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Mesoscopic model for free-energy-landscape analysis of DNA sequences
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A mesoscopic model which allows us to identify and quantify the strength of binding sites in DNA sequences
is proposed. The model is based on the Peyrard-Bishop-Dauxois model for the DNA chain coupled to a Brownian
particle which explores the sequence interacting more importantly with open base pairs of the DNA chain. We
apply the model to promoter sequences of different organisms. The free energy landscape obtained for these
promoters shows a complex structure that is strongly connected to their biological behavior. The analysis method
used is able to quantify free energy differences of sites within genome sequences.
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I. INTRODUCTION

The study of biomolecules at a mesoscopic level tries
to identify the main degrees of freedom of the system
and understand its behavior in terms of the dynamical and
statistical-mechanics properties of the model. At this level,
the concept of a free-energy landscape (FEL) represents a
paradigm for the comprehension of several biological complex
problems such as protein folding, protein structure, and
biomolecular interaction [1]. A FEL gives the change in the
free energy of a system when the different degrees of freedom
change. The description given by the topology of the FEL
permits to connect structure, dynamics, and thermodynamics
in many different systems ranging from atomic clusters to
biomolecules or soft matter systems [2].

Here we address our attention to the characterization of
the FEL of DNA sequences and, in particular, those sites
with regulatory and transcriptional relevance. Recently, great
attention has been devoted to the mechanism whereby proteins
bind to specific sites on DNA [3]. The quantification, grounded
in a physical basis, of the strength of these binding sites is an
open problem. In this paper, we propose a model which allows
us to calculate free-energy differences between specific and
nonspecific binding sites. Even more, we are able to build,
from the trajectories of the model, a representation of the
free-energy landscape.

The model is inspired in the protein search of the binding
sites in a DNA chain. This search is a combination of
three-dimensional (3D) jumps between separated regions of
DNA and one-dimensional (1D) diffusion along the chain. It
has been stated that most of the search time is spent in the
1D diffusion process since the time jumps in three dimensions
is negligible [4–6]. Thus, the restriction to a 1D search is a
good starting point for our model. On the other hand, it has
also been conjectured that the dynamics of the DNA chain
plays an important role in the recognition of binding sites by
the regulatory factors or the transcription protein [7,8]. Thus,
transcription processes, for instance, would be induced by the
binding of RNA polymerase to openings (bubbles) in the DNA
chain. This idea is supported by computational approaches
to the DNA dynamics [9], and experimental evidences [10].

Our model follows this idea and considers the interaction
of a test particle, which explores the DNA chain, coupled
to the bubbles. In order to be physically and biologically
relevant, such a description should provide useful qualitative
and quantitative information about the process. A similar
strategy has been used to characterize complex networks and
identify regions of special relevance (communities). In such
an approach, a “fictitious” Brownian particle goes over the
graph [11] and its dynamics reveals “thermodynamics” and
structural quantities of the topology [12].

In this paper, we propose a mesoscopic model for DNA-
particle interaction. In our picture, the test particle undergoes
a 1D Brownian motion in interaction with a classical field,
the DNA chain itself, whose dynamics is also affected by
the presence of the particle. The test particle interacts more
strongly with open base pairs of the DNA chain. In this way
“softer” regions of the DNA sequence are more likely to be
visited by the particle, which will help also in stabilizing the
bubbles. This interaction is not sequence dependent, as the
DNA base-pair dynamics already depends on the sequence.
Thus, this model could also represent the interaction of a real
protein as RNA polymerase, with the DNA bubbles.

Particle and chain are described at the same level of
complexity. We use the Peyrard-Bishop-Dauxois (PBD)
[13,14] model to perform the dynamics of the chain.
This model was proposed initially for the study of DNA
thermal denaturation and incorporates the formation and
dynamics of bubbles in a natural way. The PBD model
can take into account the sequence information through its
parameters.

