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Abstract.  
 

Neuroinflammation is thought to play a pathogenic role in many neurodegenerative 

disorders including amyotrophic lateral sclerosis (ALS). In this study we demonstrate 

that the expression of NO synthase-2 (NOS2) and cyclooxygenase-2 (COX-2) induced 

by lipopolysaccharide (LPS) + interferon-γ is higher in microglial-enriched cultures from 

G93A-SOD1 mice, an ALS animal model, than from wild-type mice. The levels of 

CCAAT/enhancer binding protein β (C/EBPβ), a transcription factor that regulates 

proinflammatory gene expression, are also upregulated in activated G93A-SOD1 

microglial cells. In vivo, systemic LPS also induces an exacerbated neuroinflammatory 

response in G93A-SOD1 mice vs wild-type mice, with increased expression of GFAP, 

CD11b, NOS2, COX-2, proinflammatory cytokines and C/EBPβ. Finally, we report that 

C/EBPβ is expressed by microglia in the spinal cord of ALS patients. This is the first 

demonstration to our knowledge of microglial C/EBPβ expression in human disease. 

Altogether these findings indicate that G93A-SOD1 expression results in an 

exacerbated pattern of neuroinflammation and suggest that C/EBPβ is a candidate to 

regulate the expression of potentially neurotoxic genes in microglial cells in ALS. 
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1. Introduction 

 

Amyotrophic lateral sclerosis (ALS) is a progressive form of motor neuron disease that 

invariably leads to skeletal muscle atrophy, paralysis and death. The incidence rate 

increases with age being maximal, 12/100,000 per year, in the 70-79 years range (for 

review, see Mitchell and Borasio, 2007). Most cases of ALS are sporadic but about 5-

10% are familial. The most frequent and best characterized mutations associated with 

familial ALS are those in the gene encoding superoxide dismutase (SOD) (Rosen et al., 

1993), with mutations in the DNA/RNA binding proteins TDP-43 (Gitcho et al., 2008; 

Sreedharan et al., 2008) and FUS/TLS (Kwiatkowski, Jr. et al., 2009), (Vance et al., 

2009) being less frequent. Cytoplasmic ubiquitinated protein inclusions are 

characteristic of ALS. Interestingly, TDP-43 is a major component of such inclusions in 

most sporadic ALS cases (Arai et al., 2006, Neumann et al., 2006)  

 

Transgenic mice with ubiquitous overexpression of the pathogenic G93A human SOD1 

mutation (G93A-SOD1) show selective motor neuron degeneration and progressive 

paralysis that resemble human ALS (Hensley et al., 2006). The specific reduction of 

G93A-SOD1 expression in microglial cells slows disease progression and prolongs 

survival (Beers et al., 2006; Boillee et al., 2006) suggesting that microglial G93A-SOD1 

is involved in disease progression in this ALS model. How this may occur has not yet 

been resolved. However, microglial cells with G93A-SOD1 expression show increased 

neurotoxicity and increased production of tumor necrosis factor-α (TNFα), NO, O2
-, 

interleukin-6 (IL-6) and MCP-1 when activated in vitro (Beers et al., 2006;Liu et al., 

2009; Sargsyan et al., 2009; Weydt et al., 2004; Xiao et al., 2007). 

 

Accumulating evidence supports the hypothesis of a role of glial activation in the 

pathogenesis of most neurodegenerative disorders, including ALS (Frank-Cannon et 

al., 2009). Glial activation is the response of astrocytes and microglia to stimuli such as 

bacteria, viruses, damaged cells, cell debris, abnormal protein deposits, etc. Glial 

activation is not a unique process. The final phenotype of activated astrocytes and 

microglial cells can be strongly affected by factors such as the nature of the triggering 

stimulus, the duration of the stimulation, the participation of other cell types 

(lymphocytes, neutrophiles, dendritic cells, etc), the integrity of the blood-brain barrier 

or the CNS region where this response takes place. Although this response is primarily 

neuroprotective, some elements of glial activation, particularly of microglial activation, 

are potentially neurotoxic. Thus, the expression of the proinflammatory cytokines 
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TNFα, interleukin-1β (IL-1β) or IL-6 or the enzymes nitric oxide synthase 2 (NOS2), 

cyclooxygenase-2 (COX-2) or NADPH oxidase is increased in activated glial cells and 

these molecules or their products have the potential of damaging neurons (Glass et al., 

2010).  In the promoters of the genes of TNFα, IL-1β, IL-6, NOS2 and COX-2 functional 

binding sites for the transcription factor CCAAT/enhancer binding protein β (C/EBPβ) 

are found. C/EBPβ is a member of the C/EBP family of b-zip transcription factors and 

we and others have shown that C/EBPβ levels are increased in activated glial cells 

(Cardinaux et al., 2000; Ejarque-Ortiz et al., 2007). Therefore, C/EBPβ can be a 

candidate to mediate neurotoxic effects of activated glial cells. 

 

In this work we have investigated the proinflammatory profile of activated microglial 

cells from G93A-SOD1 mice in vivo and in vitro. Our results indicate that G93A-SOD1 

microglial cells show an exacerbated response to LPS and suggest that C/EBPβ could 

mediate the expression of proinflammatory genes in this ALS model. Finally, we have 

observed the microglial expression of C/EBPβ in human ALS spinal cord sections. This 

is to our knowledge the first demonstration of C/EBPβ expression in human microglia 

 

 

2. Methods 

2.1. G93A-SOD1 mice 

G93A-SOD1 mice (Gurney et al., 1994) were generously provided by Dr. Manuel 

Portero (Facultat de Medicina, Universitat de Lleida, Spain) and were kept at the 

Animal facilities of the University of Barcelona. Experiments were carried out in 

accordance with the Guidelines of the European Union Council (86/609/EU) and the 

Spanish regulations (BOE 67/8509-12, 1988) for the use of laboratory animals. The 

procedure was approved by the Ethics and Scientific Committees of the Hospital Clínic 

de Barcelona and registered at the “Departament d’Agricultura, Ramaderia i Pesca de 

la Generalitat de Catalunya”. 

