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ABSTRACT 

Many inflammatory processes involve cAMP. Pharmacological manipulation of cAMP 

levels using specific phosphodiesterase (PDE) inhibitors provokes an anti-inflammatory 

response. The aim of this study was to investigate changes in the pattern and levels of 

expression of mRNAs coding for the cAMP-specific PDE4 family and subfamilies in 

mouse brain during the immediate acute immune response provoked by an 

intraperitoneal injection of lipopolysaccharide (LPS). PDE4B, and furthermore the 

splice variants PDE4B2 and PDE4B3 were the only mRNAs that showed altered 

expression. While PDE4B2 presented increased expression at both 3 and 8 h post-

injection, PDE4B3 mRNA showed decreased expression that reached a minimum 8 h 

post-injection. PDE4B2 mRNA upregulation was mainly observed in endothelial and 

macrophage/neutrophil cell populations in the leptomeninges, and the downregulation 

of PDE4B3 was mainly observed in oligodendrocytes throughout the brain. Our results 

clearly illustrate the distinctive anatomical distribution and cellular localization of the 

PDE4Bs during neuroinflammation, and emphasize the importance of PDE4B splice-

variant-specific inhibitors as therapeutic tools. 

 

Keywords: neuroinflammation, In situ hybridization, COX, TNF-α, anatomy  

 

INTRODUCTION 

Every day we are exposed to bacteria and viruses that could provoke systemic infection. 

The negative impact that such infection may have on the central nervous system (CNS) 

is mediated, among others, by the production of pro-inflammatory cytokines in the 

periphery, and is normally referred to as sickness behavior (Hart 1988; Konsman et al., 
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2002). Neurodegenerative diseases such as Alzheimer’s disease and multiple sclerosis 

can also be exacerbated by systemic infection (Sly et al., 2001; Buljevac et al., 2002).  

Cyclic adenosine monophosphate (cAMP) plays a significant role as a second 

messenger in signal-transduction pathways and is regulated by adenylyl cyclases and 

cyclic nucleotide phosphodiesterases (PDE). Particular attention has been given to the 

PDE4 isoform owing to the anti-inflammatory effects observed after its inhibition in 

vitro and in vivo (reviewed by Torphy 1998; Banner & Trevethick 2004). However, 

inhibition of the PDE4 family implies the general inhibition of four PDE4 subfamilies, 

PDE4A, PDE4B, PDE4C and PDE4D, all of which show tissue- and cell-specific 

distribution (Cherry & Davis 1999; Pérez-Torres et al., 2000; Miró X et al., 2002; 

Reyes-Irisarri et al., 2008) as well as intracellular compartmentalization (Houslay & 

Adams 2003; Arp et al., 2003). This characteristic provides many opportunities for 

selective therapeutic targeting (Swinnen et al., 1989; Bender & Beavo 2006) and the 

potential to reduce the incidence of secondary effects attributed to PDE4 inhibition 

(Yamamoto et al., 2006; Boswell-Smith et al., 2006). The emetic side effects observed 

in clinical trials with PDE4 inhibitors (Hebenstreit et al., 1989) are, for example, related 

to the expression of PDE4 mRNAs present in the area postrema (Takahashi et al., 1999; 

Pérez-Torres et al., 2000; Mori et al., 2010). Thus, increased knowledge about the 

anatomical and cellular localization and involvement of the cAMP-specific PDE4 

subfamilies during the acute immune response in the brain may improve their 

therapeutic potential.  

PDE4 represents a family of cAMP-specific PDE consisting of four paralog genes 

(PDE4A–D), each of which can generate multiple splice variants distinguishable by 

their unique N-terminal sequences (Houslay & Adams 2003). More than 20 transcripts 

have been identified from the four genes (Conti & Beavo 2007), and these are classified 
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as long, short and super-short depending on the presence of regulatory regions called 

upstream conserved regions (UCR1 and UCR2) that are linked to the catalytic unit 

(Houslay 1998; Conti 2000). The PDE4B2 isoform is a short variant lacking UCR1, 

while both PDE4B1 and PDE4B3 are long splice variants (Swinnen et al., 1989; Huston 

et al., 1997). Evidence suggests that the PDE4B gene is the predominant subtype 

involved in inflammatory induction by lipopolysaccharide (LPS) in mouse monocytes 

and macrophages (Jin et al., 2005). Furthermore, upregulation of the expression of the 

PDE4B mRNA splice variant PDE4B2 in rat brain has been reported in experimental 

autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (Reyes-

Irisarri et al., 2007).  

Previously we briefly reported the effect of LPS in the expression of the mRNA coding 

for PDE4B splice variants in rat brain (Reyes-Irisarri et al., 2008). The wide use of 

transgenic mice in the neuroimmunology field prompted us to study, by in situ 

hybridization, the mRNA expression of several cytokines together with the PDE4 

subfamilies in the mouse brain following systemic injection of LPS. To further identify 

and characterize the cell populations containing the PDE4B mRNA variations, double 

in situ hybridization studies were performed using several cell markers.  

 

MATERIAL AND METHODS 

Lipopolysaccharide administration  

Six-week-old male C57BL6 mice (15–20 g) were purchased from Charles River 

Laboratories (France). All experimental procedures followed the European 

Communities Council Directive of November 24, 1986 (86/609/EEC), and were 

approved by University of Barcelona and Generalitat de Catalunya ethics committees. 

Every effort was made to minimize the number of animals used and their suffering. The 
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mice were maintained on a 12-h light/dark cycle at a constant environmental 

temperature with free access to food and water for one week prior to experimentation. 

A dose-response curve for PDE4B mRNA expression was obtained using the following 

doses of LPS (serotype 055:B5, Sigma-Aldrich, Steinheim, Germany): 0.1, 0.3, 1, 5, 10 

mg/kg (n = 3/dose) dissolved in 0.9% NaCl. Based on this dose-response curve and in 

order to obtain unambiguous mRNA expression for double in situ hybridization 

experiments, 10 mg/kg bacterial LPS was subsequently administered to the mice by 

intraperitoneal (i.p.) injection. Animals from two separate experiments were killed by 

cervical dislocation at 1 h and 8 h (n = 5/time point), 3 h and 24 h (n = 10/time point) 

after injection. Controls were included to evaluate the effect of injection with vehicle 

(0.9% NaCl) alone (n = 5/experiment). In addition, the selected LPS dose was evaluated 

via a lethality test (Villa & Ghezzi 2004), in which the animals were monitored until 60 

h post-injection (n = 5). 