Our model incorporates three basic ingredients of the
physics of the system: DNA sequence, bubble dynam-
ics, and 1D particle diffusion. The analysis of the DNA-
particle complex allows us not only to identify possible
binding sites but also to describe the whole structure of
the free-energy landscape and determine free-energy differ-
ences between different representative states. We show the
validity and usefulness of our approach by studying the
FEL of three promoter sequences. In each case, the FEL
topology gives insight into the biological behavior of the
system.
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II. MODEL

We describe the DNA chain by a modified Peyrard-Bishop-
Dauxois model [13–15]. There, the complexity of the DNA
molecule is reduced to the study of the dynamics of N

base pairs described by the variables yn defining the distance

between the bases. In this framework HDNA = ∑N
n=1[ p2

n

2m
+

V (yn) + W (yn,yn−1)]. In our model

V (y) = D(e−αy − 1)2 + Ge−(y−y0)2/b, (1)

where the first term accounts for the hydrogen bond interaction
and the second one for interactions with the solvent [15,16].
It was shown in [15] that the inclusion of this barrier modifies
drastically the duration and stability of the bubbles.

The potential W (yn,yn−1) describes the stacking interaction
between the base pairs along the DNA strand,

W (yn,yn−1) = 1
2K(1 + ρe−δ(yn+yn−1))(yn − yn−1)2. (2)

In order to study different DNA sequences, the PBD model
includes sequence-dependent Morse parameters: Dn, αn.
Regarding the DNA chain, we use the set of parameters [17]
considered in [15].

The particle is represented by a Brownian particle (see
Fig. 1) moving in a one-dimensional space with coordinate Xp

and interacting with the DNA chain through a phenomenolog-
ical potential which depends on Xp and the set of coordinates
{yi}Ni=1: HP = p2

p/2mp + Vint(Xp,{yi}) with

Vint(Xp,{yi}) = − B√
πσ 2

∑

i

tanh(γyi)e
−(Xp−ia)2/σ 2

, (3)

where B sets the interaction amplitude, γ the range of
interaction with the base separation, and σ the spatial range
of interaction on the DNA chain. The functional form for the
interaction has been chosen to be linear at low yi and to saturate
at large yi in order to avoid that the chain opens indefinitely.
Note that with this term the particle is trying to open the chain
in a length range of σ and get self-trapped. Although possible,
no sequence dependence is included in this term since we are
interested in giving a general picture of the FEL.

We still have to fix the parameters for this interaction term.
For the particle damping and mass, we take ηp = 1014 s−1 and
mP = 7000 Da. These values are of the order of magnitude
of proteins which bind DNA [18,19]. The intensity of the
interaction chosen is B = 0.52 eV. This value provides local
interactions of the order of the Morse potential dissociation
energy at each base pair. The parameter γ = 0.8 Å−1 saturates

FIG. 1. (Color online) Schematic illustration of the DNA-particle
interaction model. The unidimensional chain (solid circles) is
represented by the base pair opening coordinate (yi) while the probe
particle (shaded ellipse) is a diffusing particle along the DNA chain
(Xp).

the interaction at y = 1.25 Å, a typical value for open base
pairs. We take a = 1 for the longitudinal separation between
base pairs, in arbitrary units, and consider σ = 3. This provides
an interaction range of around 5 or 6 base pairs (bp). It is
interesting to note that this value has been chosen in order to
observe states with bubbles of 10–20 bp, which is an adequate
width for the processes we take into account here [20].

Once we have fixed the model parameters, we derive the
Langevin equations for both the chain bases and the particle.
For the chain, we get

m
∂2yn

∂t2
+ mη

∂yn

∂t
= −∂ [W (yn,yn+1 + W (yn−1,ym)]

∂yn

− ∂V

∂yn

− ∂Vint

∂yn

+ ξn(t), (4)

where η stands for the damping and ξn for the thermal noise,
so 〈ξn(t)〉 = 0 and 〈ξn(t)ξk(t ′)〉 = 2mηkBT δnkδ(t − t ′) hold.

The Langevin equation for the particle is

mp

∂2Xp

∂t2
+ mpηp

∂Xp

∂t
= −∂Vint

∂Xp

+ ξp(t), (5)

where ηp stands for the particle damping and ξp for the thermal
noise. The fluctuation-dissipation relation reads as 〈ξp(t)〉 = 0
and 〈ξp(t)ξp(t ′)〉 = 2mpηpkBT δ(t − t ′).

