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Abstract 

 

Alzheimer’s disease (AD) is a devastating age-related neurodegenerative disease with no specific 

treatment at present. Several healthy lifestyle options and over-the-counter drugs that it has been 

suggested delay the onset of the disease are in an experimental phase, but it is unclear whether 

they will have any therapeutic value against AD. We assayed physical exercise and melatonin in 

3xTg-AD male mice aged from 6 to 12 months, therefore from moderate to advanced phases of 

AD pathology. Analysis of behavior and brain tissue at termination showed differential patterns of 

neuroprotection for the two treatments. Both treatments decreased soluble amyloid β oligomers, 

whereas only melatonin decreased hyperphosphorylated tau. Melatonin was effective against the 

immunosenescence that 3xTg-AD mice present. Voluntary physical exercise protected against 

behavioral and psychological symptoms of dementia such as anxiety, a lack of exploration and 

emotionality. Both treatments protected against cognitive impairment, brain oxidative stress and a 

decrease in mtDNA. Interestingly, only the combined treatment of physical exercise plus 

melatonin was effective against the decrease of mitochondrial complexes. Therefore, melatonin 

plus physical exercise may exert complementary, additive or even synergistic effects against a 

range of disturbances present in AD. 

 

Keywords: Alzheimer’s disease; mitochondrial aging; 3xTg-AD mice; melatonin; physical 

exercise. 
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Introduction 

Healthy lifestyle options such as physical exercise, caloric restriction and a diet rich in 

antioxidant food increase physical reserve and delay symptoms of aging and hence they may 

protect against age-associated diseases (Joseph et al., 2009; Smith et al., 2010; Middleton and 

Yaffe, 2010; Daffner et al., 2010). The health-promoting lifestyle intervention known as the most 

effective to date is aerobic exercise (Warburton et al., 2006). According to several studies in 

people, chronic physical exercise helps maintain cognitive function in older age and reduces the 

risk of cognitive decline and Alzheimer’s disease (AD) (Angevaren et al., 2008, Lautenschlager et 

a., 2008; Taaffe et al., 2008; Barnes et al., 2008; Geda et al., 2010). In individuals with established 

cognitive impairment, a physical exercise program induces positive mood and behavior, but the 

amelioration of cognitive function is modest (Heyn et al., 2004; Deslandes et al., 2009). More 

studies are required to establish conditions for overcoming physiological brain deterioration in AD 

patients. Physical exercise has been tested against AD pathology in several AD mouse models and 

has resulted in beneficial effects at moderate stages of pathology (Adlar et al., 2005; Pietropaolo et 

al., 2008; Um et al., 2008; Yuede et al., 2009; Giménez-Llort et al., 2010). At advanced AD 

stages, promising results of higher cognitive performance after running wheel exercise have been 

reported in the aged Tg2576 mouse (Nichol et al., 2007; Parachikova et al., 2008) but not in the 

aged APP23 mouse (Wolf et al., 2006). In a previous study with the 3xTg-AD mouse model 

(Oddo et al., 2003) we demonstrated that chronic running wheel starting at 1 month of age greatly 

improves behavior and cognition tested at 7 months of age (García-Mesa et al., 2011). Therefore, 

6 months of voluntary physical exercise significantly ameliorated nerve cell and brain tissue 

functionality throughout early and moderate stages of AD pathology. One of the observed benefits 

was an amelioration of the cerebral oxidative stress of 3xTg-AD mice (Resende et al., 2008; 

Giménez-Llort et al., 2010; García-Mesa et al., 2011). However, exercise induction of antioxidant 

defense (Radak et al., 2008) may not be enough to protect highly oxidized brain tissue at advanced 

AD stages. Similarly, specific neuroprotective mechanisms triggered by physical exercise such as 

secretion of neurotrophic factors and strengthening of synaptic function (Cotman and Berthold, 

2002; Cotman et al., 2007; García-Mesa et al., 2011) may not be enough to recover from advanced 

brain damage.  

Treatment with the hormone melatonin has also been reported to be neuroprotective in AD 

mouse models (Matsubara et al., 2003; Feng et al., 2004; Olcese et al., 2009; Spuch et al., 2010). 

Melatonin is a pleiotropic molecule, believed to have anti-aging activity because of its powerful 

effects as an antioxidant, anti-inflammatory and enhancer of mitochondrial activity (Carretero et 

al., 2009; Acuña-Castroviejo et al., 2011; Hardeland et al., 2011). In humans, melatonin levels 

decrease with normal aging and even more so in the presence of neurodegenerative diseases (Kunz 
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et al., 1999; Liu et al., 1999; Zhou et al., 2003). Treatment of AD patients with melatonin to 

regulate their circadian rhythm has suggested a possible therapeutic action beyond wakefulness 

and sleep quality (Srivasan et al., 2005; Furio et al., 2007; Cardinale et al., 2010).  

Combined healthy lifestyle options have an additive effect in the decrease of human 

mortality rates and induce a commensurate decrease of biological age (Khaw et al., 2008). 

Therefore, two anti-aging therapies with promising effects against AD risk, such as physical 

exercise and melatonin, may be effective against AD-related neurodegeneration on simultaneous 

administration. Thus, the aim of this study was to test for additive effects of melatonin with 

physical exercise against advanced AD neurodegeneration, with emphasis on mitochondrial status. 

We chronically treated 3xTg-AD mice with either melatonin, voluntary exercise or both from 6 to 

12 months of age. The study was initiated at a stage of already overt AD pathology and cognitive 

loss (Oddo et al., 2003; Giménez-Llort et al., 2007; García-Mesa et al., 2011) that progressed to 

advanced brain damage in the untreated 3xTg-AD mice at the termination stage (Oddo et al., 

2003; Giménez-Llort et al., 2007). 

 
 

1. Materials and Methods 

 

1.1. Animals 

The 3xTg-AD mouse strain harboring familial AD mutations PS1/M146V, APPSwe and 

tauP301L, was genetically engineered at the University of California Irvine (Oddo et al., 2003). 

Male 3xTg-AD mice from the Spanish colony of homozygous mice, established in the Medical 

Psychology Unit, Autonomous University of Barcelona (Giménez-Llort et al., 2006), were used in 

the present study. The non-transgenic (NTg) mouse colony had the same genetic background 

hybrid (129 x C57BL6) as 3xTg-AD. Genotypes were confirmed by PCR analysis of DNA 

obtained from tail biopsies. Animals were maintained in Macrolon cages under standard laboratory 

conditions of food and water ad libitum, 22 ± 2 ºC and 12 h light / 12 h dark cycle (lights were 

turned on at 9:00 h. and turned off at 21:00 h. local time). 

The exercise and melatonin treatments, general behavioral studies and necropsies were 

performed at the facilities of the animal unit of the University of Barcelona, under approval from 

the local animal experimentation ethics committee (CEEA, UB). All the studies were performed in 

accordance with Spanish legislation concerning the protection of animals used for experimental 

and other scientific purposes and the European Communities Council Directive (86/609/EEC) on 

this subject.  

 

1.2. Treatments 
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Six-month old 3xTg-AD  mice were divided into four different treatment groups (n = 8-10 

per group), as follows: (i) Tg, 3xTg-AD mice control group; (ii) Tg-M, 3xTg-AD mice that 

received melatonin in their drinking water; (iii) Tg-E, 3xTg-AD mice subjected to physical 

exercise; and (iv) Tg-ME, 3xTg-AD mice that both received melatonin and were subjected to 

exercise. A fith group of 6-month old NTg mice was added as an NTg control. The mice were 

housed 4-5 animals per cage, 2 cages per group. 