Tissue preparation 

Brains were removed immediately after cervical dislocation, rapidly frozen on dry ice 

and stored at -20 °C. Coronal tissue sections of whole brain (14 µm thick) were cut on a 

microtome-cryostat (Microm HM500 OM, Walldorf, Germany), thaw-mounted onto 

slides coated with 3-aminopropyltriethoxysilane (Sigma-Aldrich), and stored at -20 °C 

until further processing.  

Hybridization probes 

The oligonucleotide probes complementary to the mRNAs coding for the different PDE 

inflammatory and cell markers are shown in Table 1. The mRNA regions selected for 

each PDE4B splice variant shared no similarities (Reyes-Irisarri et al., 2008). The 

hybridization conditions used to detect all mRNAs are described elsewhere (Pérez-

Torres et al., 2000; Miró et al., 2001; Reyes-Irisarri et al., 2005). All oligonucleotides 
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were synthesized and then purified by high-performance liquid chromatography 

(biomers.net GmbH, Ulm, Germany and Isogen Bioscience BV, Maarsden, The 

Netherlands). The specificity of the autoradiographic signal obtained in the in situ 

hybridization histochemistry experiments was confirmed by a series of routine controls 

as previously described (Pompeiano et al., 1992).  

Oligonucleotides were labeled at their 3´-end using [α-
33

P] dATP (3000 Ci/mmol, New 

England Nuclear, Boston, MA, USA) with recombinant terminal 

deoxynucleotidyltransferase (TdT) (Roche Diagnostics GmbH, Penzberg, Germany). 

All vascular cell adhesion molecule-1 (VCAM-1), glial fibrillary acidic protein (GFAP), 

microtubule-associated protein (MAP-2), myelin basic protein (MBP), and platelet-

activating factor receptor (PAFR) oligonucleotides (100 pmol) were individually non-

radioactively labeled with TdT (Roche Diagnostics GmbH) and digoxigenin (DIG)-11-

dUTP (Boehringer Mannheim, Mannheim, Germany) according to a previously 

described procedure (Schmitz et al., 1991). Labeled probes were purified using 

ProbeQuant G-50 Microcolumns (GE Healthcare, Buckinghamshire, UK). 

In situ hybridization histochemistry 

The protocols for single- and double-label in situ hybridization histochemistry were 

based on previously described procedures (Tomiyama et al., 1997; Landry et al., 2000) 

and have been published elsewhere (Serrats et al., 2003; Reyes-Irisarri et al., 2007). 

For film autoradiography, hybridized sections were exposed to Biomax-MR (Kodak, 

Rochester, NY, USA) films for 2–20 days at -70 °C with intensifying screens. Double in 

situ hybridized sections were treated as described in (Landry et al., 2000). They were 

then exposed in the dark at 4 °C for 6 weeks, developed in a Kodak D19 (Kodak) 

developer for 5 min, and fixed in Ilford Hypam fixer (Ilford). 

Analysis of the results 
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For single in situ hybridization experiments, semi-quantitative measurements of film 

optical densities were conducted using an AIS computerized image system (Imaging 

Research, St Catharines, Ontario Canada). Sections were stained with cresyl-violet to 

identify brain structures with the aid of the Franklin and Paxinos Mouse Brain Atlas 

(Franklin & Paxinos 2007). The optical densities corresponding to the following regions 

were measured on autoradiograms obtained from coronal tissue sections: Cornu 

ammonis fields (CA1–2, CA3), dentate gyrus (DG), hippocampal fissure (hf), 

subfornical organ (SFO), cingulate cortex (Cg), nuclei of the inferior colliculus (IC) and 

leptomeninges (lepto.).    

Statistical comparisons using the factors brain region and treatment were carried out by 

separate two-way analyses of variance followed by post hoc analysis (Bonferroni’s test) 

for treatment and time for each brain region. All statistical analyses were performed 

using GraphPad Prism 4 (GraphPad Software, San Diego, CA). 

For double in situ hybridization experiments, tissue sections were examined in an 

Olympus BX51 Stereo Microscope (Olympus, Tokyo, Japan) equipped with bright- and 

dark-field condensers for transmitted light. Hematoxylin & eosin staining was used to 

determine whether the PAFR-positive cells in the parenchyma corresponded to 

infiltrating neutrophils. VCAM-1-, PAFR-, GFAP-, MBP- and MAP-2-positive cells 

exhibited a dark precipitate (alkaline phosphatase reaction product) surrounding or 

covering the nucleus. PDE4B2 and PDE4B3 mRNA hybridization signals were 

considered positive when the accumulation of silver grains over the stained cellular 

profiles was visually estimated to be four times greater than that of the background. 

Quantification was performed by recording the percentage of DIG-positive cells also 

expressing PDE4B2 or PDE4B3 mRNA. Cells were counted using the Visiopharm 
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Integrator System (Visiopharm Software, Hørsholm, Denmark) for stereological 

analysis.  

TUNEL and Fluoro-Jade B staining 

DNA fragmentation was histologically examined using the in situ Apoptosis Detection 

System Fluorescein (Promega, Madison, WI, USA). Sections were stained according to 

the manufacturer's recommendations. Sections were mounted using VECTASHIELD
®

 

+ DAPI (Vector Laboratories, Burlingame, CA, USA) to stain the nuclei.  

For Fluoro-Jade staining sections were fixed in 4% paraformaldehyde in PBS for 20 

min and rinsed in distilled water three times for 5 min. They were then immersed in 

80% ethanol/1% sodium hydroxide for 5 min, followed by 70% ethanol and distilled 

water for 2 min each. The slides were then transferred to a solution of 0.06% potassium 

permanganate for 10 min to block background staining. After an additional water rinse, 

the sections were stained for 20 min in 0.0004% Fluoro-Jade B (Millipore, Temecula, 

CA, USA) and 0.1% acetic acid. The slides were then rinsed in water, dried, soaked in 

xylene, and mounted with Entellan. 

Lectin staining and immunohistochemistry 

For detection of T-cells a polyclonal rabbit antibody was used to stain anti-human CD3 

(Dako Cytomation, Glostrup, Denmark, # A 0452) prepared against a synthetic peptide 

comprising amino acids 156–168 from the cytoplasmic part of the human CD3ε-chain 

coupled to thyroglobulin. Lycopersicon esculentum (Tomato) lectin (Vector 

Laboratories) was used to stain microglial cells. In brief, sections were fixed at 4 °C in 

4% paraformaldehyde and then incubated in 1% H2O2 (Sigma-Aldrich) in 1X PBS. 

