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The dependence of the angular momentum polarization (orientation and alignment) of the 
fragments on the direction of ejection k, is studied quantum mechanically for molecular 
photodissociation into two fragments of which one carries an angular momentum j. Explicit 
expressions in terms of the transition matrix elements for electronic excitation into the final 
dissociative states are given in the axial-recoil limit and for different photon polarizations. The 
importance of interference effects due to coherent excitation of dissociative states with different 
helicity quantum numbers (the projection n of j on the recoil direction k) is stressed. It is 
shown that not only absolute magnitudes but also relative phases of individual transition matrix 
elements can be determined separately if the spatial anisotropy of the angular momentum 
polarization is measured. 

I. INTRODUCTION 

The study of vector properties in molecular photodis­
sociation processes has received considerable experimental 
and theoretical attention latelyl-4 as a mean to obtain the 
most detailed information on the fragmentation dynamics. 
It is possible, for instance, to measure the distribution 
among magnetic sublevels m =. j b corresponding to the 
projection of the angular momentum j of a photofragment 
on the space-fixed Z axis (usually chosen parallel to the 
photon polarization vector e for linear polarization and to 
the direction of propagation of the photon for circular or 
unpolarized light, see Fig. 1). This so-called angular mo­
mentum polarization of the fragments corresponds to a 
determination of the correlation between the vectors j and 
Z. In the simplest experimental situations the degree of 
polarization of the fragments is characterized by the ori­
entation and alignment, which are related to the first and 
second moments of the m distribution, i.e., to < j z} and 
(j~>, respectively.s-12 

Another vector property is the angular distribution of 
the photofragments in space, i.e., the correlation between 
the recoil direction k of the fragments and the space-fixed 
Z vector. In many experiments the fj,Z] and [k,Z] corre­
lations have been measured independently from each other. 
Thus, orientation and alignment (fj,Z] correlation) have 
very often been measured averaged over all directions of 

ejection, while the angular distribution ([k,Z] correlation) 
has been determined irrespective of the angular momentum 
polarization of the fragments. These measurements provide 
a wealth of crucial information concerning both the sym­
metries of the excited states and the dynamics of the half­
collision process. However, as has been stressed by Hous­
ton and collaborators,13 the most detailed information on 
the photofragmentation process is obtained by determina­
tion of the correlation between j and k. This intrinsic fj,k] 
correlation can be determined by measurement of the an­
gular momentum polarization of the photofragments as a 
function of the direction of the recoil vector k of the frag­
ments. This can be performed by analysis of sub-Doppler 
line shapes obtained by laser-induced fluorescence (LIF) 
spectroscopy. 2,12,13 

In a seminal paper,12 Dixon provided the general the­
oretical determination of the fj,k] correlation from the 
analysis of these Doppler-resolved line shapes. For linearly 
polarized light the correlation is defined by a number of 
bipolar moments of the translational and rotational angu­
lar distributions. In his paper, Dixon has provided the ex­
plicit equations which allow the determination of the bipo­
lar moments from the polarization dependence of the 
Doppler profiles. He has also given an interpretation of the 
bipolar moments in terms of a semiclassical description of 
the fragmentation dynamics and some particular examples 
of the application of this treatment. As has been pointed 
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FIG. 1. Space-fixed reference frame used to establish Eqs. (14), (17)­
(19), (22), and (30). n is the direction of propagation of the incident 
light. 

out by Dixon in Sec. V of his paper,12 the bipolar moments 
can in principle be calculated by use of the general quan­
tum theory of photodissociation dynamics and a knowl­
edge of the involved potential energy surfaces and transi­
tion dipole moments. This full quantum treatment of 
vector properties is necessary when the angular momenta 
involved are not large or when it is important to have 
explicit expressions for vector correlations in terms of pho­
todissociation amplitudes which can be calculated by the 
use of scattering or half-collision theories. IO,ll It is the pur­
pose of this work to provide such a quantum treatment. 

The formalism used is an extension of that in Ref. 11, 
where only the integrated angular momentum polarization 
of the fragments was considered. The problem is concep­
tually related to the spin and ion angular momentum po-
.. d" h . . . 14-16 Ph t c. t lanzatlOn stu les In p otolOntzatlOn. 0 olragmen a-

tion into two fragments of which one carries an angular 
momentum j is considered. Direct photodissociation of an 
initially randomly oriented molecule is assumed and the 
axial recoil approximation is used. Explicit expressions are 
provided for linearly polarized incident light and also for 
excitation with circularly or unpolarized light. The impor­
tant case where several dissociative states with different 
helicity quantum numbers (the projection n of j on the 
recoil direction k) are excited coherently, 11 is discussed in 
detail. As expected, vector correlations as a function of the 
recoil direction of the fragments provide information 
which would be very difficult to extract from scalar prop­
erties. In particular, it is demonstrated that angularly re­
solved orientation and alignment can determine the indi­
vidual absolute magnitudes as well as the relative phases of 
the transition matrix elements. 

The organization of the paper is as follows. In Sec. II 
the excitation matrix for direct photodissociation is given 
in terms of the state multi poles. The detail of the calcula-

tions are given in Appendix A. In Sec. III the general 
results of Sec. II are used to explicitly calculate the differ­
ential cross section for photodissociation and the angular 
momentum polarization of the fragments. Section IV is 
devoted to the conclusions. Finally, the relationship be­
tween the quantum expressions and the semiclassical bipo­
lar moments defined in Ref. 12 is given in Appendix B. 

