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ABSTRACT 

 

Transmembrane Adenylyl cyclases (Adcy) are involved in the regulation of 

multiple brain processes such as synaptic plasticity, learning and memory. They 

synthesize intracellular cyclic adenosine monophosphate (cAMP) following 

activation by G-protein coupled receptors. We examined the neuroanatomical 

distribution of the nine Adcy isoforms in rat and mouse brain by in situ 

hybridization, as well as their location in glutamatergic, GABAergic and 

cholinergic neurons in several mouse brain areas by double in situ 

hybridization. The Adcys are widely distributed throughout the brain in both rat 

and mouse, being especially abundant in cortex, hippocampus, thalamic nuclei, 

the olfactory system and the granular layer of the cerebellum. Double-labeling 

experiments showed that Adcy isoforms are differently expressed in 

glutamatergic, GABAergic and cholinergic neuronal cell populations. We report 

the neuroanatomical distribution of the nine known Adcy isoforms in rat and 

mouse brain and their cellular localization. 

 

 



 

Research highlights 

 Differences in mRNA expression of some Adcy isoforms (Adcy1, Adcy2, 

Adcy5 and Adcy8) were observed between rat and mouse hippocampal 

fields. 

 Adcy2 mRNA expression was found expressed in all striatal cholinergic cells. 

 Different GABAergic populations of the striatum expressed Adcy1 and Adcy5 

mRNA in a differential manner.



 

 

1. INTRODUCTION 

 

cAMP has a key role as an intracellular messenger, mediating the effects of 

extracellular signals in various tissues. In brain, cAMP is involved in sensory 

functions, synaptic plasticity, learning and memory. Intracellular levels of cAMP 

are controlled by its synthesis, catalyzed by the enzyme adenylyl cyclase, and 

by its degradation through the action of cyclic nucleotide phosphodiesterases 

(PDEs).  

There are currently ten identified isoforms of the Adenylyl cyclase (Adcy) 

enzymes: transmembrane Adcys 1-9 regulated by a host of hormones, 

neurotransmitters and other regulatory molecules through interaction with G 

protein-coupled receptors, playing an important role in neurotransmission in the 

CNS (Adcy 1-9) and soluble Adcy regulated by bicarbonate. Increased levels of 

cAMP in different signaling pathways regulate neuronal mechanisms like 

synaptic plasticity, learning and memory, and neuroinflammatory responses. 

Transmembrane Adcy mRNAs are widely expressed throughout the brain, 

especially in olfactory bulb, hippocampus and cerebellum (Matsuoka et al., 

1992; Visel et al., 2006) and present in other peripheral organs (Defer et al., 

2000a; Risoe et al., 2007). The role of some Adcy isoforms in a number of brain 

processes, such as Adcy1 and Adcy8 in learning and memory (Mons et al., 

1999; Conti et al., 2007), and Adcy5 in dopamine receptor signaling in the 

striatum (Lee et al., 2002) are broadly understood, but little is known about the 

function of other Adcys in the CNS. To date, nine Adcy isoforms have been 

cloned and identified in various tissues (Hanoune and Defer, 2001). Adcy 

isoforms are classified, according to their protein sequence homologies and 

function, into four groups (Patel et al., 2001; Cooper, 2005), designated as A, B, 

C and D (Visel et al., 2006). Group A consists of Adcy1, Adcy3 and Adcy8, 

which are stimulated by Ca+2/CaM (Cali et al., 1994; Krupinski and Cali, 1998). 

Adcy1 and Adcy8 are expressed in neuronal tissue (Wong et al., 1999), while 

Adcy3 is mostly expressed in the olfactory system (Bishop et al., 2007). Adcy2, 

Adcy4 and Adcy7, forming group B, are Ca+2-insensitive but are stimulated by 

the Gβγ subunit (Feinstein et al., 1991). Adcy4 and Adcy7 are widely distributed 



in several tissues (Mons et al., 1998), while Adcy2 is mainly found in lung and 

brain. Group C contains Adcy5 and Adcy6, expressed mostly in heart and brain, 

and inhibited by Ca+2 and the Giα subunit (Defer et al., 2000). Adcy9, expressed 

mainly in brain, belongs to group D and is the only isoform that is not activated 

by forskolin, although it is responsive to calcineurin (Premont et al., 1996). The 

uneven tissue distribution of the individual Adcy isoforms and the diversity of 

their regulatory features may reflect a specific function of this effector molecule 

in determining the routing of signals to the cAMP pathway. 

Knowledge of the cell location of the Adcys in brain is an important step towards 

understanding their function. Here, we analyze the regional expression of 

mRNA coding for the different Adcy isoforms in adult rat and mouse brain. By in 

situ hybridization, we determined in different rat and mouse brain areas the 

location of mRNA coding for nine different Adcys and the type of neuron in 

which they are expressed. Our study revealed that each Adcy mRNA has a 

distinct distribution, with differences between species. 

 

Key words: in situ hybridization, cAMP, adenylyl cyclase, cholinergic cells, 

glutamatergic cells, GABAergic cells 

 

 

2. EXPERIMENTAL PROCEDURES 

 

2.1. Tissue preparation 

Male Wistar rats (n=5) (200-300g) were purchased from Iffa Credo (Lyon, 

France) and adult male C57BL6 mice (n=5) (15-20g) from Charles River 

Laboratories (Wilmington, MA, USA). Animal care followed the Spanish 

legislation on “Protection of animals used in experimental and other scientific 

purposes”, which is in line with the European (E.E.C) regulations (O.J. of E.C. 

L358/1 18/12/1986). Rats were killed by decapitation and mice by cervical 

dislocation. The brains were rapidly removed, frozen on dry ice and kept at -

20ºC. Tissue sections, 14 m thick, were cut on a microtome-cryostat (Microm 

HM550 OM, Walldorf, Germany), thaw-mounted on APTS (3-



aminopropyltriethoxysilane; Sigma, St Louis, MO, USA)-coated slides, and kept 

at -20ºC until used. 