Preincubation and incubation with anti-human CD3 and biotinylated goat anti-rabbit 

antibody (Vector Laboratories) or lectin and ExtrAvidin-peroxidase (Sigma-Aldrich) 

were carried out in a 1x PBS solution containing 2% normal goat serum (Vector 
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Laboratories). The primary antibody, anti-human CD3, was incubated for 1 h at 37 °C 

and lectin was incubated overnight at 4 °C, followed by incubation with biotinylated 

secondary antibody or ExtrAvidin-peroxidase respectively, and subsequent incubation 

in ABC solution (Vectastain Elite ABC Kit; Vector Laboratories) according to the 

manufacturer’s instructions. The color reaction was performed using diaminobenzidine 

tetra hydrochloride (DAB) solution (0.05 M Tris-HCl pH 7.0, 0.3 mg/ml DAB (Sigma-

Aldrich), 10 µl/ml dimethyl sulfoxide (Sigma-Aldrich), 0.64 mg/ml NaN3 (Merck, 

Darmstadt, Germany) and 0.06 µl/ml H2O2 (Sigma-Aldrich) at room temperature for 5 

minutes each. The sections were mounted in Mowiol (Calbiochem). 

Preparation of the figures  

Images from film autoradiograms were obtained using a Wild 420 macroscope (Leica 

Microsystems, Wetzlar, Germany) equipped with a digital camera (DXM1200 F, Nikon, 

Tokyo, Japan) and ACT-1 Nikon software. Microphotography was performed with an 

Olympus BX51 Stereo Microscope (Olympus) equipped with a digital camera (DP71, 

Olympus). Figures were assembled using Adobe Photoshop (Adobe Systems, San Jose, 

CA, USA); only contrast and brightness were adjusted to optimize the images. Figures 

illustrating double in situ hybridization and magnification of lectin staining consist of 

high-magnification images taken in multiple (3–4) focal planes, merged using Cell^P 

analysis software (Olympus).  

 

RESULTS 

No severe effects on cell survival were observed 24 h after LPS administration. A 

number of necrotic cells were detected in the dentate gyrus of the hippocampus when 

tissue sections were stained with Fluoro-Jade B (Fig. 1A). Deoxynucleotidyl 

transferase-mediated dUTP-nick end labeling (TUNEL) experiments also revealed a 
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few apoptotic cells in the same brain area (Fig. 1B). No other brain region investigated 

showed positive staining for either Fluoro-Jade B or TUNEL 24 h after injection (data 

not shown). The lethality test showed that the LPS dose provoked septic shock in 

animals at a later time point based on a mortality rate of approximately 80%, 60 h after 

LPS injection. 

Expression of inflammatory markers following LPS administration 

To validate our animal model of acute immediate neuroinflammation we first analyzed 

the response of four typical inflammatory markers. Visual analysis of images from film 

autoradiograms obtained after in situ hybridization histochemistry showed a time-

dependent response. For cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), tumor 

necrosis factor-α (TNF-α) and VCAM-1 mRNA, the initial increase in expression was 

observed 1 h after administration, followed by a peak at 3 h (Fig. 2A–H), and a 

subsequent decline after 8 and 24 h (data not shown). The highest level of hybridization 

for GFAP mRNA was visible at 24 h (Fig. 2H). 

Microglial activation was observed in the circumventricular organs (CVOs) and brain 

regions proximal to the leptomeninges in response to LPS administration (Fig. 3), and 

morphological changes were identified 3 h and 8 h post-injection (Fig. 3B, C). No 

infiltrating lymphocytes (CD3
+
) were observed in any of the brain regions analyzed 

(data not shown). 

Expression of cAMP-specific PDE mRNAs following LPS administration 

We first identified the basal mRNA expression of the PDE4B family (data not shown) 

and the four PDE4B splice variants (Fig. 4) in the mouse brain. Following systemic LPS 

injection the relative optical densities showed no changes in mRNA expression for 

PDE4A, PDE4D or the PDE4B splice variants PDE4B1 or PDE4B4 (data not shown). 

We then focused on the anatomical location of the mRNA alterations observed for 
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PDE4B and the splice variants PDE4B2 and PDE4B3 following LPS administration 

(Fig. 5 and 6). Alterations in the mRNA expression of PDE4B2 were detected even 

following a low dose of LPS (0.3 mg/kg) (data not shown); however, the enhanced 

effect on mRNA expression obtained with the higher dose used here facilitated the 

anatomical description and analysis of our results. 

Leptomeninges 

The leptomeninges are in close contact with the exterior of the brain, and thus may 

show an early reaction to acute immediate inflammation. Under basal conditions, none 

of the PDE4B mRNAs investigated were expressed in the leptomeninges (Fig. 4M–P). 

The observed upregulation of PDE4B mRNA expression (Fig. 5A,D,G) was reflected in 

the increased intensity of PDE4B2 mRNA expression as early as 1 h after LPS 

administration, followed by a peak at 3 h (Fig. 5E, 6A) and a marked return towards 

basal levels 24 h post-injection (Fig. 6A). Interestingly, there was a slight trend towards 

a reduction in PDE4B3 mRNA expression after 8 h (Fig. 5I and 6B), followed by 

recovery at 24 h (Fig. 6B) in this area.  

An increase in both VCAM mRNA-positive cells (endothelial cells) and PAFR mRNA-

positive cells (macrophages/neutrophils) was observed in the leptomeninges in response 

to peripheral inflammation. Double in situ hybridization was used to investigate 

whether the augmented PDE4B2 mRNA expression was associated with the increase in 

inflammatory cell populations. There was notable upregulation of the expression (61% 

and 56%, 3 and 8 h following LPS injection respectively) of PDE4B2 mRNA in the 

VCAM mRNA-positive cells (endothelial cells) (Fig. 7A) following their appearance 

after LPS administration. Likewise, the PAFR-positive cell population expressed this 

mRNA at a similar level (around 50%) (Fig. 7B), regardless of the time since LPS 

injection (Table 2).  
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Inferior colliculus  

This area consists of the external cortex and the nucleus of the brachium of the inferior 

colliculi (IC). The IC was used here as an example of the parenchyma proximal to areas 

in close contact with the exterior of the brain. Under basal conditions the expression of 

PDE4B splice variant mRNAs in this area was moderate to low except for PDE4B3, 

which showed higher levels of hybridization   (Fig. 4M–P). 

Dark patches observed 3 h after injection demonstrated that the mRNA expression of 

PDE4B2 was upregulated in and around microvessels in the IC (Fig. 5E); 8 h post-

injection a clear increase was observed in this entire area (Fig. 5H and Fig. 6A). 

Semiquantitative analysis revealed significant downregulation of PDE4B3 mRNA 

expression 8 h post-injection, followed by a return to basal levels at 24 h (Fig. 6B).  

