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Mode-Locking in Semiconductor Fabry-Pérot Lasers
Julien Javaloyes and Salvador Balle

Abstract—We theoretically study the dynamics and the mode-
locking properties of semiconductor Fabry–Pérot lasers with in-
tracavity saturable absorber by using a travelling-wave model and
a time-domain description of the optical response of the semicon-
ductor materials. Our description enables us to incorporate impor-
tant features as for instance the abrupt spectral variations of the
absorption in the saturable absorber. We analyze the influence of
several key parameters that affect the stability of the mode-locking
regime and show that this modelling approach can be used, upon
proper fitting of the material parameters, for optimization of the
design of semiconductor mode-locked lasers.

Index Terms—Mode locked lasers, saturable absorber, semicon-
ductor lasers, travelling-wave modelling.

I. INTRODUCTION

M ODE-LOCKING (ML) of lasers is a subject of intense
research both theoretically and experimentally. The

theoretical challenge arises from the complex nonlinear dy-
namics involving the self-organization of many laser modes
while the experimental motivation comes from the large number
of applications of short pulse sources in medicine, metrology
and telecommunications [1]. ML has led to the shortest and
most intense optical pulses ever generated. Semiconductor
mode-locked lasers have the added attraction of being compact,
low cost and adaptable to many cavity geometries [2].

A multimode laser can be forced to operate in a mode-locked
state either passively or actively. Active ML is achieved by mod-
ulating one control parameter of the laser at a frequency reso-
nant with the separation between modes. A drawback of active
ML is the requirement of a precise external modulation which
can be unreachable at ultra-fast speeds. On the other hand, pas-
sive ML does not require any external modulation and it is the
preferred approach for generating optical pulses at multi-giga-
hertz repetition rates [1]. Passive ML is commonly achieved by
combining two elements, a laser amplifier which provides gain
and a saturable absorber (SA) acting as a pulse shortening el-
ement. A window for amplification is opened around the pulse
due to the faster recovery time of the absorption that can be ei-
ther smaller or faster than the pulse width thereby defining the
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two so-called regimes of slow [3] and fast [4] SA. Often, the
two methods can be combined effectively (hybrid ML) to re-
duce pulse jitter, as for instance in [5], where timing jitter as low
as 570 fs is obtained by direct modulation of the SA section.
Notice however that alternative methods exist, e.g., nonlinear
polarization rotation [6], Kerr lens mode locking [7] as well as
crossed-polarization gain modulation [8] or ultrafast Stark ef-
fect modulation [9].

Despite the effort that has been dedicated to it, modeling
of ML lasers continues to present a challenge. Haus’ master
equation is a widely used approach to study passive ML in the
time domain. Because analytical predictions on the pulse prop-
erties can be assessed, these pulse iterative models have pro-
vided some very useful insights into the ML problem. However,
these approaches when applied to a particular design provide
only some very qualitative predictions due to the many simpli-
fying hypothesis involved. For instance, the assumption of weak
gain and saturation is difficult to justify in semiconductor media.
This hypothesis was however lifted by the more refined model
presented in [10]. Still, the work presented in [10] assumes a
lumped element approach, where gain, loss and linear spectral
filtering happen in different sections of the device, as well as
an ideal unidirectional ring configuration. While the former hy-
pothesis of lumping gain and a linear filtering element could be
valid when a strong filter is present within the cavity, e.g., a dis-
tributed Bragg reflector, it is however usually the gain medium
itself that provides the spectral filtering of the pulse. This spec-
tral transformation is furthermore nonlinear [11], [12]. In ad-
dition, the saturable loss section also provides a strongly asym-
metric and non linear filtering, a point that is usually overlooked.
The latter hypothesis of unidirectional emission strongly re-
stricts the scope of the possible cavity geometries thereby ex-
cluding the common case of a Fabry–Pérot cavity.