The equations were numerically integrated using the
stochastic Runge-Kutta algorithm [21]. The integration of
the Langevin equations of motion provides trajectories of
the particle and the DNA chain. Each DNA sequence was
simulated in five different realizations for 40 μs, using 10-fs
time steps and a 1-μs preheating time. Since it has been
reported that 1D diffusion periods cover a time of the order of
milliseconds [18,19], the simulation time used is reasonable
for the problem considered here. The simulation temperature
is T = 290 K and the boundary conditions for the protein are
periodic, while for the chain we consider the hard boundary

FIG. 2. (Color online) Trajectory of the particle shown in red line
(light gray) with the DNA chain for a collagen sequence (see results
section). Black points stands for open bp (yAT > 1.0 Å or yCG >

1.5 Å) and white for closed ones.
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conditions discussed in [15]. An example of such a trajectory
is given in Fig. 2. It is observed that the particle moves in a
“sea” of open bubbles which clearly shows the soft domains of
the genome structure. The particle eventually jumps between
these domains, opening large stable bubbles. As seen in the
figure the dynamics of the bases is strongly affected by the
presence of the particle.

III. ANALYSIS

To extract useful information of such trajectories, and due to
the large dimensionality of the system, we apply the principal
component analysis (PCA) [22] to the chain trajectory. It has
been proved [15] that the first few eigenvectors unveil the
softest regions of the DNA chain and hence the possible
binding sites for our particle. Even more, PCA reduces the
large number of degrees of freedom of the system to just a few
by projecting the coordinates of the system into the first few
eigenspaces (reduced trajectories). For each of the sequences
considered, we restrict ourselves to the first five eigenspaces.
This subspace accounts for 75% of the total fluctuations of the
chain dynamics.

To obtain the FEL properties of the system we make use of
the map of trajectories to a conformational Markov network
(CMN) [17,20]. The CMN has been proven to be a useful
representation of large stochastic trajectories [23–25]. This
coarse-grained picture is usually constructed by discretizing
the conformational space explored by the dynamical system
and considering the hops between the different configurations
as dictated by the molecular dynamics (MD) simulation. In this
way, the nodes of a CMN are the subsets of configurations de-
fined by the conformational space discretization, and the links
between nodes account for the observed transitions between
them. The information of the stochastic trajectory allows us
to assign probabilities for the occupation of a node (Pi) and
for the transitions between two different configurations (Pij ).
Defined as above, a CMN is thus a weighted and directed
graph. It should be stressed that the information contained
in the CMN is much richer that one given by equilibrium
statistical mechanics since it includes the dynamics of the
system encoded in the probability transitions, Pij .

In our case, we start from the reduced trajectory for the DNA
(obtained using five principal components) and the trajectory
of the test particle. We discretize the total coordinate space
in 20 bins of equal volume for the reduced trajectory and N

bins (the DNA base pairs) for the particle. This constitutes
the microstate space of the CMN, each node with occupancy
probability Pi obtained from the reduced trajectory. Once the
CMN has been built, we split it into basins of attraction, i.e.,
regions in which the probability fluxes (Pij ) converge to a
common state (attractor) of the network. This task is usually
hard, since algorithms scale as a power law of the system size.
In this case we have applied the stochastic steepest descent
algorithm developed in [26], which scales as N log N . In this
decomposition, a basin corresponds to a coarse-grained state
(of connected nodes) of the CMN. In next section, we represent
each basin by its attracting node.

Once these basins have been defined we can represent
the FEL by a hierarchical tree diagram (dendrogram) [26],
built according to the weights and links among the basins.

This representation is similar to the “disconnectivity
graph” scheme used in other contexts [1,2,27]. First, an
“adimensional free energy” is assigned to each node i given
by Fi/kT = log(Pw) − log(Pi), where w represents the
weightiest node. Using this magnitude as a control parameter,
we slowly increase it step by step from its zero initial value.
At each step of this process, we obtain a network composed of
those nodes with free energy lower than the current threshold
value. As the free-energy threshold increases, new nodes
emerge together with their links. These new nodes may be
attached to any of the nodes already present in the network
or they can emerge as a disconnected component. At a certain
value of F/kT , some components of the network become
connected by the links of a new node incorporated at this
step. Initially we have a set of disconnected vertical lines
(corresponding to basins) which become linked once the
control parameter has overcome the barriers between them,
i.e., when the free energy of the saddle nodes is reached. Then
we draw a horizontal line linking these two basins. Obviously,
for large threshold all the network is connected. We can plot
this process as a “tree diagram” or dendrogram.

Using this representation we can understand qualitatively
and quantitatively the hierarchical organization of the basins
and the barriers among them and figure out the behavior of
different sequences.