 

2.2. In vivo treatments 

G93A-SOD1 mice were used when symptoms of severe hindlimb motor deficits were 

observed. This occurred between 120 and 130 days and at this point the life 

expectancy of the animals in our colony was typically less than 7 days. Age-matched 

wild-type C57Bl/6 mice were used. Twenty-eight mice (4 groups, 7 mice per group) 

were used in the in vivo experiments.  Mice were injected intraperitoneally with LPS 

(055:B5, Sigma-Aldrich) at a final dose of 200 μg per animal or vehicle (saline solution). 
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Mice were deeply anesthetized with isofluorane 6 hours after intraperitoneal injection, 

sacrificed and the cervical (for Western blot), thoracic and lumbar (for qRT-PCR) 

regions of the spinal cord were carefully removed, pooled and frozen in carbonic ice. 

For immunohistochemistry, 24 hours after LPS injection, the mice were deeply 

anesthetized, sacrificed and the cervical and thoracic regions of the spinal cord were 

carefully removed and frozen in carbonic ice. Thirty μm-thick cryostat sections were cut 

and stored at -20°C until immunostaining. 

 

2.3. Cell Cultures and Treatment 

Microglial cultures were prepared from 1- or 2-day-old neonatal G93A-SOD1 or wild-

type (wt) mice both from C57BL/6 genetic background as described (Saura et al., 

2003). Briefly, mice cerebral cortices were dissected, their meninges were totally 

removed and cortices were digested with 0.25% trypsin for 25 min at 37°C. 

Trypsinization was stopped by adding an equal volume of culture medium (Dulbecco's 

modified Eagle medium-F-12 nutrient mixture, fetal bovine serum 10%, penicillin 100 

U/mL, streptomycin 100 μg/mL and amphotericin B 0.5 μg/mL) with 0.02% 

deoxyribonuclease I. The solution was pelleted (5 min, 200g), resuspended in culture 

medium and brought to a single cell suspension by repeated pipetting followed by 

passage through a 100 μm pore mesh. Glial cells were seeded at a density of 3.5x105 

cells/mL and cultured at 37°C in humidified 5% CO2–95% air. The medium was 

replaced every 5–7 days. After 19-21 days in vitro, mixed glial cultures were treated for 

30 min with 0.06% trypsin in the presence of 0.25 mM EDTA and 0.5 mM Ca2+. This 

resulted in the detachment of an intact layer of cells containing virtually all the 

astrocytes, leaving a population of firmly attached cells identified as >98% microglia. 

For immunocytochemistry studies cells were seeded in 48-well plates. For the isolation 

of nuclear proteins from microglial cultures, cells were seeded in 6-well plates. 

Microglial cultures were treated 24h after their isolation. Cells were treated with LPS 

(100 ng/ml) + Interferon-γ (IFNγ, 0.1 ng/ml) in culture medium. Control cells were 

treated with culture medium. 

 

2.4. Immunocytochemistry 

Cultured cells were fixed with 4% paraformaldehyde in phosphate-buffered saline 

(PBS) for 20 min at 23–25°C. For immunocytochemistry using peroxidase labelling, 

cells were permeated and endogenous peroxidase activity was blocked by incubation 

with 0.3% H2O2 in methanol for 10 min. Non-specific staining was blocked by 

incubating the cells with 10% normal goat or horse serum in PBS containing 1% BSA 

for 20 min at 23–25°C. Cells were then incubated overnight at 4°C with one of the 
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following primary antibodies: polyclonal rabbit anti-NOS2 (1:300, BD, USA); polyclonal 

rabbit anti-COX-2 (1:1000, Santa Cruz Biotechnologies, USA), polyclonal rabbit anti-

C/EBPβ (1:2000, Santa Cruz Biotechnologies, USA), polyclonal rabbit anti-p65-NFκB 

(1:1000, Santa Cruz Biotechnologies, USA), monoclonal rat anti-CD11b (1:300, 

Serotec, Oxford, UK), monoclonal mouse anti-GFAP (1:2000, DAKO). After rinsing in 

PBS, cells were incubated for 1 h at room temperature with biotinylated horse anti-

mouse. goat anti-rabbit or goat anti-rat secondary antibody (1:200, Vector). Then, after 

rinsing in PBS, cells were incubated for 1 h with ExtrAvidin-HRP (1:500, Sigma-Aldrich) 

and the immunostaining was developed with 0.1% diaminobenzidine (Sigma-Aldrich) 

and 0.3% H2O2. Microscopy images were obtained with an Olympus IX70 microscope 

(Olympus, Okoya, Japan) and a digital camera (CC-12, Soft Imaging System GmbH, 

Munich, Germany). 

 

2.5. Immunohistochemistry 

Cervical/thoracic spinal cord sections were washed in PBS and fixed in 4% 

paraformaldehyde during 20 minutes. After rising in PBS, the sections were treated 

with 2% H2O2 in methanol during 10 minutes. The sections were rinsed in PBS-0.5% 

Triton, blocked with 10% of normal horse serum and incubated overnight with the 

monoclonal rat anti-CD11b antibody (1:500, Serotec, Oxford, UK) or polyclonal rabbit 

anti-GFAP (1:1000, DAKO). After that, sections were incubated with biotinylated  goat 

anti-rabbit or goat anti-rat secondary antibody (1:200, Vector). Then, after rinsing in 

PBS, sections were incubated for 1 h with ExtrAvidin-HRP (1:500, Sigma-Aldrich) and 

the immunostaining was developed with 0.1% diaminobenzidine (Sigma-Aldrich) and 

0.3% H2O2. After washed in PBS, the sections were dehydrated and mounted in DPX 

medium. 