On the other hand, approaches based on a finite difference
time domain description of the electromagnetic field [13] and
the many body semiconductor Bloch equations description of
the active medium [14] allow to satisfactorily describe ultrafast
dynamics. However, they require an enormous computational
power which impedes parametric studies thereby hindering a
comprehensive understanding of the ML scenario: even if ML
is by definition a fast phenomenon, pulses being of the order
of the picoseconds, the transient time needed to reach a stable
emission regime can be as long as several tens of nanoseconds,
representing thousands of cycles; in addition, assessing timing
jitter or pulse fluctuations requires computing long time series.

To circumvent the limitations of these models and shed some
light onto the ML scenario, another approach consists of de-
scribing the dynamics by spatially resolving the propagation of
the electromagnetic waves under the slowly varying approxi-
mation, thereby going from resolutions below the wavelength
to resolutions of a few tens of the wavelength. Such an ap-
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proach, based on a travelling-wave model (TWM) of the device,
allows to directly incorporate the inhomogeneous spatial distri-
butions of the optical field and material variables, the so-called
spatial-hole burning effects. Moreover, this approach allows to
study different designs irrespective of the geometry, which en-
ters the description of the system via the boundary conditions to
be satisfied by the optical field.

Although the TWM can be used with a frequency-inde-
pendent gain spectrum [15], more quantitative studies have to
include this feature, which poses the main difficulty faced in
TWMs: to correctly describe the interaction of the optical field
with the active material in time domain. A pioneering work
incorporating frequency-dependent gain in a TWM dates back
to the late 1960s [16] and was successfully used in, e.g., [17].
Still, these works assume the presence of a two-level active
medium, for which the optical response in time domain is well
known [18]. This is generally not the case of semiconductor
materials, where the presence of energy bands induces a large
inhomogeneous broadening [19] that profoundly affects the
dynamics in semiconductor lasers. This has stimulated the
search of approximate descriptions of the optical response of
semiconductor media. In [20] the optical response, determined
from the semiconductor Bloch equations, was fitted to the sum
of several lorentzians, each of them allowing for a two-level like
description. Other approaches [21], [22] have also developed
two-level like approximations to the optical response of bulk
semiconductor active media. Finally, analytical expressions for
the optical response of quantum-well active media in simplified
cases have been developed in [23] and [24]. These latter results,
given only in the frequency domain, have been used in [25]
by transforming them into a rational fraction by using a Padé
approximation. While good for narrow band spectra, the results
based on the rational fit presented in [25] are expected to be
less accurate when a SA is present in the device. The first
reason being simply that the SA induces broad band multimode
dynamics; the second reason is that the spectral shape of the
band-edge of the SA semiconductor material, which presents
a sharp transition from transparent to absorptive behavior, is
expected to be poorly described by any kind of fit based on
polynomials or rational functions.

More recently, the analytical results of [24] have been trans-
formed exactly into a time domain description [26] capable of
dealing even with the sharp band-edge of SAs. This improved
model allows us to study important physical effects that were be-
yond the reach of the model presented in [25] as for instance the
strong influence of the relative position between the gain peak
and the SA band-edge on the pulses [27]. This effect is particu-
larly important in materials like AlGaInAs since their band-edge
is extremely sharp (10–15 nm).

In this manuscript, we use the method presented in [26] to
analyze the simple, yet poorly understood, configuration of a
Fabry–Pérot laser with one section of SA at one end. Although
commonly encountered in ML lasers, this configuration can
hardly be studied by pulse iterative models. We discuss the dy-
namics of this specific system, focusing on the key parameters
affecting the mode-locked regimes: length and recovery time
of the SA section, gain bandwidth and relative position of the

band-edge of the SA with respect to the gain peak. We postpone
for future studies the statistics of the pulse train.

This paper is organized as follows. In Section II, we recall
the basis of our TWM and the implementation of the time do-
main polarization by a convolution presented in [26]. Section III
discusses the parametric dependencies of the ML dynamics. Fi-
nally, we draw some conclusions in Section IV.