 

2.2. Hybridization probes  

The 45 base-oligodeoxyribonucleotides used for the detection of Adcy mRNAs 

are listed in Table 1. These regions were chosen because they share no 

similarity with the other Adcy isoforms.  

Glutamatergic cells were recognized by the presence of the mRNA coding for 

both vesicular glutamate transporters (vGluT1 and vGluT2): vGluT1 with two 

oligonucleotides complementary to bases 127–172 and 1756–1800 (GenBank 

acc. no U07609) and vGluT2 with two oligonucleotides complementary to bases 

466–510 and 2156–2200 (GenBank acc. no AF271235). GABAergic cells were 

identified by the presence of the enzyme synthesizing GABA, glutamic acid 

decarboxylase (GAD), which is found in adult brain as two major isoforms: 

GAD65 and GAD67. Two oligonucleotides for each isoform mRNA were made: 

bp 159–213 and 514–558 (GenBank acc. no NM_012563) and bp 191–235 and 

1600–1653 (GenBank acc. no NM_017007). Cholinergic cells were 

distinguished by the presence of choline acetyltransferase (ChAT) mRNA with 

two oligonucleotides complementary to bases 571–618 and 1321–1368 of the 

rat ChAT cDNA sequence (Ishii et al., 1990). 

The oligonucleotides were all synthesized and HPLC purified by Isogen 

Bioscience BV (Maarsen, The Netherlands). Evaluation of the oligonucleotide 

sequences with the basic local alignment search tool (BLAST) of EMBL and 

GenBank databases indicated that the probes show no significant similarity with 

mRNAs other than their corresponding targets in rat and mouse. 

Oligonucleotides for Adcy mRNAs were labeled at their 3'-end by [ -33P]dATP 

(3000 Ci/mmol, New England Nuclear, Boston, MA, USA) for the in situ 

hybridization histochemistry experiments and terminal 

deoxynucleotidyltransferase (TdT, Oncogene Research Products, San Diego, 

CA, USA), purified with the QIAquick Nucleotide Removal Kit (QIAGEN GmbH, 

Hilden, Germany) (Tomiyama et al., 1997). For the colocalization studies vGluT, 

GAD and ChAT oligonucleotides were labeled with Dig-11-dUTP and TdT 

(Roche Diagnostics, Manheim, Germany) according to a previously described 

procedure (Schmitz et al 1991). 



 

2.3. In situ hybridization histochemistry procedure 

The protocols for single- and double-label in situ hybridization histochemistry 

were based on previously described procedures (Tomiyama et al., 1997; 

(Landry et al., 2000) and have been already published (Serrats et al., 2003). 

Frozen tissue sections were brought to room temperature, fixed for 20 min at 

4ºC in 4% paraformaldehyde in phosphate-buffered saline (PBS; 1X PBS: 8 mM 

Na2HPO4, 1.4 mM KH2PO4, 136 mM NaCl, 2.6 mM KCl), washed for 5 min in 

3X PBS at room temperature, twice for 5 min each in 1X PBS, and incubated for 

2 min at 21 °C in a solution of predigested pronase (Calbiochem, San Diego, 

CA, USA) at a final concentration of 24 U/ml in 50 mM Tris–HCl pH 7.5, 5 mM 

EDTA. 

Enzyme activity was stopped by immersion for 30 s in 2 mg/ml glycine in 1X 

PBS. Tissues were finally rinsed in 1X PBS and dehydrated through a graded 

series of ethanol. For hybridization, radioactively and non-radioactively labeled 

probes were diluted in a solution containing 50% formamide, 4X SSC (1XSSC: 

150 mM NaCl, 15 mM sodium citrate), 1X Denhardt’s solution (0.02% Ficoll, 

0.02% polyvinylpyrrolidone, 0.02% bovine serum albumin), 10% dextran sulfate, 

1% sarkosyl, 20 mM phosphate buffer pH 7.0, 250 µg/ml yeast tRNA and 500 

µg/ml salmon sperm DNA. The final concentrations of radioactive and 

digoxigenin-labeled probes in the hybridization buffer were in the same range 

(approximately 1.5 nM). Tissue sections were covered with hybridization 

solution containing the labeled probe/s, overlaid with Nescofilm coverslips 

(Bando Chemical Inc., Kobe, Japan) and incubated overnight at 42 °C in humid 

boxes. Sections were washed four times (15 min each) in 0.6 M NaCl, 10 mM 

Tris–HCl pH 7.5 at 60 °C, and once in the same buffer at room temperature for 

30 min. 

 

2.4. Development of radioactive and non-radioactive hybridization signals 

Hybridized sections were treated as described by (Landry et al., 2000). Briefly, 

after washing, the slides were immersed for 30 min in a buffer containing 0.1 M 

Tris–HCl pH 7.5, 1 M NaCl, 2 mM MgCl2 and 0.5% bovine serum albumin 

(Sigma, Steinheim, Germany) and incubated overnight at 4°C in the same 

solution with alkaline-phosphatase-conjugated anti-digoxigenin-F(ab) fragments 



(1:5000; Roche Diagnostics GmbH). Then, they were washed three times (10 

min each) in the same buffer (without antibody) and washed twice in an alkaline 

buffer containing 0.1 M Tris–HCl pH 9.5, 0.1 M NaCl, and 5 mM MgCl2. Alkaline 

phosphatase activity was developed by incubating the sections with 3.3 mg 

nitroblue tetrazolium and 1.65 mg bromochloroindolyl phosphate (Roche 

Diagnostics GmbH) diluted in 10 ml of alkaline buffer. The enzyme reaction was 

blocked by extensive rinsing in the alkaline buffer containing 1 mM EDTA. The 

sections were then briefly dipped in 70% and 100% ethanol, air-dried and 

dipped in Ilford K5 nuclear emulsion (Ilford, Mobberly, Cheshire, UK) diluted 1:1 

with distilled water. They were exposed in the dark at 4º C for 6 weeks, and 

finally developed in Kodak D19 (Kodak, Rochester, NY, USA) for 5 min and 

fixed in Ilford Hypam fixer (Ilford). For film autoradiography, some hybridized 

sections were exposed to Biomax-MR (Kodak) films for 2–4 weeks at -70°C with 

intensifying screens. Consecutive sections were stained with Cresyl Violet for 

anatomical reference. 