Melatonin (Sigma-Aldrich, Madrid, Spain) was dissolved in a minimum volume of 

absolute ethanol in bottles protected from light and added to the drinking water at a concentration 

that would yield a daily dose of 10 mg/kg b.w. (average per mouse for each cage). The initial 

concentration of melatonin was established in a preliminary study of water consumption per 

mouse. Thereafter, bottles were changed twice a week. The mice were weighed, and their weight 

and the amount of water consumed in each cage were recorded. These date were used to adjust the 

concentration of melatonin whenever necessary. The concentration of ethanol in the final solution 

was 0.066%. The control groups received this vehicle in the drinking water. Physical exercise was 

implemented by free access to one running wheel present in the housing cage (Activity Wheel 

Cage System for Mice, Techniplast, Buguggiate, Italy), as described previously (García-Mesa, et 

al., 2011). The average running distance (Km) per mouse for each cage was calculated from the 

total counts for each wheel per week. 

Treatments were administrated chronically for 6 months. At treatment termination, the 

mice were 12 months old and were evaluated for physical condition, behavior and cognition, and 

killed for tissue analysis two weeks later. 

 

1.3.  Sensorimotor function 

The body weight of the mice was measured at the beginning and end of the treatments 

period.  

Their sensorimotor responses were evaluated by a standard task battery as previously 

described (García-Mesa, et al., 2011). Briefly, reflexes (visual reflex and posterior legs extension 

reflex tests) were measured as the limb extension response after holding the animal by its tail and 

slowly lowering it towards a black surface. Motor coordination and equilibrium were assessed by 

means of distance covered and the latency to fall off a horizontal wooden rod and metal wire. 

Prehensility and motor coordination were measured as the distance covered on the wire hang test. 

Muscle strength was measured as the time taken to fall off the wire. All the apparatus was 

suspended 80 cm above a padded table. 

 

1.4. Behavioral and cognition profile 
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Behavioral and cognitive responses were evaluated by a variety of widely used tests, as 

previously described (García-Mesa et al, 2011). Briefly, the corner test was used to assess 

neophobia to a new home-cage by measuring the number of corners visited and rearings during a 

period of 30 s, and the latency of the first rearing. The open field test was utilized to assess the 

horizontal and vertical locomotor activity by counting crossings and rearings, respectively. The 

latency of initial movement, the self-grooming behavior and the number of time the mice urinated 

and defecated were also registered to assess response to a relatively low stress environment. The 

dark and light box test was used to measure anxiousness of behavior. The mice were introduced 

into the black compartment and observed for 5 min. The latency of enter into the lit compartment, 

the time spent in the lit compartment and the horizontal (crossings) and vertical (rearings) activity 

that took place once there were recorded. The numbers of times the mice urinated and defecated 

were also recorded. Boissier’s four hole-board test was used to asses exploratory behavior by 

measuring the number of head-dips and time spent head-dipping at each of the four holes. The 

latencies of movement, first dipping and four hole dipping, and the number of times the mice 

urinated and defecated were also recorded. The Morris water maze (MWM) test was used to test 

spatial learning and memory; it consisted of one day of cue learning of a visual platform and six 

days of place learning for spatial reference memory (four trial sessions per day). On day 7, after 

one trial of place learning, the platform was removed from the maze and the mice performed a 

probe trial. A computerized tracking system (SMART, Panlab S.A., Barcelona, Spain) allowed the 

escape latency during the learning tasks to be measured, along with the time spent in each 

quadrant of the pool after the removal of the platform in the probe trial. All behavioral testing was 

performed during the first hours of the light period, from 9:00 h. to 14:00 h. local time). 

 

1.5. Tissue samples 

After completion of all behavioral and cognition tests, animals were decapitated and 

immediately the brain was dissected on ice to obtain the cerebral cortex and hippocampus. Brain 

tissue samples were stored at −80ºC for further analysis. Animals were killed on two successive 

days between 10:00 h. and 13:00 h. local time (half the number of each group per day).  

The weight of intraabdominal white adipose tissue (WAT), brown adipose tissue (BAT) 

and thymus was recorded and relative weight were calculated as the percentage of total body 

weight of each dissected tissue. 

 

1.6. Lipid peroxidation, glutathione peroxidase, and superoxide dismutase assays 

For lipid peroxidation and enzymatic assays, 100 mg of cerebral cortex tissue was 

sonicated for 30 s in 1 ml of ice-cold 50 mM potassium phosphate buffer containing 1 mM EDTA 
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pH 7.4 and then centrifuged at 12,000 x g for 30 min at 4 ºC. The supernatants were collected and 

stored at -80 ºC until assayed. Enzyme activities and lipid peroxidation were determined as 

described previously (Sebastià et al., 2004). Lipid peroxidation was measured using a Lipid 

Peroxidation Assay Kit from Calbiochem (EMD Biosciences Inc., Darmstadt, Germany). 

Glutathione peroxidase (GPx) activity was determined by spectrophotometrically measuring the 

rate of -nicotinamide adenine dinucleotide phosphate (NADPH) oxidation in the presence of 

hydrogen peroxide. Total superoxide dismutase (SOD) activity was measured using the Ransod 

SOD assay kit (Randox Laboratories Ltd, Crumlin, UK). After total SOD (Cu/Zn SOD and Mn 

SOD) was determined, the samples were again analyzed in the presence of 500 µM KCN to inhibit 

CuZn SOD and to determine Mn SOD activity. Proteins were measured in 10 µl of supernatants 

following the Bradford method.  

 

1.7.  Reduced glutathione and oxidized glutathione assays 

For reduced glutathione (GSH) and oxidized glutathione disulfide (GSSG) assays, 200 mg 

of cerebral cortical tissue was sonicated in 1 ml of 3.3% sulfosalicylic acid. Acid homogenates 

were centrifuged at 12,000 g for 30 min at 4 ºC and supernatant fractions were collected and stored 

at -80 ºC until assayed. The levels of GSH and GSSG were determined as described previously 

(García-Mesa et al., 2011) using an enzymatic assay that is essentially a modification of Tietze’s 

recycling method. Briefly, samples for GSSG determination were first incubated at room 

temperature with 2-vinyl pyridine in order to conjugate any GSH present in the sample, so that 

only GSSG was recycled to GSH. For total glutathione determination, each sample was mixed 

with phosphate buffer containing 1 mM dithiobisnitrobenzoate, 20 U/ml glutathione reductase, and 

1 mM NADPH. The kinetics of the formation of 5-thio-2-nitrobenzoic acid was immediately 

recorded at 30ºC and 405 nm, every 15 s over a 5-min period.  

 

1.8. Mitochondrial DNA quantification 

Mouse mitochondrial DNA (mtDNA) was quantified in hippocampus samples by real-time 

PCR using a Stratagene Mx3005PTM Real-Time PCR system  (Agilent Technologies, Inc., CA, 

USA) as described previously (Spinazzola et al., 2006; López et al., 2009), using primers and 

probes for murine COXI gene (mtDNA) and mouse glyceraldehyde-3-phosphate dehydrogenase 

(nuclear DNA, nDNA) (Spinazzola et al., 2006; López et al., 2009). The values of mtDNA levels 

were normalized by nDNA, and the data are expressed in terms of percentage relative to NTg 

mice. 

