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Analysis of a three-component model phase diagram by catastrophe theory:
Potentials with two order parameters

J. Gaite,* J. Margalef-Roig, and S. Miret-Arte´s
Instituto de Matema´ticas y Fı́sica Fundamental, Serrano 123, 28006 Madrid, Spain

~Received 23 July 1998; revised munuscript received 9 October 1998!

In this work we classify the singularities obtained from the Gibbs potential of a lattice gas model with three
components, two order parameters, and five control parameters applying the general theorems provided by
catastrophe theory. In particular, we clearly establish the existence of Landau potentials in two variables or, in
other words, corank-2 canonical forms that are associated with thehyperbolic umbilic, D14 , its dual the
elliptic umbilic, D24 , and theparabolic umbilic D5 catastrophes. The transversality of the potential with two
order parameters is explicitly shown for each case. Thus we complete the catastrophe-theory analysis of the
three-component lattice model, initiated in a previous paper@Phys. Rev. B57, 13 527~1998!#.
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I. INTRODUCTION

The importance of phase transitions with several or
parameters is very well known in different branches
physics.2 A great amount of theoretical work has been do
in order to understand and construct accurate phase
grams. As is well known, two different approaches are u
ally employed, one more phenomenological by introduc
Landau polynomial potentials which try to describe expe
mental singular behaviors and the second one applying
tastrophe theory~CT! ~also known as singularity theory3–5!
and thus adopting a more methodological point of vie
Even in the second case there are several ways to deal
phase transitions and diagrams. Most works adopting
second point of view start with the canonical unfoldings
given and base their treatments on the effect of perturbat
leading to preserving or not the internal symmetry of t
system considered or, in other words, they focus their an
sis in the symmetry-breaking character of some phase t
sitions. The procedure we adopt here is different since
begin with a thermodynamic potential~for example, the
Gibbs potential!, assuming a mean-field approach, and
apply an algorithm or program according to the gene
mathematical theorems established by CT, in order to ext
all the topological information of the original thermodynam
ics potential. In a recent paper we have applied this CT p
gram to a three-component model phase diagram and
have found for a one order-parameter potential the high
singularity with codimension five to be thewigwamor A6
catastrophe.1

Our CT program could be very briefly stated as follow1

Let H(x,p) be a real function of state variablesx
5(x1 , . . . ,xn) and control parametersp5(p1 , . . . ,p r).
Then we must first pick a point (x0 ,p0) such thatx0 is a
degenerate critical pointof H and we consider the unfoldin
h(x,p)5H(x1x0 ,p1p0)2H(x0 ,p0) and g(x)5h(x,0)
to translatex0 to the origin of coordinates. Second, we ca
culate the determinacy and codimension ofg from thek jet
of g, j k(g), and, third, we study thek transversality ofh. If
this function isk transversal we can affirm thath and the
PRB 590163-1829/99/59~13!/8593~9!/$15.00
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canonical form of the unfolding ofg are isomorphic. Then
we can replace the originalH function by this canonical un-
folding. If not, we can state that theH function is not sus-
ceptible to being studied by CT.

CT has not been usually applied in a rigorous way
taking into account all concepts and theorems needed fo
correct implementation. The catastrophe program propo
here provides a very useful andsystematicway to explore,
examine and classify, with not very much computational
fort, singularities and general behaviors of physical syste
In particular, we emphasize the study of transversality of
actual thermodynamical potentials which guarantees
those simple forms~polynomial potentials or canonica
forms! represent indeed up to a diffeomorphism the origin
thermodynamical potential, this fundamental aspect be
many times not properly considered. Thus some Lan
~polynomial! potentials utilized to describe phase transitio
in the literature may claim phenomenological value but m
not claim to have a direct connection with the real therm
dynamical potential, which is generally nonpolynomial, u
less the CT analysis of the latter, including transversality
performed.

Following our CT program we do not need to invoke a
convention~for example, delay or Maxwell convention! in
order to classify degenerate or nondegenerate critical po
on the state variables space. Both conventions are not in
sic to CT. Only when we deal with the time evolution o
when dynamical considerations about the physical sys
are considered, could a given convention be advisable
particular, when the order of a phase transition needs to
determined a convention is necessary because the trans
occurs when an appropriate separatrix in the control par
eter space is crossed.

