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A close-coupling infinite order sudden approximation (IOSA) to study 
vibrational predissociation of the Hel2 van der Waals molecule 

G. Delgado-Barrio, P. Mareca, P. Villarreal, A. M. Cortina, and S. Miret-Artes 
Instituto de Estructura de la Materia, C S. L C, Serrano, 119, 28006 Madrid, Spain 

(Received 3 June 1985; accepted 8 January 1986) 

We apply in this paper a model related to the "infinite order sudden approximation" to treat the 
vibrational predissociation of the Hel2 van der Waals molecule. For each configuration, the 
stretching motions within the complex are exactly solved in the close-coupling formalism. The 
bending motion is then considered in an approximate way and averaged predissociation rates are 
obtained. Our results are compared with the experiment and also with previous models. 

I. INTRODUCTION 

A great deal of theoretical effort is being addressed to 
the elucidation of the mechanism of energy transfer which 
occurs in vibrational predissociation (VP) of polyatomic 
molecules. In particular, it is well known the role played by 
van der Waals (VDW) molecules in this context. Hel2 (B) is 
one of the most carefully studied systems. This complex pro­
vides an excellent example of VP consisting in the flow of 
vibrational energy stored in the 12 molecule to the VDW 
bond leading to its fragmentation. 

Several theoretical models have been used in order to 
explain the experimental l behavior of the VP rates as a func­
tion of the vibrational excitation of the diatomic subunit: (a) 
Close-coupling calculations in the collinear2 and T-shaped3 

configurations; (b) approximate three-dimensional (3D) 
quantal calculations using a distorted-wave treatment for 
vibration and sudden approach for rotational motions4

; (c) 
quasiclassical trajectory calculations5

; and (d) A full photo­
dissociation process calculation6 in the framework of the in­
finite order sudden approximation (I OSA) by using the arti­
ficial channel method. 7 

In the He-12 photodissociation process, we can recog­
nize three steps: (1) complex formation, where the 12 sub­
unit is in its ground electronic and vibrational state; (2) opti­
cal excitation to a precise vibrational level v in the B excited 
state of 12; and (3) predissociation, that results in He and 12 
fragments, where 12 is in a vibrational level v' < v of the B 
state. 

Traditionally, because the excitation is much faster than 
the dissociation, the process was assumed2-5 to be almost 
independent of step (2). Hence, the initial situation was con­
sidered to correspond to a quasibound level of the He-12 
(B,v) complex. Subsequently, the couplings of this level 
with different He + 12 (B,v' < v) continua give rise to disso­
ciation of the molecule. 

On the other hand, Shapiro et al.6 have concluded that 
the separation of steps (2) and (3) cannot be done within the 
IOSA due to effects arising from the interference between 
direct photodissociation and predissociation processes. 
Hence, the calculations of these authors involve both elec­
tronic states, He-12(X) and He-12(B) , together with a tran­
sition dipole operator in the IOSA framework. Shapiro et 
al.6 claim that a predissociation linewidth r, calculated in 
step (3), depending on the atom-diatom orientation f), is 

meaningless because the librational time is even smaller than 
the lifetime of the complex. 

Our point of view is, however, that in a time-indepen­
dent treatment, time only becomes meaningful as associated 
to energy uncertainties. Therefore, provided that energieS 
associated to rotational motions are much lower than vibra­
tional ones within the complex, an adiabatic angular approx­
imation is justified. After that, the variation in f) is taken into 
account by using a proper distribution of this quantity. 

As regards the relative importance of direct photodisso­
ciation, it strongly depends on the potential surfaces as­
sumed. In fact, the surface corresponding to B state in Ref. 6 
is quite different of that used in Refs. 2-4. 

Based on these reasons, and in line with previous 
works,2-4 we assume the independency ofVP process on the 
excitation step. We then extend collinear2 and T-shaped3 

calculations to a collection of relative atom-diatom orienta­
tions. The method consists in exactly solving stretching mo­
tions, at each f) fixed orientation, by means of close-coupling 
(CC) calculations. The angular-dependent energy positions 
of the corresponding scattering resonances will be consid­
ered as the effective bending potentials. Taking into account 
the rotational terms neglected in f)-fixed CC calculations, 
triatomic energy levels and angular wave functions are ob­
tained. These functions are then used to carry out an average 
of f)-dependent widths, yielding final VP rates. This treat­
ment ofVP and the results obtained are shown and discussed 
in following sections. 