In this brain area PAFR-mRNA-positive cells and astrocytes (GFAP-mRNA-positive) 

showed the highest percentage of co-expression with PDE4B2 mRNA after 3 h, 

whereas all three cell populations (microglia/macrophages, astrocytes and activated 

endothelial cells) investigated expressed around 35% of PDE4B2 mRNA 8 h after LPS 

administration (Table 2). The PAFR-positive cells in this area likely represent microglia 

and infiltrating macrophages and not neutrophils, since no recruitment/infiltration of 

these was observed with hematoxylin and eosin staining (data not shown).  

With regards PDE4B3 mRNA, oligodendrocytes positive for the mRNA coding for 

MBP expressed this splice variant abundantly (around 70–80%)  (Fig. 8A), with 

reduced co-expression observed following LPS injection. A relatively constant 

percentage of neurons (MAP-2-positive cells) were positive for PDE4B3 mRNA in this 

region (Fig. 8B), with no distinction between time points following LPS-injection or in 

the control (Table 2). The number of cells counted was similar in control and LPS-

injected animals. 
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Subfornical organ and hippocampal formations   

We chose the SFO as an example of one of the CVOs, a brain region lacking a blood–

brain barrier, whereas the hippocampal formations were investigated due to their high 

density of microvessels. Significant alterations in PDE4B2 and PDE4B3 mRNA 

expression were seen in the SFO (Fig. 6). In the hippocampus there was a trend for 

increased PDE4B2 mRNA expression as early as 1 h after LPS administration, with a 

sustained increase at all time points after administration (Fig. 6A). On the contrary, for 

PDE4B3 mRNA, an overall trend for downregulation was observed, beginning 1 h post-

injection (Fig. 6B).  

Cingulate cortex 

The Cg (anterior) also represents part of the parenchyma proximal to areas in close 

contact with the brain exterior. In control animals, PDE4B2 and PDE4B4 mRNA 

showed high levels of hybridization in the external granule cell layer whereas uniform 

expression was observed in other Cg areas (Fig. 4F and H).  The mRNA expression of 

the PDE4B1 and PDE4B3 splice variants was similar in the cortical layers even though 

PDE4B1 showed a somewhat marbled hybridization pattern (Fig. 4E and 4G). PDE4B3 

mRNA was readily expressed in oligodendrocytes (around 70%) in control animals 

(Table 2), and reduced co-expression was observed after LPS administration at both 

time points investigated (data not shown), similar to that observed in the IC. The 

neuronal cell population expressed PDE4B3 mRNA moderately (around 40%) in the 

Cg of both treated and untreated animals (Table 2).  The number of cells counted was 

similar in control and LPS-injected animals. 

  

DISCUSSION 
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Activation of the immune response following systemic infection often results in 

neuroinflammation and consequently in negative effects on the CNS (Park & Shin 

1996; Villa & Ghezzi 2004; Semmler et al., 2005). The objective of our study was to 

analyze the effect of acute immediate neuroinflammation on PDE4 mRNA transcription 

in the brain. The importance of these enzymes in regulating cAMP levels during the 

inflammatory process in the peripheral nervous system is well established (Jin & Conti 

2002; Jin et al., 2005; Reyes-Irisarri et al., 2007; Reyes-Irisarri et al., 2008). Our results 

provide evidence of their importance in the central nervous system.  

We found that the PDE4B subfamily and the two splice variants PDE4B2 and PDE4B3 

were the only cAMP-specific PDE4s that showed altered mRNA expression in mouse 

brain in response to neuroinflammation. The increase in hybridization levels of the 

PDE4B2 isoform complements previous results for rat brain (Reyes-Irisarri et al., 

2008). However, to our knowledge, the decrease in mRNA expression of the PDE4B3 

splice variant observed here has not been described previously. Additionally, our results 

show that PDE4B2 mRNA upregulation was observed in all inflammatory cell 

populations investigated, namely microglia/macrophages, astrocytes and activated 

endothelial cells, with a time-dependent effect. Given the generally high expression of 

PDE4B3 mRNA under basal conditions throughout the brain we postulated that the 

observed reduction would probably be detected in cell populations present in the 

healthy brain. In accordance with this, oligodendrocytes abundantly expressed PDE4B3 

mRNA with reduced levels of expression observed following acute neuroinflammation.  

We should point out that the high dose of LPS used provokes experimental septic shock 

at later time points, leading to apoptosis in the rodent brain (Khan et al., 2002; Semmler 

et al., 2005), and that this is important when considering the pharmacological 

applications of this study. However, the fact that even a low LPS dose provokes 
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alterations in the mRNA expression of PDE4B splice variants illustrates the relevance 

of this work. 

Involvement of PDE4B2 mRNA during acute inflammation in mouse brain 

Our results, together with other reports (Graeber & Streit 1990; Breder et al., 1994; 

Breder & Saper 1996; Elmquist et al., 1997; Quan et al., 1998a; Quan et al., 1998b; 

Laflamme et al., 1999; Schiltz & Sawchenko 2002), suggest the basic involvement of 

leptomeningeal cells during the initial-phase response of acute neuroinflammation, 

followed by activation of the immune response in brain areas in close proximity, 

leading to an extended cellular response throughout the brain. The upregulation 

observed in brain areas proximate to the leptomeninges and other areas of the 

parenchyma in close contact with the CVOs might partly be explained by cross-talk 

between the periphery and the CNS (reviewed in Johnson & Gross 1993). Furthermore, 

direct uptake of LPS through the BBB-endothelium has been suggested in mice after 

high peripheral LPS doses, although the exchange rate was much lower in whole brain 

compared to BBB-deficient areas (Kloss et al., 2001).  

COX-2 and IL-1β hybridization patterns showed a clear initial-phase increase in mRNA 

expression, further confirming neuroinflammation (Elmquist et al., 1997; Quan et al., 

1998b; Schiltz & Sawchenko 2002), and this response was reflected in the patterns 

observed here for PDE4B2 mRNA upregulation. In rat brain, COX-2 is principally 

induced in perivascular cells and moderately induced in endothelial cells following LPS 

administration (Elmquist et al., 1997; Schiltz & Sawchenko 2002). Our results showed 

that the initial PDE4B2 mRNA upregulation was mainly located in endothelial and 

macrophage/microglia cell populations in the leptomeninges. The patchy pattern 

observed around microvessels further suggests a perivascular location of the 

upregulated mRNA. However, no expression of COX-2 was reported in CVOs after 
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inflammatory induction (Quan et al., 1998a), although such brain areas show a strong 

increase in PDE4B2 mRNA following LPS administration. COX-2 transcription is 

induced by IL-1β (Laflamme et al., 1999) and has rate-limiting effects on prostaglandin 

E2 (PGE2) production (reviewed in Goppelt-Struebe 1995). Furthermore, the 

augmenting effect that PGE2 has on intracellular cAMP levels has been shown to have a 

direct impact on PDE4B2 mRNA expression in cell cultures (Oger et al., 2002), 

suggesting that COX-2 might be an important transcriptional regulator for PDE4B2 

mRNA during the acute immediate immune response in the CNS. However, no 

modification of PDE4B2 mRNA expression following LPS administration was 

observed in preliminary results from our laboratory when the mice were treated with a 

well-known COX inhibitor, Indomethacin. Altogether these data suggest that PGE2 is 

not critical for activation of the cAMP cascade and subsequent induction of PDE4B2 

mRNA transcription (D'Sa et al., 2002) in this model of acute neuroinflammation.  