 

1.9. Western blotting 
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Protein extracts from hippocampi were obtained in 50 mM Tris/HCl (pH 7.6), 150 mM 

NaCl, 1% Triton X-100, 1 mM PMSF, 1 mM DTT and 10 g/ml aprotinin. Fifteen μg of the 

hippocampus protein extracts were electrophorezed in a PhastGelTM Homogeneous12.5 using a 

PhastSystem instrument (GE Healthcare Europe GmbH, Spain). The proteins were transferred to 

an Amersham Hybond™ ECL™ nitrocellulose membrane (GE Healthcare Europe GmbH, Spain) 

and probed with a Rodent Total OXPHOS Complexes Detection Kit cocktail of antibodies 

supplemented with extra complex II (CII) subunit 30 kDa monoclonal antibody (MitoSciences, 

Eugene, OR, USA) (López et al., 2009). Protein–antibody interactions were detected with 

peroxidase-conjugated horse anti-mouse IgG antibody (BD Biosciences, Spain), using Western 

LightningTM Plus-ECL detection kits (PerkinElmer, Spain). Bands quantification was carried out 

using an Image Station 2000R (Kodak, Spain) and Kodak 1D 3.6 software. Quantitative values of 

the bands corresponding to ATP synthase subunit α (CVα, complex V), ubiquinol-cytochrome-c 

reductase complex core protein 2 (Core2, complex III), cytochrome c oxidase I (COXI, complex 

IV) and NADH-ubiquinone oxidoreductase chain 6 (ND6, complex I) were normalized by 

complex II subunit 30 kDa (CII), and the data are expressed in terms of percentage relative to 

wild-type mice.  

Protein extracts from cerebral cortices were similarly processed using PVDF membranes 

(Immobilon-P, Millipore, Billerica, MA). Membranes with soluble protein were probed with anti-

amyloid- (1:1,000, clone 6E10, 4 kDa, Signet, Emerville, CA) and anti-phospho-tau (1:1,000, 

clone AT8 (Ser202), 55 kDa, Pierce, Rockford, IL). These cerebral cortical blots were normalized 

to those stained with anti-pan actin (1:10,000, 42 kDa, Sigma) and anti-GAPDH (1:2,000, 36 kDa, 

Assay Designs, Ann Arbor, MI), respectively. 

 

1.10. Quantification of coenzyme Q9 and coenzyme Q10 levels 

Coenzyme Q9 (CoQ9) and coenzyme Q10 (CoQ10) from the hippocampus were extracted by 

mixing tissue extracts with 1-propanol. After 2 min vortexing, the solution was centrifuged at 

13,000 rpm for 5 min. The resultant supernatant was injected into an HPLC system (Gilson, WI, 

USA) and the lipid components were separated in a reverse-phase Symmetry C18 3.5 m, 4.6 x 

150 mm column (Waters, Spain), using a mobile phase consisting of methanol, ethanol, 2-

propanol, acetic acid (500:500:15:15) and 50 mM sodium acetate at a flow rate of 0.9 ml/min. The 

electrochemical detector consisted of an ESA Coulochem III with the following settings: Guard 

cell (upstream of the injector) at +900 mV; and conditioning cell at –600 mV (downstream of the 

column) followed by the analytical cell at +350 mV. CoQ9 and CoQ10 concentrations were 

estimated by comparison of the peak areas with those of standard solutions of known 

concentrations (López et al., 2010). The results are expressed in ng CoQ/mg protein. 
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1.11. Determination of melatonin brain levels 

Steady-state brain melatonin levels were measured in two additional groups of 3xTg-AD  

mice that were treated with melatonin or vehicle. Mice were housed in the same conditions as 

those in the main study and given melatonin at a daily dose of 10 mg/kg b.w. (average per mouse 

for each cage) or the corresponding vehicle.  Mice were treated for 3 months and then killed 

immediately (without behavior testing). The hippocampi (11-17 mg each one) were processed 

individually. Tissue was sonicated in 400 l of 0.01 mM phosphate buffer containing 0.15 M 

NaCl, pH 7.4, and centrifuged at 3,000 g for 10 min at 4ºC. An aliquot of the supernatant was 

frozen at -80 ºC for protein determination. Another supernatant aliquot (320 l) was mixed with 1 

ml chloroform, shaken for 20 min and centrifuged at 9,000 g for 10 min at 4ºC. The organic phase 

was washed twice with 0.05 M carbonate buffer, pH 10.25. Five hundred l of this mixture was 

evaporated to dryness in a SPD2010 SpeedVac System (Thermo Scientific, Asheville, NC, USA). 

The residue was dissolved in 100 l of an HPLC mobile phase for processing. 

The melatonin content of the extracted samples was measured by HPLC (Shimadzu, 

Shimadzu Corporation, Duisburg, Germany) with a 4.6 x 150 mm reverse-phase C18 Sunfire 

Column (Waters Corporation, Milford, MA, USA). After stabilizing the column with the mobile 

phase, samples (40 µl) were injected onto the HPLC system. The mobile phase consisted in 0.1 M 

sodium phosphate, 0.1 mM EDTA, and 25% acetonitrile, pH 5.2, at a flow rate of 1 ml/min. A 

standard curve for melatonin was constructed with 17.9, 35.9, 71.9, 143.7, and 287.5 pg/ml. 5-

fluorotryptamine was used as the internal standard. The fluorescence of the samples was measured 

with a fluorescence detector (Shimadzu, RF-10A XL, Shimadzu Corporation, Duisburg, 

Germany), with excitation/emission wavelengths of 285/345 nm, respectively. Melatonin 

concentration is expressed in pg/mg protein. 

 

1.12. Statistics  

Results are expressed as mean ± SEM. Statistical analysis was performed using GraphPad 

Prism 4 software. All quantitative results showing a single factor (treatment) were analyzed by 

one-way ANOVA followed by Newman-Keuls multiple comparison test. This post hoc test was 

used to compare the means of all groups to the NTg mice, those of the Tg-M, Tg-E and Tg-ME 

groups to the Tg mice, and the Tg-M, Tg-E and Tg-ME groups. Whenever two factors were 

present (treatment and either: week of running, day of latency acquisition, MWM quadrant, 

mitochondrial complex or CoQ type) we used two-way ANOVA followed by Bonferroni post hoc 

tests to compare the means. Non-parametric data (reflex test) were compared using the chi-square 
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and Fisher’s exact tests. Student’s t-test was used where indicated to confirm the reliability of 

some results (removal test in the Tg-E group and phospho-tau levels in Tg and Tg-E groups). 

 

 

2. Results 

 

2.1. Melatonin treatment did not change mouse running behavior 

There was no decrease of basal melatonin levels in the 3xTg-AD mice (10.59 ± 0.45 pg/mg 

protein) as compared to the NTg mice (9.51 ± 0.73 pg/mg protein) at 12 months of age. In the 

middle of the 6-month treatment period (9-month-old mice), the level of melatonin in the 

hippocampus of the mice dosed with melatonin was 66.09 ± 2.24 pg/mg protein and in the 

undosed mice it was 10.65 ± 0.65 pg/mg protein. At the time of the final tissue collection (two 

weeks after the end of the 6-month treatment period) brain melatonin was back to untreated animal 

levels and therefore it did not interfere with the biochemical tissue analyses.  