Here we will focus our attention on the lattice-gas mod
for a system with three components which simulates, in p
ticular, a binary fluid mixture. A wide literature has alread
been devoted to it from different points of view~Refs. 6–10,
and references therein!, restricted to the case with one ord
parameter. In fact, very few studies with these methods
be found for phase transitions with two order parameter11

This is rather surprising since the Landau potential for
8593 ©1999 The American Physical Society
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8594 PRB 59J. GAITE, J. MARGALEF-ROIG, AND S. MIRET-ARTE´ S
three-state Potts model, which is a particularly import
three-component model, has long been known to have
order parameters.12 We shall perform a complete CT study o
the case with two order parameters, which is the maxim
number for this model. The starting point will be the exa
mean-field Gibbs potential.

This work is organized as follows: In Sec. II we descri
the thermodynamical potential to be analyzed, give its ph
cal interpretation, and apply the CT program to the poten
previously introduced by considering the singularities w
corank equal to 2 and establish the elementary catastro
associated. In Sec. III, we analyze in more detail the P
model as a particular case. The last section is devoted
discussion of the previous results.

II. ANALYSIS OF THE GIBBS POTENTIAL WITHIN THE
FRAMEWORK OF CATASTROPHE THEORY

In the mean-field theory, the Gibbs potential is a functi
of the concentration of two of the three components a
depends on three thermodynamical parameters, which ca
taken as the temperature and the chemical potentials o
two components, and on three molecular parameters.
phase diagram deduced from this function is an accurate
scription of the system, except close to the~multi!critical
points, where fluctuations become important and alter
nificantly the mean-field theory predictions. For this reas
the Gibbs potential has been the basis for determining
overall phase diagram.9,10

Let us consider the reduced form of the Gibbs poten
according to Ref. 9

G~x,y,z,a,b,c!5ayz1bxz1cxy1x ln x1y ln y1z ln z,
~1!

where the parametersa,b,c are related to some molecula
interaction parameters; the variablesx,y,z are the mole frac-
tions defined byx5Nx /N,y5Ny /N, and z5Nz /N,N5Nx
1Ny1Nz being the number of total moles andNx , Ny , and
Nz the moles of each component. The following constra
among the three variables is therefore required:

x1y1z51, with 0,x,y,z,1. ~2!

This potential has a wide range of applications, covering
particular the physics of binary fluid mixtures.13,14

From the constraint Eq.~2!, we build a new functionH of
two variables such that

H~x,y,a,b,c!5ay~12x2y!1bx~12x2y!1cxy1x ln x

1y ln y1~12x2y!ln~12x2y!. ~3!

The mean-field theory prescription is then to minimize t
nonequilibrium Gibbs potential H2mxx2myy,

H̄~x,y,a,b,c,mx ,my!5ay~12x2y!1bx~12x2y!1cxy

1x ln x1y ln y1~12x2y!

3 ln~12x2y!2mxx2myy, ~4!

with respect tox and y, where mx and my are related to
differences between the chemical potentials of the th
components.9
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CT will be applied to theH̄(x,y,a,b,c,mx ,my) function
to classify the corank-2 singularities, at the generic po
(x0 ,y0) which moves on the trianglex0.0,y0.0 and 1
2x02y0.0. CT conventionally uses the origin of coord
nates as the point where singularities occur. Therefore,
shall translate the functionH̄ in order to have the singulari
ties at the origin. This translated function is written now a

h~x,y,a,b,c,mx ,my!5H̄~x1x0 ,y1y0 ,a1a0 ,b1b0 ,c

1c0 ,mx1mx,0 ,my1my,0!

2H̄~x0 ,y0 ,a0 ,b0 ,c0 ,mx,0 ,my,0!,

~5!

and the germ of the unfoldingh is

g~x,y!5h~x,y,0,0,0,0,0!. ~6!

Now according to the CT program proposed in our previo
paper1 and mentioned in the Introduction, the following ste
will be developed for our problem.

A. Condition for a degenerate critical point at the origin

The first step is to write the conditions for which th
origin of coordinates (0,0) is a degenerate critical point w
corank equal to 2 ofg. This can be done by equating all th
first and second partial derivatives ofg to zero at the point
(0,0) ~hypothesisS0)—thus the Hessian of the germg van-
ishes as well. This leads to five conditions among the v
ables and parametersx0 ,y0 ,a0 ,b0 ,c0 ,mx,0 , andmy,0 . From
that system of five equations the following relations can
extracted:

a05
1

2
~z0

211y0
21!, b05

1

2
~z0

211x0
21!,

c05
1

2
~x0

211y0
21!, ~7!

and

mx,05
1

2
~2y0z0

212x0z0
211z0x0

211y0x0
21!