For double immunohistofluorescence, the sections were incubated overnight at 4°C 

with both polyclonal rabbit anti-C/EBPβ (1:2000, Santa Cruz Biotechnologies, USA) 

and monoclonal rat anti-CD11b (1:300, Serotec, Oxford, UK) or monoclonal mouse 

anti-GFAP (1:1000, DAKO) primary antibodies. After rinsing in PBS, sections were 

incubated 1 h at room temperature with goat anti-rabbit ALEXA 546 (1:1000) and/or 

goat anti-rat or anti-mouse ALEXA 488 (1:500) secondary antibodies (Molecular 

Probes, Eugene, OR, USA). Finally, after washed in PBS the sections were mounted in 

mowiol medium. 

For triple immunofluorescence, sections were incubated overnight at 4°C with 

polyclonal rabbit anti-C/EBPβ (1:1000, Santa Cruz Biotechnologies, USA), monoclonal 

mouse anti-GFAP (1:1000, DAKO) and biotinylated tomato lectin (1:200, Sigma). After 

rinsing in PBS, sections were incubated 1 h at room temperature with goat anti-rabbit 
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ALEXA 546 (1:500), anti-mouse ALEXA 647 (1:500) and Streptavidin ALEXA 488 

(1:500). Finally, the sections were counterstained with DAPI and analyzed using a 

Leica TCS 4D laser confocal fluorescence microscope with a x40 objective at the 

Serveis Científico-Tècnics, School of Medicine, University of Barcelona. For each 

animal (WT saline, n=3; WT LPS, n=4; SOD saline, n=3; SOD LPS, n=4) 12-15 

sequential confocal images were obtained at 2 μm-z-intervals in two fields of the gray 

matter between reticulospinal and anterior spinothalamic tracts. Total C/EBPβ positive 

cells and double C/EBPβ-tomato lectin or C/EBPβ-GFAP positive cells were counted. 

Adjacent images were compared and cells that were present in more than one z-image 

were counted only once. 

 

 

2.6. Quantitative real-time PCR (qRT-PCR) 

mRNA expression was determined 6 h after in vivo treatment. Total RNA from 

thoracic/lumbar spinal cord pools was isolated with Trizol method (TriRReagent, 

Sigma-Aldrich), a modification of the method originally described by (Chomczynski and 

Sacchi, 1987). 1.5 μg of RNA for each condition was reverse transcribed with random 

primers using Transcriptor Reverse Transcriptase (Roche Diagnostics). cDNA was 

diluted 1/10 to perform real-time PCR. The primers (Roche Diagnostics) used to 

amplify mouse mRNA were: C/EBPα, 5'-TGGACAAGAACAGCAACGAGTAC-3' and 5'-

TGCGCAGGCGGTCATT-3'; C/EBPβ, 5'-AAGCTGAGCGACGAGTACAAGA-3' and 5'-

GTCAGCTCCAGCACCTTGTG-3'; NOS2, 5'-GGCAGCCTGTGAGACCTTTG-3' and 5'-

GCATTGGAAGTGAAGCGTTTC-3'; COX-2, 5'-CATCCTGAGTGGGGTGATGAG-3' 

and 5'-GGCAATGCGGTTCTGATACTG-3'; IL-1β, 5'-TGGTGTGTGACGTTCCCATTA-

3' and 5'-CAGCACGAGGCTTTTTTGTTG-3'; IL-6, 5'-CCAGTTTGGTAGCATCCATC-3' 

and 5'-CCGGAGAGGAGACTTCACAG-3', TNFα, 5'-TGATCCGCGACGTGGAA-3' and 

5'-ACCGCCTGGAGTTCTGGAA-3'; GFAP 5'-AAGGTCCGCTTCCTGGAA-3' and 

5'-GGCTCGAAGCTGGTTCAGTT-3'; CD11b, 5'-AGCTTGAAAGGACCCCAGTG-3' and 

5'-AGCAGGAGGTGACCATGAGA-3'; (forward and reverse primers, respectively). For 

normalization of cycle threshold (Ct) values to an endogenous control, the following 

mouse actin and S18 mRNA primers were used: Actin, 5'-CAACGAGCGGTTCCGATG-

3' and 5'-GCCACAGGATTCCATACCCA-3'; S18, 5'-GTAACCCGTTGAACCCCATT-3' 

and 5'-CCATCCAATCGGTAGTAGCG-3'. Real-time PCR was carried out with IQ 

SYBR Green SuperMix (Bio-Rad Laboratories) and iCycler MyIQ equipment (Bio-Rad 

Laboratories). Primer efficiency was estimated from standard curves generated by 

dilution of a cDNA pool. Samples were run for 50 cycles (95°C for 15 s, 60°C for 30 s, 

72°C for 15 s). Relative gene expression values were calculated with the comparative 
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Ct or ΔΔCt method (Livak and Schmittgen, 2001) using iQ5 2.0 software (Bio-Rad 

Laboratories). Ct values were corrected by the amplification efficiency of the respective 

primer pair which was estimated from standard curves generated by dilution of a cDNA 

pool. 

 

2.7. Isolation of nuclear and total proteins 

Nuclear protein and total protein extraction from cell cultures were performed as 

previously described (Ejarque-Ortiz et al., 2010). C/EBPβ and p65-NFκB levels were 

determined in nuclear protein extracts from microglial cell cultures 24 hours after 

treatments, using one or two wells from 6-well plates for each experimental condition. 

NOS2 and COX-2 levels were determined in total protein extracts from microglial cell 

cultures 24 h after treatments. Protein concentration was determined by the Lowry 

assay (Total Protein kit micro-Lowry, Sigma-Aldrich). For total protein extraction for in 

vivo Western blot spinal cord samples were first sonicated at 4º C in RIPA buffer 

containing protease inhibitor cocktail (1 ml of ice cold RIPA buffer per gram of tissue). 

After 30 minutes of incubation in ice, samples were centrifuged at 5000 rpm for 5 

minutes at 4° C and the supernatants were collected. Protein concentration was 

determined by the Lowry assay as above. 