II. MODEL

Our theoretical framework is a TWM for the slowly-varying
amplitudes of the forward and backward waves [18], , which
evolve in space and time according to

(1)

where are the internal losses of the system, is the optical
confinement factor, and for numerical purposes we have scaled
time and space to the cavity transit time and to the optical length
of the cavity, respectively. A typical 1.17 mm long device would
have a transit time 12.5 ps.

In (1), the source for are the projections of the total po-
larization of the active material onto the forward and backward
propagation directions, , which are obtained by a coarse
graining procedure by averaging the polarization over a few
wavelengths. In addition, appropriate boundary conditions
for the field amplitudes have to be provided for describing
the geometry of the device. In our case, we shall consider a
Fabry–Pérot cavity divided in two sections. The first one, from

to is electrically pumped and corresponds
to the amplifier section; the second one, from to

, is reverse biased and corresponds to a SA section of
relative length . We consider that there is no reflectivity at the
amplifier-SA interface, and that the cavity is defined by simple
cleaved facets.

Within each section, the link between the polarization and
field amplitudes is given by [26]

(2)

where and is the Fourier transform of the
frequency-dependent susceptibility of the active material. In
addition, is the quasi-homogeneous component of
the spatially dependent, time evolving carrier density, while

is the complex amplitude of the carrier
density grating at half the wavelength that develops due to the
presence of the two counter-propagating waves. In deriving
(2), we assumed that the grating in the carrier density is small
due to carrier diffusion [25]. Using the analytical susceptibility
developed in [23], [24], we have that [26]

(3)
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where is the Heaviside function. Moreover, is the po-
larization dephasing rate, is the transparency carrier density,

the frequency corresponding to the bandgap, the normal-
ized energy span of the semiconductor bands and the ma-
terial’s susceptibility constant (see [24] for details). Note that
this response function is causal and well behaved at . The
decaying exponential represents the memory time of the active
medium, which is proportional to as intuition dictates.

We note that a typical polarization relaxation time of 125 fs
corresponds in our scaled units to . In addition, the en-
ergy span of a semiconductor typically gives
[24]. It is however possible to choose a much lower value for
the top of the band without any noticeable deformation of the
gain and of the index spectra in the frequency range where the
dynamics occurs [26], which very much simplifies the numer-
ical implementation. In the following we use , which
corresponds to an energy span 16 THz, i.e.,
much larger than the optical width considered.

It is worth remarking that both the amplifier and the SA sec-
tions will be described with exactly the same functional form for
the optical response, although with different parameter values.
The reason is that both sections, even if having the same nominal
composition, work in very different conditions for the carrier
density. The polarization relaxation is typically mediated by two
sources, phonon assisted and carrier induced relaxation. While
the former one does not depend on the carrier density but mainly
upon the quantity of phonons available, the second one is an in-
creasing function of the carrier density. Since the gain and ab-
sorber sections operate in very different regimes where the car-
rier density is respectively large and small, the relaxation time
in the SA must be longer, hereby determining that the values of

are different in the two sections. We will denote and
their values in the gain and SA sections. In addition, we allow
the band-edge of the SA section to be shifted in frequency
with respect to the one of the gain section, thereby including in
a phenomenological way the quantum confined stark effect. We
choose our reference frame to be the band-edge of the gain sec-
tion, therefore .

Within the gain section, the carrier density is determined by

(4)

(5)

where is the current density injected per unit time (normalized
to the electron charge) into the section and is the
optical carrier wavevector. The recombination term is assumed
to be of the form

(6)

where , , and the non radiative, bi-molecular and Auger
recombination coefficients, respectively, and the ambipolar dif-
fusion coefficient is .