This method could be applied to a DNA chain without a
particle. However, the inclusion of the particle is essential
to get the FEL of the system. An analysis of the DNA alone
(PBD model) lets us determine the opening probabilities
and average position of the chain base pairs, and unveils the
softer regions that can indeed be related to sites of biological
importance. Nevertheless, the FEL of this model is trivial, as
opening events are rare and the chain remains closed for most
of the time. The inclusion of the particle stabilizes the bubbles
(as can be observed in Fig. 2) and allows us to go further
in terms of predictions. We are able to define relevant states
in a precise and systematic way (basins), to predict possible
binding sites, and to extract the thermodynamical magnitudes
related with them, thus characterizing these sites in terms of
biological importance.

IV. RESULTS

To illustrate the method and validate our model, we analyze
three different promoter sequences. Promoters are DNA
regions in which regulation and initiation of transcription of a
gene occurs. Two of them correspond to the so-called strong
promoters, while the one left is a weak promoter [28]. Strong
promoters show a high level of expression in mRNA and
usually their sequences are close to the consensus sequence.
The strong promoters studied here are the P5 virus promoter,
given by the 69-bp sequence shown in [7] and the human
collagen type I α2 chain, given by the 80-bp sequence shown
in [9]. Finally, the weak promoter is the lac operon regulatory
region, whose 129-bp sequence has been taken from [8].

In Fig. 3 (top) we show a detail of the free-energy dendro-
grams for each of the mentioned sequences. The basin structure
consists of a big set of low occupied (high energy) basins, and
a small set which gathers almost the whole trajectory (see
below). This small set of basins is the one shown in Fig. 3.

021908-3



TAPIA-ROJO, PRADA-GRACIA, MAZO, AND FALO PHYSICAL REVIEW E 86, 021908 (2012)

FIG. 3. (Color online) Free energy dendrograms (top) for each of the three sequences together with selected states (bottom). The dendrograms
represented are a detail of the whole structure showing low energy basins only. The construction of the dendrogram has been performed
considering the representative node of each basin. Significant biological states have been searched within the network structure. They
correspond to the important basins of the hierarchical free-energy organization.

In the bottom of Fig. 3 some remarkable states for each
of the three promoters are highlighted. The method identifies
states with a biological meaning as they correspond to the most
important basins. The most significant sites we are dealing
with are the transcription starting site (TSS) and the TATA
box, although additional promoter sequences can be found
depending on the genome. The RNA polymerase binds to
the TSS, starting the transcription into mRNA. Promoter
sequences are usually labeled from the TSS (+1). The TATA
box is found approximately 35 bp upstream from the TSS [28].

For the collagen chain, three states have been highlighted.
State A identifies the TSS, showing a bubble in this region
with the particle placed just there. States B and C are linked
to excitations of other important sites such as the TATA box
(state B); see [9]. In the same way, we have found a basin
related to the TSS in the case of the P5 chain (state C) and the
lac operon (state C), together with other regulatory sites.

The arrangement of these basins in the free-energy dendro-
gram informs about the relative free energy between the states
and the relation between them. For example, the collagen
dendrogram contains three main branches, each one related
to each of the three states shown. The P5 promoter shows
an analogous structure: two main branches and another one
divided into two states (B and C) which are kinetically close.
The remaining states of each branch correspond to states
similar to that shown, with only slight variations in the chain
conformation or in the particle position.

The lac promoter shows a clearly different behavior com-
pared with the two strong promoters. From a qualitative point
of view, the arrangement of basins differs from the P5 sequence
or the collagen one. To visualize quantitatively the difference,
the basin occupancy is plotted in Fig. 4. We show the weight

of each basin (red bars) for the three sequences together with
the accumulated weight (blue line). It is remarkable, in the
case of the collagen sequence, that a few basins (25 out of
1661) accumulate almost the whole weight of the network
(over the 99%). The results for the P5 promoter are completely
analogous; a few basins account for most information of the
dynamics. These basins are the ones shown in the dendrogram
of Fig. 3. When we inspect the bottom graph in Fig. 4 we
see a completely different tendency. In the lac network, the
distribution of weight among the basins is more uniform.