II. ANGULAR-DEPENDENT EXCITATION MATRIX AND 
STATE MULTIPOLES 

We consider a photodissociation process producing 
two fragments of which one carries an angular momentum 
j different from zero. For cases where the two fragments A 
and B have angular momentum different from zero, j=jA 
+jB and a final transformation is needed in order to cal­
culate the vector correlations of jA and h from those of 
j.lO,ll In first-order perturbation theory for electric dipole 
transitions the differential excitation matrix for one-photon 
fragmentation of an initially r~tndomly oriented molecule, 
can be written as8 

(1) 

where (i) is the frequency of the incident light, e its polar­
ization vector, and d the electric dipole operator. In Eq. 
( 1) 'I' J. M. is the wave function of the initial molecular state 

I I 

with angular momentum Ji and projection Mi on the space-
fixed Z axis. Finally, the dissociative wave function 'l'jm;k 

in Eq. (1) describes the two photofragments flying apart 
with momentum 17k and direction specified by the polar 
angles E>k and <l>k (see Fig. I). 

The partial differential cross section to produce frag­
ments with a specific angular momentum j and component 
m along the space-fixed Z axis, is given by the diagonal 
elements of the excitation matrix O'}j~(E>k><I>k) defined in 
Eq. (1). However, to calculate the cross section for pro­
duction of fragments with a component m along another 
axis the full excitation matrix O'~~(E>k><I>k) is needed. This 
is the case in double excitation experiments where the 
photofragments are detected by LIF, for instance. The ex­
citation matrix elements O'~~ for m'=I=m describe the co­
herence between states with different quantum numbers m. 
In general there may be additional quantum numbers in 
the problem which may be excited coherently. In the 
present work only the coherences between magnetic sub­
levels m are considered. For convenience the superscript 
(j) will be dropped in the notation of the excitation matrix 
elements 0' m'm' 

The plane-wave function 'I' jm;k in Eq. (1) can be ex­
pressed in terms of the spherical harmonics Y 1m, according 
to 17 

(2) 

The quantum number I corresponds to the angular mo­
mentum associated to the relative motion of the centers of 
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mass of the two photofragments (orbital angular momen­
tum), with m[ being its projection on the space-fixed Z 
axis. Since it is more convenient to calculate the matrix 
elements of the dipole operator d in a body-fixed frame 
with the z axis along the vector R joining the two centers of 
mass of the photofragments, the wave function 'I' jm;k is 
expressed in terms of molecule-fixed wave functions 'I' jOJM 

(see Appendix A). J is the total angular momentum with 
projection fl (the helicity quantum number) on the body­
fixed z axis and M on the space-fixed Z axis. This quantum 
number becomes a good quantum number at infinite sepa­
ration where the body-fixed z axis become parallel to R. 
Since I is perpendicular to R, fl is also the projection of j 
on the recoil direction. The quantum number fl can, for 
instance, correspond to the projection of the electronic an­
gular momentum. For a polyatomic molecule the nuclear 
rotation also contributes to the projection fl. 

It is convenient to express the excitation matrix ele­
ments O'm'm(E>k'~k) in terms of the angular momentum 
polarization moments (state multipoles) T KQ(E>k>~k)' 
which are the spherical tensors of rank K and component 
Q defined by7,8 

(3a) 

(3b) 

The probability to produce the photofragment with an 
angular momentum j in the direction (E>k'~k)' i.e., the 
differential cross section, is then directly related to 
TOO(E>k>~k) and the other vector properties are related to 
the multipoles TKQ(E>k'~k) with K>O. 

By combining Eqs. (1 )-( 3) and applying the proper­
ties of the 3 - j symbols in a way analogous to Ref. 11, it 
is found that the differential polarization moment can be 
written as (see Appendix A) 

TKQ(E>ko~k) 

2~/2CtJ 
=-- L L (-1)q(2P+ 1) 1/2(25' + 1) 1/2 

C qq' PS 

( 
P S 

X q'_q 0 

where [Ys(k) ®Ep(e)] denotes the tensor product 

(4) 

[Ys(k) ®Ep(e)]KQ 

= L (-1)S-P+Q(2K+ 1)112 
ps 

(5) 

The function Epp(e) depends only on the polarization 
of the incident light and is given by6,8 

with P=O, 1, 2. The functions fK(q,q') in Eq. (4) are 
defined by 

fK(q,q') = L (_l)j+!l;-q (j j K) 
0i -fl fl' q'-q 

(7) 

with fl=flj-q and fl' =flj-q', and Mjop. being the tran­
sition dipole matrix elements defined by 

where <p designates basis functions describing the internal 
states of the fragments at infinite R. The ~(R) functions in 
Eq. (8) describe the relative radial motion of the fragments 
and can be calculated using scattering or half-collision 
techniques. 10,18,19 

The fK(q,q') functions defined by Eq. (7) contain all 
the information on the transition dipole moments and frag­
mentation dynamics via the products of the transition ma­
trix elements Mjop of the dipole operator between the 
initial bound and final dissociative states as defined by Eq. 
(8). For this reason they may be called the dynamical 
functions for direct photodissociation. It should be noted 
from Eq. (8) that q can only take the values 0 or ± 1, 
corresponding to parallel and perpendicular electronic 
transitions, respectively. Also, if q=/=q' in Eq. (7) then 
fl=/=fl', and this corresponds to a simultaneous coherent 
excitation of continua with different helicities. These terms 
are responsible for interference effects in vector proper­
ties.3

,10,11 They cannot appear in the differential cross sec­
tion which is related to the K =0 moment, but they are 
important in the determination of the orientation (K = 1, 
3, ... ) and in the alignment (K=2, 4, ... ). In the diatomic 
case, they may arise from the simultaneous excitation of a 
l: and a II electronic state or from the excitation of the two 
components ± 1 of a II state.3 

The dynamical functions f K( q,q') defined by Eq. (7) 
obey the following symmetry rules:2o 
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IK(q,q') = (_1)K IK( -q,-q'); 

IK(q,q') = (-l)q-q'j}(q',q). (9) 

One consequence of these properties is that odd K mo­
ments cannot be produced via parallel transitions21 for 
which q=q' =0 since according to the first of Eqs. (9), 
fK(O,O) =0 for K odd. 