II. THEORY 

We are interested in the quantum mechanical equation 
of motion for the X ... BC system. The Hamiltonian for 
nuclear motion, after separation of the center of mass of the 
whole system, may be written as4

(a) 

H=~(- a2 

+_1_2 ) 
2J.LX,BC aR ~,BC R ~,BC 

+-----+-If ( a2 
j2 ) 

2pBC aR ~C R ~C 

+ ~Bc(RBC) + V(RX,BC,RBC,f), (1) 

where RX,BC is the distance between X and the center of mass 
ofBC, RBC is the internuclear distance for BC, while f) is the 
angle between the two vectors R BC and RX,BC' The 
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f.l-X,BC and f.l-BC factors are the corresponding reduced 
masses. Finally, 1 and j are angular momentum operators 
associated with RX,BC and R BC ' respectively. UBC (RBC ) is 
the intramolecular potential interaction for the "free" di­
atomic molecule BC while V is the van der Waals interac­
tion. We thus have V--+O as RX,BC-'OO. 

We consider here the HeI2 complex where the process of 
VP involves mainly the coupling between the vibration of the 
diatomic subunit and the VDW stretching. A model related 
to the IOSA has been applied to treat rotational motions. It 
is assumed in this model that vibrational motions are much 
faster than rotational ones. For this system, it is particularly 
acceptable because the vibrational frequencies for the 12 and 
He-I2 stretch motions are -125 and -6 em-I, respective­
ly, while the rotational constants associated to the 12 and the 
complex are -0.037 and -0.27 em-I, respectively.3(a) 
Hence, the rotational motion can be considered as adiabatic 
and, therefore, we can take 0, the bending angle, as a param­
eter. 

With all this in mind, we write the total wave function as 
A A 

<I> (RX,BC,RBC ) = 'I'(RX,BC.RBC;O)X(Rx,BC,RBC) (2) 
A A 

RX,BC and R BC being unit vectors in the RX,BC and R BC di-
rections, respectively, and apply the adiabatic approxima­
tion 

F<I>~'I'12X' 

j2<1>~'I'j2X , 
(3) 

i.e., we neglect the effect of the angular momentum opera­
tors on 'I' (RX,BC,RBC;O) function. Then '1', describing the 
triatomic motion depending on 0 as a parameter, is a solu­
tion of the following equation: 

He'l'(Rx,BC,RBC;O) =EI{I(RX,BC.RBC;O), (4) 

where 

2pX,BC aR ~,BC 2pBC aR ~c 

+ OUBc(RBC ) + V(RX,BC,RBC;O). (5) 

We expand the wave function as 

(6) 

where tP. (RBC ) are vibrational eigenfunctions for the free 
BC molecule which will be represented by eigenfunctions of 
the Morse potential. After substitution of expansion (6) into 
the Schrodinger equation (4), we obtain the set of close­
coupling equations 

[
If a2 

] -~ OR2 + OU.,.(RX,BC) + (E. -E) 
"""'X,BC X,BC 

Xtp.E(Rx,BC;O) = - L OU.,.' (RX,BC)tp.E(Rx,BC;O), (7) 
.'". 

where 

OU .,If (RX,BC ) 

= f dRBC tP:(RBC ) V(RX,BC.RBC;O)tP., (RBC ) (8) 

and E. is the energy of the free BC molecule in the vibrational 

state v. The coupled differential equations may be solved by 
some of the currently available numerical integration meth­
ods [see Ref. 3(a) l. 

In order to avoid time consuming, numerical evaluation 
of integrals was performed. We have expanded the van der 
Waals potential V(RXBC,RBC;O) in a Taylor series up to 
second term around th~ equilibrium position RBC ofthe BC 
diatomic molecule. The integrals (8) can be written as 

(tP. I V(RX,BCORBC;O) ItP., )~(tP. I V(RX,BC,RBC;O) ItP.,) 

+ o'RoV 
1_ (tP. I (RBC -RBC) ItP., ) 

BC Roc 

+.l a2~ I (tP.I(RBC -RBC )2ItP.,), (9) 
2 aR BC Roc 

where the integrals (tP. I (RBC -RBc>lltP.,) with 1= 1,2, 
were numerically calculated. 8 

Now, by solving the close-coupling equations at each 0 
value, positions of resonances sustained by the v channel, E.n 
(0) and rates for VP, r.n (0), were obtained by fitting a 
Lorentzian function of the energy to the probability 
IS(.-2)_(.-I) (E)1 2 as in a previous work 3(a) and also by 
using a more accurate procedure.3(b) These quantities are 
indexed by means of the two quantum numbers v and n asso­
ciated with the R BC and RX,BC stretching motions, respec­
tively. 

We tum now to calculate energies of triatomic predisso­
ciating levels together with their corresponding widths, that 
is reached by evaluating the angular part of the wave func­
tion for discrete states. 

As in previous works,4 a total angular momentumJ = 0 
is considered, and this quantum number is omitted by sim­
plicity. 

