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Abstract  

Eisosomes are sub-cortical organelles hitherto described only in Saccharomyces cerevisiæ as 

sites implicated in endocytosis. They comprise two homologue proteins, Pil1 and Lsp1, 

which colocalize with the transmembrane protein Sur7. These proteins are universally 

conserved in the ascomycetes. We identify in Aspergillus nidulans (and in all the 

Pezizomycotina) two homologues of Pil1/Lsp1, PilA and PilB, originating from a duplication 

independent from that extant in the Saccharomycotina. In the Aspergilli there are several 

Sur7-like proteins in each species, including one strict Sur7orthologue (SurG in A. nidulans). 

In A. nidulans conidiospores, but not in hyphæ, the three proteins colocalize at the cell cortex 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36106756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


and form tightly packed punctate structures that appear different from the clearly distinct 

eisosome patches observed in S. cerevisiae. These structures are assembled late during the 

maturation of conidia. In mycelia, punctate structures are present, but they are composed 

only of PilA, while PilB is diffused in the cytoplasm and SurG is located in vacuoles and 

endosomes. Deletion of each of the genes does not lead to any obvious growth phenotype, 

except for a moderate resistance to itraconazole. We could not find any obvious association 

between mycelial (PilA) eisosome-like structures and endocytosis. PilA and SurG are 

necessary for conidial eisosome organisation in ways that differ from their S. cerevisiæ 

homologues. These data illustrate that conservation of eisosomal proteins within the 

ascomycetes is accompanied by a striking functional divergence. 

 

Introduction 

In mammalian cells and in S. cerevisiae there is cogent evidence that membrane proteins are 

organised in discrete domains. In the latter organism, some transporters such as Can1p, Tat2p 

and Fur1p are organised in discrete domains on the plasma membrane. This specific domain 

has been named MCC for Membrane Compartment occupied by Can1p (Malinska et al., 

2003, 2004; Grossman et al., 2007). As many as twenty-one proteins share the MCC 

localization pattern. These include MCC integral components such as the membrane protein 

Sur7 and the MCC-associated cytosolic proteins Pil1 and Lsp1 (see below, Grossman et al., 

2008). Sur7 is a transmembrane protein consisting of four putative transmembrane domains 

and remains associated with the MCC compartments even under physiological conditions in 

which all other MCC components are dispersed (Grossman et al., 2007). The pair of 

homologous proteins Pil1 and Lsp1 are components of subcortical punctate assemblies 

named “eisosomes” (Walther et al., 2006), which show identical localization to MCC 

proteins. Both MCC and eisosome components were shown to localize to furrow-like 



invaginations of the plasma membrane (Strádalová et al., 2009). The biological functions of 

MCC and eisosomes are quite elusive. They were initially characterised as sites of lipid and 

protein endocytosis (Walther et al., 2006), but this function is by no means certain 

(Grossmann et al., 2008). In Candida albicans Sur7 has additional roles in cell wall 

synthesis, actin cytoskeleton organisation and septin localization (Alvarez et al., 2008 and 

2009), while in S. cerevisiae, sur7 mutants show a diminished efficiency of sporulation 

(Young et al., 2002). Eisosomes are synthesised de novo in the bud during cell division 

(Moreira et al., 2009). The Pil1/Lsp1 cytoplasmic components of the eisosome, together with 

the membrane protein Sur7 are conserved throughout the ascomycetes (Alvarez et al., 2008, 

see below).  

Recent work on eisosomal proteins has dealt mainly with two issues. Firstly, both Pil1 and 

Lsp1 are phosphorylated. Phosphorylation is mediated by a pair of redundant kinases, Pkh1p 

and Pkh2p. The evidence linking phosphorylation with eisosome assembly and disassembly 

is, however contradictory (Walther et al., 2007; Luo et al., 2008). The Pkh1/2 kinases are 

conserved throughout the eukaryotes and strictly conserved in the ascomycetes, one putative 

orthologue of the Pkh1/2 pair being present in all sequenced Aspergillus genomes. The 

second avenue of research is the identification of eisosomal associated proteins, including 

those necessary for eisosome assembly. Two recent reports have characterised a second 

conserved four transmembrane domain protein, Nce102p, as essential for eisosome assembly 

(Grossmann et al., 2008, Strádalová et al., 2009). The striking conservation, in all available 

ascomycete genomes, of proteins involved in eisosome structure or assembly posits an 

interesting paradox. No obvious macroscopic growth phenotype is seen in S. cerevisiae cells 

deleted for PIL1, LSP1, or SUR7, in single, double or triple mutants (Walther et al., 2006). 