Within the SA section, there is no current injection (hence
) but the optically generated carriers are swept out at a

rate that depends on the reverse voltage applied to the SA sec-
tion. In addition, impurities and defects—created e. g. by proton
bombardment—can largely increase the non-radiative recombi-
nation rate in this section. As a result, the evolution of the carrier
density in the SA section is given by formally the same equa-
tions as those in the gain section, with

(7)

(8)

The method used to numerically integrate the model is de-
tailed in [26] and [28]. For numerical purposes it is convenient
to scale the carrier densities within each section to the corre-
sponding transparency carrier density, in the gain section
and in the SA section. The fields and polarizations are then
accordingly scaled. The field is spatially discretized on a mesh
of samples, hence the temporal discretization, fixed by the
Courant–Friedrichs–Lewy condition is (the speed of
light and the length of the cavity are unity in our notations).
This means that our signal is sampled and that the convolution
has to be computed from a discretized signal. The highest order
of integration achievable in this case is second order accurate,
consistent with our integration algorithm for the partial differen-
tial equations. For a given second order accuracy, several varia-
tions for the integral can be used and we choose the trapezoidal
rule, which besides being the simplest also happens to be the
best (see [26] for more details). In addition, we simulate spon-
taneous emission noise by adding after each step a stochastic
term to the polarization at each point in space and in each direc-
tion of variance . We assume for the sake of simplicity that is
both frequency and carrier density independent. The noise was
generated by the Box–Muller method and a Mersenne twister
[29].

III. RESULTS

We consider unless otherwise specified the device parame-
ters listed in Table I. The fundamental repetition rate of our ML
device is 40 GHz. We have considered that the intraband relax-
ation time in the SA is double of that in the gain section and
consequently . This represents closely the case of Al
quaternary materials as presented for instance in [30].

We summarize in Fig. 1 the various frequency scales present
in the problem by representing the imaginary part of the sus-
ceptibility in the amplifier and SA sections for different values
of the carrier density. The chosen values are smaller in the SA
section since it is usually operating below transparency, i.e.,

. The gain and absorption of the active medium in the
two sections have different references band-edge frequencies,
i.e., and . Notice also that the SA band-edge is sharper
since we have chosen .

In this configuration and for the parameters of Table I the
lasing threshold of the pure Fabry–Pérot laser is achieved when
the carrier density in the gain section is around .
Therefore the effective FWHM of the gain spectrum estimated
from Fig. 1(a) is 5 THz, i.e., 40 nm around the lasing wavelength
of 1550 nm. With the parameters of Table I, this corresponds to
a normalized current value of .
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TABLE I
TABLE OF PARAMETERS USED IF NOT OTHERWISE STATED IN THE TEXT

Fig. 1. Gain and absorption in the gain and the SA sections for different values
of the carrier density normalized to transparency within each section.

A. Methods

The results presented next have been obtained with a spatial
discretization of 400 points, while the length of the sim-
ulations is steps which corresponds to single trips in
the cavity, i.e., 125 ns. Preliminary studies indicate that this time
is usually suitable for having a good description of the asymp-
totic dynamics: the typical transients usually do not last longer
than 30 ns, although some critical slowing down can not be to-
tally ruled out. We keep 10% of the final time trace to perform
the data processing. A typical 125 ns simulation run is achieved
in 15 min on a reasonably modern PC @ 2.6 GHz. Albeit beyond
the scope of this manuscript, where we examine the parameters
influence on the ML regimes, the method is practical for com-
puting long time series and assess the statistics of the pulse train.

We obtained several bifurcation diagrams as a function of
some key parameters in order to assess the operating range and

the ML quality and stability. We used the typical method of nu-
merical continuation: the final solution found for one value of
the control parameter is used as an initial condition for the next,
slightly different, value of the control parameter. An unique
sweep of the control parameter, e.g., ramping up or down, would
fail to detect possible bistable behavior. However, an unique
scan usually gives some hint of a possible bistable behavior,
like, e.g., a sharp transition in a bifurcation diagram. During this
study, we did not find any of such hints and all the parameter
sweeps are made only ramping up or down the control param-
eter if not otherwise stated.

The typical sequence of bifurcations found upon increasing of
the bias current is: steady emission, weak multimode dynamics,
stable ML, a bubble of self-pulsation if the SA modulation is
sufficiently strong and finally a partial degradation of the pulse
train for high drive current (ten times threshold). If not otherwise
stated the value of the bias current corresponds to five times the
threshold current.