1 ln x02 ln z0 ,

my,05
1

2
~2y0 z0

212x0 z0
211z0 y0

211x0 y0
21!

1 lny02 lnz0 , ~8!

with the definition z0512x02y0.0. Equations~7! give
rise to a surface with parametersx0 and y0 fulfilling the
condition for a degenerate critical point with corank 2
(0,0).

B. Classification of the germg

With the hypothesisS0 , the 3-jet ofg ~Taylor expansion
truncated beyond terms of degree 3! around the point (0,0) is
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j 3~g!5
1

6
x3~2x0

221z0
22!1

1

2
x2yz0

221
1

2
xy2z0

22

1
1

6
y3~2y0

221z0
22!, ~9!

This 3-jet can be considered now as an homogenous pol
mial of degree equal to 3 and can be rewritten as

j 3~g!5a1x31a2x2y1a3xy21a4y3, ~10!

with a15(1/6)(2x0
221z0

22), a25a35(1/2)z0
22 and a4

5(1/6)(2y0
221z0

22). We know from singularity theory tha
a general non-null homogeneous polynomial of degree
equivalent by a linear transformation to one and only one
the following germs:x32xy2, x31xy2, x2y and x3.15,16

We must remark that thesex and y are not to be identified
with the initial physical variables, though they are linea
related to them. The application of this lemma to Eq.~10! to
classify the 3-jet is given in Appendix A and here only t
final conclusions will be summarized:

~1! If (1 22x0)(122y0)(122z0)50 then j 3(g);x2y,
~2! If (1 22x0)(122y0)(122z0).0 then j 3(g);x3

1xy2,
~3! If (1 22x0) (122y0)(122z0),0 then j 3(g);x3

2xy2.
All of these three cases can be collected in a plot show

Fig. 1. In Fig. 1 we display in thex0y0z0 space the regions
for thex36xy2 germs and in Fig. 2 the separatrices betwe
regions with different codimensions in parameter space.
separatrixx051/2, say, in conjuction with the equations d
fining the instability surface~7! gives rise to the plane2a0
1b01c052, used in Fig. 2 to find the separatrix in param
eter space, which is a hyperbola branch.

The equivalence between the 3-jet and the canon
germs implies that their codimensions are equal. Thus
have that

cod„j 3~g!…5cod~x2y!5`,

FIG. 1. Regions forx32xy2 potentials~inner triangle! and for
x31xy2 potentials~three outer triangles! in x0y0z0 space.
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cod„j 3~g!…5cod~x32xy2!53,

cod„j 3~g!…5cod~x31xy2!53, ~11!

and we observe that the behavior of the codimension of
3-jet is discontinuous according to Fig. 1. Indeed, when
point (x0 ,y0) crosses the inner triangle the codimension
the 3-jet jumps to infinity. The codimension is only finit
when what we could call hypothesisS1 is fulfilled, that is,

S1[~122x0!~122y0!~122z0!Þ0. ~12!

On the contrary, ifS150, corresponding to the sides of th
inner triangle, the germg is not 3-determinate and we hav
to increase the order of its jet by one more degree to exp
4-determinacy. We have that

j 4~g!5a1x31a2x2y1a3xy21a4y31b1x41b2x3y

1b3x2y21b4xy31b5y4, ~13!

where now theb coefficients are found to be

b15~x0
231z0

23!/12, b25z0
23/3, b35z0

23/2,

b45z0
23/3, b55~y0

231z0
23!/12.

As before, in order to classify the 4-jet ofg we invoke again
a lemma of the singularity theory~see Appendix A!. In all of
the subcases examined the 4-jet is equivalent to the cano
germ x2y1y4, it is 4-determinate and its codimension
equal to 4.

C. Determinacy and codimension ofg„x,y…

Once we have shown that the 3-jet is equivalent to
canonical germsx36xy2, and the 4-jet tox2y1y4, it is clear

FIG. 2. Phase diagram showing the corank-2 instability surfa
The intersection of the plane and the surface gives one of the t
branches of the boundary between thex31xy2 andx32xy2 poten-
tials. The diagonal corresponds to the three-state Potts model.~See
text!.
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that as these germs are 3- and 4-determinate, the 3-jet
4-jet will be also 3- and 4-determinate, respectively. Th
g;x32xy2 ~for S1,0), g;x31xy2 ~for S1.0) both
with cod(g)53, and g;x2y1y4 ~for S150) but with
cod(g)54. These equivalences exist up to an unkno
change of coordinates, so that here and in the following
variablesx andy have no physical interpretation and may
regarded as dummy variables.