The only report dealing with eisosomal proteins in an organism other than S. cerevisiae 

concerns the Sur7 homologue of Candida albicans. CaSur7 is organised in punctate 



eisosomal-like structures. At variance with S. cerevisiae, a deletion of the cognate gene 

results in a clear growth phenotype (see above), which resembles that resulting from the 

inhibition of β-glucan synthesis (Alvarez et al., 2007).  

Model filamentous ascomycetes such as Neurospora crassa, Aspergillus nidulans, Sordaria 

macrospora and Podospora anserina, together with a host of plant and animal pathogens and 

an increasing number of opportunistic human pathogens, belong to the sub-phylum 

Pezizomycotina, which may have diverged from the Saccharomycotina (such as S. cerevisiae 

and C. albicans) between 650 and more than 1000 million years ago (Padovan et al., 2005). 

All these organisms are characterised by a highly polarised growth pattern, developmental 

processes which include the alternation of asexual and sexual cycles, involving two different 

types of spores, conidiospores and ascospores. Differently from the Saccharomycotina (see 

below), the sexual cycle involves a dicaryotic stage and a transient diploid, which never 

divides as such, but enters meiosis as soon as it is formed (Zickler, 2006 and refs. therein).  

A. nidulans is arguably, among the Pezizomycotina, the organism where membrane proteins 

and endocytosis have been better studied. In this organism, a number of transporters, driven 

by their physiological promoters have been visualised in the cell membrane (UapC, Valdez-

Taubas et al., 2000; PrnB, Tavoularis et al., 2001; UapA and AzgA, Pantazopoulou et al., 

2007; AgtA Apostolaki et al., 2009; MstA, Forment et al., 2006; FcyB, Vlanti et al., 2008; 

UreA, M. Sanguinetti and A. Ramón, personal communication, FurD; G. Diallinas and F. 

Borbolis, personal communication). Load and chase experiments have shown that when the 

dye FM4-64 is endocytosed, it first appears in cortical punctate structures (Peñalva, 2005). 

The active research concerning membrane proteins (Diallinas 2007 for review), the 

determination and maintenance of polarity during development, including the possible 

involvement of sphingolipids (Li et al., 2003), which may be involved in signalling 

eisosomal protein phosphorylation in S. cerevisiæ, and the ongoing recent work on 



endocytosis (Peñalva, 2005; Sanchez-Ferrero and Peñalva, 2007; Araujo-Bazán et al., 2008; 

Abenza et al., 2009; Apostolaki et al., 2009; Gournas et al., 2010), makes A. nidulans an 

obvious model, within the Pezizomycotina to study eisosomal presence, structure and 

function. A description of the presence and fate of these organelles during asexual 

development is presented below. 

 

Experimental procedures 

Media and growth conditions  

Minimal (MM) and complete (CM) media as well as growth conditions for A. nidulans were 

described by Cove (1966). pH 5.5 and 8.2 MM were made using MM without salt solution 

with the addition of 25mM and 25 mM Na2HPO4 respectively. Supplements were added 

when necessary at the adequate concentrations 

(http://www.gla.ac.uk/acad/ibls/molgen/aspergillus/supplement.html). Glucose 1% was used 

throughout as a carbon source. 5 mM urea or10 mM Ammonium L (+) tartrate were used as 

nitrogen sources. The antifungal drugs caspofungin (MSD, MERC and Co Inc. N.J. USA) 

and itraconazole (SIGMA) were used at final concentrations of 10 µg/ml and 15 µM 

respectively in CM. Caffeine, Calcofluor White, SDS, Congo Red and CaCl2 were purchased 

from Sigma and used at final concentrations of 10 mM, 100 µg/ml, 50 µg/ml, 50 µg/ml and 

100 mM respectively in CM (Hill et al., 2006). Staining with FM4-64 (Molecular Probes, 

Inc, USA) was according to Peñalva, 2005. In particular, cover slips with germinated conidia 

(12 h of growth at 25 °C) adhering to the glass surface were placed on top of plastic covers, 

covered with 0.1 ml of 10 µM FM4-64, incubated on ice for 15 min, washed in 5 ml MM and 

immediately observed. Vacuole staining with CMAC (7-amino-4-chloromethyl coumarin) 

(Molecular Probes, Inc, USA) was according to Tavoularis et al., 2001. Cover slips with 



germinated conidia were placed on top of plastic covers, covered with 0.1 ml of 1/1000 

dilution of CMAC (5 mg/ml stock solution), incubated at 25 ºC for 30 min, washed twice 

with PBS, and observed under the phase contrast fluorescent microscope with the DAPI filter 

(Ex 365/10, DM 400, BA 400, UV-1A). 