We represented in the bifurcation diagrams of Figs. 3, 5, 7,
and 9: a) the average, minimal, and maximal values of the field
intensity at the right output; b) the carrier density in the middle
of the cavity, i.e., within the gain section; and c) the carrier den-
sity in the SA at the right output, i.e., in the SA section, re-
spectively. Average, maximal and minimal values are depicted
in blue, red, and green, respectively. One should note that in
panels a) the average value of the intensity was multiplied by
25, i.e., the round trip. This is important not only for clarity
but also means that when the maximal intensity, i.e., the peak
power, is of the same order as the steady intensity multiplied by
the round-trip, one is dealing with pulses having a duty cycle of
1/25, i.e., a width of the order of 1 ps.

Panels d)–f) represent the average frequency of the optical
spectrum, measured from the band-gap reference, the full width
at half maximum (FWHM) of the field auto-correlation and
the FWHM of the optical spectrum, respectively. The average
frequency as well as the spectral FWHM were assessed by a
Gaussian fit of the optical spectrum.

In the figures containing time traces, we represent the field
intensity at the right facet, the maxima and minima, in blue, red
and green respectively, while the right panel are simply a zoom
on the pulse detail where, in order to ease the comparison, the
pulses are normalized to their peak power.

B. Influence of the Saturable Absorber Length

We study in this section how the SA length affect the dy-
namics. Physical intuition indicates that a too short SA section
would not induce a sufficient non linearity to sustain pulsed be-
havior. However, a too long section introduces too much losses
in the device rendering its efficiency marginal. In between this
two extreme cases, a large variety of regimes can be found in
agreement with studies from other groups, see for instance [15].
Notice that due to the discrete nature of our spatial discretiza-
tion, the minimal variation of the SA length is 0.25%.
We scan from 0% (simple Fabry–Pérot device) up to
7.5% which explain the relatively coarse nature of the diagrams
presented in this section.

As the length of the SA is scanned, the following different
behaviors are observed.
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Fig. 2. Long time behavior of the time traces of the field intensity (left) and
details of the pulse shape (right). The panels a)–d) correspond to � � 1.5%, � �

3%, � � 3.75%, and � � 6.5%, respectively.

1) For ranging from 0% up to 1.25%, only weak multi-
mode can be seen and the optical spectrum is essentially
monomode.

2) For between 1.5% and 2%, a transition to stable shallow
Harmonic ML is found as can be seen in Fig. 2(a) obtained
with 1.5%. The FWHM of the auto-correlation is not de-
fined in this almost linear regime since the modulation is
less than 50%.

3) For ranging from 2% to 3% unstable ML appears, with
substantial modulation of the pulse amplitudes which is
accompanied by a considerable jitter as can be seen in the
pulse train in Fig. 2(b), obtained with 3%.

4) For ranging from 3% to 5% stable ML exists with very
low noise triggered jitter, see Fig. 2(c) with 3.75%.

5) For ranging from 5.25% up to 7.5% the device enters a
Q-switch instability regime (QSI), see Fig. 2(d) obtained
with 6.5%.

A more comprehensive picture of the effect of the length of
the SA section is provided by the bifurcation diagram shown in
Fig. 3. When is increased, the average intensity decreases since
a higher absorber length corresponds to higher linear losses at
threshold. Therefore the threshold current density and slope ef-
ficiency are respectively increased and decreased. This explain
while the average intensity is a decreasing function of while
the carrier density is a increasing function of . The SA average
density decreases since, the longer the section, the more dif-
ficult it is to bleach the carriers at the right-most facet of the
absorber. The shorter auto-correlation and the broader spectra
are obtained around 3%, although in a weakly stable regime,
simply because too short an absorber is not sufficient to trigger
ML, and too long an absorber increases losses and in turn de-
creases the power available to modulate the absorber. In this
respect, the statement that shortening the absorber shorten the
pulse width, albeit true, is valid only when one is comparing the
same current density, as it is the case in Fig. 3. One can also
observe that the average frequency is red shifting when the sat-
urable absorber length is increased. The longer the section, the
bigger the penalty to operate in the blue when the absorption is
large. The laser therefore adapts its frequency by shifting from
the gain peak to the red in order to compensate for the quantity
of absorption.