Melatonin treatment of the Tg-ME mouse group did not change the steady-state level of 

running activity from that of the undosed Tg-E group (Fig. 1). There was only a slower 

progression of the Tg-ME group during the first week of training until the plateau was reached as 

compared to Tg-E group [two-way ANOVA, effect of week factor F(23,432) = 4.577, p < 0.0001, and 

effect of week x treatment interaction F(23,432) = 1.813, p = 0.0126]. 

 

2.2. Melatonin and physical exercise differentially improved body fitness and immunoendocrine 

status 

Melatonin, exercise, and the combination of melatonin plus exercise did not change the 

body weight of the 3xTg-AD mice, as there were no significant differences between any 

experimental groups (Fig. 2A). However, all three treatments significantly reduced the WAT 

weight of the 3xTg-AD mice (Fig. 2B) [one-way ANOVA F(4,42) = 5.644, p = 0.001]. Melatonin 

treatment was the most effective, with a reduction of WAT weight to values lower than those of 

the NTg mice. BAT and thymus weight in the Tg group were significantly lower than in the NTg 

group, while melatonin treatment (Tg-M) protected against this effect (Fig. 2C, D) [F(4,42) = 3.354, 

p = 0.018, for BAT weight; F(4,42)  = 4.355, p = 0.005 for thymus weight]. 

 

2.3. Melatonin and physical exercise ameliorated sensorimotor reflexes 

In the sensorimotor characterization (Table 1), the untreated 3xTg-AD mice showed poorer 

reflex responses than the NTg mice, whereas the reflex responses of the treated groups (Tg-M, Tg-

E and Tg-ME) were similar to those of the NTg group [X2
4 = 11.051, p = 0.026]. The 3xTg-AD 
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mice showed better responses in the wooden rod and metal wire tests than the NTg mice, as 

previously reported for this mouse colony (Giménez-Llort et al., 2010; García-Mesa et al., 2011). 

Coordination was further improved by exercise. 

 

2.4. Melatonin and physical exercise differentially improved behavioral exploratory responses 

 All the treatments ameliorated the neophobia of the 3xTg-AD mice (Fig. 3A, B) [F(4,54) = 

4.683, p = 0.0026, for the number of corners, and F(4,54) = 5.410, p = 0.001 for latency of vertical 

activity]. The 3xTg-AD mice showed greater latency of movement and lower activity in the open 

field than the NTg mice (Fig. 3C-F). The treatments did not ameliorate total activity but reduced 

latency of movement [F(4,54) = 3.032, p = 0.025, for horizontal movement latency; F(4,54) = 4.931, p 

= 0.0018, for vertical movement latency]. The self-grooming time was significantly increased in 

the 3xTg-AD mice as compared to the NTg mice, and it was ameliorated by all treatments (Fig. 

3G) [F(4,54) = 3.044, p = 0.025]. Also, the high number of urine spots in the Tg group was reduced 

to the NTg group values by exercise in the Tg-E group and exercise plus melatonin in the Tg-ME 

group (Fig. 3H) [F(4,54) = 6.564, p = 0.0003].  

The anxious behavior of the 3xTg-AD mice in the dark-light box was shown by an 

increased latency of entry to the lit area (Fig. 4A). This behavior was reduced by exercise, as 

shown by the decreased latency of the Tg-E and Tg-ME groups down to values similar to those of 

the NTg group [F(4,54) = 4.405, p = 0.0037]. However, the positive changes in the time of 

permanence in the lit area were not significant (Fig. 4B).  

The results in the hole-board test confirmed the reduced exploratory behavior of the 3xTg-

AD mice (Fig. 4C, D). Mice in the Tg group waited longer before entering to the first hole and 

dipped less number of times their heads than their counterparts of the NTg group. These 

behavioral changes were improved to the NTg group values by voluntary exercise and exercise 

plus melatonin treatments [F(5,54) 5.050, p = 0.0016, and F(5,54) 6.211, p = 0.0003, respectively].  

In both the later tests, the number of urine spots (as indicative of emotional changes) 

increased in the Tg group and was reduced to the NTg group levels in the Tg-E and Tg-ME groups 

(not shown), as also happened in the open field test. No changes in the number of times the mice 

defecated were registered across the treatment groups (not shown). 

 

2.5. Melatonin and physical exercise differentially improved learning and memory loss  

The results obtained in the cue learning and the acquisition and retention of spatial learning 

in the MWM are shown in Fig. 3E,F. All animals were able to reach the platform during the cue 

learning. However, there were differences between the groups in the distance covered (Fig. 3E, 

results indicated as CL) [one-way ANOVA, F(4,58) = 8.675, p < 0.0001]. Mice of the Tg-M group 
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followed shorter pathways than those of the NTg, Tg and Tg-E groups. There were differences 

between the groups in the 6-day task acquisition curves (Fig. 4E) [two-way ANOVA, effect of day 

factor F(5,324) = 30.31, p < 0.0001, treatment factor F(4,324) = 5.360, p < 0.0003, and day x treatment 

interaction F(20,324) = 1.541, p < 0.0660]. The Tg-ME group showed a better acquisition than the 

groups subjected to either treatment alone did. Final acquisition of the exercised mice in the Tg-E 

and Tg-M groups was also significantly better than that of the Tg group. In the removal test, the 

untreated 3xTg-AD mice were not able to locate the right platform quadrant whereas all the 

treatments improved the spatial retention of learning (Fig. 4F). Melatonin was the best treatment as 

the Tg-M group response was similar to that of the NTg group [two-way ANOVA, effect of 

quadrant factor F(1,94) = 89.33, p < 0.0001, and quadrant x treatment interaction F(4,94) = 9.094, p< 

0.0001], whereas the improvement due to exercise alone only reached statistical significance by 

Student’s t-test [Tg-E group, Platform vs. Opposed quadrant, p = 0.01]. 

 

2.6. Melatonin and physical exercise differentially reduced brain pathology 

Levels of soluble amyloid- oligomers and phospho-tau in the cerebral cortex tissue of 

3xTg-AD mice indicated significant amyloid and tau pathologies (Fig. 5A, B). All the treatments 

reduced the levels of a distinct oligomer band of approximately 24 kDa which might correspond to 

hexameric assemblies of amyloid- [F(4,16) = 4.150, p < 0.0245] (Fig. 5A). Levels of tau with 

abnormal phosphorylation at Ser202 were reduced by some of the treatments [F(4,27) = 2.906, p < 

0.0384] (Fig. 5B). Melatonin and melatonin plus exercise induced a clear tendency to decrease the 

levels of phospho-tau, but the multiple comparison post-hoc test did not reveal statistical 

significance, possibly due to the dispersion of the data. Student’s t-test showed a significant 

increase of phospho-tau only in the untreated 3xTg-AD mice and those submitted to physical 

exercise alone [Tg and Tg-E groups vs. NTg group, p = 0.01]. 

 

2.7. Melatonin and physical exercise reduced brain oxidative stress 

Brain oxidative stress in the 3xTg-AD mice was demonstrated by the increased 

lipoperoxidation levels of their cerebral cortex as compared to their NTg counterparts (Fig. 6A). 

All the treatments reduced the elevated LPO levels of the Tg group [F(4,31) = 29.18, p < 0.0001]. 

Also, reduced glutathione (GSH) levels in the Tg group were significantly lower than in the NTg 

group, and they were increased by all the treatments assayed (Fig. 6B) [F(4,31) = 16.59, p < 0.0001]. 