 

2.5. Analysis of the results 

Tissue sections were examined and cells quantified with an Olympus BX51 

Stereo Microscope (Olympus, Tokyo, Japan) equipped with bright- and dark-

field condensers for transmitted light. Cells were counted manually through the 

microscope with the help of Visiopharm Integrator System (Visiopharm 

Software, Hørsholm, Denmark). In this software a meander sampling tool was 

used to pass by the same counting areas twice, to be able to first count the 

amount of DIG-positive labeled cells in a predetermined area and then 

distinguish which of the cells also show silver grain accumulation.  

Glutamatergic, GABAergic and cholinergic neurons were identified as cellular 

profiles exhibiting a dark precipitate (alkaline phosphatase reaction product) 

surrounding or covering the nucleus. The Adcy hybridization signal was 

considered positive when accumulation of silver grains over the stained cellular 

profiles was greater than three times that of the background.  

 

2.6. Preparation on figures 

Hybridized tissue section images from film autoradiograms were digitalized by a 

Wild 420 macroscope (Leica Microsystems, Wetzlar, Germany) equipped with a 



digital camera (DXM1200 F, Nikon) and ACT-1 Nikon software. 

Microphotography was performed with an Olympus BX51 Stereo Microscope 

(Olympus, Tokyo, Japan) equipped with a digital camera (DXM1200 F, Nikon). 

Figures were prepared for publication with Adobe Photoshop software (Adobe 

Software, San Jose, CA, USA). Contrast and brightness of images were the 

only variables we adjusted digitally. For anatomical reference, sections close to 

those used were stained with cresyl violet. 

 

 

3. RESULTS 

 

3.1. Controls for specificity of the probes 

The specificity of the autoradiographic signal obtained in the in situ hybridization 

histochemistry experiments was confirmed by a series of routine controls 

(Pompeiano et al., 1992). For each mRNA under study, at least two different 

oligonucleotide probes complementary to different regions of the same mRNA 

were used independently as hybridization probes in consecutive sections of the 

same animal showing identical patterns of hybridization (Fig.1G, H). For a given 

oligonucleotide probe, addition in the hybridization solution of an excess of the 

same unlabeled oligonucleotide resulted in the complete abolition of the specific 

hybridization signal. The remaining autoradiographic signal was considered 

background (Fig.1D, E, and F). If the unlabeled oligonucleotide included in the 

hybridization was a different oligonucleotide, then the hybridization signal was 

not affected. The thermal stability of the hybrids was examined by washing at 

increasing temperatures: a sharp decrease in the hybridization signal was 

observed at a temperature consistent with the Tm of the hybrids (Fig.1A, B, and 

C).  

In situ hybridization histochemistry provides reliable information concerning the 

relative abundance of a given mRNA species in different regions. However, 

caution must be taken in comparing the relative hybridization signals produced 

by different probes that detect different mRNAs. In addition to the actual 

abundance of the different mRNAs, the intensity of the hybridization signals 

observed, which is the parameter used in the present series of experiments for 

comparison between mRNAs, can be affected by other factors, such as 



differences in the hybridization efficiency of the various probes or differences in 

the specific activities of the labeled probes. 

 

3.2. Adcy mRNA distribution in rat and mouse brain 

The distribution by in situ hybridization histochemistry of the different Adcy 

mRNA transcripts at coronal levels of the rat and mouse brain, illustrated in 

Figs. 2 and 3 and Tables 2 and 3, showed a selective expression pattern in 

certain cell layers and nuclei of the brain. Labeled brain nuclei were identified by 

comparison of the film autoradiograms with cresyl violet staining of the 

hybridized tissues. Adcy4 mRNA (Fig 2 and 3) could not be detected in any 

area of mouse or rat brain and will not be described below. 

In situ hybridization histochemistry provides reliable information concerning the 

relative abundance of a given mRNA in different regions. However, caution 

must be taken when comparing the relative hybridization signals produced by 

different probes that detect different mRNA species. In addition to the actual 

abundance of the different mRNAs, the intensity of the hybridization signals 

observed can be affected by other factors, such as differences in the 

hybridization efficiency of the various probes or differences in the specific 

activities of the probes. Therefore, the results given here have to be interpreted 

with this caveat in mind when the abundance of the mRNA coding for the 

different Adcy enzymes is being compared. 

 

3.2.1. Cortex 

The expression pattern for all Adcy mRNAs was similar in both species. 

A clearly different expression pattern in layers of the cortex was observed for 

transcripts of Adcy1, Adcy2, Adcy3, Adcy8 and Adcy9 in both rat (Fig. 2) and 

mouse (Fig. 3) brain. We also detected a homogeneous hybridization signal in 

all cortical cell layers for Adcy5 and Adcy6 and very low for Adcy7 mRNAs.  

 

3.2.2. Olfactory system 

Olfactory tubercle and piriform cortex were the two brain regions of the olfactory 

system that we examined in coronal sections of rodent brain in this work (see 

Tables 2 and 3). The mRNA levels of Adcy5 and Adcy9 isozymes were very 

high and moderate, respectively, in both rat and mouse (Figs. 2E1, 2I1, 3E1, 



3I1). We also observed a very low hybridization signal for Adcy7 in the mouse 

brain sections. In the case of the piriform cortex, we detected the expression of 

transcripts of all Adcy genes (Figs. 2 and 3) except Adcy7 and Adcy3, which 

had a very low hybridization signal.  

 

3.2.3. Striatum 

The striatum nucleus is the main expression site of Adcy5 mRNA in both 

species (Figs. 2E1 and 3E1). We also found a strong and moderate 

hybridization signal in this brain nucleus for Adcy3 (Figs. 2C1 and 3C1) and 

Adcy9 (Figs. 2I1 and 3I1) transcripts, respectively. In rat brain, Adcy1 mRNA 

was expressed at moderate levels in the striatum (Fig. 2A1), whereas in mouse 

the transcript was present but at lower levels (Fig. 3A1). In the case of Adcy6 

mRNA, the hybridization signal in striatum was moderate in coronal sections of 

mouse brain (Fig. 3F1), but we did not detect it in rat sections (Fig. 2F1). 