 

2.8. Western blot 

For in vitro western blots, 20–40 μg of protein from denatured (95°C for 5 min) total or 

nuclear cell culture extracts, were subjected to sodium dodecyl sulfate–polyacrylamide 

gel electrophoresis on a 7% (NOS2 and COX-2) or 10% (p65-NFκB and C/EBPβ) 

polyacrylamide gel, together with a molecular weight marker (Fullrange Rainbow 

Molecular Weight Marker, Amersham, Buckinghamshire, UK), and transferred to a 

polyvinylidene difluoride membrane (Millipore, Bedford, MA, USA). After washing in 

Tris-buffered saline (TBS: 20 mM Tris, 0.15 M NaCl, pH 7.5) for 5 min, dipping in 

methanol for 10 s and air dry, the membranes were incubated with primary antibodies 

overnight at 4°C: polyclonal rabbit anti-C/EBPβ (1:500, Santa Cruz Biotechnology), 

polyclonal rabbit anti-p65-NFκB (1:500, Santa Cruz Biotechnology), polyclonal rabbit 

anti-COX-2 (1 : 2000, Santa Cruz Biotechnology), polyclonal rabbit anti-NOS2 (1:200, 

Chemicon, Temecula, CA, USA), monoclonal mouse anti-β actin (1:40 000, Sigma-

Aldrich) or polyclonal goat anti-lamin B (1:5000, Santa Cruz Biotechnology) diluted in 

immunoblot buffer (TBS containing 0.05% Tween-20 and 5% non-fat dry milk). Then, 

the membranes were washed twice in 0.05% Tween-20 in TBS for 15 s and incubated 

in horseradish peroxidase (HRP)-labelled secondary antibodies for 1 h at room 

temperature: donkey anti-rabbit (1:5000, Amersham), goat anti-mouse (1:5000, Santa 
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Cruz Biotechnology) or mouse anti-goat/sheep (1:2000, Sigma-Aldrich). After extensive 

washes in 0.05% Tween-20 in TBS, they were incubated in ECL-Plus (Amersham) for 

5 min. Membranes were then exposed to the camera of a VersaDoc System (Bio-Rad 

Laboratories, Hercules, CA, USA), and pixel intensities of the immunoreactive bands 

were quantified using the % adjusted volume feature of Quantity One 5.4.1 software 

(Bio-Rad Laboratories). Data are expressed as the ratio between the intensity of the 

protein of interest band and the loading control protein band (lamin B for nuclear 

extracts or β-actin for total extracts). For in vivo western blots, 40-60 μg of protein from 

denatured (95°C for 5 min) total extracts were subjected to sodium dodecyl sulfate–

polyacrylamide gel electrophoresis on a 10% polyacrylamide gel and processed for 

Western blot as described above. The membranes were incubated with polyclonal 

rabbit anti-GFAP (1:150.000, DAKO) and monoclonal mouse anti-β actin (1:300.000, 

Sigma). 

 

2.9. Human spinal cord samples 

Post-mortem human spinal cord sections used in this study were supplied by the 

human neurological tissue bank at the Hospital Clínic (Barcelona, Spain) in accordance 

with the Helsinki Declaration, Convention of the Council of Europe on Human Rights 

and Biomedicine and Ethical Committee of Barcelona University. The clinical diagnosis 

of ALS was confirmed neuropathologically. Post-mortem histological spinal cord 

samples were obtained from control (n=5; 3 ♀, 2 ♂; age range 66-81; post-mortem 

delay range 3.5-23.5 h) and sporadic ALS (n=6; 1 ♀, 5 ♂; age range 58-79; post-

mortem delay 7-19 h) patients. Tissues were fixed in 4% paraformaldehyde solution, 

processed for paraffin embedded blocks and sections of 5 µm were obtained. 

 

2.10. Human immunohistochemistry 

Sections were deparaffinised, hydrated, and washed in PBS containing 0.1% Tween-

20 (PBS-TW). Antigen retrieval was performed incubated the sections in citrate buffer 

(pH = 6.0) at 95 ºC during 1 hour. Then, sections were rinsed in citrate buffer at room 

temperature and treated with 2 N HCl at 37 ºC during 30 minutes. After rinsing in PBS, 

the sections were treated with 2% H2O2 in methanol during 10 minutes. rinsed in PBS-

TW, blocked with 10% of foetal bovine serum and incubated overnight with the 

monoclonal mouse anti-CR3 antibody (1:500, DAKO) or monoclonal mouse anti-GFAP 

(1:10000, DAKO). Sections were then incubated with alkaline phosphatase goat anti-

mouse antibody (1:500, Sigma), and developed with the substrates for alkaline 

phosphatase, 5-Bromo-4-Chloro-3'-Indolyphosphate p-Toluidine Salt and Nitro-Blue 

Tetrazolium Chloride, until a specific blue colour was observed in microglial or 
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astroglial cells, respectively. After alkaline phosphatase development, the sections 

were rinsed for 1 hour in PBS-TW and incubated with the polyclonal anti-C/EBPβ 

antibody (1:300, Santa Cruz Biotechnology). Next, the sections were washed in PBS-

TW, incubated for one hour at room temperature with biotinylated goat anti-rabbit 

antibody (1:500, Sigma) and then with ExtrAvidin-HRP (1:500, Sigma-Aldrich). Finally, 

the sections were developed with 0.05% diaminobenzidine-0.01% H2O2 (brown colour 

stain), washed in PBS-TW and mounted in mowiol medium. For each human sample 

(control, n=5; sporadic ALS, n=6), 3 spinal cord sections were used for cell counts. 

First, the tractus corticospinalis anterior and tractus corticospinalis lateralis were 

defined in an adjacent section by hematoxylin-eosin staining. Then double CR3-

C/EBPβ positive cells in both the tractus corticospinalis anterior and lateralis were 

counted under the microscope with the x40 objective. Data are expressed as the 

number of double CR3-C/EBPβ positive cells per mm2. 
 

2.11. Data presentation and statistical analysis 

All results are presented as mean ± SD. Statistical analyses were performed using two-

way ANOVA followed by Bonferroni's multiple comparisons test, except for human 

results where statistical analyses were obtained by one-way ANOVA followed by 

Newman–Keuls post-hoc test when three or more experimental groups were 

compared. Values of p < 0.05 were considered statistically significant. Statistical 

analyses were performed using GraphPad Prism software. 