However, no differences in oxidized glutathione (GSSG) levels were detected across the mouse 

groups (Fig. 6C). The GSH/GSSG ratio showed that the Tg-M group had the best glutathione 

cycle status (Fig. 6D) [F(4,31) = 115.2, p = 0.0026].  
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Activities of the antioxidant enzymes GPx, GR, CuZnSOD and MnSOD were significantly 

lower in the Tg group than in the NTg group (Fig. 6E-H). The GPx activity of the Tg group was 

significantly increased by melatonin (Tg-M) and exercise (Tg-E) and partially recovered under the 

combined treatment (Tg-ME) (Fig. 6E) [F(4,31) = 6.91, p = 0.0004]. Although not statistically 

significant, all treatments partially ameliorated GR activity (Fig. 6F). CuZnSOD activity was 

improved by melatonin (TgM) and exercise (Tg-E) (Fig. 6G) [F(4,31) = 4.49, p = 0.0056]. All the 

treatments assayed were effective in increasing MnSOD activity (Fig. 6H) [F(4,31) = 5.646, p = 

0.0016]. 

 

2.8. Melatonin and physical exercise ameliorated mitochondrial DNA 

Analysis of mitochondria showed a depletion of mtDNA in the hippocampus of the 3xTg-

AD mice as compared to the NTg mice, measured as a 20% depletion of the mtDNA-encoded 

protein COXI (Fig. 7). All the treatments protected against such mtDNA reduction, and the Tg-M, 

Tg-E and Tg-ME groups all showed mtDNA content similar to that of the NTg group [F(4,15) = 

7.298, p = 0.0018]. 

 

2.9. Melatonin and physical exercise induced a synergistic increase of mitochondrial functional 

markers  

Impairment of mitochondrial oxidative phosphorylation in the Tg group was demonstrated 

by a deficiency of the markers assayed for the different mitochondrial complexes: complex I, 

ND6; complex III, Core2; complex IV subunit 1, COXI; and complex V, CVα (Fig. 8A). The Tg-

ME mice (combined melatonin and physical exercise treatment) showed values indistinguishable 

from those of NTg mice for all the oxidative phosphorylation mitochondrial markers, whereas only 

a slight improvement resulted for treatments alone (Tg-M and Tg-E) [two-way ANOVA showed 

an effect of the treatment factor F(4,60) = 17.68, p < 0.0001, but no effect of the mitochondrial 

complex factor]. 

CoQ10, another component of the electron transporter chain that is essential for ATP 

generation in mitochondria, did not show any significant changes across groups (Fig. 8B). 

However, its precursor, CoQ9, was significantly enhanced by melatonin plus exercise treatment 

(Tg-ME) (Fig. 8C) [two-way ANOVA showed an effect of the treatment factor F(4,56) = 3.334, p < 

0.05, and the coenzyme F(1,56) = 56.57, p < 0.0001]. 

 

 

Discussion  
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This study examined in 3xTg-AD male mice whether the combined treatment of melatonin 

plus voluntary exercise afforded higher neuroprotection than each treatment alone. Several mice 

were housed in each cage throughout the study. Therefore, we anticipated some slight differences 

in the amount of melatonin received from the drinking bottle, or the time of exercise performed in 

the running wheel, between animals in the same cage. However, the reliability of the results 

obtained with mice housed in social groups, where they freely interacted and where the treatments 

were administrated with minimum disturbance, overcame these inconveniences. Six-month 

chronic treatments began at a moderate pathology phase, when animals already present cognitive 

loss and brain pathology. Overall, both melatonin and exercise groups showed a remarkable 

amelioration of cognitive and brain redox states up to NTg mouse levels. Differential 

neuroprotection was obtained against other alterations. Namely, behavioral and psychological 

symptoms of dementia were protected by exercise and senescence parameters by melatonin. 

Interestingly, the combined treatment induced neuroprotective effects against brain mitochondria 

deterioration. 

Twelve-month-old 3xTg-AD mice show greater behavioral and cognitive deterioration 

than 7-month olds, as evaluated in a previous study with voluntary physical exercise (García-Mesa 

et al., 2011). This is in agreement with an advanced stage of AD at the age of 12 months (Oddo et 

al., 2003). The 12-month-old mice also showed bodily deterioration that confirms the reported 

neuroimmunoendocrine impairment of male 3xTg-AD mice (Giménez-Llort et al., 2008). 

Nevertheless, the amount of voluntary running activity from 6 to 12 months of age was similar to 

that from 1 to 7 months of age (García-Mesa et al., 2011). Twelve-month-old NTg mice were 

behaviorally and cognitively healthy, as we saw from their good results for all tests, as compared 

with previous results at younger ages (García-Mesa et al., 2011). 

Melatonin induced a large decrease of WAT and an increase of BAT and thymus weights 

in the 3xTg-AD mice, in keeping with its proposed modulatory and invigorating action on the 

immunoendocrine function (Carrillo-Vico et al., 2005; Tan et al., 2011; Hardeland et al., 2011). 

The decrease of thymus involution brought about by the melatonin treatment indicates an 

improvement in the immunosenescence of these mice (Giménez-Llort et al., 2008). Regulation of 

both WAT and BAT are important for maintaining the correct balance between energy intake and 

expenditure, and it is associated with healthy immunoendocrine function. Age- or diet-related 

increases of WAT in rats have been reduced by melatonin, through mechanisms associated with 

leptin and insulin regulation (Rasmussen et al., 1999; Ríos-Lugo et al., 2010). An increase in 

thermogenic BAT is known to be induced by melatonin through activation of brown adipocytes 

(Tan et al., 2011). Running induced a decrease in WAT in the 3xTg-AD mice in agreement with 

the reported beneficial effects of exercise against abdominal obesity (Slentz et al., 2009). 
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Unpredictably, the combined melatonin plus exercise treatment was less effective in ameliorating 

the peripheral immunoendocrine markers than melatonin alone. Exercise itself has been reported 

to counteract immunosenescence in older humans (Senchina et al., 2007). It is assumed that 

physical exercise enhances immune surveillance and vigilance through an increase in and 

modulation of circulating immune cells (Kruger and Mooren, 2007; Maltseva et al., 2011). We 

speculate that the low level of stress induced by chronic physical exercise interferes with the 

immunoendocrine system rescue status induced by melatonin in highly impaired 3xTg-AD mice. 

Physical exercise induced a positive response in a range of behavior tested in the 12-

month-old 3xTg-AD mice, in keeping with previous results reported at the younger age of 7 

months (García-Mesa et al., 2011). Neuroprotection induced by physical exercise was similarly 

efficacious at both ages, despite the higher amyloid and tau pathology of the older mice (Oddo et 

al., 2003; Mastrangelo et al., 2008). Physical exercise improved 3xTg-AD mouse fitness as shown 

by a decrease in their abnormally high WAT levels to NTg mouse levels, as discussed above, and 

an improvement in their motor coordination and equilibrium. It also ameliorated the impaired 

reflexes tested. Physical exercise decreased the latency of activity and the level of emotionality in 

all the behavioral tests (corner, open field, dark and light, and hole-board tests), which became 

similar to NTg mouse levels. Physical exercise also increased exploratory activity (hole-board 

test) and reduced anxiety (dark and light test). These results are in agreement with the anxiolytic 

and mood improvement effect of physical exercise shown in AD patients (Teri et al., 2003; 