Equations (4) to (8) give our final expressions for the 
angular-dependent state multipoles TKQ(ek,q,k) in terms 
of the transition matrix elements of the dipole operator, for 
all possible incident photon polarizations and for any 
choice of the space-fixed reference frame. From the 3 - j 
coefficients in Eq. (7) it foHows that T KQ( e",q,k) can be 
different from zero for K=O, 1, ... ,2j. Also, from the 3-j 
coefficient in Eq. (5) it is seen that Q can take any integer 
value from -K to K. On the contrary, if the T KQ(e",4>k) 
are integrated over the dissociation angles (0k,4>k), only 
the S = ° term contributes to Eq. (4) and in that case from 
Eqs. (5) and (6) one obtains the well-known result that 
the integrated polarization moments T KQ are nonzero only 
for K=P=O, 1, and 2.8 

Using Eq. (4) into Eq. (3b) it is possible to obtain the 
angular-dependent quantum excitation matrix U m' m 

(0b 4>k) for direct photodissociation of an initially ran­
domly oriented molecule. It is possible, starting from Eq. 
(3b), to establish the connection between this quantum 
theory and the semiclassical treatment of Ref. 12 which 
was given in terms of bipolar moments. This connection is 
presented in Appendix B. 

In addition to the space-fixed multipoles T KQ given by 
Eq. (4), it is possible to define body-fixed muItipoles Y KQ 
by tM transformations 

Y KQ(e",q,k) = I ~,(q,k>0",O)TKQ,(0k>q,k)' 
Q' (lOa) 

T KQ(0",$k) = L ~,($",0k,Q),r KQ,(0k,1>k)' 

Q' (lOb) 

Actually, these muItipoles refer to a frame with the z axis 
along the recoil direction of the fragments k. Asymptoti­
cally however, i.e., for infinite R, the k becomes rigorously 
parallel to R. Anyway, within the framework of the axial 
recoil approximation used in this work k and R are always 
parallel (see Fig. 1). 

From Eq. (10) and using the Clebsch-Gordan series8 

to perform the summations over Sand s in Eqs. (4) and 
( 5) one obtains 

,r KQ(0",q,k) 

= 1TCtJ I ~2K+1(_l)K+q'IK(q,q') I (2P+0 1l2 

C ft' P 

X If PQ(e,0k ,$k) (;, ~q ~Q)' (I 1) 

where 

?f PQ(e,eklq,k) = I EppCe)ilJQCq,k,0k10) (12) 
p 

are the components of the Epp(e) polarization functions 
defined in Eq. (6) in the body-fixed coordinate frame. We 
note from Eq. (11) that the components Q of the angular 
momentum polarization moments YKQ(ek,q,k) in the 
body-fixed frame are restricted to the values Q=O, ::!:: 1, 
::!:: 2. This is expected for one-photon electric dipole transi­
tions for which only parallel (q=O) or perpendicular elec­
tronic transitions (q = ::!:: I) are allowed. 

Using the Y KQ(0k ,q,k) multipoles the excitation ma­
trix in the body-fixed frame can then be obtained by 

(

. K 

X ~n Q ~,),r KQ(0k>4>k) 

( 13a) 

which is the equivalent of Eq. (3b) in the space-fixed 
frame. Actually, the space-fixed um'm(0k,ct>k) and the 
body-fixed uo.'0.(0k ,4>k) excitation matrices are related by 
the transformation 

= I ~'0.,($k>0k10)uo.'0.(0k,q,k)DCo.(4>k>0k'O). 
0.0.' 

(13b) 

If the space-fixed Z axis is chosen to coincide with the 
polarization vector for linearly polarized incident light and 
with the propagation direction of the light for circularly 
polarized or unpolarized light (see Fig. 1), then p=O in 
Eq. (6). With this choice of space-fixed coordinates it can 
be shown, from Eqs. (4) and (5), that after angular inte­
gration only the TKO multi poles can be different from zero. 
This in tum implies that integration over all dissociation 
directions makes the excitation matrix U m' m diagonal. 

Since the T KO(0k,4>k) multipoles determined the di­
agonal elements of the excitation matrix U m'm' it is useful 
to provide their explicit expressions in terms of the dynam­
ical functions IK(q,q') defined in Eq. (7). From Eqs. (4) 
and (5) it is found 
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1Tm ~ 2 K 
T KO(®k><I>k) = 4c \f2K+ 1 (([IK(O,O) +21 K(1,1) h[ 1 + (-1) ][ 1 +13KP2(cos ®k)] +2aIK(1,1) 

X [1- (_1)K]COS ®k}~(<I>k>®k>O) -2 ~ Re{jK(1,O)}sin ®k{ -a[ 1- (_1)K] 

+b[ 1 + (-1 )K]cos ®k}ffoi(<I>k>®k>O) +bl K(1,-1) [I + (-1)K]sin2 ®k.ifo: (<I>k>®k>O», (14) 

where a and b are coefficients which depend only on the 
state of polarization of the incident light. They are listed in 
Table I for linear, circular, and unpolarized photons. The 
Wigner rotation matrix elements ~m,(<I>k'®k>O) appear­
ing in Eq. (14) are presented explicitly in Table II for 
K=O, 1, and 2. The anisotropy parameter 13K in Eq. (14) 
is given by 

2[ 1 K(O,O) - IK(1,1)] 

13K IK(0,0)+2/K(1,1) 

for linearly polarized light, and by 

[I K(O,O) - 1 K( 1,1)] 
13K=- IK(0,0)+2IK(1,1) 

(1Sa) 

(1Sb) 

for circularly polarized or unpolarized light. For K =0, Eq. 
(15) yields the well-known anisotropy parameter describ­
ing the angular distribution of the photofragments. 17 