 

 

3. Results 

3.1. Exacerbated activation of G93A-SOD1 microglial cells in vitro 

To confirm and extend previous reports of an exacerbated activation of microglia from 

G93A-SOD1 mice, highly-enriched microglial cultures from wt and G93A-SOD1 mice 

were treated with LPS+IFNγ and NOS2 and COX-2 protein levels were analyzed. The 

combination of the TLR4 agonist LPS and the host cytokine IFNγ induces a synergistic 

activation in primary murine microglial cultures (Kim et al., 1998). As expected, 

LPS+IFNγ induced the expression of NOS2 and COX-2 in wt microglia (Fig 1). 

Interestingly, NOS2 and COX-2 levels were higher in LPS-treated G93A-SOD1 

microglia than in LPS-treated wt microglia by 1.8-fold (p<0.01) and 3.2-fold (p<0.01), 

respectively (Fig1 A-C). These findings were confirmed by immunocytochemistry (Fig 1 

D,E) and indicate that the presence of G93A-SOD1 in microglial cells somehow 

enhances the activation response of these cells. 
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C/EBPβ and nuclear factor-κB (NFκB) are transcription factors that are able to regulate 

the expression of NOS2 and COX-2. We were interested to analyze whether the 

increased protein levels of NOS2 and COX-2 in LPS+IFNγ-treated G93A-SOD1 

microglia could be attributed to enhanced nuclear levels of these transcription factors. 

LPS+IFNγ treatment did not induce a significant increase in the nuclear levels of 

C/EBPβ (Fig 2A) or the p65 isoform of NFκB (Fig 2B) in wt microglial cells, although a 

non-significant trend for an increase was observed. Note that at earlier time-points (4-

8h) LPS+IFNγ induce significant increases in nuclear levels of C/EBPβ and p65-NFκB 

in wt microglial cultures (data not shown). In contrast, LPS+IFNγ induced significant 

increases in the nuclear levels of C/EBPβ (Fig 2A) and p65-NFκB (Fig 2B) in G93A-

SOD1 microglial cultures. These findings were confirmed by immunocytochemistry 

(Figs 2 D, E). 

 

3.2. Glial activation induced by LPS in G93A-SOD1 mice in vivo 

We were next interested to study whether the exacerbated response of G93A-SOD1 

microglia could also be observed in vivo. To this end mice were treated i.p. with 200 μg 

of LPS. Peripheral stimulation of the innate immune system with LPS induces a strong 

neuroinflammatory response.  First, the expression of the microglial marker CD11b (Fig 

3) and the astroglial marker GFAP (Fig 4) were analyzed. CD11b mRNA and GFAP 

mRNA and protein spinal cord levels were not altered in vehicle-treated G93A-SOD1 

mice or in wt mice treated with LPS for 6 hours (Fig 3A, 4A-B) whereas both markers 

were moderately increased at the protein level as observed by immunohistochemistry 

in spinal cord sections 24 hours after treatments (Figs 3B, 4C). Interestingly, LPS i.p. 

markedly upregulated CD11b and GFAP mRNA levels in G93A-SOD1 mice, as 

assessed by qRT-PCR (Fig 3A, 4A) and CD11b and GFAP protein levels, as assessed 

by Western blot (Fig 4B) and immunohistochemistry (Fig 3B, 4C).  

 

3.3. Exacerbated expression of proinflammatory genes and C/EBPβ is induced 

by LPS in G93A-SOD1 mice in vivo 

We then analyzed the spinal cord mRNA levels of five key proinflammatory genes, 

namely NOS2, COX-2, IL-1β, IL-6 and TNFα by qRT-PCR. These genes are expressed 

by activated microglia and/or astrocytes and have been implicated in the neurotoxic 

effects of glial activation. A similar pattern of changes was observed for all five genes 

(Fig 5). The spinal cord mRNA levels were not affected by genotype alone, since the 

mRNA concentrations did not differ between vehicle-treated wt and G93A-SOD1 mice. 

Peripheral LPS injection induced a significant increase in all five proinflammatory 

mRNA levels in wt mice. Interestingly, in all five proinflammatory genes studied, the 
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mRNA levels in LPS-treated G93A-SOD1 mice were significantly higher than in LPS-

treated wt mice. This exacerbation ranged from the 2-fold increase in COX-2 mRNA 

levels to the 6-fold increase in TNFα or IL-1β mRNA levels. 

 

C/EBPβ mRNA levels showed the same pattern of changes seen for the 

proinflammatory genes, e.g. no significant changes in vehicle-treated G93A-SOD1 

mice, a significant increase induced by LPS in wt mice (4-fold, p<0.01) and a 

significantly stronger increase in LPS-treated G93A-SOD1 mice (2-fold increase vs 

LPS-treated wt mice, p<0.001) (Fig 6A). In contrast, the mRNA levels of C/EBPα, 

another member of the C/EBP family of transcription factors, were not altered in any of 

the experimental groups (Fig 6A). In agreement with the mRNA data, C/EBPβ 

immunoreactivity was low in the spinal cord of both vehicle-treated wt and G93A-SOD1 

mice (Fig 6B). Peripheral LPS induced the appearance of C/EBPβ positive nuclei in 

spinal cord sections of wt mice and the number and intensity of these C/EBPβ positive 

nuclei was markedly higher in LPS-treated G93A-SOD1 mice (Fig 6B). Double labeling 

immunofluorescence experiments showed the presence of C/EBPβ in activated 

microglia and astrocytes, identified by CD11b and GFAP immunoreactivity respectively 

(Fig 6C). Analysis of confocal microscope images of triple labeling 

immunofluorescence experiments (Fig 6D) revealed that in LPS-treated G93A-SOD1 

mice 26.2  5.5 % of C/EBPβ positive nuclei corresponded to microglial cells and 21.2 

 6.0 % corresponded to astrocytes. 