Fig. 3. Bifurcation diagram as a function of the SA Length, minima, maxima,
and average values are depicted in green, red, and blue, respectively (see text
for details).

C. Influence of the SA Recovery Time

Another parameter that strongly affects the pulse train quality
as well as its stability is the recovery time of the SA. The in-
crease of the SA recovery rate is usually obtained by increasing
the reverse Voltage applied to the SA section. How should note
however that this increase is usually accompanied by a red shift
of the SA band-edge due to the Quantum confined Start effect.
However, in order to be able to distinguish between the influ-
ence of the SA recovery time and of the SA Stark effect, we are
only varying one control parameter in this section. The influence
of the relative detuning between the gain and the SA section is
deferred to Section III-E, and in this section we study only the
influence of the recovery time for a fixed SA length 5%.

The different behaviors obtained as the recovery time of the
SA is reduced are presented in Fig. 4. The following can be
observed.

1) For ranging from 50 down to 45 ps (not shown in Fig. 4),
the laser is essentially monomode.

2) For ranging from 45 down to 26 ps, a weak multimode
regime arises and steadily broadens as can be seen in Fig. 4
panels d) and c) obtained with a recovery time and

26 ps, respectively.
3) For ranging from 25 down to 5 ps, a broad region of

stable ML with typical auto-correlation FWHM of 3 ps
exists, see for instance Fig. 4 panel b) obtained with
25 ps.

4) For ranging from 5 down to 1 ps, a sudden decrease of
the auto correlation FWHM as well as a sudden increase of
the spectral width indicates an improvement in the sharp-
ness of the pulses train as can be seen Fig. 4 panel a) ob-
tained with 1 ps.

The global picture of the effects of the recovery time of the
SA can be found on the bifurcation diagrams plotted in Fig. 5.

One can clearly observe a qualitative change when .
For , the emission frequency is substantially detuned to
the blue, while for the detuning is substantially reduced.
The reason is that, for long recovery times of the SA, the ab-
sorption at high frequencies is bleached more efficiently hence
the system tends to operate close to the gain peak of the ampli-
fier section; instead, for short recovery times the laser operates
closer to the transparency frequency of the SA, where absorp-
tion can be bleached more easily.

Authorized licensed use limited to: UNIVERSITAT DE LES ILLES BALEARS. Downloaded on April 19,2010 at 15:05:58 UTC from IEEE Xplore.  Restrictions apply. 



1028 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 46, NO. 7, JULY 2010

Fig. 4. Long time behavior of the time traces of the field intensity (left) and
details of the pulse shape (right). The panels a)–d) correspond to � � �,
� � ��, � � ��, and � � 40 ps, respectively.

In addition, a clear trend is also found on the auto-correlation
diagram (see panel e): the pulse width does not depend much on
the recovery time as long as it is longer than the pulse width and
faster than the round trip repetition frequency, i.e., 5 ps
25 ps. This regime corresponds to the slow absorber regime [4],
when the absorber tailors only the leading edge of the pulse.
When is comparable with the pulse width, then some tailoring
the trailing edge of the pulse takes place [3] which explains the
decrease of the pulse width in this range. For the quite unreal-
istic values 0.5 ps, the SA becomes impossible to modu-
late efficiently, meaning that the stimulated term cannot domi-
nate anymore the linear recovery time, even during the fast stage
corresponding to the pulse induced depletion of the absorption.
As a consequence, we did not find any ML, for this parameter
set.

