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Abstract 

Bi1.6Pb0.4Sr2Co1.8Ox ceramics have been prepared through a polymer solution method using 

polyethyleneimine. From these powders, bulk textured materials have been prepared using a melt 

growth technique. Microstructure has been observed by scanning electronic microscopy (SEM) 

which has shown that samples are mainly composed by the thermoelectric phase, with small 

amounts of secondary phases. Electrical resistivity measurements showed very small values nearly 

constant with temperature, while thermopower increases from room temperature to 650ºC. Power 

factor at 50ºC is about 0.15mW/K2.m and 0.30 at 650ºC, which makes these ceramics good 

candidates for power generation applications. 
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1. Introduction 

Since their discovery, cobaltite ceramics have attracted much attention due to their remarkable 

thermoelectric performances [1,2]. Many works have been published in this field searching for the 

obtention of bulk thermoelectric performances close to those obtained for single crystals [3]. Some 

of them have been devoted to produce preferential grain alignment, as templated grain growth 

(TGG) [4] or reactive templated grain growth (RTGG) [5], hot pressing (HP) [6], spark plasma 

sintering [7] and directional solidification [8]. Other studies have explored the possibility to improve 

thermoelectric properties of these ceramics by applying different synthesis methods which have 

shown to produce a remarkable influence on the final products quality and performances [9,10]. On 

the other hand, it has been demonstrated that small changes on the initial composition can raise 

their thermoelectrical performances. This modification can be realized by cation substitution, for 

example Gd+3 and Y+3 for Ca+2 in Ca-Co-O [11] or Pb+2 for Bi+3 in Bi-Sr-Co-O [3,12]. 

In this contribution it is presented the improvement of thermoelectric characteristics of Bi-Sr-Co-O 

ceramics using, at the same time, these three different modifications of polycrystalline ceramics: 

solution synthesis, doping and texturing techniques to produce high performance bulk 

thermoelectric ceramics. 

 

2. Experimental 

Synthesis of Bi1.6Pb0.4Sr2Co1.8Ox precursors were made in several steps, as described elsewhere 

[9]. Adequate amounts of metallic acetates (analytical grade) were dissolved in a mixture of glacial 

acetic acid and distilled water (∼ 40:60vol.%, respectively). Polyethyleneimine (PEI, 50wt.% water) 

was added (∼ 1 mol PEI:2 moles Bi1.6Pb0.4Sr2Co1.8Ox) to the above solution which turned darker 

immediately clear indication of the cation-nitrogen coordination. Solvent evaporation was produced 

in a rotary evaporator reducing the initial volume to about 20%. Total solvent evaporation is 

performed on a hot plate at about 50ºC until a dark pink thermoplastic paste is obtained. Further 

heating turned this paste to violet colour, followed by a partial decomposition and, finally, producing 

a self propagated combustion at about 300-350ºC which raises immediately the temperature inside 

the crucible to about 750ºC measured with an IR optical pyrometer. 



The obtained powders were manually milled, thermally treated at 750 and 810ºC for 6 hours, with 

an intermediate milling, and isostatically pressed at 200MPa in form of cylinders (∼ 3 mm diameter 

and 100 mm long) which were used as feed in a laser induced melt grown system described 

elsewhere [13]. Growth process was performed at 30 mm/h with a relative rotation between feed 

and seed of 18 rpm. 

As-grown materials were characterized by powder X-ray diffraction (XRD, Rigaku D/max-B). The 

platelet thickness was estimated from X-ray line broadening measurements according to Scherrer’s 

formula [14]. Microstructure was studied by scanning electron microscopy (SEM, JEOL 6000) 

provided with an energy dispersive spectroscopy (EDS) system. 

Electrical resistivity (ρ) and thermopower (S), were simultaneously determined in a LSR-3 

measurement system (Linseis GmbH) between 50 and 650ºC. Power factor (PF=S2/ρ) has been 

calculated in order to determine the samples performances. 

 

3. Results and discussion 

Fig. 1 shows the XRD plot for the Bi1.6Pb0.4Sr2Co1.8Ox samples. Most of the peaks correspond to the 

thermoelectric phase, with minor peaks associated to non-thermoelectrical secondary phases. The 

highest peaks (marked with a *) belong to the misfit cobaltite phase and are in agreement with 

previously reported data [3,12, 15]. The other peaks correspond to the minor Bi0.75Sr0.25Oy phase, 

with rhombohedral )(#mR 1663  space group (marked with a ) [16]. The XRD results indicate 

that Bi1.6Pb0.4Sr2Co1.8Ox phase was obtained as major one with this process. 