Crosses between A. nidulans strains were carried out as described by Pontecorvo et al., 1953. 

For growth tests, conidiospores were inoculated on solid CM or MM supplemented with the 

appropriate substrates and incubated at 25 °, 37 ° or 42 °C for 2-4 days. To monitor PilA, 

PilB and SurG mRNA steady state levels in different developmental stages from 

ungerminated conidia to young mycelia, strains were grown on liquid MM containing 1% 

glucose w/v and 5 mM urea as sole carbon and nitrogen sources respectively for 0, 4, 8, 12, 

16 and 20 h at 25 
o
C.  

 

Fungal and bacteria strains  

A. nidulans strains: The different auxotrophic mutations of A. nidulans strains are compiled 

by A.J. Clutterbuck (http://www.gla.ac.uk/acad/ibls/ molgen/aspergillus/index.html). In 

particular, pantoB100, pabaA1, pabaB22, riboB2, pyroA4, pyrG89, and argB2 indicate 

auxotrophies for D-pantothenic acid, p-aminobenzoic acid, riboflavin, pyridoxine 

hydrochloride, uracil/uridine and L-arginine, respectively. The nkuA∆ mutation results in 

dramatically decreased frequency of heterologous integration events into the A. nidulans 

genome. The LO1516 (see Table 1) strain expresses functional chimeric histone H1 

molecules fused with the monomeric Red Fluorescence Protein (mRFP). The VS125 

(agtA::sgfp) strain expresses functional chimeric AgtA molecules fused with the Green 

Fluorescence Protein (sGFP). These markers do not affect the localization of eisosomal 

proteins. All strains used in this work are listed in Table 1. In every case MM indicates 

minimal media supplemented with the requirements relevant to the strains used in the 



experiment. pabaA1 was used as the wild type (wt) strain. The VS79-81 and VS83 strains 

(pilA::sgfp, pilB::sgfp, surG::sgfp and pilA::mrfp respectively, for complete genotypes see 

Table1) were isolated after transformation of protoplasts of the nkuA∆ pyrG89 pyroA4 or 

nkuA∆ pyrG89 riboB2 strain with the pilA::sgfp::AfpyrG
+
, pilB::sgfp::AfpyrG

+
, 

surG::sgfp::AfpyrG
+
 or pilA::mrfp::AfpyrG

+ 
translational fusion cassettes (see below). VS84-

86 (surG∆::Afpyro
+
, pilB∆::AfpyrG

+
 and pilA∆::Afribo

+
 respectively) strains were isolated 

after transformation of protoplasts of nkuA∆ pyrG89 pyroA4 or nkuA∆ pyrG89 riboB2 

recipient strain with the surG∆, pilB∆ and and pilA∆ deletion cassettes (see deletion of the 

pilA, pilB and surG genes). The VS87 (pilA∆::Afribo
+ 

pilB∆::AfpyrG
+
) strain was isolated by 

crossing the VS85 and VS86 strains. The VS91 (pilA::mrfp pilB::sgfp) and VS94 (pilA::mrfp 

surG::sgfp) strains were isolated by crossing the VS83 strain with the VS80 and VS81 strains 

respectively. The VS128 (pilB::sgfp pilA∆::Afribo
+
) and VS129 (surG::sgfp pilA∆::Afribo

+
) 

strains were isolated by crossing the VS84 strain with the VS80 and VS81 strains respectively. 