 

3.4. C/EBPβ is expressed by microglial cells in ALS 

The presence of C/EBPβ in human glial cells has not yet been demonstrated. To this 

end we analyzed by immunohistochemistry the presence of C/EBPβ in spinal cord 

sections of ALS patients and non-neurological controls. In control cases C/EBPβ  

positive nuclei were rarely observed (Fig 7Aa). In contrast, in ALS cases the number of 

C/EBPβ positive nuclei increased markedly (Fig 7Ab). These nuclei were particularly 

abundant in several white matter tracts: tractus corticospinalis lateralis and anterior, 

and tractus spinothalamicus lateralis. Double immunohistochemistry revealed that 

C/EBPβ positive nuclei often co-localized with the microglial marker CR3 (Fig 7Ac-d). 

Double C/EBPβ-CR3 positive cells were mainly found in the areas affected by 

motoneuron degeneration (tractus corticospinalis) demonstrating for the first time to our 

knowledge the presence of C/EBPβ in activated microglial cells in human disease. 

Quantification of double CR3-C/EBPβ positive cells revealed that the number of 

C/EBPβ positive microglial cells was higher in ALS than in control cases by 4.2 fold in 
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the tractus corticospinalis anterior (p<0.001) and by 7.3 fold in the tractus 

corticospinalis lateralis (p<0.05) (Fig 7B). 

 

 

 

 
Discussion 
 

To elucidate how the endogenous expression of the pathogenic G93A-SOD1 protein 

affects the pattern of microglial activation we have analyzed the expression of key 

proinflammatory genes in activated G93A-SOD1 microglial cells in vitro and in vivo. We 

have observed an exacerbated pattern of activation in G93A-SOD1 in both models 

which was accompanied by the increased expression of the transcription factor 

C/EBPβ. In order to determine the relevance of the increased microglial expression of 

C/EBPβ to human disease we have then analyzed the presence of C/EBPβ in ALS 

tissue and have observed the increased expression of C/EBPβ in microglial cells in 

ALS spinal cord. 

 

Previous studies have shown that toll-like receptor (TLR) agonists induce an 

exacerbated response in microglial cells expressing G93A-SOD1, with increased 

expression of TNFα, NOS2 and MCP-1 (Beers et al., 2006; Sargsyan et al., 2009; 

Weydt et al., 2004; Xiao et al., 2007) and increased neurotoxicity associated to 

microglial activation (Beers et al., 2006; Xiao et al., 2007). In this report we confirm that 

NOS2 expression is exacerbated in LPS+IFNγ-treated G93A-SOD1 microglia and we 

extend this finding also to COX-2 expression. The upregulation of COX-2 in activated 

G93A-SOD1 microglia is relevant since COX-2 is markedly upregulated in sporadic 

ALS spinal cord (Almer et al., 2001; Maihofner et al., 2003) where it is expressed by 

activated microglia (Yiangou et al., 2006). On the other hand, COX-2 inhibitors are 

protective in ALS animal models (Drachman et al., 2002; Pompl et al., 2003), 

altogether suggesting the involvement of microglial COX-2 upregulation in ALS 

pathogenesis. It is not clearly established how the expression of mutant SOD1 in 

microglia leads to an exacerbated activation profile. A first unanswered question is 

whether this effect is triggered by intracellular or extracellular mutant SOD1 (Henkel et 

al., 2009). The observations that exogenously applied mutant SOD1 induce microglial 

activation and microglial neurotoxicity (Kang and Rivest, 2007; Urushitani et al., 2006; 

Zhao et al., 2010) favor the hypothesis of  extracellular, probably misfolded, mutant 

G93A-SOD1 priming microglia for an exacerbated response to TLR agonists.  



 14

 

In this study we have extended these in vitro findings to show for the first time that the 

neuroinflammation induced by TLR agonists in vivo is also exacerbated when mutant 

SOD1 is expressed. In the absence of LPS treatment we did not observe the 

upregulation of glial markers or proinflammatory genes in G93A-SOD1 spinal cord. 

This is somewhat unexpected since in these animals a neuroinflammatory response 

has been demonstrated (Beers et al., 2011; Yang et al., 2011). It is interesting to note 

that the pattern of neuroinflammation is dependent on the spinal cord region and the 

animal age (Beers et al., 2011; Yang et al., 2011). The neuroinflammatory response is 

stronger in lumbar than in cervical spinal cord (Beers et al., 2011) and increases over 

time although for markers such as NOS2 (Yang et al., 2011) or IL-6 (Beers et al., 2011) 

expression levels return to normal values at the late-stage of the disease. Since in this 

study we have used late-stage animals, this could explain the absence of differences 

between wild-type and G93A-SOD1 in NOS2 and IL-6. Differences in the criteria used 

to define late-stage in G93A-SOD1 mice could underlie the absence of changes in 

markers such as GFAP, IL-1β or TNFα in these mice which are at odds with previous 

reports (Beers et al., 2011; Yang et al., 2011). On the other hand, the expression of the 

microglial marker CD11b, the astroglial marker GFAP and the proinflammatory genes 

NOS2, COX-2, TNFα, IL-1β and IL-6 induced by systemic LPS was markedly 

exacerbated in G93A-SOD1 mice. The proinflammatory genes included in this study 

have all been implicated in neurotoxic effects of neuroinflammation and are all 

expressed by activated microglia in neurodegenerative processes (Glass et al., 2010). 

Interestingly, chronic infusion of LPS, which is non toxic per se, exacerbates disease 

progression and motor axon degeneration in G37R-SOD1 mice (Nguyen et al., 2004). 

Our findings suggest that the systemic LPS-induced exacerbated expression of 

proinflammatory mediators such as TNFα, prostaglandins or NO in high concentrations 

could mediate the accelerated neurodegeneration reported in the ALS model (Nguyen 

et al., 2004).  An exacerbating effect of systemic LPS on neuroinflammation and 

neurodegeneration has also been reported in animal models of Alzheimer’s disease 

(Kitazawa et al., 2005; Sly et al., 2001) and in prion disease (Cunningham et al., 2009). 