Assuming the energy positions of the resonances, 
E.n (0), to be effective potentials for the bending motion and 
taking into account the rotational terms, the angular part of 
the wave function (2), X, is the solution to the following 
equation: 

[ 
1f12 + Ifj2 + E (0)] 

".. R 2 2 R 2 .n 
"""'X,BC X,BC i-LBC X,BC 

A A 

XX.nrn (RX,BC,RBc ) 
A A 

= E.nmX.nm (RX,BC,RBC )' (10) 

where m represents the quantum number associated to the 
bending motion. In Eq. (10) we have used the fact that dis­
crete wave functions are mainly sensitive to the details of the 
potential surface in the region of the well. Hence, we have 
replaced Rx BC and R BC in the rotational terms by reasona­
ble equilibri~ distances RX,BC and R Be, respectively. Once 
the X function is expanded in terms of an appropriate rota­
tional basis set, the corresponding coefficients together with 
the triatomic levels E.nrn are then obtained by simple diagon­
alization ofEq. (10). 

A convenient rotational basis set is provided by the 
"body fixed" representation.9 All the necessary matrix ele­
ments in this basis are analytically known9 if the E.n (0) 
potential is expanded in terms of Legendre polynomials. 10 

For a triatomic level specified by the three quantum 
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numbers v, n, and m, we may obtain the associated VP rate, 
by using the corresponding X angular function, as an average 
given by 

rvnm = <Xvnm/rvn(8)IXvnm)· (11) 

We note this equation is also reached starting with the 
"Golden Rule" expression previously used4 if the discrete­
continuum couplings appearing in Eq. (23) of Ref. 4(a) are 
substituted by effective couplings Vvn (8) such as 

1T1 Vvn (8) 12 = rvn (8), (12) 

so that, the difference between the treatment of Ref. 4 and 
that developed here arises from using in the former adiabatic 
approximation to describe the diatomic vibrational motion. 
As a consequence, all couplings except the discrete contin­
uum are neglected. On the contrary, CC treatment includes 
every kind of couplings yielding different effective poten­
tials, and hence X angular functions, together with different 
r( 8) values. 

III. RESULTS 
As it was already mentioned, a total angular momentum 

J = 0 has been considered along all the calculations. The 
potential was the same previously used.4

(b) Seven 8 values 
equally spaced over the range [0, 1T /2] were taken, while the 
vibrational quantum number of 12, v, was varied from 20 up 
to 35. For each 8 value, we have focused our attention on 
that metastable level labeled by the quantum numbers v and 
n = 0, corresponding to the first resonance found in the CC 
calculation. In order to get convergency, two closed chan­
nels (v,v + I) together with three open ones 
(v - 1, ... ,v - 3) were included. 

In order to test the expansion of the potential (9) we 
have performed two calculations for 8 = 1T/2 (T-shaped) 
and v = 20. When we consider the expansion up to linear 
term we get r = 0.071 cm- I while a value of r = 0.070 
cm -I is obtained when the quadratic term is also included. 
Therefore, the rates are almost insensitive to an expansion 
larger than the linear one. 

Linewidths for VP at v = 20 are plotted vs the 8 bending 
angle in Fig. 1. We show two kinds of calculations: (a) in­
cluding diagonal terms <t/Jv 1 (R BC - RBC ) It/Jv) (WD) and 
(b) without them (ND). The last approximation becomes 
exact when an harmonic oscillator describes the diatomic 
fragment and has largely been used in the past. In spite of 
calculation, (a) involves a better approximation, and the 
results obtained through calculation (b) are expected to be 
more plausible since the parameters describing the VDW 
interaction were fitted by means of this kind of approach in a 
T-shaped configuration3

(a) in order to get the experimental 
rates. Each one of these calculations yields different beha­
viors: while the first one gives rise to a maximum at 8 = 1T/2, 
the largest value excluding the diagonal term is reached at 
the collinear configuration. In any case, the linewidths are 
very sensitive to the angle variation, but a minimum about 
8 = 1T/3 is found, whatever the approach used. This is in 
agre~ment with the analytical discrete-continuum couplings 
obtamed through the approximate 3D quantal model.4 In 
fact, those couplings-as functions of 8-went from positive 
to negative values about 8 = 1T/3. 

.08,------------------------------
r(el, V=20.(cm-') 

.06 

.02 

rWD -...... , , 

o 

'\ 
'\ , , 

\ 

n/6 

'\ 
'\ 

'\ 
\: 

n/3 

FIG. 1. Linewidths for VP at v = 20-as a function of the bending angle, 
8--using the two kinds of calculations: r WD (dashed line) and r ND (full 
line). See the text. 