PDE4B2 mRNA expression in the parenchyma, which we report here, is comparable to 

the reported upregulation of the proinflammatory cytokine TNF-α observed in neuronal 

cell groups adjacent to CVOs during the late phase of the cerebral response to LPS 

(Breder et al., 1994). The importance of the PDE4B2 splicing form in the induction of 

TNF-α secretion by circulating leukocytes following LPS administration has been 

demonstrated previously (Jin & Conti 2002). TNF-α is mainly released by macrophages 

and leukocytes in the periphery and by microglia and infiltrating leukocytes and 

macrophages in the CNS (Elmquist et al., 1997; Jin et al., 2005; Lambertsen et al., 

2009). Even though no cellular infiltration (lymphocytes and neutrophils) was detected 

after LPS administration, upregulation of PDE4B2 mRNA expression was observed 8 h 

post-injection in the parenchyma, suggesting that microglia/macrophages could be 

involved. Furthermore, activated astrocytes are also known to release TNF-α, although 
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at much lower levels than microglia (Liberto et al., 2004). We observed upregulation of 

GFAP mRNA 8 h post-injection, with expression continuing to increase after 24 h, and 

we also showed that both activated astrocytes and microglia were positive for PDE4B2 

mRNA in the parenchyma. Taken together, these data suggest that PDE4B2 could play 

an important role in TNF-α secretion in the brain, as in the periphery.       

Further biochemical analyses in cell cultures would form an interesting step towards 

understanding the induction of PDE4B2 mRNA transcription by inflammatory 

components. 

Involvement of PDE4B3 during acute inflammation in mouse brain 

Our results, together with previous reports of the constitutive expression of PDE4B3 

mRNA in primary cerebral cortical neuronal cultures (D'Sa et al., 2002) and its reported 

expression during memory consolidation (Ahmed & Frey 2003) imply a more neuronal 

role for this PDE4B splice variant than that observed for PDE4B2. However, the 

reduced PDE4B3 mRNA levels observed during acute neuroinflammation suggest 

involvement of PDE4B3 in the immunological reaction.  

Decreased PDE4B3 mRNA expression was reflected in the lower percentage of co-

localization with the oligodendrocyte population in the Cg and IC after LPS 

administration. The release of TNF-α and IL-1β from astrocytes and microglia can 

induce oligodendrocyte death (D'Souza et al., 1996; Cai et al., 2003), suggesting that a 

decrease in oligodendrocytes might provoke the downregulation of PDE4B3 expression. 

However, total cell counts were similar at all time points and were comparable to 

control animals, indicating that the decreased mRNA expression in oligodendrocytes is 

related to a lower transcription level. Given the proven anti-inflammatory effect of 

PDE4B inhibition (reviewed in Banner & Trevethick 2004), it seems reasonable to 
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suggest that the natural downregulation of PDE4B3 might have neuroprotective 

consequences.  

In summary, we show that the mRNA expression of the PDE4B splice variants PDE4B2 

and PDE4B3 is clearly and differentially altered in mouse brain following peripheral 

inflammation.  The results obtained here substantiate the possibility of more precise 

pharmacological regulation at a cellular level via splice-variant-specific inhibition. 
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Table 1 List of the oligonucleotides used 

mRNA 
Oligonucleotide  
name 

Accession 
number 

Bp limits 

PDE4A PDE4A/1 L27057 3649-3693 

PDE4B PDE4B/3 NM_017031 2639-2687 

 PDE4B/4 NM_017031 2537-2581 

PDE4B1 PDE4B1/4 AF202732 506-550 

PDE4B2 PDE4B2/2 L27058 545-589 

PDE4B3 PDE4B3/1 U95748 700-744 

 PDE4B3/2 U95748 616-660 

 PDE4B3/3 U95748 556-600 

PDE4B4 PDE4B4/1 AF202733 264-308 

 PDE4B4/3 AF202733 171-215 

PDE4D PDE4D/2 NM_017032 1917-1961 

TNF-α TNF-α/1 NM_013693 397-441 

COX-2 COX-2/1 NM_017232 1848-1893 

 COX-2/2 NM_017232 2710-2754 

 COX-2/3 NM_017232 446-490 

IL-1β IL-1β/1 NM_008361 72-116 

VCAM-1 VCAM-1/1 M84487 63-107 

 VCAM-1/2 M84487 428-472 

 VCAM-1/3 M84487 1107-1151 

GFAP GFAP/1 NM_017009 233-279 

 GFAP/2 NM_017009 1199-1248 

PAFR PAFR/1 U04740 124-168 

 PAFR/2 U04740 1081-1125 

 PAFR/3 U04740 786-840 

 PAFR/4 U04740 976-1020 

MBP MBP/1 M25889 179-223 

MAP-2 MAP-2/1 NM_013066 195-239 

 

COX, cyclooxygenase; GFAP, glial fibrillary acidic protein; IL, interleukin; MAP, 

microtubule-associated protein; MBP, myelin basic protein; PAFR, platelet-activating 

factor receptor; PDE, phosphodiesterase; TNF, tumor necrosis factor; VCAM, vascular 

cell adhesion molecule. 
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Table 2 Quantification of the presence of PDE4B2 or PDE4B3 mRNA in different 

cellular populations  

 

Quantification was performed in leptomeninges, cingulate cortex and nuclei of the 

inferior colliculus of mice sacrificed, 3 and 8 h after intra peritoneal LPS administration 

and control animals. Data are the mean ± SD of five animals and represent the 

percentage of counted cells, endothelial cells (VCAM), microglia/macrophages (PAFR), 

astrocytes (GFAP), oligodendrocytes (MBP) and neurons (MAP), expressing PDE4B2 

or PDE4B3 mRNA. Each percentage was determined from a mean of 61.1 cells, except 

for VCAM and GFAP positive cells in the nuclei of the inferior colliculus and in the 

leptomeningeal areas of control animals where the mean was 28.7 cells (5284 cells 

counted). GFAP, glial fibrillary acidic protein; MAP, microtubule-associated protein; 

MBP, myelin basic protein; ND, not detected; PAFR, platelet-activating factor receptor; 

PDE, phosphodiesterase; VCAM, vascular cell adhesion molecule. 