 

3.2.4. Amygdala 

We found moderate levels of mRNA expression in both species for all Adcy 

isozymes except Adcy9, which had a strong hybridization signal in rat amygdala 

(Fig. 2I2). Low or no expression of Adcy7 and Adcy8 mRNAs was found in this 

brain region. 

 

3.2.5. Limbic areas 

Moderate or strong expression for all Adcy mRNAs was detected in at least one 

of the three fields of the cornu ammonis (CA1, CA2, CA3) and the dentate gyrus 

(DG) of the hippocampus of both species (Figs. 2 and 3), except for Adcy7, 

which was not present in mouse.  

A strong Adcy1 mRNA hybridization signal was present in CA2 and DG in both 

rat and mouse brain and in the CA1 field of mouse (Fig. 4A1 and 4A2). Adcy2 

mRNA was found at high hybridization levels in CA2 and DG of both species. 

We also observed a moderate hybridization signal in the CA1 region of rat 

coronal sections (Fig. 4B1). We found high hybridization signals of Adcy3 in 

CA2 and CA3 and moderate ones in CA1 and DG, in both rat and mouse (Figs. 

2C2 and 3C2). There were no differences in mRNA expression levels between 

the two species in this case. There was a moderate hybridization signal for 



Adcy5 in the CA2 regions in both rat and mouse hippocampus. There was a low 

level of expression of Adcy5 mRNA in CA1, CA3 and DG of rat brain sections 

(Fig. 4C1), contrasting with its non-detection in the same hippocampal fields in 

mouse (Fig. 4C2).  Adcy6 mRNA was expressed in all fields of rat and mouse 

hippocampus, though at a higher level in CA2 and DG (Figs. 2F2 and 3F2). 

There were no differences between the two species. Although we found 

expression of Adcy8 in all regions of the hippocampus, the CA1 field showed a 

remarkably high hybridization signal in mouse (Fig. 4D2). All three fields of CA 

and DG had a very high hybridization signal for Adcy9 mRNA in both rat and 

mouse brain sections (Figs. 2I2 and 3I2). 

 

3.2.6. Thalamus and Hypothalamus 

The mRNAs coding for Adcy2, Adcy3, Adcy5 and Adcy6 are weakly and 

uniformly expressed through the thalamus in both rat and mouse, whereas 

Adcy1, Adcy7, Adcy8 and Adcy9 mRNAs are present in both at high levels. 

Adcy1 mRNA expression in some thalamic nuclei was different between rat and 

mouse. We observed a strong hybridization signal for Adcy1 in the mouse 

posterior thalamic nuclear group (Fig. 5B), which was weaker in rat (Fig. 5A). 

The signal in the ventrolateral geniculate nucleus was also stronger in mouse 

brain. Adcy7 mRNA expression was only observed in mediodorsal thalamic 

nucleus of rat brain (Fig. 2G2). The moderate Adcy2 hybridization signal in the 

thalamic region was uniformly distributed in both species (Figs. 2C2 and 3C2), 

being higher in rat. In the hypothalamic nuclei, we found moderate hybridization 

signals in Adcy5 and low ones in Adcy3, Adcy6, Adcy7, Adcy8 and Adcy9, in 

both mouse and rat (Figs. 2 and 3). There were, however, some differences 

between species in Adcy1 mRNA expression in the hypothalamus. There was 

no hybridization signal for Adcy1 in hypothalamic nuclei of mouse brain (Fig. 

5B), whereas the expression appeared at low levels in rat brain (Fig. 5A). Very 

low levels of Adcy2 mRNA were seen in the hypothalamus of both species.  

 

 

3.3. Adcy mRNA expression in glutamatergic cells 

Glutamatergic cells were identified by the presence of the vesicular glutamate 

transporters vGluT1 and vGluT2 mRNAs and were detected simultaneously in 



tissue sections by Dig-labeled oligonucleotide probes. The presence of Adcy 

mRNAs was determined by 33P-labeled oligonucleotides. 

A high proportion of the glutamatergic cells in the dentate gyrus and in 

pyramidal cell layers of the hippocampus (Fig. 6) were positive. We observed 

high levels of coexpression in limbic areas (CA1-CA3, DG) for Adcy1 (Fig. 6 A-

C), Adcy2 (Fig. 6 D-F) and Adcy9 (Fig. 6 J-L). Results are summarized in Table 

4. We detected around 70-80% of glutamatergic cells expressing these three 

Adcy types in the CA1 region of the hippocampus. Adcy8 was found in 40% of 

glutamatergic cells in the CA1 field of the hippocampus (Fig. 6G). In DG, a vast 

majority of the glutamatergic cells (80-100%) (Fig. 6C and 6F) expressed Adcy1 

and Adcy2, whereas in the CA3 field around 30% of these glutamatergic cells 

expressed Adcy1 or Adcy2 mRNA (Fig. 6B and 6E). For Adcy9, only 30% of DG 

vGluT-labeled cells also expressed the mRNA for this isoform (Fig. 6L), 

whereas 80% of co-localization was detected in the CA1, CA2 and CA3 fields 

(Fig. 6J and 6K). Low or very low mRNA co-expression of the other Adcys 

studied was detected in the glutamatergic cell population of the limbic areas 

studied.  

In the thalamic nuclei analyzed in this study (DGL and VPM), we found a high 

amount of Adcy1 mRNA in around 80% of the glutamatergic cells (Fig. 7A). A 

moderate percentage of vGluT-positive cells (50-60%) in this brain area co-

expressed Adcy8 mRNA (Fig. 7B). Low or no co-localization was seen for the 

other Adcys.  

In the piriform and cingulate cortex, most labeled cells (85%) were double-

positive for vGluT and Adcy1 (Fig. 8A). The same proportion of glutamatergic 

cells (52 and 47%) expressed Adcy2 and Adcy8 mRNAs (Fig. 8B and 8C). A 

lower percentage of vGluT-positive cells (24-36%) also hybridized for Adcy3, 

Adcy5 and Adcy9 mRNAs (Fig. 8D).  