Williams et al., 2007; Williams and Tappen, 2008). Physical exercise is known to activate 

multiple molecular pathways that enhance brain activity and upregulate the expression of growth 

factors that regulate synaptic plasticity, neurogenesis and angiogenesis, and can exert a direct 

effect on neural function (Cotman et al., 2006; Cotman et al., 2007). Hence, through these 

mechanisms, physical exercise may normalize behavioral and psychological symptoms of 

dementia associated with AD. In contrast, melatonin only weekly improved 3xTg-AD mouse 

behavior, but in the combined treatment it did not offset the effects of physical exercise and it also 

ameliorated reflex responses. Similarly, non-cognitive effects were not induced by chronic 

melatonin treatment of APP+PS1 double-transgenic mice, as tested in somatosensorial and anxiety 

tests (Olcese et al., 2009). Indeed, no antidepressant action has been reported for melatonin in 

humans, but it could help mood disorders through restoring the circadian rhythm (Quera-Salva et 

al., 2011). Sleep disturbances and insomnia in AD patients are at least partially caused by greatly 

decreased melatonin levels (Liu et al., 1999; Zhou et al., 2003). Twelve-month-old 3xTg-AD mice 

did not show decreased brain melatonin levels even though some circadian changes have been 

reported in these mice (Sterniczuk et al., 2010).  
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Twelve-month-old 3xTg-AD mice were not capable of spatial learning. Their curve of 

latency acquisition was almost flat and they were not able to later locate the platform position in 

the MWM tests. This indicates a high degree of functional disturbance of the hippocampus, one of 

the main brain regions affected in AD (Rossler et al., 2002). Learning and memory appeared to be 

improved by either physical exercise or melatonin, and also the combined treatment; however, the 

combined treatment facilitated acquisition and melatonin alone produced the best outcome in the 

retention of learning of the platform position. Melatonin also induced the best outcome in the 

previous assay of cue learning. Therefore, melatonin might facilitate visuospatial attention and 

motivation. In the retention of spatial learning, physical exercise was more effective in 7-month-

old 3xTg-AD male mice whose treatment starting at the age of 1 month (García-Mesa et al., 2011) 

than in the present 12-month-old mice whose treatment started at 6 months of age. Therefore, the 

exercise treatment was less neuroprotective against cognitive loss in 3xTg-AD mice with 

advanced AD pathology. Their response is in between the amelioration of aged Tg2576 mice 

(Nichol et al., 2007; Parachikova et al., 2008) and the poor response to exercise of aged APP23 

mice (Wolf et al., 2006). Differential responses are probably derived from the degree of AD 

pathology of the different mouse models and its interplay with the neuroprotective mechanisms 

triggered by physical exercise (see above). Physical exercise has been shown to yield poor results 

with regard to amyloid- and phospho-tau pathology in the hippocampus of 7-month-old 3xTg-

AD (García-Mesa et al., 2011). Physical exercise reduced the levels of soluble amyloid- 

oligomers but did not decrease phospho-tau in the cerebral cortex of 12-month-old 3xTg-AD 

mice. Previous mixed results regarding insoluble or soluble amyloid- decrease after exercise 

treatment in other AD transgenic mice in the presence of a cognitive improvement (Parachikova et 

al., 2008; Yuede et al., 2009; Mirochnic et al., 2009) suggest that clearance of amyloid is not the 

main neuroprotective mechanism of physical exercise, but rather a gain in cognitive reserve is. 

Nevertheless, even a modest therapeutic effect of physical exercise once cognitive impairment is 

established represents a huge benefit for AD patients (Heyn et al., 2004; Lautenschlager et al., 

2008). The combined treatment with exercise and melatonin induced a more greatly improved 

cognitive response than exercise alone. Melatonin itself showed a significant neuroprotective 

effect against cognitive loss. Two previous studies of chronic melatonin treatment of young AD 

mice of the strains APP695 (Feng et al., 2004) and APP+PS1 double-transgenic (Olcese et al., 

2009), also reported amelioration of learning and memory deficits in several tests. Nonetheless, 

the latter study reported no improvement in spatial memory in the MWM test. Melatonin may act 

directly against amyloid- aggregation (Pappolla et al, 1998; Olcese et al., 2009) and tau 

hyperphosphorylation (Wang et al., 2007) through its extraordinary antioxidant potential (see 

below). Accordingly, melatonin reduced both amyloid- oligomers and phospho-tau in the 
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cerebral cortex of 12-month-old 3xTg-AD mice. These effects and protection of cholinergic 

activity in the hippocampus and cortex (Feng et al., 2004) may be the basis of its cognitive 

benefits in AD. However, melatonin treatment does not protect against advanced brain amyloid 

pathology in old Tg2576 mice (Quin et al., 2005). Few studies of melatonin treatment have been 

performed on mild cognitively impaired or AD patients, but some cognitive amelioration has been 

reported at the early phases of cognitive loss (Srivasan et al., 2005; Furio et al., 2007; Cardinale et 

al., 2010). The decrease in melatonin levels correlates with the severity of dementia and appears to 

be a consequence rather than a cause of the disease (Magri et al., 1997). Restoration of melatonin 

levels is likely to induce a noticeable benefit in AD patients whenever melatonin receptors are 

functional (Hardeland et al., 2011).  

Cerebral cortex tissue from 12-month-old 3xTg-AD mice presented higher levels of 

oxidative stress markers than that from younger mice (Resende et al., 2008; García-Mesa et al., 

2011), demonstrating a progression of oxidative damage in advanced stages of AD. In those 

reports, 3xTg-AD mouse tissue showed a depletion of GSH together with induction of SOD 

enzymes and GSH cycle enzymes, indicative of a functional antioxidant defense. In the present 

study, the depletion of both GSH and antioxidant enzymes showed exhaustion of the brain 

antioxidant capacity. All the treatments (melatonin, exercise and melatonin plus exercise) 

protected against glutathione cycle impairment and the decrease in antioxidant enzymes. 

Consequently, oxidative damage was reduced to NTg mouse levels. It is known that regular 

physical exercise can attenuate oxidative damage in the brain by reducing the production of free 

radicals and stimulating the antioxidant systems (Radak et al., 2005) and this would therefore 

protect from AD-related oxidative damage (Radak et al., 2010). Melatonin further increased GSH 

levels over the control values, in agreement with its considerable antioxidant capacity. Melatonin 

is a potent scavenger of destructive hydroxyl and many other free radicals as well as other 

oxidizing radicals (Hardeland et al., 1993; Tan et al., 2002). Moreover, it has the capacity to up-

regulate antioxidant enzymes, as we found in 3xTg-AD mice; mainly GPx (Hardeland 2005). The 

remarkable antioxidant capacity of melatonin is considered the principal mechanism by which it 

protects cells (Reiter et al., 2001; Hardeland et al., 2011). Melatonin protects against oxidative 

damage in the mouse models Tg2576 (Matsubara et al., 2003), APP695 (Feng et al, 2006) and 

APP+PS1 double-transgenic (Olcese et al., 2009), and also in rats injected with amyloid- in the 

hippocampus (Rosales-Corral et al., 2003). However, melatonin treatment at old age in Tg2576 

mice did not afford protection against oxidative damage (Quinn et al. 2005). Oxidative damage is 

a biochemical hallmark of AD and a possible link between aging and AD (Castellani et al., 2008; 

García-Matas et al., 2010). Oxidative-stress-related derangements of neurotransmission and 
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general brain function in aging and AD could be prevented or delayed by physical exercise and/or 

melatonin or other potent antioxidants and enhancers of antioxidant cell defenses. 