 

 

 

 

 

 

 

PDE4B2 PDE4B3 
Leptomeningeal cells Nuclei of the inferior colliculus Cingulate Cortex Nuclei of the inferior colliculius 
Control 3h 8h Control 3h 8h Control 3h 8h Control 3h 8h 

VCAM    ND 61 ± 8 56 ± 13    ND 17 ± 13 35 ± 11 
PAFR 17 ± 15 54 ± 14 44 ± 7 23 ± 5  28 ± 7 39 ± 8 
GFAP   9 ± 7 37 ± 11 23 ± 8    ND 53 ± 14 33 ± 13     ND     ND     ND     ND    7 ± 2    8 ± 1 
MBP  80 ± 3  55 ± 13  59 ± 9  71 ± 1  53 ± 6  40 ± 4 
MAP  35 ± 14  43 ± 1  36 ± 10  44 ± 8  35 ± 13  38 ± 7 
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FIGURE LEGENDS 

Figure 1. Presence of necrotic and apoptotic cells following LPS administration. 

Photomicrographs were taken from coronal sections of the dentate gyrus of animals 

sacrificed 24h post-injection. (A) Fluoro-Jade B, (B) TUNEL and DAPI staining. LPS, 

lipopolysaccharide. Scale bar =100 µm. 

Figure 2.  Expression of inflammatory markers and GFAP mRNAs following LPS 

administration. Macroscopic photographs of film autoradiographic show localization 

of the mRNAs coding for the inflammatory markers, COX-2, IL-1β, TNF-α, VCAM-1 

and GFAP following i.p. LPS administration in mouse coronal sections. (B,D,F,H) 

COX-2, IL-1β, TNF-α and VCAM-1 mRNAs expression is prominent in the 

leptomeninges (white arrowheads) and in blood vessels (black arrowheads) 3h after LPS 

administration. (J) GFAP mRNA hybridization levels show a later response with the 

maximum alterations observed 24h after LPS provoked immune activation. 

(A,C,E,G,I): Control: Saline administered i.p. (B,D,F,H): Animals treated i.p. with LPS 

3 hours (J): 24 hours treatment. COX, cyclooxygenase; GFAP, glial fibrillary acidic 

protein; IL-1β, interleukin; LPS, lipopolysaccharide; TNF-α, tumor necrosis factor; 

VCAM, vascular cell adhesion molecule. Scale bar = 5 mm. 

Figure 3.  Activation of microglia following LPS administration. Analysis of the 

effect of LPS administration on lectin-stained microglia. Photomicrographs were taken 

of coronal sections of the leptomeninges and the immediately proximate area of animals 

sacrificed at (B) 3h and (C) 8h post-injection. Note the morphological changes observed 

in microglial ramification following LPS administration (Black arrowheads). (A) 

Control: Saline administered i.p.. LPS, lipopolysaccharide. Scale bars =100 µm and 1 

µm. 
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Figure 4. Expression of PDE4B splice variant mRNAs in mouse brain. Macroscopic 

photographs of film autoradiographic images of coronal sections showing mRNA 

hybridization pattern of PDE4B splice variants (A,E,I,M,Q) PDE4B1, (B,F,J,N,R) 

PDE4B2, (C,G,K,O,S) PDE4B3, and (D,H,L,P,T) PDE4B4  under basal conditions in 

C57BL6 mice. Note the strong labeling in the cerebellar granular layer for all four 

variants. cc, corpus callosum; Cg, cingulate cortex; cp, cerebral peduncle; DG, dentate 

gyrus; lepto., leptomeninges; LPS, lipopolysaccharide; Pir, piriform cortex and PV, 

paraventricular thalamic nuclei. Scale bar = 5mm.   

Figure 5.  Expression of PDE4B2 and PDE4B3 mRNAs following LPS 

administration. Macroscopic photographs of film autoradiographic images of mouse 

coronal sections showing alterations in mRNA hybridization levels of PDE4B2 and 

PDE4B3 splice variants in (A,B) control animals (saline administered i.p.) and (C,D) 

LPS treated animals 3 hours and (E,F) 8 hours after injection. (C) Clearly augmented 

mRNA expression in the leptomeninges (lepto.) is observed for the PDE4B2 splice 

variant 3h after injection, (D) whereas mRNA hybridization levels of the PDE4B3 

splice variant show a slight downregulation at this time point. (E) 8h after injection an 

overall increase in hybridization levels for the PDE4B2 splice variant is observed in the 

parenchyma (IC), the areas in close contact with the brain exterior such as the 

leptomeninges and brain microvessels (mv). Note the general decrease in mRNA 

expression in whole brain section for (F) the PDE4B3 splice variant 8h after LPS 

administration  compared to (B) saline treated mice. IC, nuclei of the inferior colliculus; 

lepto., leptomeninges; LPS, lipopolysaccharide; mv, microvessel PDE, 

phosphodiesterase. Scale bar = 5mm.  

Figure 6.  Alterations in expression of PDE4B2 and PDE4B3 mRNA following LPS 

administration. Effects of LPS administration on the mRNA expression of PDE4B 
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splice variants (A) PDE4B2 and (B) PDE4B3 in different mouse brain areas 1, 3, 8 and 

24h post-injection. Relative optical densities of the mRNA levels in autoradiographic 

films were determined with AIS computerized image analysis system. Data show the 

mean ± SD (n = 5 mice/group). Note the opposite effects provoked by LPS 

administration on mRNA expression for the two PDE4B splice variants. Statistically 

significant differences between the LPS-stimulated and the control groups are 

represented by *P<0.05, **P<0.01, ***P<0.001; Bonferroni posttest. CA1-2, CA3, 

fields of Cornu ammonis; Cg, cingulate cortex; CPu, caudate putamen; DG, dentate 

gyrus; hf, hippocampal fissure; IC, nuclei of the inferior colliculus; lepto., 

leptomeninges; LPS, lipopolysaccharide; PDE, phosphodiesterase; SFO, subfornical 

organ. 

Figure 7. Characterization of cells displaying LPS-altered expression of PDE4B2. 