T KO( ®k><I>k) as given by Eq. (14) consists of three 
terms containing the Wigner rotation matrix elements 
.ifoo(<I>k'®k'O), ~(<I>k>®k'O), and .Dg;(<I>k>®k'O). The 
coefficient of ifoo involves 1 K(q,q') functions with q=q'. 
From the definition of the dynamical IK(q,q') functions 
given in Eq. (7) it is seen that this corresponds to a sum of 
incoherent terms of the form I MjOpl2. Actually, a com­

parison of Eqs. (14) and (1 Ob) reveals that the coefficient 
of .ifoo in Eq. (14) is just the body-fixed multipole Y KO' Its 
angular dependence is given by [1 +13KP2(cos ®k)] for even 
K and by cos ®k for odd K. For odd K, however, it will be 
different from zero only for circular polarization (see Ta­
ble I). The two other terms in Eq. (14) are proportional to 
~(<I>k'®k>O) and .Dg;(<I>k>®k,Q), and involve IK(q,q') 
functions with q-q' = 1 and 2, respectively. From Eq. (7) 
it is seen that they correspond to terms of the form 
Mjnp (Mjn,.o.')* with !l-!l'=±1 and ±2, respectively. 
Therefore, in order to have a contribution from these terms 
it is necessary to have simultaneous (coherent) excitation 
of final dissociative states with different helicities. As 
stressed above, these terms give rise to interference effects 
which are important in many cases. In particular, they 
were invoked as a possible mechanism to explain the anom-

TABLE 1. Polarization-dependent coefficients a and b in Eqs. (14), (22), 
(24), and (30). 

Po1arization 

Linear 
Unpolarized 
Circular 

a 

o 
o 

-I 

b 

-2 
1 

alously high orientation of the CN fragments found exper­
imentally in the photodissociation ofICN.4(a).4(b) They are 
also known to be important in determining the polarization 
of fragment fluorescence. 3 From Eq. (lOb) it is seen that 
the coefficients of ~1 (<I>k'®k,Q) and n&(<I>k'®k'O) in Eq. 
(14) are the body-fixed multipoles Y KQ with Q= ± I and 
±2, respectively. It is also clear from Eq. (14) that the 

angular dependence of the term proportional to ffoi is 
very different for even and odd K. The term proportional 

to .ifo:, on the other hand, is nonzero only for the multi­
poles with an even K. 

The general conclusions presented above are not only 
valid for K = 1 and K = 2 but also for the higher order state 
multipoles (K = 3,4, ... ,2j). The multipoles of rank K> 2 
vanish after integration over the recoil direction and thus 
they can be obtained only from angular resolved studies. 
However, the higher polarization moments are of interest. 
They provide more detailed information on the spatial dis­
tribution of j. 

III. DIFFERENTIAL CROSS SECTION AND ANGULAR 
MOMENTUM POLARIZATION OF THE FRAGMENTS • 

In this section we provide the explicit expressions for 
the differential cross section, as well as for the orientation 
and the alignment of the fragments angular momentum for 
the most usual choice of the space-fixed frame, namely the 
one in which the Z axis is in the direction of the polariza­
tion vector for linearly polarized incident light and in the 
direction of the propagation direction of the light for cir­
cularly polarized or unpolarized light (see Fig. 1). 

A. Differential cross section 

From Eq. (3a) it is easy to show that the differential 
cross section U(®k,<I>k) for production of a photofragment 
with a specific angular momentum j is proportional to the 
zero-order mUltipole Too(®,<I», 

a(®k,<I>k) == I Umm(®k><I>k) = ~2j + 1 T oo(®,<I». 
m 

(16) 

TABLE II. Wigner rotation functions ~m(®k><l>k'O) appearing in Eq. 
(14). 

~m(®k,<l>k,Q) K=O K=! K=2 

m=O COS®k (3 cos2 ®k-I)/2 
m=1 lIV'1sin ®k .[f7i sin ® k cos ® k 

m=2 ,f378 sin2 ®k 
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TABLE III. The values of polarization momenta T KQ(0,<I» divided by 1TW/C for different angles 0 and <1>=0 from which the functions IK(q,q') can 
be obtained straightforwardly. 

0=0 0=II/4 

Too 10(0,0) 

Too 10(1,1) 

TIO -yj/l(l,1) 

Til a -i,j372 Im[fl (1,0)] 

T20 .J5/2(1,1) 

Tzo .J5/2(0,0) 

Then with the choice of the space-fixed frame of Fig. 1, 
Eq. (14) provides the celebrated expression 17 

ao 
a{0k><I>k) = 41T [1 +(30 P2{COS ®k)] (17) 

with 

4~cu 
ao=~ [/0(0,0) + 10(1,1) + lo( -1,-1)] (18) 

and 

2[ 10(0,0) - lo{ 1,1)] 
(3, for linearly polarized light, 

o 10(0,0) +2/0(1,1) 
(19a) 

f30= 
[/o{O,O) - lo( 1,1)] 

10(0,0) +2/0(1,1) 

for circularly polarized 
or unpolarized light. 

(19b) 

In the case of a pure parallel or perpendicular transition, 
Eqs. (19) give the well-known limiting values {3~ = 2 and 
f3~ = - 1 for linearly polarized light and (3~ = - 1 and 
f3~ = ! for circularly polarized or unpolarized light. For 
linearly polarized incident light a( 0 k ,<I>k) is proportional 
to 10(0,0) at 0 k=0, and lo{ -1,-1) + 10(1,1) at 0 k=1T/ 
2. The dynamical functions 10(0,0) and 10(1,1) can thus 
be obtained from a measurement of the differential cross 
section at ®k=O and 0 k=1T/2 (see also Table III). How­
ever, the functions 10(0,0) and /0(1,1) as defined by Eq. 
(7) depend only on IMjn,n12. Thus a measurement of the 
differential cross section cannot provide any information 
on the phases of the transition matrix elements Mjnp .. 