For the collagen and P5 networks we can define a threshold
from which the individual contribution to the total weight
is negligible. The trajectory is concentrated in around 25
basins and the remainder of the network can be seen as a
“background.” This background is limited to those basins with
a weight below 10−3 (horizontal lines in Fig. 4). Following this
criterion, we can distinguish between specific and nonspecific
states. Those basins above the threshold (vertical lines in
Fig. 4) may be defined as specific states (with a clear biological
function) while those below the threshold may be defined as
nonspecific states.

For the collagen sequence, 25 “specific” basins appear,
covering 99.41% of the total trajectory. The P5 and lac se-
quences show respectively 23 and 88 “specific” basins, which
gather 99.38% and 96.91%, respectively, of the total network
weight. Using these definitions, we are able to calculate the
relative free energy between states. These magnitudes reveal
the “strength” of the different sites in each promoter. It has been
reported that specific binding proteins show a greater affinity
for strong promoters than for weak ones [29]. To quantify
these differences we calculate thermodynamical properties
of the most important basins. Once we have divided the
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FIG. 4. (Color online) Basin occupancy (bars) together with
accumulated weight (solid line) for the collagen, P5, and lac
sequences. The horizontal line shows the weight threshold between
specific and nonspecific states. The vertical line establishes such a
frontier in terms of basins. Note the logarithmic y axis.

network into the different basins of attraction, several statistical
magnitudes can be defined from them. The weight of the
basin is defined as the sum of that of the nodes belonging
to the basin; i.e., for a basin α we have Pα = ∑

i Pi with
i ∈ α. In the same way the entropy of each basin can be
defined as Sα/kB = −∑

i Pi log Pi with i ∈ α. Attending
to the previous definition of the nonspecific basin, whose
thermodynamical magnitudes can be computed as explained,
we can calculate the free energy of each basin with respect
to the nonspecific state. If Pβ is the weight of the nonspecific
basin, then the free energy difference between a basin α and
the macrostate β is �Fα/kBT = − log(Pα/Pβ). Table I shows

TABLE I. Statistical (occupation probabilities) and thermody-
namical (entropy and free-energy differences) magnitudes calculated
for the chosen states of Fig. 3 and the nonspecific states (NS),
according to the criteria shown in Fig. 4.

Promoter State Pe S/kB −�F/kT

Collagen A (TSS) 0.169 1.365 3.305
B (TATA) 0.157 1.380 3.232

C 0.086 0.652 2.519
NS 0.006 0.085 0.000

P5 A (TATA) 0.135 1.051 3.130
B 0.107 0.913 2.898

C (TSS) 0.086 0.684 2.681
D 0.059 0.494 2.301

NS 0.006 0.027 0.000

lac A (TATA) 0.115 0.970 1.311
B 0.095 0.891 1.120

C (TSS) 0.090 0.775 1.066
D 0.038 0.373 0.204

NS 0.031 0.390 0.000

significant differences between strong and weak promoters.
On the one hand, we observe that both the total weight and
entropy of the nonspecific states in the weak promoter exceed
by almost an order of magnitude the ones shown for the
strong promoters. On the other hand, we can see that the
specific states show much higher free-energy differences with
respect to the nonspecific states in the case of the strong
promoters than the ones shown for the lac sequence. Thus, the
analysis presented here opens the way to a systematic study
of promoter character within the framework of a mesoscopic
model.

In addition to the three promoter sequences of real
biological systems, we have analyzed a random sequence in
order to prove the validity of our model. The random sequence
has been obtained by taking the P5 promoter sequence and
shuffling its base pairs, so that the obtained sequence contains
the same base pairs but in random positions. This sequence
should contain no genetic information at all, and this fact
must be reflected in our analysis.

When analyzing the random sequence with our method,
we can see huge differences compared with the P5 promoter,
as we would expect (see Fig. 5). First the structure of the
network is completely different. As there are no prominent
states in the sequence, and the number of basins is huge
(8388 compared with the 529 in the P5 promoter). The first
two eigenvectors are representative of a homogenous lattice
without localized states. The distribution of weights is also
clearly different as now the “background” basins keep 6% of
the total network weight, an even higher value than that of
the background basins gathered in the weak promoter. The
dendrogram also shows a much more distributed structure
where, even though some nodes appear to fall to privileged
positions, their relevance within the whole network structure
is far from being comparable to that shown in networks from
biological promoters. All these facts validate our model, as we
can clearly distinguish between a sequence with binding sites,
and thus with biological information, and one with none, even
though their chemical composition is the same.
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FIG. 5. (Color online) Analysis of a random sequence. Top:
Probability of aperture along with the first two PCA eigenvectors.
Middle: Free-energy dendrogram. Bottom: Basin occupancy (bars)
together with accumulated weight (solid line).