The VS118 (pilA::mrfp surG∆::Afpyro
+
) and VS132 (pilB::sgfp surG∆::Afpyro

+
) strains were 

isolated by crossing the VS84 strain with the VS79 and VS80 strains respectively. The VS145 

(surG::sgfp hhoA::mrfp) and VS153 (pilB::sgfp hhoA::mrfp) strains were isolated by 

crossing the LO1516 strain with the VS80 and VS81 strains respectively. The VS172 

(agtA::sgfp pilA∆::Afribo
+
) strain was isolated by crossing the VS86 and VS125 strains. The 

VS186 strain was isolated by crossing the VS83 strain with the TpA4 strain (Tavoularis et al., 

2001). The nkuA∆ pyrG89 riboB2 and nkuA pyrG89 pyroA4 strains were kindly provided by 

Dr. M. Peñalva and used for the deletion and the in locus fusions of the pilA, pilB and surG 

genes. For plasmid details see below and Table 2. 

 

Escherichia coli strains: The E. coli strain used was DH5A. 

 



Transformation Methods: Transformation of E. coli was carried out as described by 

Sambrook (2001). Transformation of A. nidulans is described by Tilburn et al., (1983). 

Plasmids: The pRG3 plasmid carries the radish 18S rRNA gene (Delcasso-Tremousaygue et 

al., 1988).The p1548 plasmid contains the riboB gene of Aspergillus fumigatus (Szewczyk et 

al., 2006), which complements the riboB2 mutation of A. nidulans (kindly provided by Dr. 

M. Peñalva). The p1547 plasmid contains the pyroA gene of A. fumigatus (Szewczyk et al., 

2006), which complements the pyroA4 mutation of A. nidulans (kindly provided by Dr. M. 

Peñalva). The p1439 and p1491 plasmids contain a 5 Gly-Ala (5GA) linker fused in frame 

with the Green Fluorescent Protein (sGFP) and with the monomeric Red Fluorescent Protein 

(mRFP) respectively, followed by the A. fumigatus pyrG gene (Szewczyk et al., 2006, kindly 

provided by Dr. M. Peñalva).  

 

DNA manipulations 

Plasmid preparation from E. coli strains was carried out as described by Sambrook (2001). 

DNA digestion was carried out as described by Sambrook (2001). Total DNA extraction 

from A. nidulans is described by Lockington et al., (1985). Southern blot analysis was carried 

out according to Southern (1975) and Sambrook (2001). The restriction enzymes used to 

monitor the deletion of pilA, pilB or surG in the genome of VS84, VS85 or VS86 strains were 

HindIII (pilA∆::Afribo
+
 surG∆::Afpyro

+
) and PstI (pilB∆::AfpyrG

+
) respectively. AfriboB, 

AfpyrG and AfpyroA probes corresponding to the purified ~1 kb PCR fragments were 

obtained using as template DNA p1548, p1439 or p1547 plasmids respectively and 

PilA∆ (Ribo F-R), PilB∆ (PyrG F-R) or SurG∆ (Pyro F-R) primer pairs respectively (see 

Table 3).  



High fidelity and long fragment PCR reactions were carried out using the kit Takara LA 

Taq
TM 

(Takara). High fidelity small fragment PCR reactions were carried out using Platinum 

Pfx polymerase (Invitrogen) while conventional PCR reactions were carried out using Taq 

polymerase (NEB). DNA bands were purified from agarose gels using the Wizard PCR preps 

DNA purification system (Promega). The 
32

P-dCTP labelled DNA molecules, which were 

used as gene-specific probes, were prepared using the Megaprime
TM

 DNA labeling systems 

kit (Amersham LIFE SCIENCE).  

 

Deletion of the pilA, pilB and surG genes 

The entire pilA, pilB and surG open reading frames (1044 bp; ANID_05217.1, 1200 bp; 

ANID 3931.1 and 735 bp; ANID_4615.1 respectively) were replaced in an nkuA∆ pyrG89 

riboB2 (pilA and pilB) or nkuA∆ pyroA4 (surG) strain by the riboB or pyrG or pyroA (pilA, 

pilB and surG respectively) genes after a double crossing over event, using the Fusion PCR 

gene replacement method (Szewczyk et al., 2006). The primers used are listed in Table 3. In 

the pilA deletion cassette, the fragment corresponding to the central part contains the riboB 

gene of A. fumigatus amplified from the p1548 plasmid using primers PilA∆-Ribo F and 

PilA∆-Ribo R. In the pilB deletion cassette, the fragment corresponding to the central part 

contains the pyrG gene of A. fumigatus amplified from p1439 plasmid using primers PilB∆-