Untreated 12-month-old 3xTg-AD mice had impaired mitochondrial machinery, as shown 

by partial depletion of mtDNA and decreased markers for the respiratory chain complexes in the 

hippocampal tissue. mtDNA is an extra-chromosomal genetic element and therefore it is highly 

vulnerable to oxidative damage. Oxidative lesions in the mtDNA lead to its depletion (Oka et al., 

2008). In AD, amyloid- may be the agent that triggers or facilitates the mitochondrial deleterious 

cycle of oxidative stress and respiratory impairment (Casley et al., 2002; Rhein et al., 2009). 

Several defects of the mitochondrial electron transport chain enzymes have been reported in AD, 

but the most consistent is deficiency in cytochrome c oxidase (COXI, complex IV) (Maurer et al., 

2002). In 3xTg-AD mice, this complex was shown to be heavily damaged, as was ATP synthase 

(CV, complex V), whereas decreases in complex I and complex III were not statistically 

significant. mtDNA levels were preserved completely in the 3xTg-AD mice treated with 

melatonin or physical exercise. Both treatments had antioxidant potential against the increased 

oxidative stress of the brain tissue, as discussed above, that would mitigate mtDNA damage and 

thus avoid its depletion. The amelioration of respiratory mitochondrial complexes was partial in 

the mice treated with either melatonin or physical exercise; however, the combined treatment 

(melatonin plus physical exercise) induced levels of mitochondrial complex markers 

indistinguishable from those of NTg mice. Interestingly, this combined treatment increased the 

hippocampal levels of CoQ9, the precursor of CoQ10 (ubiquinone), indicating a protective 

response against oxidative stress. CoQ10 is an essential factor in the respiratory chain and acts 

both as an antioxidant and electron acceptor for complexes I and II (Ernest and Dallner, 1995). Its 

deficiency is considered a culprit in age-related mitochondrial disturbances (Ochoa et al., 2011). 

Therefore, melatonin and physical exercise exerted a synergistic effect in the protection of the 

mitochondrial functionality. Melatonin is highly effective in preserving of mitochondria 

respiration processes because it improves the electron transport chain while it reduces oxidative 

damage (Acuña-Castroviejo et al., 2001). Exercise, particularly aerobic exercise, has been 

reported to increase mitochondrial biogenesis in experimental animals through activation of 

PGC1 (Viña et al., 2009). Activation of PGC1 by melatonin has been demonstrated in aged 

cultured neurons (Tajes et al., 2009). Therefore, this and other pathways probably contributed to 

the healthy status of mitochondria in the 3xTg-AD mice treated with the combination of melatonin 

and exercise. 

In conclusion, anti-aging therapies and healthy life-style options such as melatonin and 

physical exercise showed a noticeable potential to increase cognitive reserve and bodily resistance 

to AD-related changes. In 12-month-old 3xTg-AD mice, they induced partially different survival 
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and neuroprotection pathways that resulted in some additive or synergistic neuroprotective effects 

when the two treatments were combined. The study was initiated at 6 months of age when 3xTg-

AD mice are in a stage of moderate pathology, and therefore both melatonin and exercise showed 

therapeutic effects by resversing many analyzed parameters to NTg levels. However, more studies 

should be done to conclude a possible therapeutic effect of restoration of function linked to a 

decrease in amyloid- and tau pathology by melatonin, and to a lesser extend by physical exercise. 

Similarly to the EPIC-Norfolk prospective population study, where the combination of physical 

exercise plus another three healthy life-style options predicted a 4-fold difference in total mortality 

(Khaw et al., 2008), these combined treatments may significantly alleviate AD incidence in the 

population. 
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Figure Legends       
 
Fig. 1. Wheel-running activity of 3xTg-AD (Tg) mice. Mice were subjected either to a treatment 

of voluntary physical exercise with free access to a running wheel (Tg-E) or a combination of 

exercise and melatonin (Tg-ME) from 6 months to 12 months of age. Melatonin at a dose of 10 

mg/kg/day was administrated via drinking water. Melatonin treatment did not affect the running 

activity of the mice after the first two weeks of training. The distance (kilometers) run per mouse 

was calculated as the average of the distance covered by the 4-5 animals in each cage in a week. 

Values are mean ± SEM, n = 7-13. Statistics: *p < 0.05 compared to Tg-ME. 

 

Fig. 2. Differential effects of melatonin, voluntary exercise and melatonin plus exercise treatments 

on immunoendocrine function in 3xTg-AD (Tg) mice. (A) There were no significant differences 

in total body weight between non-transgenic (NTg) mice, Tg mice and Tg mice subjected to 

melatonin (Tg-M), exercise (Tg-E) or melatonin plus exercise (Tg-ME). Weights of: (B) white 

adipose tissue (WAT); (C) brown adipose tissue (BAT); and (D) thymus, are expressed as a 

percentage of total body weight. Differences in these values between Tg mice and NTg mice were 

offset by physical exercise and melatonin plus exercise, whereas melatonin alone caused a great 

reduction in WAT. Values are mean ± SEM, n = 7-15. Statistics: * p < 0.05, ** p < 0.01 compared 

to NTg; # p < 0.05, ## p < 0.01 compared to Tg. 

 

Fig. 3. Differential effects of melatonin, voluntary exercise and melatonin plus exercise treatments 

on the neophobic behavior (A, B) and the open field behavior (C-H) of 3xTg-AD (Tg) mice.  In 

the corner test, alterations of corner number (A) and latency of vertical activity (B) in Tg mice 

were ameliorated by melatonin (Tg-M) and to a greater extent by physical exercise (Tg-E). In the 

open field test, changes in horizontal (C, D) and vertical (E, F) activity, self-grooming (G) and 

emotionality (H) of Tg mice were reduced by exercise or melatonin and exercise combined (Tg-

ME). Values are mean ± SEM, n = 7-15. Statistics: * p < 0.05, ** p < 0.01, *** p < 0.001 

compared to non-transgenic (NTg) mice; # p < 0.05, ## p < 0.01 compared to Tg; & p < 0.05, && 

p < 0.01 compared to Tg-M. 

 

Fig. 4. Voluntary physical exercise reduced anxiety (A, B) and increased exploratory behavior (C, 

D) in 3xTg-AD (Tg) mice, while melatonin treatment was more effective than exercise on the 

Morris water maze behavior (E, F). Increased anxiety and reduced exploration of Tg mice in the 

dark and light box test (A, B) and Boissier’s 4 hole-board test (C, D) respectively, were reduced 

by exercise (Tg-E) and melatonin plus exercise (Tg-ME), but not by melatonin (Tg-M). 

Melatonin, physical exercise and melatonin plus exercise treatments ameliorated the spatial 
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memory acquisition and retention of 3xTg-AD (Tg) mice assessed in the Morris water maze test 

(E, F). (E) Distance covered to reach the visible platform during the cue learning day (CL) was 

reduced by melatonin treatment (Tg-M). Distance covered to reach the platform location during 

the 6 days of training in Tg mice were ameliorated by exercise and melatonin plus exercise. (F) 

Time spent swimming in the platform quadrant of the pool (Platform Q) and the opposite quadrant 

(Opposed Q) when the platform was removed to test the retention of learning was improved by all 

treatments. Melatonin was the best treatment for improving spatial learning retention of Tg mice. 