V. CONCLUSIONS

In this paper we have proposed and analyzed a meso-
scopic model for the characterization of binding sites on
DNA promoter sequences. The model is based on the 1D
diffusion of an extended probe particle along the DNA chain.
The particle is coupled to the opening states of the chain
(bubbles). In its dynamics, it visits the main sites of the
sequences, with dwelling times covering a high percentage
of the trajectory. Such behavior has allowed us to perform
a deep analysis of the FEL which reveals the structure of
the complex phase space. The analyzed promoter sequences
have been chosen to include genomes from organisms of
different domains (virus, bacteria, and eukaryote) and dif-
ferent strengths of expression. The model and the analysis
used are able to capture the main biological details of the
sequences.

Our model gives energy differences between specific
and nonspecific sites of the promoter. Our results are in
good relative agreement with some data in the literature
(see for instance [29]): they account for energy ratios be-
tween weak and strong promoters. This fact would also
make possible the study of sequences in which several
TSSs are involved, showing the relative strength between
them.

We think that our results show the power of coarse-grained
or phenomenological mesoscopic models to qualitatively and
quantitatively analyze complex biological systems, in particu-
lar the problem of protein-DNA regulatory and transcriptional
interactions. Protein-DNA interaction is a fundamental prob-
lem which has been the object of very intense research from
many different points of view in past years [3,5]. Our system
can be seen as the searching problem of a universal protein on
a given DNA sequence, providing an approach for the study
of specific protein-DNA interactions at the mesoscopic level,
where different proteins will interact in different ways with
DNA molecules.
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PLoS Comput. Biol. 5, e1000415 (2009).
[27] S. V. Krivov and M. Karplus, Proc. Natl. Acad. Sci. USA. 101,

14766 (2004); S. Auer, M. A. Miller, S. V. Krivov, C. M. Dobson,
M. Karplus, and M. Vendruscolo, Phys. Rev. Lett. 99, 178104
(2007).

[28] R. Schleif, Genetics and Molecular Biology (Addison-Wesley,
Reading, MA, 1993).

[29] L. Bintu, N. E. Buchler, H. G. Garcia, U. Gerland, T. Hwa, J.
Kondev, and R. Phillips, Curr. Opin. Genet. Dev. 15, 116 (2005).

021908-7

http://dx.doi.org/10.1103/PhysRevE.78.065102
http://dx.doi.org/10.1103/PhysRevE.78.065102
http://dx.doi.org/10.1103/PhysRevE.83.046117
http://dx.doi.org/10.1103/PhysRevE.83.046117
http://dx.doi.org/10.1103/PhysRevE.47.684
http://dx.doi.org/10.1103/PhysRevE.47.684
http://dx.doi.org/10.1088/0951-7715/17/2/R01
http://dx.doi.org/10.1103/PhysRevE.82.031916
http://dx.doi.org/10.1103/PhysRevE.82.031916
http://dx.doi.org/10.1209/epl/i2005-10466-6
http://dx.doi.org/10.1103/PhysRevE.83.021907
http://dx.doi.org/10.1103/PhysRevE.83.021907
http://dx.doi.org/10.1093/nar/gkn173
http://dx.doi.org/10.1093/nar/gkn173
http://dx.doi.org/10.1088/0034-4885/75/2/026601
http://dx.doi.org/10.1088/0034-4885/75/2/026601
http://dx.doi.org/10.1016/j.jmb.2004.06.063
http://dx.doi.org/10.1016/j.sbi.2006.01.002
http://dx.doi.org/10.1073/pnas.0608099104
http://dx.doi.org/10.1073/pnas.0608099104
http://dx.doi.org/10.1371/journal.pcbi.1000415
http://dx.doi.org/10.1073/pnas.0406234101
http://dx.doi.org/10.1073/pnas.0406234101
http://dx.doi.org/10.1103/PhysRevLett.99.178104
http://dx.doi.org/10.1103/PhysRevLett.99.178104
http://dx.doi.org/10.1016/j.gde.2005.02.007