 

3.4. Adcy mRNA expression in GABAergic cells 

GABAergic cells were identified by the presence of glutamic acid decarboxylase 

(GAD65 and GAD67) mRNAs and were detected in tissue sections by using 

Dig-labeled probes. The presence of Adcy mRNAs was determined by 33P-

labeled oligonucleotides. 



Most GABAergic cells in the dentate gyrus (Fig. 9C) and in the pyramidal cell 

layer of the hippocampus (Fig. 9A and 9B) also expressed Adcy1 mRNA. No or 

low co-expression was observed for other Adcy mRNAs in the hippocampus. 

We also found moderate co-localization, around 70%, for the Adcy1 isoform in 

the GABAergic cell population of piriform and cingulate cortex (Fig. 9D). Around 

30-37% of co-localization was observed in these cortical areas for Adcy2 and 

Adcy8 mRNAs. 

We detected two differentiated GABAergic cell populations in the striatum: high 

GAD mRNA-expressing cells (interneurons or large striatonigral projection 

neurons) and low GAD mRNA-expressing cells (medium-spiny projection 

neurons). Adcy5 was the only isoform expressed in about 70% of the low GAD 

mRNA-expressing cells (Fig. 10B). For high GAD mRNA-expressing neurons, 

only Adcy1 mRNA was highly expressed (in 80%) in the striatum (Fig. 10A). 

The results are summarized in Table 4. 

 

3.5. Adcy mRNA expression in cholinergic cells 

Cholinergic cells were distinguished by the presence of choline 

acetyltransferase (ChAT) mRNA. We detected these cells in the striatum by use 

of non-radioactive probes. The presence of Adcy mRNAs was determined by 

33P-labeled oligonucleotides. 

All ChAT mRNA-positive cells in the striatum expressed Adcy2 mRNA (Fig. 

11B): this was the only cell population in striatum where this enzyme subunit 

was expressed. Adcy1, Adcy5 and Adcy6 mRNAs were also detected in about 

60% of the cholinergic cells of the striatum (Fig. 11 A, C and D). The results are 

summarized in Table 4. 

 

 

4. DISCUSSION 

In this work we have carried out a comparative analysis of the mRNA 

distribution of the nine Adcy isoforms in rat and mouse brain. This study 

constitutes, to our knowledge, the first detailed comparative study of these 

enzymes in rat and mouse brain. 

We have also examined the presence of the mRNAs coding for these Adcy 

isoforms in glutamatergic, GABAergic and cholinergic cells in selected mouse 



brain structures. Although it is known that some Adcy isoforms are involved in 

neural processes (Mons et al., 1998; Lee et al., 2002), here we discuss the 

possible role of other Adcys during learning and memory or striatum function.  

 

4.1. Adcys mRNA expression in rodent brain 

We found Adcy1 mRNA expressed mostly in the hippocampus, the cerebellum, 

thalamic nuclei and neocortical structures in mouse and rat brain, in agreement 

with previous studies (Xia et al., 1991a; Mons et al., 1998; Visel et al., 2006; 

Conti et al., 2007). Our results confirmed that Adcy2 mRNA is mostly expressed 

in limbic areas in agreement with (Mons et al., 1998; Baker et al., 1999; Visel et 

al., 2006), where it has an important role on spatial memory acquisition (Mons 

et al., 2003). Adcy3 mRNA is expressed widespread in the brain (Visel et al., 

2006), but has important functions in the olfactory system, where is a key 

component of the odorant receptor signaling cascade (Zou et al., 2007). We do 

not found Adcy4 mRNA expression in rodent brain, confirming previous reports 

(Visel et al., 2006) where they used a labeled riboprobe. However, some 

authors found Adcy4 protein expression in mouse hippocampus, where it may 

play a crucial role in certain forms of synaptic plasticity (Baker et al., 1999). 

Adcy5 mRNA expression was high in the olfactory tubercle and the striatum, 

where it plays a key role in the dopaminergic signaling cascade (Mons et al., 

1998; Lee et al., 2002; Visel et al., 2006). Widespread and moderate expression 

was observed for Adcy6 mRNA in rodent brain (Visel et al., 2006), but a high 

mRNA expression could also be detected in the choroid plexus. While some 

authors found Adcy7 protein expression in several brain nuclei (Mons et al., 

1998), we could only detected Adcy7 mRNA expression in some thalamic and 

hypothalamic nuclei. The discrepancy of our results on Adcy7 with those found 

by Mons and coworkers (1998) in the rat brain expression pattern could be 

explained by the different methodology used.  They detect the expression of 

Adcy7 by immunohistochemistry using polyclonal antibodies which could be 

rather different in terms of levels of expression or brain areas where they are 

localized (not only cell bodies can be labeled as in the in situ hybridization 

experiments) but also terminals and dendrites. Adcy8 mRNA was found 

abundantly expressed in the hippocampus, cerebellum, cortex, thalamus and 

hypothalamus, confirming previous reports (Cali et al., 1994; Conti et al., 2007). 



Referring to Adcy9, its mRNA was abundantly observed in neocortex and 

hippocampus, as described previously (Premont et al., 1996; Antoni et al., 

1998).  

The distribution of the different nine Adcy isoform mRNAs in mouse brain was 

found to be fundamentally similar to that described previously in rat (Matsuoka 

et al., 1992; Matsuoka et al., 1997; Mons et al., 1998), in displaying 

predominant locations in brain areas involved in a variety of functions (motor, 

sensorial, etc.). Differences in the intensity of expression between some cell 

groups within both species were apparent and could be relevant to questions 

such as for example how rats and mice are used to model several aspects of 

the regulation of some processes through cAMP levels regulation such as those 

involved in memory or neuroinflammatory response. Among the regions 

displaying such differences were 1) the CA fields and dentate gyrus of the 

hippocampus for Adcy1, Adcy2, Adcy5 and Adcy8 and 2) the thalamus, where 

Adcy1 presented very high hybridization levels in some thalamic nuclei in 

mouse. 