Values are mean ± SEM, n = 7-15. Statistics A-E: * p < 0.05, *** p < 0.001 compared to 

nontransgenic (NTg) mice; # p < 0.05, ,## p < 0.01, ### p < 0.001 compared to Tg; & p < 0.05, 

&& p < 0.01, &&& p < 0.001  compared to Tg-M. Statistics F: * p < 0.05, *** p < 0.001 

compared to the platform quadrant; Tg-E platform location was significant according to Student’s 

t-test (see text). 

 

Fig. 5. Representative immunoblots and densitometry analyses of (A) amyloid- and (B) phospho-

tau in the cerebral cortex of non-transgenic mice (NTg) mice, 3xTg-AD (Tg) mice, and Tg mice 

treated with melatonin (Tg-M), physical exercise (Tg-E), and melatonin plus exercise (Tg-ME). 

(A) Immunoblot probed with 6E10 antibody showed a distinc band of approximately 24 kDa 

corresponding to hexameric aggregates (6-mer) of amyloid-. The immunoreactivity of this band 

was normalized to that of pan actin. Levels of soluble oligomers of amyloid-in Tg mice were 

reduced by all the treatments. (B) Tau protein abnormally phosphorylated at Ser202 was labeled 

with AT8 antibody and the blot densities were normalized to that of GAPDH. Phospho-tau levels 

were increased in Tg mice and reduced by melatonin and melatonin plus exercise treatments. 

Values are mean ± SEM, n = 5 - 6. Statistics:  ** p < 0.01 compared to NTg; ## p < 0.01  

compared to Tg. Levels of Tg and Tg-E phospho-tau in (B) were significanty different from NTg 

according to Student’s t-test (see text). 

 

Fig. 6. Melatonin, physical exercise and melatonin plus exercise treatments ameliorated cerebral 

cortical redox status of 3xTg-AD (Tg) mice. Tg mice showed increased lipoperoxidation (LPO) 

(A), lower levels of reduced glutathione (GSH) (B), but no significant changes of oxidized 

glutathione (GSSG) (C) or of the GSH/GSSG (D) as compared to non-transgenic (NTg) mice. 

Oxidative stress changes were ameliorated to the corresponding NTg levels by all treatments. Tg 

mice had reduced activity levels of the antioxidant enzymes glutathione peroxidase (GPx) (E), 

glutathione reductase (GR) (F), CuZn superoxide dismutase  (CuZn-SOD) (G) and Mn-SOD (H). 

The loss of enzymatic defense was mitigated by melatonin, exercise and/or melatonin plus 

exercise. Values are mean ± SEM, n = 5-8. Statistics:  * p < 0.05, *** p < 0.001 compared to NTg,  
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# p < 0.05, ## p < 0.01, ### p < 0.001 compared to Tg, & p < 0.05  compared to Tg-M, $ p < 0.05 

compared to Tg-E. 

 

Fig. 7. Melatonin, physical exercise and melatonin plus exercise treatments countered the 

depletion of mtDNA in the hippocampus of 3xTg-AD (Tg) mice. Tg mice had diminished levels 

of mtDNA. All treatments induced levels of mtDNA similar to non-transgenic (NTg) mouse 

levels. Results are normalized to those of nDNA. Values are mean ± SEM, n = 4. Statistics:  *** p 

< 0.001 compared to NTg; ## p < 0.01, ### p < 0.001 compared to Tg. 

 

Fig. 8. Levels of mitochondrial proteins in the hippocampus of nontransgenic (NTg) mice, 3xTg-

AD (Tg) mice, and Tg mice subjected to melatonin (Tg-M), physical exercise (Tg-E), and 

melatonin plus exercise (Tg-ME). (A) Representative immunoblot and densitometry analysis of 

proteins from the respiratory chain complexes. The immunoreactivity of each band is normalized 

to that of complex II (CII) protein. Reduced levels of phosphorylative oxidation markers 

cytochrome c oxidase I (COXI, complex IV) and ATP synthase subunit α (CVα, complex V) in Tg 

mice were slightly ameliorated by all the treatments but only recovered to NTg levels with the 

combined treatment of melatonin plus exercise. NADH-ubiquinone oxidoreductase chain 6 (ND6, 

complex I) and ubiquinol- cytochrome-c reductase complex core protein 2 (Core2, complex III) 

were also increased to NTg levels in the Tg-ME group. (B, C) A tendency to decrease both 

coenzyme Q10 (CoQ10) (B) and its precursor coenzyme Q9 (CoQ9) (C) in Tg mice was offset by 

melatonin and physical exercise. The combined treatment of melatonin plus exercise induced an 

increase of CoQ9 to above the values of NTg. Values are mean ± SEM, n = 4-7. Statistics: * p < 

0.05 compared to NTg; # p < 0.05 and ## p < 0.01 compared to Tg. 
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Table 1 

Effects of melatonin, voluntary physical exercise and both combined treatments on the sensorimotor function of 3xTg-AD mice. 

 

      

 NTg 

(n=15) 

 

 Tg 

(n=13) 

 

 Tg-M 

 (n=10) 

 

  Tg-E 

  (n=14) 

 

Tg-ME 

   (n=7) 

 

Reflex test 

Incidence of both reflexes 

 

15/15 

 

8/13* 

  

9/10 

 

14/14# 

 

7/7 

 

Wooden rod test 

 

Equilibrium (mean latency to fall, s) 10.0+ 1.4 18.2+ 1.2*** 18.6+ 0.9*** 19.9+ 0.1*** 20.0+ 0.0*** 

Coordination (mean distance, cm)   0.2+ 0.1   1.1+ 0.1   1.2+ 0.5   8.2+1.3***, ###, &&&   9.9+ 1.8***, ###, &&& 

 

Wire rod test 

 

Equilibrium (mean latency to fall, s)   2.0+ 0.7   2.7+ 0.5   4.1+ 0.6   6.1+ 1.2**, #   5.7+ 1.5 

Coordination (mean distance, cm)      0+ 0      0+ 0      0+ 0   1.1+ 0.5   0.9+ 0.5 

 

Wire hang test (2 trials 5 s) 

 

Strenght (mean latency to fall, s)   1.1+ 0.3   2.7+ 0.4**   3.1+ 0.5**   2.7+ 0.3**   2.6+ 0.4* 

Coordination (mean distance, cm) 0.03+ 0.03 0.04+ 0.04 0.10+ 0.07 0.14+ 0.11 0.07+ 0.07 

Elements of support (n)   1.1+ 0.04   1.7+ 0.14***   1.9+ 0.16***   2.1+ 0.16***   2.1+ 0.13*** 

 

Wire hang test (1 trial 60 s) 

 

Strength (mean latency to fall, s)   1.8+ 0.5 11.8+ 4.8   9.8+ 5.7   3.5+ 0.5   8.5+ 4.7 

Coordination (mean distance, cm)      0+ 0   1.1+ 0.7   0.7+ 0.5   0.2+ 0.1   0.9+ 0.7 

Elements of support (n)   1.0+ 0   2.0+ 0.2***   1.9+ 0.2***   2.4+ 0.2***   2.4+ 0.3*** 

 

Note: NTg and Tg, non transgenic and 3xTg-AD mice housed in standard conditions; Tg-M and Tg-E, Tg mice submitted to a 6-month melatonin 

and voluntary exercise treatment, respectively; Tg-ME, Tg mice submitted to both tratments. Results are the mean ± SEM. Statistics: *p<0.05, 

**p<0.01 and ***p<0.001 compared to NTg; #p<0.05 and ###p<0.001 compared to Tg; &&&p<0.001 compared to Tg-M. 
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Fig. 6 
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Fig. 7 
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