B. Orientation 

The angular-dependent orientation of the photofrag­
ment angular momentum j is defined by7.8 

-.-_1 __ Re{ < j'(I»} 
~j{j+1) Q 

(20) 

0=II/2 

/0(1,1) 

10(0,0)12 

-yj Re[fl (1,0)] 

° 

Polarization 

linear 

circular 

circular 

linear 

circular 

linear 

If again, the space-fixed Z axis is chosen as in Fig. 1, Eq. 
( 4) provides 

1TCU .J6 
Til (®b<l>k) =7 TCOS 0 k sin 0 k exp(i<l>k){ -all (1,1) 

+a Re[ 11 (1,0)] +ib Im[ II (1,0) n, 
(22a) 

(22c) 

where a and b are the polarization dependent coefficients 
listed in Table I. A number of conclusions follow from Eqs. 
(22) and the values that a and b take for different polar­
izations. One is that orientation along the space-fixed Z 
axis cannot be obtained with linear polarized or unpolar­
ized light since a=O for those cases.8 On the other hand, 
orientation along the space-fixed X or Y axis can be ob­
tained by the use of linearly polarized light if there is a 
coherent superposition of a parallel and a perpendicular 
transition, i.e., if II (1,O)~O. This is a well-known fact in 
the context of spin polarization. 15,16 

Except for the terms involving II (1,0), Eqs. (22) are 
identical to the results given for circularly polarized light 
in Ref. 22. As noted above, II (0,0) which involves only 
parallel transitions, does not contribute to the orientation. 
On the other hand, II (1,1) which involves perpendiCUlar 
transitions, does contribute to the orientation. It is inter­
esting to note, however, that 11(1,1) as given in Eq. (7), 
vanishes if n = n' = o. Thus from Eqs. (21) and (22) it is 
concluded that in order to produce orientation of a pho­
tofragment angular momentum j at least one perpendicular 
transition to a state with n~o has to be involved in the 
photofragmentation process. 

The angular dependence of the expectation values 
(jy) and <h) as obtained from Eqs. (20) to (22) are 
presented by polar graphs in Fig. 2 for circularly polarized 
light. Figure 2(a) represents (jy) -cos 0 k sin 0 k sin <l>k 
for a pure perpendicular transition. It is seen that (j y) =0 
for phototofragments flying apart along the Z axis or in the 

J. Chern. Phys., Vol. 100, No.5, 1 March 1994 

Downloaded 27 Mar 2013 to 161.111.22.69. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



3616 Siebbeles et sl.: Vector correlations in photodissociation 

z 

x y 

(a) 

x y 

(b) 

XY plane. The maximum value of (jy) is reached for 
fragments moving in the yz plane at an angle 0 k =7T/4 or 
37T/4. In Fig. 2(b) a similar polar graph corresponding to 
( j z) - cos2 0 k for a pure perpendicular transition is pre­
sented. In this case (j z) is equal to zero for dissociations 
in the XY plane and reaches a maximum if the fragments 
move along the Z axis. The angular dependence of (j z) 
for a coherent excitation of a parallel and perpendicular 
transition is proportional to sin2 0 k and is presented in Fig. 
2 (c). From this figure it is clear that coherent excitation 
gives a maximum of (j z) for fragments flying apart in the 
XY plane while (j z) = 0 for fragments moving along the Z 
axis. 

z 

x y 

(c) 

FIG. 2. Angular dependence of the expectation values of the components 
of the photofragment angular momentum j along the space-fixed Yaxis 
(a) and Z axis (b) and (c) for circularly polarized incident light. (a) and 
(b) correspond to a pure perpendicular transition while (c) corresponds 
to coherent excitation of a parallel and perpendicular transition. 

Physical insight on the results given in Eqs. (22) can 
be obtained by writing the photofragment angular momen­
tum as [see Fig. 3(a)] 

j=h k+h (kXZ)+I,- [(kXZ)Xk]. (23) 

Thus, h is the component of j along k, j 1 is the compo­
nent perpendicular to the plane containing k and the lab­
oratory Z axis, while j~ is the component lying on the 
same plane and perpendicular to k. Using Eqs. (20)-(23) 
it is found that 
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k 

z 
j 

(k x Z) 

(a) (k x Z) x k 

z 

= ('11 jm';k I d I'll J#) after evolution of the dissociating sys­
tem. The components of M in the body-fixed frame, as 
defined in Fig. 3(b), can be written for circularly polarized 
incident light as 

Mx=Mn exp( -icf>n)COS(E>k)exp( -iwt)1 ~ 

=M· (kXZ) XZ, (25a) 

My=iMn exp( -icf>n)exp( -iwt)1 ~=M.(kXZ), 
(25b) 

M z= -Ml. exp( -icf>l.)exp( -iwt)1 ~=M. k. 
(25c) 

The phases cf>l. and cf>n are due to the evolution of the 
system during the dissociation, which causes a dephasing 
between the dissociative channels populated by the parallel 
transition and the perpendicular transition. The classical 
angular momentum introduced by the transition can be 
written as 

jc=(MX~) ~. (26) 

ZII k From Eqs. (25) and (26) it is straightforward to obtain 

(b) 

y 
y 

FIG. 3. (a) Components of the photofragment angular momentum j in 
the body-fixed frame. (b) Components of the transition dipole moment M 
and the classical angular momentum. 

(24a) 

TrW ~j U + 1) 
U1 )=b- Im{/1(1,0)}cosE>ksinE>b 

C 0'0 

(24b) 

TrW ~jU + 1) 
U~ )=a- Re{/1(1,0)}sinE>k (24c) 

C 0'0 

which show that a pure perpendicular transition 
[/1(1,1)=#)] produces a component of the fragments an­
gular momentum parallel to the recoil direction, while a 
coherent superposition of a parallel and a perpendicular 
transition [11 (1,0)*0] produces a component perpendic­
ular to the recoil direction. 