 

 

4.2. Hippocampus: learning and memory implications 

The Ca+2/calmodulin-stimulated Adcys, Adcy1 and Adcy8, have an essential 

role in synaptic plasticity and are required for learning and memory processes 

(Wong et al., 1999; Zhang et al., 2008; Masada et al., 2009). Double-knockout 

mice show no late phase-long term potentiation and are deficient in long-term 

memory (Wong et al., 1999). These two isoforms are expressed in areas 

associated with learning and memory (Xia et al., 1991; Conti et al., 2007), 

including neocortex and hippocampus. 

The high co-localization observed for Adcy1 in glutamatergic and GABAergic 

neurons in the hippocampus points to the importance of this enzyme’s role in 

the synaptic plasticity of glutamatergic and GABAergic hippocampal terminals. 

Since Adcy1 is neurospecific (Xia et al., 1991), it may be a useful drug target to 

modulate synaptic plasticity. 

Other Adcy isoforms are also involved in learning and memory. Adcy2, a Ca+2-

insensitive/ G γ-stimulated Adcy, is found transcriptionally downregulated during 

early stages of spatial learning tasks (Mons et al., 2003). In addition, we found 



this isoform highly expressed in glutamatergic CA1 neurons of control mice, 

which supports its possible role in learning tasks. Adcy9, which we found highly 

expressed in most CA1-CA2 and CA3 glutamatergic neurons, is a calcineurin-

activated Adcy isoform. It is activated by Ca+2, producing increased levels of 

cAMP in hippocampal neurons in vitro (Chan et al., 2005). For these, Adcy9 

may contribute to synaptic plasticity, including some forms of learning and 

memory (Antoni et al., 1998). 

 

4.3. Striatum: dopaminergic and cholinergic functions 

We only found high mRNA expression of Adcy1 and Adcy5 in GABAergic cell 

population in this brain region. The striatum is the main expression site of Adcy5 

mRNA, where it is required for D2 dopamine receptor function (Lee et al., 2002). 

High co-expression of Adcy5, and dopamine D1 and D2 receptors, is found in 

this brain nucleus (Gortari and Mengod, 2009). D1 receptors are coupled to Gs-

stimulated Adcys, like Adcy1, or a non-Adcy effector system like phospholipase 

C (PLC); whereas D2 receptors are coupled to Gi -inhibited Adcys, like Adcy5 

(Sidhu and Niznik, 2000). Our results indicate that Adcy5 mRNA is mainly 

expressed in medium-spiny neurons (GABAergic interneurons) in the striatum. 

These neurons account for 90% of the GABAergic neurons in this brain region 

and express both D1 and D2 receptors. These results, in addition to previous 

reports (Gortari and Mengod, 2009), could indicate that Adcy5 is coupled with 

the D2 dopamine receptor in GABAergic medium-spiny neurons of the striatum, 

and that Adcy5 in the striatum is involved in corticostriatal dopamine-dependent 

plasticity and striatum-dependent learning (Kheirbek et al., 2009). In the other 

GABAergic cell population found in the striatum, large striatonigral projecting 

neurons or fast-spiking neurons, we found that only Adcy1 mRNA was highly 

expressed. This may indicate that dopamine D1 receptors, in this case, could be 

coupled to this enzyme.  

Other types of neurons present in the striatum are the large spiny cholinergic 

interneurons, which account for 2% or less of the total neuronal striatal 

population. These cells, also called tonically active neurons, receive 

dopaminergic signals, have projecting axons to both populations of striatal 

GABAergic cells (Tepper and Bolam, 2004) and express D1-like dopamine 

receptors. Adcy2 mRNA was found, surprisingly, highly expressed in all 



cholinergic neurons of the striatum. This may represent the Adcy2-signaling 

pathway’s involvement in cholinergic modulation of GABAergic neurons. The 

low densities of silver grains observed in around 50% of cholinergic 

interneurons for the other Adcy mRNAs like Adcy1, Adcy5 and Adcy6 suggests 

that Adcy2 is probably the most important Adcy present in these neurons, 

where it may be coupled with D1-like dopamine receptors, but we cannot 

exclude the other Adcys and other receptors dependent on Adcy-cAMP 

signaling pathways. We discussed above that D1-like receptors can also be 

coupled with Adcy1, and that Adcy5 or Adcy6 could be coupled with D2 

receptors, which are also found in cholinergic neurons in the striatum (Dawson 

et al., 1988; Alcantara et al., 2003). Furthermore, Adcys may also be involved in 

acetylcholine release from vesicles in these cells (Login, 1997). 

 

 

5. CONCLUSIONS 

The results reported here on the neuroanatomical and neuronal localization of 

the isoforms of Adcy mRNAs in rat and mouse brains is a starting point for a 

more profound study of these enzymes, which might lead to their consideration 

as new therapeutic targets. More co-localization studies between Adcys and G-

protein-coupled receptors are needed in order to establish which Adcy isoform 

is coupled to which receptor in these neuronal pathways. Understanding the 

specific Adcy-effector system for each receptor could be useful for drug 

treatments with Adcy isoform-specific inhibitors (Pierre et al., 2009). 

 



 
 
Figure Legends 
 

Figure 1. Specificity controls of the hybridization signal obtained with two 

labeled oligonucleotides. Rat horizontal sections were hybridized with 33P-

labeled oligonucleotide rAC1/2 (A-G) or rAC1/3 (H). Thermal stability of the 

hybrids was examined by washing at 50ºC (A), 60ºC (B) and 80ºC (C). No 

hybridization signal remained after co-hybridizing each labeled oligonucleotide 

with an excess of the corresponding unlabeled oligonucleotide (rAC1/2): 100x 

(D), 500x (E) and 1000x (F). The same hybridization pattern is observed for the 

two oligonucleotide probes used in G and H.Scale bar = 400 m 

 

Figure 2. Expression of Adenylyl Cyclase mRNA in rat brain. Macroscopic 

photographs of autoradiographic film images of coronal sections showing 

mRNA hybridization pattern of nine isoforms of adenylyl cyclases in Wistar rats. 