PyrG F and PilB∆-PyrG R. For the surG deletion cassette, the fragment corresponding to the 

central part contains the pyroA gene of A. fumigatus amplified from the p1547 plasmid using 

primers SurG∆-Pyro F and SurG∆-Pyro R. The sequences 1115 bp upstream and 1014 bp 

downstream the pilA ORF were amplified from genomic DNA of a wild type strain (pabaA1) 

using P1-P3 (PilA∆) and P4-P6 (PilA∆) primer pairs respectively. The sequences 1126 bp 

upstream and 1112 bp downstream the pilB ORF were amplified from genomic DNA of a 

wild type strain (pabaA1) using P1-P3 (PilB∆) and P4-P6 (PilB∆) primer pairs respectively. 



The sequences 973 bp upstream and 1073 bp downstream the surG ORF were amplified from 

genomic DNA of a wild type strain (pabaA1) using P1-P3 (SurG∆) and P4-P6 (SurG∆) 

primer pairs respectively. The whole pilA, pilB and surG deletion cassettes, used to transform 

an nkuA∆ pyrG89 riboB2 and nkuA∆ pyroA4 strains, were amplified using P2 PilA∆-P5 

PilA∆, P2 PilB∆-P5 PilB∆ or P2 SurG∆-P5 SurG∆ primer pairs respectively (see Table 3). 

Selection of transformants was carried out on urea containing minimal media lacking 

riboflavin or uracil/uridine or pyridoxine as required for each replacement. The in locus 

replacement of pilA, pilB and surG with riboB, pyrG and pyroA respectively was confirmed 

by Southern blot analysis (data not shown). The deleted outcrossed strains were checked by 

PCR using specific primer pairs: P2 PilA∆ - P5 PilA for pilA∆, P2 PilB∆ - P6 PilB for 

pilB∆ and P2 SurG∆- P5 SurG for surG∆ strains respectively (see Table 3). 

 

Construction of the pilA, pilB and surG in locus fusions 

Cassettes containing the pilA::sgfp, pilB::sgfp, surG::sgfp, pilA::mrfp and pilB::mrfp 

sequences were constructed by joining three different PCR fragments according to Szewczyk 

et al., (2006) using the PilA, PilB and SurG pairs of primers (see Table 3) respectively. To 

construct the pilA::sgfp, pilB::sgfp, surG::sgfp, pilA::mrfp and pilB::mrfp translational 

fusions, DNA fragments corresponding to the central part of the construction were amplified 

from p1439 and p1491 plasmids respectively. These fragments contain a 5 Gly-Ala (5GA) 

linker fused in frame with the sGFP and the mRFP proteins respectively, followed by the 

pyrG gene of A. fumigatus. The upstream flanking sequence of the sgfp and mrfp ORFs is a 

1128 bp fragment containing a part of the pilA ORF followed by the 5GA linker while the 

downstream flanking sequence is a fragment containing a 1014 bp fragment corresponding to 

the 3’ end of the pilA gene, just after the chain termination codon. The upstream flanking 

sequence of the sgfp ORFs is a fragment containing 1105 bp of the pilB ORF followed by the 



5GA linker while the downstream flanking sequence is a fragment containing a 1112 bp 

fragment corresponding to the 3’ downstream region of the pilB gene, just after the chain 

termination codon. The upstream flanking sequence of the sgfp ORFs is a 1157 bp fragment 

of the surG ORF followed by the 5GA linker while the downstream flanking sequence is a 

fragment containing a 1073 bp fragment corresponding to the 3’ end of the surG gene, just 

following the chain termination codon. All fragments were amplified from genomic DNA of 

a wild type strain (pabaA1) using the P1-P3 (PilA, PilB or SurG) and P4 (PilA, PilB or SurG) 

primer pairs, respectively. The whole fusion cassettes were amplified using P2-P5 (PilA, 

PilB or SurG) pair of primers and were used to transform nkuA∆ pyrG89 riboB2 (pilA::sgfp, 

pilB::sgfp, surG::sgfp, and pilB::mrfp) or nkuA∆ pyroA4 (pilA::mrfp) strains. Transformants 

were selected on MM with urea as sole nitrogen source without uracil/uridine. The in locus 

replacement of pilA, pilB and surG with pilA::sgfp, pilB::sgfp, surG::sgfp or pilA::mrfp was 

confirmed by Southern blot analysis. Genomic DNA was restricted with EcoRV (pilA::sgfp, 

pilA::mrfp), NcoI (pilB::sgfp) or PstI (surG::sgfp) and hybridised with AfriboB, AfpyrG and 

AfpyroA sequence fragments respectively. These fragments were amplified from plasmids 

p1439, p1548 and p1547 using the primer pairs Ribo F-Ribo R, PyrG F-PyrG R and Pyro F-

Pyro R respectively (see Tables 2 and 3). All transformants checked by Southern blot 

analysis contained single copy sequence integrations at the pilA, pilB and surG locus and 

they did not show any differences with the wild type controls under any of the conditions 

tested (see results).  

