%Xo—=2Yo) (A4) lentto

with K(Xq,Y0)>0. Thg following redefinitio_ns are now used: i4(g)~x2y+sgr(c,)y*, (A10)
p=-—ay/a;,q=agz/a;;t;,t, andt; are again the new roots
of the cubic equation, EqA3). Thus we have again the provided thatc,#0. This comes from the fact that all the

following subcases: four-degree monomials of the 4-j¢A9) belong to the Jaco-
(B1) Eq. (A3) has three equal real roots. This is not pos-bian ideal ofuv? except precisely* and therefore can be
sible sincea,=a;#0, removed by a diffeomorphism. From the linear transforma-

(B,) Eg. (A3) has three real roots, two of them equal tion Eq.(A6), we have that
(A%=0); this condition implies that &+ 2y,=2 and then
j3(2g)~X2y, 0 C1= ’}/4[b1+ b2t2+ b3t§+ b4t§+ b5t£21] (All)

(B3) Eq. (A3) has three distinct real roota>0), then with y=1[a,(t,—t;)]. Therefore, the sign af, is given by

i3 3 2
2>3x%0+2yo andj*(g)~x"—xy*, and the factor inside the bracket. Substituting tgrc, = y*x, *
(Bs) Eg. (A3) has two conjugate complex root2]  and is always positive, for any of the three factors given by

<0), then 2<3x,+ 2y, andj3(g) ~x3+xy?, 3.=0, that isyo=1/2, xo=1/2 or z,=1/2. Finally,
(C) Finally we have the case whesg=a,=0 (or Xg

=yo=1/3) and we obtain that3(g) ~x3—xy?. Due to the cod( j*(g))=cod x?y +y*) =4. (A12)
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(D2) |f a4:0, alqﬁO (that iS, glozl_XO, 2X07&1 )\1X3+)\2X2y+)\3xy2+)\4y3
—Yyo) and2;=0, then only one pointxp,Yy,) needs to be 1 1
studied,xy=1/2 andy,=1/4. The corresponding auxiliary =(ax+bw)| Z=x2M + xvz2+ = 222)
cubic equation is now ( Y3 Yo T3¥ %
a, , as +(cx+dy) 1x22’2+xy252+ 1yZN) (B3)
0=t3+ 22+ —t. (A13) 2" 70 2

a ai

and the linear system of equations obtained from equating
coefficients of the same degree has solutiors, ¢, andd
if %,%0.

On the other hand, a straightforward consequence of what
we have shown above is that

The roots of this last equation atg=0 andt,= —2. With
the linear transformation
Yy l=u=x+2y,

v=2X (A14)

applied to the 4-jet we obtain that

A(Q)+ (XYY =A(3(g) +(x,y)* (B4)

j*(@)(u,v)=vu?+dyut+douy +dau?v®+dauv®

+dgv?. (A15)  So finally we can rewrite the transversality condition as
Here the sign ofls is positive and therefore the 4-jet is again
equivalent to the canonical gerrfy+y*, its codimension

(x,y)= Ex2M+x ’2+£ 272 1xzz’2+x 2
being again equal to 4. Y=\ 2 Y oY% 5% % Y%

1
+ V2N ) (XY (= yX— Y2+ Y Zg— YoX— VoY,
APPENDIX B 5Y > (Xy)* (= yX=y*+yZo—YoX—Yoy
As has been mentioned above we need to showhhsit
three transversdkimilar calculations are needed in order to
show that for the hypothes®;=0, h is four transversal
One of the main theorems about transversality establishes

—XZ—Xy+ XZo— XoX— XgY, XY+ XYo+ XgY, — X,

—Y)r- (B5)

that this property is fulfilled when

(X,Y)=A(9)+Vp+(x,y)**1, (B1)

The vector spac&/,, is given by Eq.(19) and the ideal of

Jacobi ofg by
A(g)=(Dxg(x,y),Dyg(x,y))

1 1 1
= <§x2M +xy262+§y2252+ §x3(x53+ 2, %)

1 1
+x2yzy 3+ xy?z, 3+ §y3253+ r(x,y),ixzza2

1 1
+Xy 752+ §y2N+ §x3253+ X2y zy 3+ xy?zy 3

1
+ §y3(y63+ 263)+S(X,y)> (B2

with the definitionsM = —xy2+2,2 and N=—y, ?+z, 2,

In other words, we have to find a set of parametefsifill-
ing

paX+ oy + paX?+ pay?+ psXy
=v1(—yX—Y?+YZo— YoX—YoY)
+ vo( — X2 = XY+ XZg— XX — XgY)
+ v3(Xy+XYo+XoY) + va(—X) +vs(—y)

2

1 .1 _
EXZM +Xyag 2+ EyzaO

+V6

1

1
+ v, §X2a02+xya02+§y2N}. (B6)

Again by equating coefficients of the same degree we obtain
a set of equations between the family of knownand un-
known v parameters. The corresponding system of equations
has a matrix of rank equal to 5 and the transversality condi-
tion is fulfilled.

For the four-transversal case, the procedure is entirely

and withr(x,y),s(x,y) e (x,y)* after Taylor expansions of similar. Only the following observation needs to be made.

D.g andD,g around the point (0,0) have been performed,Monomials of degree 1 and 2 are included in the vector

the first terms being ignored according to the hypothEgis  space of transversality and monomials of degree 5 and higher
In Eq. (B2), the ideal of Jacobi of contains monomials are considered in the tergx,y)°. So the equivalent to Eq.

of degree greater than 2. We are going to show that mondB6) has to take into account monomials of degree 3 and 4.

mials of degree equal to 3 belong to(j3(g)). Thus we This leads to a system of nine equations and ten unknown

have that parameters. The rank of that system is 9.
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