Collectively these data support the hypothesis that infections, even subclinically, could 

trigger or accelerate disease in sporadic cases of neurodegeneration (Cunningham et 

al., 2009). In this respect, it is interesting to note that LPS plasma levels are elevated in 

ALS patients and correlate positively with clinical disease status and 

monocyte/macrophage activation (Zhang et al., 2009). 
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In parallel with the exacerbated expression of proinflammatory genes such as NOS2 or 

COX-2 we have also observed an exacerbated increase in the levels of the 

transcription factor C/EBPβ, both in LPS+IFNγ-treated G93A-SOD1 microglia in culture 

and in microglia and astrocytes of LPS-treated G93A-SOD1 mice in vivo. C/EBPβ 

activity is mainly regulated at the level of transcription (Bradley et al., 2003), therefore 

increased protein/mRNA levels of C/EBPβ are a good indicator of increased C/EBPβ 

activity as transcription factor. C/EBPβ expression in activated microglial cells has been 

reported in cultured microglia treated with TLR agonists (Chang et al., 2008; Ejarque-

Ortiz et al., 2007; Samuelsson et al., 2008), proinflammatory cytokines (Jana et al., 

2001; Jana et al., 2002; Jana et al., 2003) or activated T lymphocytes (Dasgupta et al., 

2003). Increased C/EBPβ levels have also been reported in vivo in situations in which 

neuroinflammation occurs such as systemic LPS injection (Alam et al., 1992; Ejarque-

Ortiz et al., 2007; Saito et al., 1999; Damm et al., 2011), cerebral ischemia (Kapadia et 

al., 2006), excitotoxic insult (Cortes-Canteli et al., 2008) or aging (Akar and Feinstein, 

2009). To date, the presence of C/EBPβ in activated glial cells in vivo has only been 

reported in microglia or astrocytes after systemic LPS or kainic acid injection (Ejarque-

Ortiz et al., 2007; Cortes-Canteli et al., 2008; Damm et al., 2011). The demonstration of 

the presence of C/EBPβ in activated microglial cells and astrocytes in the rodent CNS 

in vivo supports the hypothesis of a role of C/EBPβ in the regulation of proinflammatory 

gene expression in glial activation. In this respect, our finding of C/EBPβ expression in 

microglial cells in human ALS samples is particularly relevant. This is the first 

demonstration of the expression of C/EBPβ in human microglia in health or disease. 

 

C/EBPβ in human microglia may regulate the expression of genes with a strong 

potential for neuroinflammatory collateral damage such as NOS2, COX-2, TNFα, IL-1β 

or IL-6 since these genes contain functional C/EBP sites in their promoters (Gorgoni et 

al., 2001; Kolyada and Madias, 2001; Ray and Ray, 1995; Wedel et al., 1996; Yang et 

al., 2000). The role of C/EBPβ in activated microglia is probably similar to the key role 

C/EBPβ plays in specifying cell-specific patterns of TLR inducible gene expression in 

macrophages (Medzhitov and Horng, 2009). In the regulation of proinflammatory genes 

in microglia/macrophages C/EBPβ interacts in a cell-specific and promoter-specific 

manner with transcription factors such as C/EBPα (Ray and Ray, 1995; Wedel et al., 

1996), C/EBPδ (Caivano et al., 2001; Kolyada and Madias, 2001), NFκB (Caivano et 

al., 2001; Hu et al., 2000; Kolyada and Madias, 2001; Ray and Ray, 1995), PU.1 (Yang 

et al., 2000), CREB (Caivano et al., 2001) or AP-1 (Pope et al., 2000; Zagariya et al., 

1998). In most cases, these physical interactions determine functional synergies. The 

most likely situation in the promoters of tightly regulated genes such as those is that 
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multimolecular complexes are formed in which several transcription factors and 

coactivators interact. The role played by each individual transcription factor will be 

different in different cell/promoter scenarios. Our hypothesis is that C/EBPβ is 

necessary to obtain maximal transcription of proinflammatory genes such as NOS2, 

COX-2, IL-1β, IL-6 or TNFα in microglia. In consequence, C/EBPβ inhibition could 

result in an attenuated, less neurotoxic neuroinflammatory response. This hypothesis is 

supported by the observations of neuroprotection and reduced neuroinflammation in 

C/EBPβ deficient mice after ischemic (Kapadia et al., 2006) and excitotoxic insults 

(Cortes-Canteli et al., 2008). Since C/EBPβ-deficient mice show physiological 

alterations unrelated to their anti-inflammatory phenotype (Lekstrom-Himes and 

Xanthopoulos, 1998) experiments with mice with microglial- or astroglial-specific 

C/EBPβ deficiency would be useful to confirm the potential of glial C/EBPβ as a 

therapeutic target to attenuate the deleterious effects of neuroinflammation in 

neurodegenerative disorders such as ALS.  
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Figure legends 

 

Figure 1. Highly-enriched primary microglial cultures from wt or G93A-SOD1 neonates 

were treated with LPS (100 ng/ml) + IFNγ (0.1 ng/ml) or vehicle (Control) for 24 hours. 

NOS2 and COX-2 content in total protein homogenates was analyzed by Western blot. 

A and B show the quantification of 4 independent experiments with 2 replicates per 

condition and experiment. Data is expressed as mean + SD. **: p<0.01, ***: p<0.001. C 

shows a representative Western blot image. D and E show images of microglial 

cultures treated with LPS + IFNγ or vehicle for 24 hours and processed for NOS2 (D) 

and COX-2 (E) immunocytochemistry. Images shown are representative of 4 

independent experiments. Magnification bars: 10 μm. Both Western blot and 

immunocytochemistry show that the increase in NOS2 and COX-2 protein induced by 

LPS + IFNγ is higher in G93A-SOD1 than in wt microglia. 