A1, A2 Adcy1 mRNA, B1, B2 Adcy2 mRNA, C1, C2 Adcy3 mRNA, D1, D2 

Adcy4 mRNA, E1, E2 Adcy5 mRNA, F1, F2 Adcy6 mRNA, G1, G2 Adcy7 

mRNA, H1, H2 Adcy 8 mRNA, I1, I2 Adcy9 mRNA. Amy, amygdala; CA, Cornu 

Ammonis; CP, choroid plexus; CPu, caudate-putamen; Cx, cortex; Hyp, 

hypothalamus; LG, lateral geniculate nucleus; MD, medial dorsal thalamic 

nucleus; Pir, piriform cortex; STh, subthalamic nucleus; Th, thalamus; Tu, 

olfactory tubercle; VPM, ventral posteromedial thalamic nucleus. Scale bar = 

2mm. 

 

Figure 3. Expression of Adenylyl Cyclase mRNA in mouse brain. 

Macroscopic photographs of autoradiographic film images of coronal sections 

showing mRNA hybridization pattern of nine isoforms of adenylyl cyclases in 

C57BL6 mice. A1, A2 Adcy1 mRNA, B1, B2 Adcy2 mRNA, C1, C2 Adcy3 

mRNA, D1, D2 Adcy4 mRNA, E1, E2 Adcy5 mRNA, F1, F2 Adcy6 mRNA, G1, 

G2 Adcy7 mRNA, H1, H2 Adcy 8 mRNA, I1, I2 Adcy9 mRNA. Amy, amygdala; 

CA, Cornu Ammonis; cg, cingulum; CPu, caudate-putamen; Cx, cortex; DLG, 

dorsolateral geniculate nucleus; Hyp, hypothalamus; Pir, piriform cortex; Th, 

thalamus; Tu, olfactory tubercle; VLG, ventrolateral geniculate nucleus; ZI, zona 

incerta. Scale bar = 2mm. 



 

Figure 4. Different expression of Adenylyl Cyclase mRNA in rat and 

mouse hippocampus. Macroscopic photographs of autoradiographic film 

images of coronal sections showing mRNA hybridization pattern of Adcy1 (A), 

Adcy2 (B), Adcy5 (C) and Adcy8 (D) in rat (A1-D1) and mouse (A2-D2) 

hippocampus. Note the differences in mRNA expression levels between species 

(black arrows). Scale bars = 300 m and 500 m. 

 

Figure 5. Different expression of Adenylyl Cyclase 1 mRNA in rat and 

mouse in thalamic and hypothalamic nuclei. Macroscopic photographs of 

autoradiographic film images of coronal sections showing mRNA hybridization 

pattern of Adcy1 in rat (A) and mouse (B) thalamus and hypothalamus. Note 

the differences in mRNA expression levels between species (black and white 

arrows). Hyp, hypothalamus; Th, thalamus. Scale bars = 1mm. 

 

Figure 6. Glutamatergic cells of limbic areas expressing adenylyl cyclase 

isoform mRNA in mouse brain. High-magnification photomicrographs 

showing the simultaneous detection of two species of mRNA by using 

digoxigenin-labeled probes for vGluT mRNA and 33P-labeled oligonucleotide 

probes for the mRNA of Adcy isoforms Adcy1 (A–C), Adcy2 (D–F), Adcy8 (G–I) 

and Adcy9 (J-L) in the pyramidal layer of the hippocampus (CA1 field; A, D, G, 

J; CA3 field; B, E, H, K) and in the dentate gyrus of the hippocampus (C, F, I, L) 

of mouse brain. White arrowheads point to digoxigenin-labeled cells, black 

arrowheads to radioactively-labeled cells and double white and black 

arrowheads to double-labeled cells. CA, Cornu Ammonis; DG, dentate gyrus; 

vGluT, vesicular glutamate receptor. Scale bar = 100 m. 

 

Figure 7. Glutamatergic cells of thalamic nucleus expressing adenylyl 

cyclase isoform mRNA in mouse brain. High-magnification photomicrographs 

showing the simultaneous detection of two species of mRNA by using 

digoxigenin-labeled probes for vGluT mRNA and 33P-labeled oligonucleotide 

probes for the mRNA of Adcy isoforms Adcy1 (A) and Adcy8 (B) in the ventral 

posterior thalamic nucleus of mouse brain. White arrowheads point to 

digoxigenin-labeled cells, black arrowheads to radioactively-labeled cells and 



double white and black arrowheads to double-labeled cells. vGluT, vesicular 

glutamate receptor. Scale bar = 20 m. 

 

Figure 8. Glutamatergic cells of cingulate cortex expressing adenylyl 

cyclase isoform mRNA in mouse brain. High-magnification photomicrographs 

showing the simultaneous detection of two species of mRNA by using 

digoxigenin-labeled probes for vGluT mRNA and 33P-labeled oligonucleotide 

probes for the mRNA of Adcy isoforms Adcy1 (A), Adcy2 (B), Adcy8 (C) and 

Adcy9 (D) in the cingulate cortex of mouse brain. White arrowheads point to 

digoxigenin-labeled cells, black arrowheads to radioactively-labeled cells and 

double white and black arrowheads to double-labeled cells. vGluT, vesicular 

glutamate receptor. Scale bar = 20 m. 

 

Figure 9. GABAergic cells of the hippocampus and cingulate cortex 

expressing adenylyl cyclase 1 isoform mRNA in mouse brain. High-

magnification photomicrographs showing the simultaneous detection of two 

species of mRNA by digoxigenin-labeled probes for GAD65/67 mRNA and 33P-

labeled oligonucleotide probes for the mRNA of Adcy1 isoform in the pyramidal 

layer of the hippocampus (CA1 field; A; CA3 field; B), in the dentate gyrus of 

the hippocampus (C) and in the cingulate cortex (D) of mouse brain. Double 

white and black arrowheads point to double-labeled cells. CA, Cornu Ammonis; 

CgCx, cingulate cortex; DG, dentate gyrus; GAD, glutamic acid decarboxylase. 

Scale bar = 20 m. 