Cellular localization of PDE4B2 mRNA in activated endothelial, microglial and 

astrocytic cell populations in mouse leptomeninges 3h post-injection. High-

magnification bright-field microphotographs of emulsion dipped sections, 

simultaneously showing mRNA visualized by double in situ hybridization using 
33

P-

labeled oligonucleotides complementary to the mRNA coding for PDE4B2 (clusters of 

dark silver grains), and DIG-labeled oligonucleotides (dark-purple precipitate) for (A) 

VCAM mRNA, endothelial cells, (B) PAFR mRNA, microglial/macrophage cells, or 

(C) GFAP mRNA, astrocytes. Black arrowheads point to digoxigenin-labeled cells, 

white arrowheads to radioactively-labeled cells and double white and black arrowheads 

to double-labeled cells. GFAP, glial fibrillary acidic protein; LPS, lipopolysaccharide; 

PAFR, platelet-activating factor receptor; PDE, phosphodiesterase; VCAM, vascular 

cell adhesion molecule. Bar = 20µm.  
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Figure 8. Characterization of cells displaying LPS-altered expression of PDE4B3. 

Cellular localization of PDE4B3 mRNA (cluster of dark silver grains) in, (A,D) 

oligodendrocytes, MBP mRNA positive cells; (B,E) neurons, MAP mRNA positive 

cells and (C,F) astrocytes, GFAP mRNA positive cells in mouse brain parenchyma (IC) 

in control and 3h post-injection. Black arrowheads point to digoxigenin-labeled cells 

(dark-purple precipitate), white arrowheads to radioactively-labeled cells and double 

white and black arrowheads to double-labeled cells. Note the reduction in PDE4B3 

mRNA after LPS injection (D,E,F). GFAP, glial fibrillary acidic protein; LPS, 

lipopolysaccharide; MAP, microtubule-associated protein; MBP, myelin basic protein; 

PDE, phosphodiesterase. Bar = 20µm.  
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Table 1 List of the oligonucleotides used 

mRNA 
Oligonucleotide  
name 

Accession 
number 

Bp limits 

PDE4A PDE4A/1 L27057 3649-3693 

PDE4B PDE4B/3 NM_017031 2639-2687 

 PDE4B/4 NM_017031 2537-2581 

PDE4B1 PDE4B1/4 AF202732 506-550 

PDE4B2 PDE4B2/2 L27058 545-589 

PDE4B3 PDE4B3/1 U95748 700-744 

 PDE4B3/2 U95748 616-660 

 PDE4B3/3 U95748 556-600 

PDE4B4 PDE4B4/1 AF202733 264-308 

 PDE4B4/3 AF202733 171-215 

PDE4D PDE4D/2 NM_017032 1917-1961 

TNF-α TNF-α/1 NM_013693 397-441 

COX-2 COX-2/1 NM_017232 1848-1893 

 COX-2/2 NM_017232 2710-2754 

 COX-2/3 NM_017232 446-490 

IL-1β IL-1β/1 NM_008361 72-116 

VCAM-1 VCAM-1/1 M84487 63-107 

 VCAM-1/2 M84487 428-472 

 VCAM-1/3 M84487 1107-1151 

GFAP GFAP/1 NM_017009 233-279 

 GFAP/2 NM_017009 1199-1248 

PAFR PAFR/1 U04740 124-168 

 PAFR/2 U04740 1081-1125 

 PAFR/3 U04740 786-840 

 PAFR/4 U04740 976-1020 

MBP MBP/1 M25889 179-223 

MAP-2 MAP-2/1 NM_013066 195-239 

 

COX, cyclooxygenase; GFAP, glial fibrillary acidic protein; IL, interleukin; MAP, 

microtubule-associated protein; MBP, myelin basic protein; PAFR, platelet-activating 

factor receptor; PDE, phosphodiesterase; TNF, tumor necrosis factor; VCAM, vascular 

cell adhesion molecule. 
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Table 2 Quantification of the presence of PDE4B2 or PDE4B3 mRNA in different 

cellular populations  

 

Quantification was performed in leptomeninges, cingulate cortex and nuclei of the 

inferior colliculus of mice sacrificed, 3 and 8 h after intra peritoneal LPS administration 

and control animals. Data are the mean ± SD of five animals and represent the 

percentage of counted cells, endothelial cells (VCAM), microglia/macrophages (PAFR), 

astrocytes (GFAP), oligodendrocytes (MBP) and neurons (MAP), expressing PDE4B2 

or PDE4B3 mRNA. Each percentage was determined from a mean of 61.1 cells, except 

for VCAM and GFAP positive cells in the nuclei of the inferior colliculus and in the 

leptomeningeal areas of control animals where the mean was 28.7 cells (5284 cells 

counted). GFAP, glial fibrillary acidic protein; MAP, microtubule-associated protein; 

MBP, myelin basic protein; ND, not detected; PAFR, platelet-activating factor receptor; 

PDE, phosphodiesterase; VCAM, vascular cell adhesion molecule. 

 

PDE4B2 PDE4B3 
Leptomeningeal cells Nuclei of the inferior colliculus Cingulate Cortex Nuclei of the inferior colliculius 
Control 3h 8h Control 3h 8h Control 3h 8h Control 3h 8h 

VCAM    ND 61 ± 8 56 ± 13    ND 17 ± 13 35 ± 11 
PAFR 17 ± 15 54 ± 14 44 ± 7 23 ± 5  28 ± 7 39 ± 8 
GFAP   9 ± 7 37 ± 11 23 ± 8    ND 53 ± 14 33 ± 13     ND     ND     ND     ND    7 ± 2    8 ± 1 
MBP  80 ± 3  55 ± 13  59 ± 9  71 ± 1  53 ± 6  40 ± 4 
MAP  35 ± 14  43 ± 1  36 ± 10  44 ± 8  35 ± 13  38 ± 7 
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Figure 1. Presence of necrotic and apoptotic cells following LPS administration. 
Photomicrographs were taken from coronal sections of the dentate gyrus of animals sacrificed 24h 
post-injection. (A) Fluoro-Jade B, (B) TUNEL and DAPI staining. LPS, lipopolysaccharide. Scale bar 

=100 µm.  
82x30mm (480 x 480 DPI)  
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Figure 2.  Expression of inflammatory markers and GFAP mRNAs following LPS 
administration. Macroscopic photographs of film autoradiographic show localization of the mRNAs 

coding for the inflammatory markers, COX-2, IL-1β, TNF-α, VCAM-1 and GFAP following i.p. LPS 
administration in mouse coronal sections. (B,D,F,H) COX-2, IL-1β, TNF-α and VCAM-1 mRNAs 
expression is prominent in the leptomeninges (white arrowheads) and in blood vessels (black 

arrowheads) 3h after LPS administration. (J) GFAP mRNA hybridization levels show a later response 
with the maximum alterations observed 24h after LPS provoked immune activation. (A,C,E,G,I): 
Control: Saline administered i.p. (B,D,F,H): Animals treated i.p. with LPS 3 hours (J): 24 hours 

treatment. COX, cyclooxygenase; GFAP, glial fibrillary acidic protein; IL-1β, interleukin; LPS, 
lipopolysaccharide; TNF-α, tumor necrosis factor; VCAM, vascular cell adhesion molecule. Scale bar 