One also observes that the average intensity and the SA car-
rier density increase with the recovery time, while the average
carrier density in the amplifier section decreases. Again, the
reason is that for long recovery times of the SA, the carrier den-
sity in the SA section is higher hence leading to reduced absorp-
tion losses. The bleached absorption reduces the carrier density
in the amplifier section required to equate gain and loss, and in-
creases the output intensity.

The change of behavior is due to the fact that when reaches
the value of the round-trip time , the SA has time enough to
recover its full absorption between pulses. A word of caution is
however needed: the occurrence of this transition almost exactly
at is merely a coincidence of our parameter set, the
transition has only to be expected around . However,
it is clear that the condition is the most favorable for
having a stable fundamental mode-lock regime in Fabry–Pérot
lasers.

D. Influence of the Intraband Relaxation Time

The previous study indicates that the recovery time is clearly
not the only mechanism governing the pulse width and stability.
The pulse width should also be influenced by the number of
modes capable of entering the ML state, which is expected to
depend on the width of the gain spectrum. In order to assess the
dominant mechanism governing the pulse width, we fix the SA
length and recovery time to 5% and 10 ps, respectively

Fig. 5. Bifurcation diagram as a function of the SA recovery time, minima,
maxima and average values are depicted in green, red, and blue, respectively
(see text for details).

and we vary the intraband time while the other fixed parameters
are detailed in Table I. Note that, in order to compare with the
previous results, we consider always that the dephasing time in
the amplifier section is half that of the SA section, so we are
simultaneously varying and .

Although the tunability the intraband relaxation time is
not immediately clear from an experimental point of view,
one should note that devices with higher thresholds operate
with higher current density. This has a double effect: on one
hand, the gain bandwidth is a strongly dependent function
of the carrier density, on the other, the dephasing rate due to
carrier-carrier collisions increases. Hence, tuning the intraband
time leads to basically stretch or compress the susceptibility of
the semiconductor in the frequency domain thereby mimicking
devices operating with higher threshold current density.

With the chosen configuration, stable ML is found for all the
values of considered, whose characteristics we present for the
sake of completeness in Fig. 6(a)–(d), obtained with
equal to 1, 5, 9, and 13, respectively.

The bifurcation diagram in Fig. 7 evidences the clear linear
dependence of the auto-correlation FWHM as a function of the
intraband recovery time , while the FWHM of the optical
spectra is directly proportional to the inverse of the intraband
time, . As the pulse compresses, the peak power increases in
Fig. 7(a) and the SA is more efficiently modulated in Fig. 7(c).

This study allows us to conclude that the breadth of the gain
curve is the dominant quantity limiting pulsewidth. Notice that
in our approach the susceptibility linking field and polarization
is complex. As such the gain curvature is accompanied by dis-
persive effects. The imaginary part of the second derivative of

in the frequency domain determines the modal threshold dif-
ference while its real part is the so-called group velocity disper-
sion (GVD). In our approach, one can not distinguish whether
the modal gain difference or the fact that modes are not equidis-
tributed in frequency domains is what limits pulsewidth. How-
ever, our analysis suggests that an important control on the pulse
characteristics could be expected by the inclusion of a grating.
Depending on the relative spectral width of the grating, one can
expect either a broadening of the pulses whenever the grating
spectral FWHM is smaller than that of the semiconductor gain
curve, usually meaning pulses closer to the transform limit. Op-
posingly, when the grating possesses a comparable FWHM to
the one of the active material, one can obtain a shortening of the
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Fig. 6. Long time behavior of the time traces of the field intensity (left) and
details of the pulse shape (right). The panels a)–d) correspond to � ��� equal
to 1, 5, 9, and 13, respectively.

Fig. 7. Bifurcation diagram as a function of the intraband polarization de-
phasing time, minima, maxima and average values are depicted in green, red
and blue, respectively (see text for details). The black lines in panel e) and f)
correspond to the best linear fits as a function of � and � , respectively.
Note that semi-logarithmic plot is used only for clarity.

pulses by tuning the grating in order to compensate for the active
material GVD. This is in full agreement with the experimental
literature on semiconductor ML, see for instance the reviews in
[31] and [32].