 

Figure 2. Highly-enriched primary microglial cultures from wt or G93A-SOD1 neonates 

were treated with LPS (100 ng/ml) + IFNγ (0.1 ng/ml) (L+I) or vehicle (Control) for 24 

hours. C/EBPβ and p65-NFκB contents in nuclear protein homogenates were analyzed 

by Western blot. A and B show the quantification of 4 independent experiments with 2 

replicates per condition and experiment. Data is expressed as mean + SD. *: p<0.05, 

**: p<0.01. C shows a representative Western blot image. D and E show images of 

microglial cultures treated with LPS + IFNγ or vehicle for 24 hours and processed for 

C/EBPβ (D) and p65-NFκB (E) immunocytochemistry. Images shown are 

representative of 4 independent experiments. Magnification bars: 20 μm. Western blots 

and immunocytochemistry show that the LPS + IFNγ-induced increases in the nuclear 

levels of C/EBPβ and p65-NFκB are more marked in G93A-SOD1 than in wt microglia. 

 

Figure 3. Adult wt or G93A-SOD1 mice were treated with 200 μg of LPS or vehicle 

(Control). A) The spinal cord mRNA levels of the microglial marker CD11b 6 hours after 

treatment were analyzed by qRT-PCR with triplicates for each animal. The graph 

shows mean + SD of 4 animals per group. **: p<0.01. B) CD11b immunoreactivity in 

spinal cord sections of mice treated with 200 μg of LPS or vehicle (Control) and 

sacrificed 24 hours after the treatment. Arrows point to individual CD11b-positive 

microglial cells. The images shown are representative of 3 animals per condition. 

Magnification bar: 10 μm.  

 

Figure 4. Adult wt or G93A-SOD1 mice were treated with 200 μg of LPS or vehicle 

(Control). A) The spinal cord mRNA levels of the astroglial marker GFAP 6 hours after 
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treatment were analyzed by qRT-PCR with triplicates for each animal. The graph 

shows mean + SD of 4 animals per group. ***: p<0.001. B) Spinal cord protein GFAP 

levels were analyzed 6 hours after treatment by Western blot. The graph shows mean 

+ SD of 4 animals per group. *: p<0.05. An image from a representative experiment is 

also shown. C) GFAP immunoreactivity in spinal cord sections of mice treated with 200 

μg of LPS or vehicle (Control) and sacrificed 24 hours after the treatment. Arrows point 

to individual GFAP-positive astrocytes. The images shown are representative of 3 

animals per condition. Magnification bar: 10 μm.  

 

Figure 5. Adult wt or G93A-SOD1 mice were treated with 200 μg of LPS or vehicle 

(Control). The spinal cord mRNA levels of the proinflammatory genes NOS2 (A), COX-

2 (B), IL-1β (C), IL-6 (D) and TNFα (E) were analyzed by qRT-PCR 6 hours after 

treatment with triplicates for each animal. The graphs show mean + SD of 4 animals 

per group. The LPS-induced expression of all 5 proinflammatory genes is significantly 

higher in G93A-SOD1 mice than in wt mice. *: p<0.05; **: p<0.01, ***: p<0.001. 

 

Figure 6. Adult wt or G93A-SOD1 mice were treated with 200 μg of LPS or vehicle 

(Control). A) The spinal cord mRNA levels of the transcription factors C/EBPβ and 

C/EBPα were analyzed by qRT-PCR 6 hours after treatment with triplicates for each 

animal. LPS treatment increases C/EBPβ mRNA levels in wt mice and this effect is 

even higher in G93A-SOD1 mice. In contrast, C/EBPα spinal cord mRNA levels are not 

affected by LPS or genotype. The graphs show mean + SD of 4 animals per group. **: 

p<0.01, ***: p<0.001. B) The C/EBPβ protein distribution and abundance in the spinal 

cord was analyzed by immunohistochemistry 24 hours after treatment. The appearance 

of C/EBPβ positive nuclei was induced by LPS in wt mice and the number of C/EBPβ 

positive nuclei was markedly higher in LPS-treated G93A-SOD1 mice. Arrows point to 

individual C/EBPβ positive nuclei. The images shown are representative of 3 animals 

per condition. Magnification bar: 10 μm. C) Spinal cord sections of G93A-SOD1 mice 

treated with LPS (24 hours) were processed for double immunofluorescence 

GFAP+C/EBPβ (upper row) or CD11b+C/EBPβ (lower row). The arrow in the upper 

row points to a C/EBPβ positive astrocyte and the arrows in the lower row point to two 

C/EBPβ positive microglial cells. The images shown are representative of 3 animals 

per condition. Magnification bar: 10 μm. In the right column in C two high magnification 

images showing the typical morphology of an activated astrocyte (upper row) and an 

activated microglial cell (lower row) are shown. Magnification bar in this column is 5 

μm. D) Confocal microscope images from the spinal cord of a G93A-SOD1 mouse 

treated with LPS for 24 hours. C/EBPβ is shown in red, the astroglial marker GFAP in 
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yellow, the microglial marker Tomato lectin (TL) in green and the nuclear marker DAPI 

in blue. Various combinations of double, triple or quadruple labeling are shown. 

C/EBPβ immunoreactivity is seen in microglial cells (arrows), astrocytes (arrowheads) 

and also in some non-astroglial/non-microglial cells. Magnification bar 5 μm 

 

Figure 7. A) C/EBPβ immunohistochemistry in tissue sections of a control (a) and an 

ALS case (b). Note the increased number of C/EBPβ positive nuclei in ALS. c, d) 

Double immunohistochemical staining of C/EBPβ (brown) and the microglial marker 

CR3 (blue) in ALS spinal cord sections. C/EBPβ and CR3 often co-localize (arrows) but 

C/EBPβ is also seen in nuclei of CR3-negative cells (arrowheads). Magnification bar: 

50 μm. B) Counts of double C/EBPβ-CR3 positive cells in the tractus corticospinalis 

anterior (TCsA) and tractus corticospinalis lateralis (TCsL) of control (n=5) and ALS 

cases (n=6). Data are expressed as mean + SD. *: p<0.05, ***: p<0.001. Note the 

marked increase of C/EBPβ expressing microglial cells in both spinal cord regions in 

ALS. The anatomical areas selected for cell counting are depicted in C.  
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