These results can also be obtained by a classical treat­
ment of the interaction of light and matter following the 
arguments presented in Ref. 23 for the simple case of a 
superposition of a parallel l:-l: and a perpendicular l:-II 
transition in a diatomic molecule. The time-dependent 
transition dipole moment M is defined by M 

(27a) 

W 
Uc)l =ijl Ml.Mn sin(cf>n-cf>l.)sin(E>k)cos(E>k), 

(27b) 

(27c) 

Comparison ofEqs. (24) and (27) shows that the classical 
model describing the interaction of circularly polarized 
light and the molecule gives essentially the same results as 
the quantum-mechanical treatment. Note that for linearly 
polarized light the classical angular momentum is given by 
Eq. (27b) after replacing E>k by ®k-TrI2. The other com­
ponents of the classical angular momentum are zero for 
linearly polarized light. 

Equation (26) shows that the transition dipole mo­
ment M must rotate in order to obtain a nonzero angular 
momentum. In a pure parallel transition the vector M is 
oscillating along the body-fixed z axis and does not rotate. 
In a pure perpendicular transition induced by circularly 
polarized light the vector M rotates in a plane perpendic­
ular to the internuclear axis, creating an angular momen­
tum along the internuclear axis. If both parallel and per­
pendicular transitions are induced by linearly polarized 
light, the dephasing of the transition moments due to the 
dissociation causes the vector M to rotate in the plane 
containing the internuclear axis and the laboratory Z axis. 
This gives rise to an angular momentum perpendicular to 
that plane. For circularly polarized light the vector M pro­
duced by a coherent excitation of parallel and perpendic­
ular transitions is not rotating anymore in a plane perpen-
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dicular to the internuclear axis, but is tilted by an angle a 
[see Fig. 3(b)]. The direction of the angular momentum is 
changed accordingly such that 

Usc);' Ml. sin(0k)cos(<Pn-<P1.) 
tana= 

Usc)" MIl COS(0k) 

The component (j sc) 1 can be explained analogously. 
Equations (22) and (24) demonstrate that the func­

tion II(1,O} can be obtained by measuring the angular 
dependence of the orientation of the angular momentum j. 
This enables one to determine the relative phases of the 
transition matrix elements for parallel and perpendicular 
transitions. The dissociation angles and polarizations of the 
incident light needed for a straightforward determination 
of the 11 (q,q') functions are given in Table III. Using 
circularly polarized light for instance, the real part of 
11(1,0) can be obtained from a measurement of the orien­
tation of j along the space-fixed Z axis for fragments flying 
apart with 0k=11'/2. The imaginary part of 11(1,0) on the 
other hand, can be determined from the orientation of the 
components of j in the XY plane by using linearly incident 
polarized light and detecting fragments at 0k=11'/4. 

If Eqs. (22) are integrated over the dissociation recoil 
direction (0 k> <I> k) , T II and T 1- 1 vanish and T!O is the 
only nonzero multi pole of rank 1. Thus a measurement of 

the integrated orientation gives information only on a 
ear combination of 11 (1,1) and Re{ 11 (1 ,O)}. On the 
trary, angular resolved studies of the orientation aIlo" 
determination of 11(1,1), Re[JI(l,O)], and Im[/I(l, 

c. Alignment 

The alignment A~) (j) of the photofragment anB 
momentum j is defined ass 

A {Q2} (J') ,f6 R « '(2}» 
j(j+l) e iQ 

with j~i=ii~, j~l==Fii±(2jz±1), and jb2
) = (1/ 

X (3); - j2) where j±=(jx±ijy). From Eqs. (3) 
(28) one gets 

A8'(j) 
= [(2) -1 )(2j + 1 )(2j +3) J 1/2 {T2Q(0k><I>k») 

5j(j + 1) Re aD 

( 

If the space-fixed Z axis is chosen as in Fig. 1, 1 

from Eq. (4) it follows that the T2Q(0k,<I>k) multip 
take the form 

(3 

-aiIm[ 12 (1,0) 11 -~ Iz{1,- I )sin2 0k JSin 0 cos 0 exp(i<l>k), (3 

T 20(0k,<I>k) = 11'; f [ f~ [/2(0,0) +2/2(1,1)] [1 +132Pz(cos 0k)J }[3 COs
2

2
0k-l ] 

+{b2vSRefI2(1,0)]Sin0kCOS0k}Sin0kcos0k+{b ~!z(1,-I)Sin20k)sin20k], (3 

(30d) 

(30e) 

As in Eqs. (14) and (22) the polarization dependent 
coefficients a and b in Eqs. (30) are those given in Table I. 
The appearance of 12(0,0) and 1 2( 1,1) in Eqs. (30) indi­
cate that both parallel and perpendicular electronic transi­
tions give rise to alignment of j. 

The factors between { } in Eq. (30e) are proportic 
to the multipoles of rank 2 in the body-fixed coordir 
frame. For instance, the first term in Eq. (30e) invoh 
incoherent excitations of parallel and perpendicular t1 
sitions, i.e., containing 12(0,0) and 12(1,1) dynam 
functions, is due to the component j" of j, i.e., the C( 
ponent parallel to the body-fixed z axis [see Fig. 3(a)]. ~ 
third term, involving the function 12(1,-1), is due to 
components of j perpendicular to the body-fixed z axis. r 

second term, involving the coherent excitation of para 
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z z 

x y 

(a) 

z 
(c) 

z 

y 
x y x 

(b) (d) 

FIG. 4. Angular dependence of the alignment of the photofragment angular momentum j along the space-fixed Z axis, for circularly polarized incident 
light. The space-fixed coordinate frame is the one defined in Fig. I. The graphs represent the contribution to the alignment of a pure parallel transition 
(a), a pure perpendicular transition (b), and a coherence excitation involving Iq-q'l =1 (c) and Iq-q'l =2 (d). 

and perpendicular transitions [dynamical function 
12(1,0)], is due to components of j both parallel and per­
pendicular to the body-fixed z axis. 