D. Canonical unfoldings of the germsx36xy2 and x2y1y4

It is well known from CT that$@x#,@y#,@x2#% is a basis
for the quotient vector spaceŝx,y&/D(x32xy2) and
^x,y&/D(x31xy2) and $@x#,@y#,@x2#,@y2#% for
^x,y&/D(x2y1y4). Moreover, thek transversal~for all k
.0) canonical unfolding of the canonical formx32xy2 ~el-
liptic umbilic, D24) and its dualx31xy2 ~hyperbolic um-
bilic, D14) and x2y1y4 ~parabolic umbilic, D5), are, re-
spectively,

x32xy21l1x1l2y1l3x2,

x31xy21l1x1l2y1l3x2,

and

x2y1y41l1x1l2y1l3x21l4y2.

The corresponding bifurcation diagrams are well kno
in the singularity theory17 and can be seen in any of th
standard books on this theory.4 Equations governing suc
bifurcation diagrams are

BD24
:3x22y21l112l3x50, 22xy1l250,

3x21xl31y250,

BD14
:3x21y21l112l3x50, 2xy1l250,

3x21xl32y250,

and

BD5
:2xy1l112l3x50, x214y31l212l4y50,

6y31yl416l3y22x21l3l450,

which are obtained by equating to zero the first derivati
and Hessian ofg in each case.

E. Canonical five unfolding of g

Since h has five parameters, the preceding unfoldin
have to be extended with two or one irrelevant parameter
order to apply the isomorphy theorem. Thus, for examp
for the canonical unfoldingsx36xy2, the two new unfold-
ings denoted byb1 andb2 can be written as

b1~x,y,l1 , . . . ,l5!5x32xy21l1x1l2y1l3x2

~14!

and

b2~x,y,l1 , . . . ,l5!5x31xy21l1x1l2y1l3x2

~15!
nd
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and they arek-transversal unfoldings for allk.0 of x3

2xy2 and x31xy2, respectively. Now the bifurcation set
areBb1

5BD24
3R2 andBb2

5BD14
3R2.

In both cases, we can affirm that there is a change
coordinates~a diffeomorphism! w (x0 ,y0) such thatg5(x3

2xy2)•w (x0 ,y0) and the same holds forx31xy2. Conse-
quently,

b̄1~x,y,l1 ,•••,l5!5s32st21l1s1l2t1l3s2 ~16!

and

b̄2~x,y,l1 , . . . ,l5!5s31st21l1s1l2t1l3s2, ~17!

where (s,t)5w (x0 ,y0)(x,y), is a three-tranversal unfolding o
g with five parameters. Moreover, for the bifurcation sets
have thatBb̄1

5Bb1
andBb̄2

5Bb2
. A similar reasoning can

be used for the canonical unfoldingx2y1y41l1x1l2y
1l3x21l4y2 but now we have only one irrelevant param
eter.

Finally, these canonical unfoldings ofg need to be related
to the functionh or translated Gibbs potential. This is show
explicitly in next subsection through the so-called transv
sality condition.

F. k transversality of the translated function h

Now we return to the translated Gibbs potentialh to es-
tablish its relation with the unfolding ofg studied above. The
condition for the existence of this relation is its transvers
ity. Since we will be dealing with the physical functionh its
arguments will be the original physical variables, to be d
tiguished from the dummy variables used before. The vec
space of the transversality,Vh , is defined by the first partia
derivatives ofh with respect to the five parameters accordi
to

Vh5^Dah~x,y,0,0,0,0,0!2Dah~0,0,0,0,0,0,0!,

Dbh~x,y,0,0,0,0,0!2Dbh~0,0,0,0,0,0,0!,

Dch~x,y,0,0,0,0,0!2Dch~0,0,0,0,0,0,0!,

Dmx
h~x,y,0,0,0,0,0!2Dmx

h~0,0,0,0,0,0,0!,

Dmy
h~x,y,0,0,0,0,0!2Dmy

h~0,0,0,0,0,0,0!&R , ~18!

where ^•••&R means all the linear combinations with re
coefficients.