= 5 mm.  
82x222mm (480 x 480 DPI)  
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Figure 3.  Activation of microglia following LPS administration. Analysis of the effect of LPS 
administration on lectin-stained microglia. Photomicrographs were taken of coronal sections of the 

leptomeninges and the immediately proximate area of animals sacrificed at (B) 3h and (C) 8h post-
injection. Note the morphological changes observed in microglial ramification following LPS 

administration (Black arrowheads). (A) Control: Saline administered i.p.. LPS, lipopolysaccharide. 
Scale bars =100 µm and 1 µm.  

172x42mm (480 x 480 DPI)  
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Figure 4. Expression of PDE4B splice variant mRNAs in mouse brain. Macroscopic 
photographs of film autoradiographic images of coronal sections showing mRNA hybridization 

pattern of PDE4B splice variants (A,E,I,M,Q) PDE4B1, (B,F,J,N,R) PDE4B2, (C,G,K,O,S) PDE4B3, 
and (D,H,L,P,T) PDE4B4  under basal conditions in C57BL6 mice. Note the strong labeling in the 

cerebellar granular layer for all four variants. cc, corpus callosum; Cg, cingulate cortex; cp, cerebral 
peduncle; DG, dentate gyrus; lepto., leptomeninges; LPS, lipopolysaccharide; Pir, piriform cortex 

and PV, paraventricular thalamic nuclei. Scale bar = 5mm.    
172x151mm (480 x 480 DPI)  

 
 

Page 38 of 41

Journal of Neuroscience Research

Journal of Neuroscience Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 5.  Expression of PDE4B2 and PDE4B3 mRNAs following LPS administration. 
Macroscopic photographs of film autoradiographic images of mouse coronal sections showing 
alterations in mRNA hybridization levels of PDE4B2 and PDE4B3 splice variants in (A,B) control 
animals (saline administered i.p.) and (C,D) LPS treated animals 3 hours and (E,F) 8 hours after 
injection. (C) Clearly augmented mRNA expression in the leptomeninges (lepto.) is observed for 
the PDE4B2 splice variant 3h after injection, (D) whereas mRNA hybridization levels of the PDE4B3 
splice variant show a slight downregulation at this time point. (E) 8h after injection an overall 

increase in hybridization levels for the PDE4B2 splice variant is observed in the parenchyma (IC), 
the areas in close contact with the brain exterior such as the leptomeninges and brain microvessels 
(mv). Note the general decrease in mRNA expression in whole brain section for (F) the PDE4B3 

splice variant 8h after LPS administration  compared to (B) saline treated mice. IC, nuclei of the 
inferior colliculus; lepto., leptomeninges; LPS, lipopolysaccharide; mv, microvessel PDE, 

phosphodiesterase. Scale bar = 5mm.  
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Figure 6.  Alterations in expression of PDE4B2 and PDE4B3 mRNA following LPS 
administration. Effects of LPS administration on the mRNA expression of PDE4B splice variants (A) 

PDE4B2 and (B) PDE4B3 in different mouse brain areas 1, 3, 8 and 24h post-injection. Relative 
optical densities of the mRNA levels in autoradiographic films were determined with AIS 

computerized image analysis system. Data show the mean ± SD (n = 5 mice/group). Note the 
opposite effects provoked by LPS administration on mRNA expression for the two PDE4B splice 

variants. Statistically significant differences between the LPS-stimulated and the control groups are 
represented by *P<0.05, **P<0.01, ***P<0.001; Bonferroni posttest. CA1-2, CA3, fields of Cornu 
ammonis; Cg, cingulate cortex; CPu, caudate putamen; DG, dentate gyrus; hf, hippocampal fissure; 

IC, nuclei of the inferior colliculus; lepto., leptomeninges; LPS, lipopolysaccharide; PDE, 

phosphodiesterase; SFO, subfornical organ.  
113x156mm (600 x 600 DPI)  

Page 41 of 41

Journal of Neuroscience Research

Journal of Neuroscience Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 7. Characterization of cells displaying LPS-altered expression of PDE4B2. Cellular 
localization of PDE4B2 mRNA in activated endothelial, microglial and astrocytic cell populations in 
mouse leptomeninges 3h post-injection. High-magnification bright-field microphotographs of 

emulsion dipped sections, simultaneously showing mRNA visualized by double in situ hybridization 
using 33P-labeled oligonucleotides complementary to the mRNA coding for PDE4B2 (clusters of dark 

silver grains), and DIG-labeled oligonucleotides (dark-purple precipitate) for (A) VCAM mRNA, 
endothelial cells, (B) PAFR mRNA, microglial/macrophage cells, or (C) GFAP mRNA, astrocytes. 

Black arrowheads point to digoxigenin-labeled cells, white arrowheads to radioactively-labeled cells 

and double white and black arrowheads to double-labeled cells. GFAP, glial fibrillary acidic protein; 
LPS, lipopolysaccharide; PAFR, platelet-activating factor receptor; PDE, phosphodiesterase; VCAM, 

vascular cell adhesion molecule. Bar = 20µm.  
82x194mm (480 x 480 DPI)  

Page 43 of 41

Journal of Neuroscience Research

Journal of Neuroscience Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

  

 

 

Figure 8. Characterization of cells displaying LPS-altered expression of PDE4B3. Cellular 
localization of PDE4B3 mRNA (cluster of dark silver grains) in, (A,D) oligodendrocytes, MBP mRNA 
positive cells; (B,E) neurons, MAP mRNA positive cells and (C,F) astrocytes, GFAP mRNA positive 

cells in mouse brain parenchyma (IC) in control and 3h post-injection. Black arrowheads point to 
digoxigenin-labeled cells (dark-purple precipitate), white arrowheads to radioactively-labeled cells 

and double white and black arrowheads to double-labeled cells. Note the reduction in PDE4B3 mRNA 
after LPS injection (D,E,F). GFAP, glial fibrillary acidic protein; LPS, lipopolysaccharide; MAP, 

microtubule-associated protein; MBP, myelin basic protein; PDE, phosphodiesterase. Bar = 20µm.  
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