Typical fractured section of the as grown materials is presented in Fig.2a. It is clear that samples 

are composed of plate-like grains well stacked each other along the ab planes, most of them 

exceeding 100µm in the a and b directions. On the other hand, their thickness is difficult to be 

measured as they are, in turn, formed by many thin individual grains. In order to overcome this 

problem, the individual plate-like grain thickness has been estimated from the X-ray line broadening 

measurements using the (0 0 2l) diffraction peaks of the Bi1.6Pb0.4Sr2Co1.8Ox phase, according to 

the Scherrer’s formula. The obtained mean value for the grain thickness is about 120nm which 



clearly indicates that the crystal preferential growth is produced along the ab plain (the conducting 

CoO planes). 

 

Fig. 1. XRD plot of the Bi1.6Pb0.4Sr2Co1.8Ox samples. Peaks are marked with a * for the 

thermoelectric Bi1.6Pb0.4Sr2Co1.8Ox phase; and ● Bi0.75Sr0.25Oy non thermoelectric phase ( 3R m). 

 

When observing the longitudinal polished section of nominal composition Bi1.6Pb0.4Sr2Co1.8Ox (Fig. 

2b) it is found that major phase is the grey one with very small amounts of secondary phases (white 

and dark grey contrasts). EDS analysis performed all along the samples showed that the grey 

contrast corresponds to the thermoelectric Bi1.7Pb0.4Sr2Co1.8Ox phase (slightly higher Bi content 

than the nominal composition), white to Bi0.75Sr0.25Oy (determined by XRD), and a new phase, seen 

as dark grey contrast, identified as Sr4Co5Oz. The amount of the different phases has been 

performed on several micrographs using Digital Micrograph software. The determined phase 

amounts have been around 89vol.% thermoelectric Bi1.7Pb0.4Sr2Co1.8Ox phase, 10vol% for the 

Bi0.75Sr0.25Oy and, approximately, 1vol.% Sr4Co5Oz. These data agree with the previously discussed 

XRD data where the Sr4Co5Oz phase has not been detected due to its low proportion. 

The temperature dependence of the resistivity is shown in Fig. 3. ρ(T) curve shows a very small 

variation (about ± 4% from room temperature value) with temperature, with a semiconducting-like 

behaviour from 50 to 300ºC, changing to metallic-like behaviour from 300 to 650ºC. The low 

resistivity values in these samples (around 14 mΩ.cm at room temperature) are due to the good 



grains connectivity and small secondary phases content. Consequently, they are close to those 

obtained on Pb-doped single crystals (∼ 9mΩ.cm at room temperature) [3], and to the values 

obtained for Pb-free textured materials (∼ 15mΩ.cm at 275ºC) [5]. Moreover, they show slightly 

lower resistivities than the obtained on Pb-doped samples prepared by the classical solid state 

method and textured using the laser growth technique (∼ 17mΩ.cm at room temperature) [12], due 

to the higher homogeneity of the precursors obtained by solution synthesis. 

 

Fig. 2. Representative SEM micrographs of nominal composition Bi1.6Pb0.4Sr2Co1.8Ox textured 

ceramics. a) fractured surface, and b) longitudinal polished surface. Different contrasts correspond 

to Bi1.7Pb0.4Sr2Co1.8Ox (grey), Bi0.75Sr0.25Oy (white), and Sr4Co5Oz (dark grey). 

 

As it can be also seen in Fig. 3, where S vs. T is represented, the values are positive in the entire 

temperature range, indicating a predominant hole conduction mechanism. On the other hand, they 

increase almost linearly from room temperature to 450ºC, remaining practically constant at higher 

temperatures. The S values are about 145µV/K at room temperature which are higher than those 

obtained for textured materials (125µV/K at 275ºC) [5] or single crystals (120µV/K at 25ºC) [3]. 

Furthermore, it is also higher than the obtained for laser grown materials prepared from classical 

solid state obtained precursors (120µV/K at 50ºC) [12]. This high value is due to the reduction of the 

cobalt oxidation state in the CoO2 layer, calculated from Koshibae’s relation [17]. These values are 

about 3.50 for the measured samples (instead 3.63 for the stoichiometric ones [18]), clearly 

indicating that the use of the polymer solution method followed by the laser growth method 

generates higher amount of oxygen vacancies than the produced by another techniques. 



 

Fig. 3. Temperature dependence of ρ (•) and S (♦) for textured Bi1.6Pb0.4Sr2Co1.8Ox materials. 

 

Fig. 4. Temperature dependence of PF for textured Bi1.6Pb0.4Sr2Co1.8Ox materials. 