Let us analyze the transversality of the unfoldin
h(x,y,a,b,c,mx ,my). As was mentioned in the Introduction
this study is carried out in order to show that the functionh
and the canonical unfolding of the germg are isomorphic.
The vector space of the transversality,Vh , is defined by Eq.
~18! and reads in our case

Vh5^2yx2y21yz02y0x2y0y,2x22xy1xz02x0x

2x0y,xy1xy01x0y,2x,2y&R . ~19!

Our next step is to prove thath is three or four transversal
according to each case. For this goal, we invoke one of
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main theorems onk transversality which states thath will be
k transversal when the following algebraic condition
met:15,16

^x,y&5D~g!1Vh1^x,y&k11, ~20!

which is fulfilled in our case fork53 or 4. This requiremen
is proved in Appendix B with the hypothesisS0 and S1
Þ0 or S150, respectively. We finally conclude thath is a
three- or four-transversal unfolding ofg with five param-
eters. Moreover, by using the main theorem onk transversal-
ity, and for the three-transversal case,b̄1 andb̄2 are isomor-
phic to h, that is, there are three diffeomorphisms and
perturbation of parameters depending on (x0 ,y0) for each
casesuch that

h~x,y,a,b,c,mx ,my!5H̄~x1x0 ,y1y0 ,a1a0 ,b1b0 ,c

1c0 ,mx1mx,0 ,my1my,0!

2H̄~x0 ,y0 ,a0 ,b0 ,c0 ,mx,0 ,my,0!

5s36st21l1s1l2t1l3s2

1«~x0 ,y0!~a,b,c,mx ,my!, ~21!

where the diffeomorphisms take the following expression

c~x0 ,y0!~x,y,a,b,c,mx ,my!5~u,v,l1 , . . . ,l5!,

w~x0 ,y0!~u,v !5~s,t !,

h~x0 ,y0!~a,b,c,mx ,my!5~l1 , . . . ,l5!, ~22!

with

c~x0 ,y0!~x,y,0,0,0,0,0!5~x,y,0,0,0,0,0!. ~23!

All of these diffeomorphisms preserve the origin of coor
nates. Moreover, concerning the bifurcations, we have
h (x0 ,y0)(Bh)5BD24

3R2 or h (x0 ,y0)(Bh)5BD14
3R2. Simi-

lar expressions can be written for the four-transversal ca

III. THE THREE-STATE POTTS MODEL

The natural~and oldest! generalization of the Ising mode
consists of taking a site variable which can take three equ
lent states instead of two, constituting the three-state P
model.~Similarly, one can define theq-state Potts model.! It
has complete permutation symmetry among the three st
yielding a Gibbs potential corresponding to Eq.~1! with a
5b5c, Fig. 2, leaving as the only parameter the tempe
ture T. The corank-2 instability occurs forTc51/9.0.1111
and the corresponding potential is theD24 germ. The three-
parameter unfolding Eq.~14! contains the possible perturba
tions of temperature or chemical potentials. Since in
three-state Potts model only the temperature perturbatio
allowed we must have a one-parameter unfolding. Its form
best deduced by symmetry arguments.12 We can substitute
the germ by the symmetric form

z31 z̄35x323xy2, ~24!
a

:

at

.

a-
tts

es,

-

e
is

is

where we have introduced the complex variablez5x1 iy .
The permutation symmetry is obviously generated by

discrete rotationsz→ei (p/3)z and the reflectionz→ z̄. The
temperature perturbation preserves the symmetry and
longs to the vector spacêx,y&/D„j 3(g)…. Hence, it must be

x21y25z z̄. The corresponding unfolding is

z31 z̄31lzz̄5x323xy21l~x21y2!, ~25!

wherel is a monotonic function of the temperature, at lea
in a neighborhood ofTc .

Now there arises the problem that the unfolding Eq.~25!,
being a section of the complete unfolding ofD24 , contains
potentials with one minimum and three saddle points ifl
.0 or with one maximum and three saddle points ifl,0.
These potentials are not bounded below nor have the t
minima to be expected in this model. We must recall here
local character of CT and the discussion in Ref. 1. There
remarked that the global character of these potentials
only be established by a numerical study over the en
range of the variablesx and y. Thus one finds that they in
deed have three minima, far from the point (0,0) and distr
uted symmetrically, if we keep the temperature in a neig
borhood ofTc . For a large value ofT only the minimum at
(0,0) survives. This is physically sensible, for at high te
perature only the symmetric disordered phase can rem
The temperatureTc precisely signals the point at which th
symmetric disordered phase becomes unstable and d
pears. Potentials for various situations are plotted in Fig.