In contrast of the different results obtained through WD 
and ND calculations concerned with widths, both ap­
proaches lead to very close resonance energies. In Fig. 2 we 
plot the energies Ev = 20,n = 0 vs 8, i.e., the effective bending 
potential corresponding to the ground VDW stretching lev­
el. Also in this figure we represent triatomic energies c20,O,m' 

with m = 0,1,2, lying below zero. They were obtained by 
solving the bending equation (10). The angular basis set 
used to carry out the corresponding diagonalization includ­
ed rotational diatomic states up to j = 12. Those triatomic 
levels are very close to the ones previously reported.4

(a) In 
particular, for the ground state £2000 , we obtain a value of 

1 ' , , 
- 20.20 cm - . If we compare this result with that reached 

-10 

-15 

-20 

-25L 
_____ ~ ____ ~ ______ ~ ____ _LI~e~ 

o Tf/4 n/2 3n:t4 n' 

FIG. 2. Effective potential for the bending motion of HeI2 (B) molecule for 
v = 20 and n = O. The horizontal lines represent the triatomic energy levels 
E2o.o.m (m = 0,1,2). See the text. 
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TABLE I. VP linewidths calculated (expressed in cm- I) for v = 20,23, 
and 26 obtained through the ND approach at collinear (coli), perpendicu­
lar (T-shaped) configurations and the averaged 3D values. Also, it is in­
cluded the corresponding values of Ref. 4(a). 

Reference 4(a) Our results 

v Coli T-shaped 3D Coli T-shaped 3D 

20 0.058 0.032 0.011 0.080 0.046 0.029 
23 0.077 0.041 0.014 0.102 0.063 0.039 
26 0.100 0.052 0.019 0.133 0.085 0.052 

by means of a calculation solving exactly the RX,BC and () 
motions, RBc being fixed, a difference of 0.43 cm -1 is found. 
Moreover, using the angular function associated, X 20,0,0' we 
find a total contribution of rotational terms in this state of 
1.55 cm- I

• Therefore, these results provide us reliability in 
the angular adiabatic approximation applied in this work. 
However, this approach is expected to be poorer and poorer 
as more excited bending levels are considered. 

For the ground VDW level n = m = 0 and v = 20,23,26 
we report in Table I tridimensional VP widths obtained by 
using Eq. (11) within the ND approach. Also in this table 
we show collinear and perpendicular widths, together with 
the corresponding values of Ref. 4(a). In both cases, what­
ever be v, the rates decrease following the sequence: collin­
ear, T-shaped, and 3D. This behavior is not surprising with­
in our treatment since a minimum of the rates near () = 1T/3 
is ever found. So that, an additional degree of freedom sup­
plies more stability to the complex because the 3D lifetimes 
are longer than T-shaped or collinear values. Also, from this 
table, we notice the present 3D rates are higher, by a factor 
- 2.7, than the previous OneS,4(a) being closer to the experi­
mental data. I (a) Hence, we may stress the importance of 
treating these kinds of problems using CC calculations com­
pared with traditional Golden Rule approaches. In fact, al­
though very close energetic results are found in both types of 
calculations, a big difference between the associated rates are 
obtained. 

Finally, linewidths for VP are displayed vs the initial 
diatomic vibrational quantum number, v, in Fig. 3. In this 
figure we show the theoretical values, within the already 
mentioned approaches WD and ND averaged over the () 
angle, together with the experimental results. I (a) As can be 
seen, both VP rates are in qualitative agreement with the 
experiment since they also follow an almost quadratic law as 
a function of the initial excitation. However, due to the po­
tential parameters used in this work, the presumably better 
approximation gives poorer results, as it was already pointed 
out. Thus, in order to get a real agreement with the experi­
ment, we must improve the corresponding parameters. 

As a word of conclusion, the procedure presented in this 
work constitutes a very efficient alternative way to describe 
the dynamics of VDW complexes formed by a light atom 
and a heavy diatomic molecule. This encourages us to extend 
this type of treatment to more complicated systems in which 

.40 

.30 

.20 

.10 

o 

I , , 
I , 

I 
I 

PWD / 

I 
I 

I 
/ 

/ 

'" '" '" rexp •• ' 

,,'" '" .. -......... . 
" .' ,."" ......... . 

- -.':.. •••• -,. PHD 
!"" ... ~ .. - ..... -

v 
20 23 26 29 32 35 

FlO. 3. Vibrational predissociation linewidths for the HeI2(B) molecule as 
a function of the vibrational quantum number of 12 subunit v. The curves 
labeled r wo (dashed line) and r NO (full line) are our results. The curve 
labeled rexp (dotted line) is the experimental one of Ref. l(a). 

one motion might be considered as much slower than the 
other ones. 
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