E. Influence of the Gain/Absorber Relative Frequency Shift

The former discussion indicates TGAT the detuning of the
energy gaps between the gain and the absorber section is of
paramount importance for generating stable ML. It was indeed
pointed out in [27] that a careful tuning of the bandgap of the SA
section allows for a pulsewidth reduction of more than a factor
two. While the application of a reverse Voltage is an efficient
way to increase the sweep out of carriers, this has also the side
effect to red-shift the position of the SA band-edge frequency.
For instance, typical values for the bandgap shift in Al quater-
nary materials are of the order of 1 THzV [30].

As shown in Fig. 8, stable ML is only achieved for the proper
spectral alignment of the gain and absorption curves. The reason
is that if the SA band-edge is substantially red-detuned with re-
spect to the amplifier, the absorption losses in the system will al-
ways be high and barely saturable; conversely, for large blue-de-
tuning of the SA band-edge, the absorption losses are small and
will always be bleached. In both cases, ML shall not occur, at

Fig. 8. Long time behavior of the time traces of the field intensity (left) and
details of the pulse shape (right). The panels a)–d) correspond to � equal to
0.6, 1.3, 1.8, and 2.1 THz, respectively.

Fig. 9. Bifurcation diagram as a function of the band-edge detuning of the SA,
minima, maxima and average values are depicted in green, red and blue, respec-
tively (see text for details).

least within the framework of the quasi-equilibrium approxi-
mation. Only when the gain peak barely coincides with the SA
band-edge we expect strong modulation of the absorption losses
leading to stable ML.

Indeed, the bifurcation diagram in Fig. 9 indicates that stable
fundamental ML is achieved only in when the band-edge of the
SA lies between 0.6 and 1.6 THz. By comparing with Fig. 1
we can see that this is the region of simultaneous occurrence of
high gain and relatively low, saturable absorption. The different
regimes encountered are summarized as follows.

1) For ranging between 2.5 THz and 2.4 THz
the laser is essentially monomode.

2) For ranging between 2.4 THz and 2 THz a
transition to harmonic ML is found, as can be seen in Fig. 8
panel d), obtained for 2.1 THz.

3) For ranging between 2 THz and 1.6 THz the
previously stable harmonic Mode Lock regime deteriorates
into an unstable pulse train as can be seen in Fig. 8 panel
c), obtained for 1.8 THz.

4) For ranging between 1.6 THz down to
0.7 THz stable ML exists, see for instance Fig. 8 panel b),
obtained for 1.3 THz.

5) For ranging between 0.7 THz down to
the too large absorption triggers the onset of the Q-switch
instability, as seen in Fig. 8 panel a), obtained for 0.6
THz.
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IV. CONCLUSION

The ML dynamics of a semiconductor Fabry–Pérot laser has
been explored using a TWM complemented by a new descrip-
tion of the active medium polarization presented in [26]. The
convolution method allows us to correctly describe in time do-
main the abrupt frequency dependence of the SA optical re-
sponse. The effectiveness of our approach allowed us to sys-
tematically explore the influence of several important control
parameters, e.g., length, recovery time and band-gap offset of
the SA as well as the width of the gain curve. We have shown
that for Fabry–Pérot devices, the pulse properties are to a large
extent independent of the recovery time as long as it is shorter
than the pulse repetition rate. We also found that, for the pa-
rameters considered, the optimal length of the SA is typically
around 4%, in agreement with published experimental results.
Although not directly applicable to an experiment, the study as a
function of the gain bandwidth demonstrates that the main factor
limiting the pulse duration is the curvature of the gain curve as
well as the GVD. In addition, we thoroughly analyzed the strong
dependence on the relative detuning between the gain curve and
the band-edge of the SA. All the results found in our study are
physically sound and in good qualitative agreement with the ex-
perimental knowledge on ML. This indicates that our modelling
approach can be used, upon proper fitting of the material pa-
rameters, for optimization of the design of semiconductor ML
lasers.
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