Note that forT.Tc the three minima converge to (0,0)
eventually merging there. Since their depth decreases as
depth of the minimum at (0,0) increases, there must b
value ofT such that they are equal. If we adopt the Maxw
convention then we have a first-order phase transition. T
phase transition is known to occur in this model in spa
dimensiond54 and almost certainly ford>3.18 In d52 the
phase transition is definitely of second order,12 which means
that the mean-field theory potential with which we started
insufficient in low dimensions to describe accurately the r
character of the possible phase transitions.

Landau potentials for the three-state Potts model that
bounded below have appeared in the literature.19,20,12 They
are commonly derived by renormalization-group argumen
In particular, it has been shown that ford.3 the only RG
relevant term further from the cubic is the quartic symmet
term (x21y2)25(z z̄)2. It is even possible to prove with th
powerful methods of 2d conformal field theory that this
term, in addition to the cubic term, constitute a well-defin
Landau potential.12 So the potentialc(z31 z̄3)1(zz̄)2 seems
to be adequate for this model. In fact, due to the addition
the quartic term, it exhibits the same behavior as the to
nonpolynomial potential displayed in Fig. 3. In any eve
we must remark that the quartic term does not belong to
germ, as calculated before. However, it could well arise fr
a more refined Gibbs potential, namely, of the type obtain
with cluster variation methods,21 especially if symmetry ar-
guments are invoked like in Ref. 12.
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FIG. 3. Potentials for the three-state Potts model at various temperatures.
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IV. CONCLUSION

We have analyzed the possible modes of instability a
further singularities of the mean-field theory Gibbs poten
for a three-component model in the case that two order
rameters are needed for their description. Since the cas
one order parameter has been already studied in Ref. 1
study of this Gibbs potential is now complete. We ha
found that three new catastrophes take place, namely,
hyperbolic umbilic, D14 , its dual theelliptic umbilic, D24 ,
and theparabolic umbilic, D5 , catastrophes. Theparabolic
umbilic has codimension 4, which is the highest we c
reach in the case of two control parameters, unlike the c
of one control parameter studied in Ref. 1 where codim
sion five was reached. The germ and unfolding of theelliptic
umbilic catastrophe are precisely~isomorphic to! those of the
three-state Potts model, which is the model with the high
symmetry, and generally show three and even four ph
coexistence. The total potential for the models belonging
thehyperbolic umbilicclass do not have more than one loc
minimum and therefore they cannot give rise to phase co
istence. The phase structure for theparabolic umbilic is
fairly complicated and can be seen in any of the stand
books about CT.4,17 Finally, it is remarkable that with two
order parameters the highest codimension 5, which sho
give rise to even more complex singularities, is not reach
d
l
a-
of
he

he

n
se
-

st
se
o
l
x-

rd

ld
d.

We must say a few words about natural generalizatio
Instead of limiting ourselves to three components we co
well envisage the case ofq components. This would include
most models ever considered in the physics of phase tra
tions. The most symmetric case is theq-state Potts model
An essential advantage of increasingq is that mean-field
theory becomes more accurate—in fact becoming exact
space dimensiond>2 if q>4.18 A Landau potential for the
q-state Potts model withq21 order parameters is alread
known.20 Presumably, the rigorous study of the highe
corank instabilities of theq component Gibbs potentia
would produce a germ equal to the cubic term of that Land
potential, as for the three-state Potts model. The corresp
ing singularities exhibit the interesting feature of havi
modular parameters22 already forq54. There would cer-
tainly be a flock of other singularities with the same cora
and the same or higher codimension, and with lower cora
We leave to the entrepreneurial reader the exploration of
endless world of mathematical entities and their physical
plication.
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APPENDIX A

The application of the lemma of CT to Eq.~10! to classify
the 3-jet can be carried out in a systematic way conside
the following subcases:~A! if a4Þ0 ~that is, 2y0Þ12x0),
then the auxiliary cubic equation of Eq.~10!, obtained by
dehomogenizing the polynomial, is given by

05
a1

a4
1

a2

a4
t1

a3

a4
t21t3. ~A1!