 

RNA manipulations 

Total RNA extraction from A. nidulans was carried out using the TRIzol® Reagent 

(Invitrogen) according to the manufacturer’s instructions. RNA was separated on glyoxal 

agarose gels as described by Sambrook (2001). The hybridization technique is described by 



Church and Gilbert (1984). To monitor RNA loading, the radish 18S rRNA gene was used as 

probe (Delcasso-Tremousaygue et al., 1988). This corresponds to the ~1.5 kb EcoRI-EcoRI 

fragment purified from plasmid pRG3. pilA, pilB and surG mRNA steady state levels were 

monitored by hybridizing with probes corresponding to the purified ~1 kb PCR fragments 

obtained using as template DNA from a wild type (pabaA1) strain and P1-P3 (PilA, PilB and 

SurG respectively) primer pairs.  

 

Membrane protein extraction and western blot analysis 

Protein extracts were prepared as in Kafasla et al., 2007. In particular, mycelia grown for 16 

h in MM containing 5 mM urea as sole nitrogen source and supplemented with the 

appropriate auxotrophies and conidiospores (0 h of growth) were harvested, frozen and 

ground in liquid nitrogen. All subsequent steps were carried at 4 
o
C. Conidia and mycelial 

powder was resuspended in 1.5 ml ice-cold extraction buffer (50 mM Tris-HCl, pH 7.4, 150 

mM NaCl, 5 mM EDTA pH 8.0) supplemented with a protease inhibitor cocktail (Sigma) 

and 0.2 mM phenylmethanesulphonyl fluoride (PMSF). In conidia extraction buffer a volume 

of ~200 µl sterile glass beats (0.1mm) was added and the suspension was vortex for about 2 

min. After 10 min incubation on ice, unbroken cells and larger cell debris were removed by 

low speed short centrifugation (3 min at 3.000 g). TCA was added to a final volume of 5%, 

followed by 10 min incubation on ice. Total proteins were precipitated by a 5 min 

centrifugation at 13000 g, washed with 500 µl Tris base and resuspended in extraction buffer. 

Sample protein concentration was measured by the method of Bradford. 20 µg protein 

samples were fractionated on a 10 % SDS-page gel and electroblotted (Mini PROTEANTM 

Tetra Cell, BIO-RAD) onto a PVDF membrane (Macherey-Nagel) for immunodetection. The 

membrane was treated with 2 % non-fat dry milk and immunodetection was performed using 

a primary mouse anti-GFP monoclonal antibody (Roche) and a secondary goat anti-mouse 



IgG HRP-linked antibody (Cell Signaling). Blots were developed by the chemiluminescent 

method using the ECL reagent (Amersham Bioscience).  

 

Fluorescence microscopy (FM) and laser scanning confocal microscopy (LSCM) 

10 ml of a suspension of 5 x 10
5
 or 5 x 10

7
 conidia / ml were inoculated onto sterile cover 

slips embedded into appropriate liquid culture media, were incubated for 4 h or 16 h at 25 
o
C 

and observed by FM and CSLM as previously described (Tavoularis et al., 2001; 2003). 200 

µl of a suspension of 5 x 10
7
 conidia / ml were inoculated into sterile Eppendorf tubes and 

observed by FM and CSLM as previously described. To elicit AgtA-GFP endocytosis, 

ammonium L(+) tartrate was added to a final concentration of 10 mM, 30, 60 and 120 min 

before observation as indicated in the legends to the figures. Filipin was used at a 

concentration of 25 µg / ml at 37 
o
C for 15 min before the observation. Samples were 

observed on an Axioplan Zeiss phase-contrast epifluorescent microscope with appropriate 

filters and the resulting images were acquired with a Zeiss-MRC5 digital camera using the 