The angular dependence of these different terms in Eq. 
(30e) are represented by the polar plots of Fig. 4 for the 
case of circularly polarized incident light. Since Q=O in 
Eq. (30e), the graphs correspond to the alignment of j 

along the space-fixed Z axis. Figure 4(a) presents the con­
tribution of a pure parallel transition [term involving 
12(0,0) in Eq. (30c)] while Fig. 4(b) presents the contri­
bution of the term involving 12 (1, 1). It is seen that they 
both vanish at the magic angle where 3 cos2 0 k-l =0. 
Figure 4(a) shows that for a parallel transition the align­
ment is zero if the photofragments are flying apart along 
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the Z axis, and that maximum alignment is reached for 
fragments with recoil directions in the XY plane. For the 
/2(1,1) contribution, the alignment is maximum for frag­
ments moving along the Z axis, see Fig. 4(b). Figure 4(c) 
represents the alignment due to the coherent term involv­
ing Re[f2(1,O)] in Eq. (30c). This contribution vanishes 
for dissociation along the Z axis and in the XY plane. 
Actually, it gives maximum alignment for 0 k =1T/4. Fi­
nally, in Fig. 4(b) the contribution to the alignment of the 
term involving the function /2(1,-1) is presented. This 
contribution gives zero alignment for fragments flying 
apart along the Z axis and its maximum contribution is for 
fragments moving in the XY plane. 

As in the case of orientation, angular resolved studies 
of the degree of alignment provide information about the 
incoherent and coherent excitation processes separately, 
which cannot be obtained from the alignment integrated 
over all final dissociation directions. Table III presents the 
dissociation angles and polarizations of the incident light 
which are needed for a straightforward determination of 
the dynamical 12(Q,q') functions. In addition to the infor­
mation which can be obtained from the differential cross 
section and the degree of orientation, it is seen from Table 
III that 12 ( 1, - 1) can be determined by a combination of 
the alignment along the Z axis mc::asured at 0 k=O, 1T/4, 
and 1T/2 with linearly polarized light. 

IV. CONCLUSIONS 

The spatial anisotropy of the angular momentum po­
larization (orientation and alignment) of a photofragment 
has been studied quantum mechanically for one-photon 
electric dipole transitions. Photodissociation into two frag­
ments, one of which carries a nonzero angular momentum 
j, was considered. The process was assumed to be direct 
and the axial recoil approximation has been used. The final 
expressions for the polarization moments do not rely on a 
particular choice of coordinate frame or on the polariza­
tion of the incident light. The cross section for production 
of a photofragment with both the magnitUde and the com­
ponent on a particular quantization axis of its angular mo­
mentum specified, can be obtained from these polarization 
moments. Explicit expressions for the angular resolved de­
gree of orientation and alignment are obtained in terms of 
the transition matrix elements for electronic excitation into 
final dissociative states. The results of the quantal treat­
ment are also discussed by comparison with those obtained 
by treating the radiation-matter interaction classically. 

It is shown that determination of the angular resolved 
polarization of the photofragments provides detailed infor­
mation on the photodissociation dynamics, which cannot 
be obtained from the integrated data. In particular, it is 
demonstrated that in the case of coherent excitation of 
continua with different helicity quantum numbers (the 
projection of j on the recoil direction) it is possible to 
extract both the absolute values and the relative phases of 
the transition matrix elements. 

The relationship between the quantum theory of [k,j] 
correlations and Dixon's semiclassical treatment12 in terms 
of bipolar harmonics, has been established. This is very 
useful ~ince the semiclassical limit is valid in the limit of j 
much larger than the total angular momentum J; a situa­
tion very often encountered in the dissociation of poly­
atomic molecules where j corresponds to the rotation of 
the fragments. 

The calculations presented in this paper assume that 
the molecule is initially isotropic, i.e., randomly oriented in 
space. In the future, it will be important to develop similar 
treatments for initially oriented molecules for which exper­
imental results are becoming available.4

(c) 

APPENDIX A: DERIVATION OF THE GENERAL 
EXPRESSIONS 

The derivation of the general expression for the mul­
tipoles T KQ given in Eq. (4) will be outlined. When Eq. 
(2) is introduced into Eq. (1), the excitation matrix be­
comes 

(Al) 

It is more convenient to calculate the matrix elements 
of the dipole operator d in the body-fixed coordinate frame. 
Therefore the wave function IfI j mlm / is expressed in terms of 
wave functions for which the component n. of the total 
angular momentum J on the z axis is well-defined at infi­
nite internuclear separation. This can be done according 
to l9 

IfI jm1m,= L (_I)M-O(21+1)1I2(2J+l)1I2 
OJM 

X ~ 0 (

. I 

The wave function IfI jOJM is written as 

I ~ J nJM 
IfIjOJM=R- £- <I> o)"o,(R) w) "'o,(R,r), 

j'O' ), 
(A3) 

where r indicates all the internal coordinates (electronic, 
vibrational, and rotational) of the fragments. The basis 
functions ~~,(R,rmf) are given by 

nJM 12J + I _.1* 
W j'O' (R,rmf) = ~ lfMo,(<I>k>0k,O)epj'o,(r;R). 