Its discriminant is defined asD1
25(t12t2)2(t22t3)2 (t3

2t1)2, wheret1 , t2 , andt3 are the roots of the cubic equa
tion ~A1!. It can be expressed as

D1
2524p3r 227r 2118pqr24q31p2 q2

5
1

48a4
4

x0
24y0

24z0
24~122x0!~122y0!~122z0!

~A2!

with the following definitions:p52a3 /a4 , q5a2 /a4 and
r 52a1 /a4 . Notice the following subcases:

(A1) Eq. ~A1! has three equal real roots (D1
250); this

subcase is not possible becausey0.0,
(A2) Eq. ~A1! has three real roots but two of them a

equal~that is,D1
250); in this subcase,j 3(g) and the mono-

mial x2y are equivalent or, in mathematical terms,j 3(g)
;x2y ~that is, the 3-jet and the monomial are equal up t
change of coordinates which essentially implies thata4
Þ0),

(A3) Eq. ~A1! has three distinct real roots~that is, D1
2

.0) and j 3(g);x32xy2, and
(A4) Eq. ~A1! has two conjugate complex roots~that is,

D1
2,0) and thenj 3(g);x31xy2,
~B! if a450 anda1Þ0 ~that is, 2y0512x0 and 2x0Þ1

2y0), then Eq.~A1! is replaced now by the auxiliary equa
tion

05
a3

a1
t1

a2

a1
t21t3 ~A3!

and its discriminantD2
2 is written as

D2
2524 q31p2q25K~x0 ,y0!~223x022y0! ~A4!

with K(x0 ,y0).0. The following redefinitions are now used
p52a2 /a1 ,q5a3 /a1 ;t1 ,t2 and t3 are again the new root
of the cubic equation, Eq.~A3!. Thus we have again th
following subcases:

(B1) Eq. ~A3! has three equal real roots. This is not po
sible sincea25a3Þ0,

(B2) Eq. ~A3! has three real roots, two of them equ
(D2

250); this condition implies that 3x012y052 and then
j 3(g);x2y,

(B3) Eq. ~A3! has three distinct real roots (D2
2.0), then

2.3x012y0 and j 3(g);x32xy2, and
(B4) Eq. ~A3! has two conjugate complex roots (D2

2

,0), then 2,3x012y0 and j 3(g);x31xy2,
(C) Finally we have the case wherea45a150 ~or x0

5y051/3) and we obtain thatj 3(g);x32xy2. Due to the
g

a

-

l

fact this case is related to the well-known Potts model
more detailed analysis of this case will be addressed in S
III.

For the 4-jet (S150), the following subcases can be co
sidered:

(D1) if a4Þ0 ~that is, 2y0Þ12x0), then we take the
auxiliary cubic equation

05a11a2t1a3t21a4t3. ~A5!

Equation~A5! can have only three real roots of which tw
are equal. With the linear transformation

c21[u52a4t1x1a4y, v52t2x1y ~A6!

with t1 the single root andt2 the double root of Eq.~A5!,
then

j 3~g!c~u,v !5uv2. ~A7!

The value for the double roott2 is easily obtained from Eq
~A5! and its derivative with respect to the variablet since
both equations are satisfied fort2 :

t25
a2a329a1a4

2~3a2a42a3
2!

5
112x0~211y0!22y0

2x0
2

55
22y0 if x051/2,

21

2x0
if y051/2,

211
1

2x0
if z051/2.

~A8!

One can further obtaint1 and it coincides witht2 only on the
vertices of the triangle, where a concentration vanish
Therefore, this situation, which would lead to a different s
gularity with 3-jet u3, is actually outside the domain w
consider.

We can write the 4-jet in the new variables as

j 4~g! c~u,v !5uv21c1u41c2u3v1c3u2v21c4uv31c5v4,
~A9!

where the new coefficientsci are linear combinations of the
bi . Only the sign of the nonzeroc1 coefficient is needed
since, according to the mentioned lemma, the 4-jet is equ
lent to

j 4~g!;x2y1sgn~c1!y4, ~A10!

provided thatc1Þ0. This comes from the fact that all th
four-degree monomials of the 4-jet~A9! belong to the Jaco-
bian ideal ofuv2 except preciselyu4 and therefore can be
removed by a diffeomorphism. From the linear transform
tion Eq. ~A6!, we have that

c15g4@b11b2t21b3t2
21b4t2

31b5t2
4# ~A11!