In order to estimate the samples performances, PF values were calculated as a function of 

temperature and represented in Fig. 4. Comparing the graphics from S (Fig. 3) and PF (Fig. 4), they 

follow a very similar evolution with temperature due to the small variations of ρ with temperature in 

the measured range. At room temperature, the PF value of about 0.15mW/K2.m is close to the 

obtained for single crystals (0.16mW/K2.m) [3] and higher than for textured materials 

(0.10mW/K2.m) [5,12]. 

 

4. Conclusions 

Directional growth induced by laser radiation, using homogeneous precursors prepared by a 

polymer solution method and adequate Pb-doping, produces highly textured materials with 



improved thermoelectric properties, close to the obtained in single crystals and higher than usual for 

textured materials. 

 

5. Acknowledgements 

This research has been supported by the Spanish Ministry of Science and Innovation-FEDER 

(Project MAT2008-00429) and by the Gobierno de Aragón (Consolidated Research Groups T12 

and T87). 

 

6. References 

[1] Funahashi R, Matsubara I, Ikuta H, Takeuchi T, Mizutani U, Sodeoka S. Jpn. J. Appl. Phys. 

2000;39:L1127. 

[2] Masset AC, Michel C, Maignan A, Hervieu M, Toulemonde O, Studer F, et al. J. Phys. Rev. B 

2000;62:166. 

[3] Itoh T, Terasaki I. Jpn. J. Appl. Phys. 2000;39:6658. 

[4] Masuda Y, Nagahama D, Itahara H, Tani T, Seo WS, Koumoto K. J. Mater. Chem. 

2003;13:1094. 

[5] Itahara H, Xia C, Sugiyama J, Tani T. J. Mater. Chem. 2004;14:61. 

[6] Nan J, Wu J, Deng Y, Nan C-W. Solid State Commun. 2002;124:243. 

[7] Zhang FP, Lu QM, Zhang JX. J. Alloys Compd. 2009;484:550. 

[8] Diez JC, Rasekh Sh, Madre MA, Guilmeau E, Marinel S, Sotelo A. J. Electronic Mater. 

2010;39:1601. 

[9] Madre MA, Rasekh Sh, Diez JC, Sotelo A. Mater. Lett. 2010;64:2566. 

[10] Rasekh Sh, Madre MA, Sotelo A, Guilmeau E, Marinel S, Diez JC. Bol. Soc. Esp. Ceram. V. 

2010;49:89. 

[11] Liu HQ, Zhao XB, Zhu TJ, Song Y, Wang FP. Current Appl. Phys. 2009;9:409. 

[12] Sotelo A, Rasekh Sh, Guilmeau E, Madre MA, Marinel S, Diez JC. Mater. Res. Bull. 

2011;46:2537. 



[13] Sotelo A, Guilmeau E, Madre MA, Marinel S, Diez JC, Prevel M. J. Eur. Ceram. Soc. 

2007;27:3697. 

[14] Patterson AL. Phys Rev 1939;56:978. 

[15] Kato M, Goto Y, Umehara K, Hirota K, Yoshimura K. Physica B 2006;378-380:1062. 

[16] Mercurio D, Champarnaud-Mesjard JC, Frit B, Conflant P, Boivin JC, Vogt T. J. Solid State 

Chem. 1994;112:1. 

[17] Koshibae W, Tsutsui K, Maekawa S. Phys. Rev. B 2000;62:6869. 

[18] Maignan A, Pelloquin D, Hebert S, Klein Y, Hervieu M. Bol. Soc. Esp. Ceram. V. 2006;45:122. 

 

Figure captions 

 

Fig. 1. XRD plot of the Bi1.6Pb0.4Sr2Co1.8Ox samples. Peaks are marked with a * for the 

thermoelectric Bi1.6Pb0.4Sr2Co1.8Ox phase; and ● Bi0.75Sr0.25Oy non thermoelectric phase ( 3R m). 

 

Fig. 2. Representative SEM micrographs of nominal composition Bi1.6Pb0.4Sr2Co1.8Ox textured 

ceramics. a) transversal fractured surface, and b) longitudinal polished surface. Different contrasts 

correspond to Bi1.7Pb0.4Sr2Co1.8Ox (grey), Bi0.75Sr0.25Oy (white), and Sr4Co5Oz (dark grey),. 

 

Fig. 3. Temperature dependence of ρ (•) and S (♦) for textured Bi1.6Pb0.4Sr2Co1.8Ox materials. 

 

Fig. 4. Temperature dependence of PF for textured Bi1.6Pb0.4Sr2Co1.8Ox materials. 
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