 

Figure 10. GABAergic cells of the striatum expressing adenylyl cyclase 

isoform mRNA in mouse brain. High-magnification photomicrographs 

showing the simultaneous detection of two species of mRNA by using 

digoxigenin-labeled probes for GAD65/67 mRNA and 33P-labeled oligonucleotide 

probes for the mRNA of Adcy isoforms Adcy1 (A) and Adcy5 (B) in the striatum 

of mouse brain. White arrowheads point to low GAD65/67 mRNA-expressing 

cells, white arrows to high GAD65/67  mRNA-expressing cells, black arrowheads 

to radioactively-labeled cells and double white and black arrows and 



arrowheads to double-labeled cells. GAD, glutamic acid decarboxylase. Scale 

bar = 20 m. 

 

Figure 11. Cholinergic cells of the striatum expressing adenylyl cyclase 

isoform mRNA in mouse brain. High-magnification photomicrographs 

showing the simultaneous detection of two species of mRNA by using 33P-

labeled oligonucleotide probes for Adcy1 (A), Adcy2 (B), Adcy5 (C) and Adcy6 

(D) isoforms (silver grains) and digoxigenin-labeled probes for ChAT mRNA in 

the striatum of mouse brain. White arrowheads point to digoxigenin-labeled 

cells, black arrowheads to radioactively-labeled cells and double white and 

black arrowheads to double-labeled cells. ChAT, choline acetyltransferase. 

Scale bars = 100 m and 20 m in the magnification boxes. 
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Table 1. List of oligonucleotides used. 

 

mRNA 
Oligonucleotide 
name 

Accession 
number 

Bp limits 

AC1 rAC1/2 XM_223616 3555-3599 

 rAC1/3 XM_223616 3612-3656 

AC2 rAC2/1 NM_031007 2908-2952 

 rAC2/2 NM_031007 2975-3019 

   rAC2/3 NM_031007 2957-3001 

AC3 rAC3/1 NM_130779 2751-2795 

 rAC3/2 NM_130779 2533-2577 

AC4 rAC4/1 NM_019285 2406-2450 

 rAC4/2 NM_019285 3257-3301 

 rAC4/3 NM_019285 2611-2655 

 rAC4/4 NM_019285 2866-2910 

 rAC4/5 NM_019285 112-156 

 rAC4/6 NM_019285 1417-1461 

AC5 rAC5/1 NM_022600 3061-3105 

 rAC5/2 NM_022600 1340-1384 

AC6 rAC6/2 NM_012821 656-700 

 rAC6/3 NM_012821 601-645 

 rAC6/4 NM_012821 500-544 

AC7 rAC7/1 XM_226333 3760-3804 

 rAC7/3 XM_226333 3809-3853 

 rAC7/4 XM_226333 3710-3754 

AC8 rAC8/1 NM_017142 3961-4005 

 rAC8/2 NM_017142 4109-4153 

AC9 rAC9/1 XM_220178 2786-2830 

 rAC9/2 XM_220178 2945-2990 

 

AC, adenylate cyclase. 

 

Table(s)



Table 2. Expression of mRNAs encoding AC isoforms in different regions of rat brain. 

 
Relative expression is indicated as follows: +++, very high; ++/+++, high; ++, 

moderate; +/++, low moderate; +, low; +/-, very low or hard to detect; -, not expressed. 

AC, adenylate cyclase. 

Brain area AC 1 AC 2 AC 3 AC 4 AC 5 AC 6 AC 7 AC 8 AC 9 

 

Cerebral Cortex 

                   

Olfactory system 

      Olfactory tubercle 

      Piriform cortex 

       

Basal ganglia and related areas 

      Corpus callosum 

      Caudate-Putamen 

      Amygdala 

 

Limbic areas 

      Ammon’s horn 

              CA1 (pyramidal cell layer) 

              CA2 (pyramidal cell layer) 

              CA3 (pyramidal cell layer) 

      Dentate gyrus 

       

Thalamus and Hypothalamus 

      Med/Lat habenular nucleus 

      Thalamic nucleus group 

      Reticular thalamic nucleus 

      Medial hypothalamic nucleus 

      Lateral geniculate nucleus     

     

Brainstem 

     Superior colliculus 

     Inferior colliculus 

 

Cerebellum 

       

Circumventricular organs 

      Choroid plexus 
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Table 3. Expression of mRNAs encoding AC isoforms in different regions of mouse brain. 

 

Relative expression is indicated as follows: +++, very high; ++/+++, high; ++, moderate; 

+/++, low moderate; +, low; +/-, very low or hard to detect; -, not expressed. AC, adenylate 

cyclase. 
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Cortex 

                   

Olfactory system 

      Olfactory tubercle 

      Piriform cortex 

       

Basal ganglia and related areas 

      Corpus callosum 

      Caudate-Putamen 

      Amygdala 

 

Limbic areas 

      Ammon’s horn 

              CA1 (pyramidal cell layer) 

              CA2 (pyramidal cell layer) 

              CA3 (pyramidal cell layer) 

      Dentate gyrus 

       

Thalamus and Hypothalamus 

      Med/Lat habenular nucleus 

      Thalamic nucleus group 

      Reticular thalamic nucleus 

      Medial hypothalamic nucleus 

      Lateral geniculate nucleus      

     

Brainstem 

     Superior colliculus 

     Inferior colliculus 

 

Cerebellum 

       

Circumventricular organs 

      Choroid plexus 
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Table 4. Quantification of the presence of Adenylate Cyclases mRNA in different neuronal populations 

in mouse brain. 

 

Quantification was performed in different brain regions of control mice brains. Data are the mean ± SD of 

four animals and represent the percentage of counted cells, GABAergic neurons (GAD), glutamatergic 

neurons (Glut) and cholinergic neurons (ChAT), expressing an AC isoform mRNA. The number of cells 

counted in each region was maintained for all sections analyzed. AC, adenylate cyclase; CA, Cornu 

Ammonis; CgCx, cingulate cortex; ChAT; choline acetiltransferase; CPu, caudate-putamen; DG, dentate 

gyrus; GAD, glutamic acid decarboxylase; Glut, glutamatergic; Th, thalamus. 
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