with g51/@a4(t22t1)#. Therefore, the sign ofc1 is given by
the factor inside the bracket. Substituting fort2 ,c15g4x0

24

and is always positive, for any of the three factors given
S150, that isy051/2, x051/2 or z051/2. Finally,

cod„ j 4~g!…5cod~x2y1y4!54. ~A12!
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(D2) if a450, a1Þ0 ~that is, 2y0512x0 , 2x0Þ1
2y0) and S150, then only one point (x0 ,y0) needs to be
studied,x051/2 andy051/4. The corresponding auxiliar
cubic equation is now

05t31
a2

a1
t21

a3

a1
t. ~A13!

The roots of this last equation aret150 and t2522. With
the linear transformation

c21[u5x12y, v52x ~A14!

applied to the 4-jet we obtain that

j 4~g!c~u,v !5vu21d1u41d2u3v1d3u2v21d4uv3

1d5v4. ~A15!

Here the sign ofd5 is positive and therefore the 4-jet is aga
equivalent to the canonical germx2y1y4, its codimension
being again equal to 4.

APPENDIX B

As has been mentioned above we need to show thath is
three transversal~similar calculations are needed in order
show that for the hypothesisS150, h is four transversal!.
One of the main theorems about transversality establis
that this property is fulfilled when

^x,y&5D~g!1Vh1^x,y&311. ~B1!

The vector spaceVh is given by Eq.~19! and the ideal of
Jacobi ofg by

D~g!5^Dxg~x,y!,Dyg~x,y!&

5 K 1

2
x2M1xyz0

221
1

2
y2z0

221
1

3
x3~x0

231z0
23!

1x2yz0
231xy2z0

231
1

3
y3z0

231r ~x,y!,
1

2
x2z0

22

1xy z0
221

1

2
y2N1

1

3
x3z0

231x2yz0
231xy2z0

23

1
1

3
y3~y0

231z0
23!1s~x,y!L ~B2!

with the definitionsM52x0
221z0

22 and N52y0
221z0

22 ,
and with r (x,y),s(x,y)P^x,y&4 after Taylor expansions o
Dxg and Dyg around the point (0,0) have been performe
the first terms being ignored according to the hypothesisS0 .

In Eq. ~B2!, the ideal of Jacobi ofg contains monomials
of degree greater than 2. We are going to show that mo
mials of degree equal to 3 belong toD„ j 3(g)…. Thus we
have that
es

,

o-

l1x31l2x2y1l3xy21l4y3

5~ax1by!S 1

2
x2M1xyz0

221
1

2
y2z0

22D
1~cx1dy!S 1

2
x2z0

221xyz0
221

1

2
y2ND ~B3!

and the linear system of equations obtained from equa
coefficients of the same degree has solutions ina,b,c, andd
if S1Þ0.

On the other hand, a straightforward consequence of w
we have shown above is that

D~g!1^x,y&45D„ j 3~g!…1^x,y&4. ~B4!

So finally we can rewrite the transversality condition as

^x,y&5 K 1

2
x2M1xyz0

221
1

2
y2z0

22 ,
1

2
x2z0

221xyz0
22

1
1

2
y2NL 1^x,y&41^2yx2y21yz02y0x2y0y,

2x22xy1xz02x0x2x0y,xy1xy01x0y,2x,

2y&R . ~B5!

In other words, we have to find a set of parametersn fulfill-
ing

m1x1m2y1m3x21m4y21m5xy

5n1~2yx2y21yz02y0x2y0y!

1n2~2x22xy1xz02x0x2x0y!

1n3~xy1xy01x0y!1n4~2x!1n5~2y!

1n6F1

2
x2M1xya0

221
1

2
y2a0

22G
1n7F1

2
x2a0

221xya0
221

1

2
y2NG . ~B6!

Again by equating coefficients of the same degree we ob
a set of equations between the family of knownm and un-
knownn parameters. The corresponding system of equati
has a matrix of rank equal to 5 and the transversality con
tion is fulfilled.

For the four-transversal case, the procedure is enti
similar. Only the following observation needs to be mad
Monomials of degree 1 and 2 are included in the vec
space of transversality and monomials of degree 5 and hig
are considered in the term̂x,y&5. So the equivalent to Eq
~B6! has to take into account monomials of degree 3 and
This leads to a system of nine equations and ten unkno
parameters. The rank of that system is 9.
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