(A4) 

The Wigner function ~o,(<I>R,0R,Q) describes the 
rotation of the molecule and epj'O' is an intramolecular 
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wave function, which at infinite R corresponds to an eigenfunction of the fragments. Substitution of Eqs. (A2)-(A4) into 
Eq. (A I ) yields 

X (21+ I) 112(21' + I) 112(2J + 1) (2J' + 1) YTmll'm; ( ~ I 
~o) (~ 

I 

~M) 0 ml 

X(~, 
I' J' ) ( . I' 

J' ) (J I J. ) (~ 
I J. ) 

0 -0' ~, , 
-M' M 7] -~; -~; m[ q 

( J' J. ) (J, I J. ) 
X M' 7]' -~; 0' q' _~; Mjop,(Mjo,D.')*' (AS) 

where Mjo,D. is the transition matrix element defined in Eq. (8). The product of the spherical harmonics in Eq. (AS) can 
be written as a sum of spherical harmonic functions YS - s by using the Clebsch-Gordan series.s Then Eq. (AS) can be 
further simplified by summing over M; and m; by use of Eq. (4.16) of Ref. 8, 

X {~1 ~2 ~3} (h h 
i4 i5 i6 m5 ml 

(A6) 

After calculation it results 

2ffl/2Ct) 
Um'm=-- I I I I I I I I (_l)/;-0;-0;-0-0'+P-m[+S+I+R(2/+1)(2/'+ 1) (2J+ 1)(2J'+1) 

c Im[ I' OJM 0'1' M' 0,D.; Pp Ss Rr 

( 
J' 

X -M' 

J' 

-M' 

(A7) 

with the polarization function Epp being defined by Eq. (6). The summations over M, M', and ml are performed by 
applying Eq. (4.IS) from Ref. 8, which is 

(
jl h h) (j4 h h) (h j4 h) 

X ml m2 -m3 m4 m5 m3 m2 m4 -m6 
(A8) 

The summations over I and I' can subsequently be carried out by the use of Eq. (A6) with the result 

2ffl/2Ct) 
Um'm=-- I I ILL L (_1)/;-0;-0;+0'+P+P+2R(2J+ 1) (2J'+ 1)(2R+ l)(2S+ 1)112(2P+ 1)112 

C OJ 0'1' O,D.; Pp Ss Rr 

X Ys-sEppX {~ ;, ;} (~ ~r ~p) (~, 

X (~, !o q'~q) (~ ~ ~~J (~, ;, 
S 

-s 

J. ) 
I * (V MjOD.(MjOfl') . 

-I1It, I I 
I 
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J' P) 
-0' q-q' 

(A9) 
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The multipoles T KQ as defined by Eq. (3b) are now calculated by substitution ofEq. (A9) into Eq. (3b). The summation 
over m, m', and r is then carried out by using Eq. (A8). The summations over Rand J in the resulting equation is 
performed by using Eq. (A6). The summation over J' can then be done by applying the orthogonality property of the 3 - j 
symbols. The final result is 

2~/2(U 
T KQ=-- (2K+I)112 2: 2: 2: 2: (_l) H 2n-n;+s+s+p+P(2S+ 1)1I2(2P+ 1)112 

C ,on' ,0; Pp Ss 

( P S K) (I 
X Ys-;Epp _p s Q q' 

I P)(' . K) P S 
-q q-q' ~n~' q'-q (q'-q ° K ,)Mj.n,n(Mj.n,n,) •. q_q I I 

With the definitions givin in Eqs. (5) and (7), Eq. (AIO) 
reduces to Eq. (4). 

APPENDIX B: RELATION WITH THE SEMICLASSICAL 
BIPOLAR MOMENTS 

In the semiclassical limit of j).J, the projection m of j 
on the space-fixed Z axis may be considered to vary con­
tinuously and one can write 

(Bl) 

where dOh denotes the volume element corresponding with 
the polar angles of ejection (Ok ,cI>k) , while {J)j corresponds 
to that for polar angle (0j ,cI>j) between j and the body­
fixed z axis (see Fig. 1). For large values of j the 3 - j 
symbol in Eq. (3a) can be written as24 

(
. K .) 

~m Q ~, 

The bipolar harmonis are defined as7,8,25 

_ ~ P_p 112 417" 
- ~ (-1) X(2P+I) (2K+1)1/2(2S+1)1/2 

(
K P 

X Q _p ~) YKQ(0j ,cI>j) YS - s(0k ,cI>k)' 

(B3) 

Note that the summation in Eq. (B3) reduces to only one 
term, since in Eq. (B2) m=m', implying Q=O, whilep=O 
for the choice of the space-fixed frame made in this work. 
Combination of Eqs. (3) and (B I) to (B3) together with 
Eq. (AlO) provides 

d2a 

d{J)k d{J) j 

(AlO) 

-, ~(J) 
'=-- 2: 2: 2: Bpp(K,S;0j ,cI>j,0k>cI>k)(-I)K+S+s 

C pp K S 

which can be written as 

K ,)iK(q,q') 
q-q 

(B4) 

The coefficients b:(K,S) are the bipolar moments 12 and in 
the present notation they are given by 

I P) 
-q q-q' 

( P S K) 
X, 0 ' iKCq,q'), q -q q-q 

(B6) 

where ao is the angular integrated cross section. 
Equation (B6) provides the relationship between the 

general form of the semiclassical excitation matrix [Eq. 
(BS)] and the detailed quantum matrix elements of the 
transition dipole through the functions i K( q,q') defined in 
Eq. (7). The functions iK(q,q') can relate to incoherent 
terms (q = q') as well as coherent terms (I q - q' I = I or 
I q - q' I = 2). In the semiclassical limit j). J, and thus 
j ). n, the angle between j and the recoil direction of the 
photofragments is 0 j =II/2. Using the semiclassical ap­
proximation (B2) in Eq. (7) yields 
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(-I )K 

J2j+1 Oq'-q,n'-n~_q,o 

X (0,1(/2,0) Mjn,fl CMjn,fl') *, (B7) 

and it is concluded that in the semiclassical limit, the func­
tions f K( q,q') are different from zero when I q - q' I = 0, or 
2, for K even, and when I q-q' I = 1 for K odd. These 
results provide the relationship between the quantum the­
ory and the semiclassical treatment provided by Dixon. 12 
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