AxioVs40 V4.40.0 software. Images were then processed in the Adobe Photoshop CS2 

V9.0.2 software. Confocal scanning laser microscopy to examine PilA-sGFP, PilB-sGFP, 

SurG-sGFP, PilA-mRFP, PilB-mRFP and HhoA-mRFP localization was carried out on a 

BIO-RAD MRC 1024 CONFOCAL SYSTEM (Laser Sharp Version 3.2 Bio-Rad software, 

zoom ×2-5, excitation: 488 nm/Blue and 568 nm/Yellow (sGFP and mRFP respectively) 

samples at Laser Power 3 (PilA, SurG and HhoA) and 30% (PilB) respectively, Kalman filter 

N=5-6, 0.3 µm cut, iris: 7-8, crypton/argon laser, Nikon DIAPHOT 300 Microscope, ×60 (oil 

immersion) lens, emission filter 522/DF35. lens reference: Plan Apo 60/1.40 oil DM, Nikon 

Japan 160175, 60 DM/ Ph4, 160/0.17).  

 



Bioinformatic tools and data bases  

Data bases consulted were: http://www.fgsc.net/ through which most fungal genomes are 

accessible, specifically Aspergillus sequences were obtained through: 

http://www.broadinstitute.org/annotation/genome/aspergillus_group/MultiHome.html. The 

yeasts data bases consulted were http://www.genolevures.org/yeastgenomes.html, 

http://www.yeastgenome.org/, http://www.genedb.org/genedb/pombe/ and 

http://www.candidagenome.org/. The Pneumocystis carinii database is: 

http://pgp.cchmc.org/. Phylogenetic trees were constructed online using the different 

programs contained in http://www.phylogeny.fr/. Muscle alignments were carried out with 

http://www.ebi.ac.uk/Tools/muscle/index.html. T-Coffee alignments were carried at 

http://www.phylogeny.fr/. Alignments are shown with Boxshade 

http://www.ch.embnet.org/software/BOX_form.html. Transmembrane protein topologies 

were predicted with HMMTOP, http://www.enzim.hu/hmmtop/html/submit.html, PRED-

TMR, http://athina.biol.uoa.gr/PRED-TMR2/input.html, TopPred, 

http://www.ch.embnet.org/software/TMPRED_form.html and SPLIT4 

http://split.pmfst.hr/split/4/. Coiled coils were predicted with 

http://toolkit.tuebingen.mpg.de/pcoils and http://npsa-pbil.ibcp.fr/cgi-

bin/npsa_automat.pl?page=npsa_lupas.html. 

 

Results 

 

Eisosomal core components in Aspergillus 

A search on the available fungal data bases reveals that homologues of Pil1 and Lsp1 are 

present in all the ascomycetes (properly phylum Ascomycota). In the available genomes of 



all the Pezizomycotina, including the Aspergilli, we found proteins belonging to two clades, 

that we shall call the PilA and the PilB clades. Very stringent conservation is seen within the 

PilA clade while the proteins of the PilB clade show a faster rate of divergence. Proteins of 

the PilA clade, show a central coiled-coil domain (residues 166-198 for PilA), similarly to 

Pil1 (Walther et al., 2006) and Lsp1, while all proteins of the PilB clade show the presence of 

an additional carboxy-terminal coiled-coil domain (residues 147-178 and 225 to 244 for PilB, 

not shown). The PilA and PilB clades are represented in A. nidulans by ANID_05217.1 and 

ANID_03931.1 respectively. The duplication which generated PilA and PilB is possibly 

ancestral to the Pezizomycotina, as orthologues of ANID_05217.1 (73% identity) and 

ANID_03931.1 (56%identity) are present in Tuber melanosporum (Percudani, R. personal 

communication), a member of the Pezizales, a basal branch of the Pezizomycotina (Spatafora 

et al., 2006). The PilA clade clusters with the Pil1-like Lsp1-like proteins of the 

Saccharomycotina, the latter arising from an independent duplication event at the root of the 

Saccharomycotina. For clarity’s sake proteins from only two genomes (S. cerevisiæ and 

Kluveromyces lactis) of the later subphylum together with proteins from some representative 

genomes of the Pezizimycotina are shown in Fig. 1. A third duplication independent from 

those of the Saccharomycotina and Pezizomycotina, is present in all the available genomes of 

the genus Schizosaccharomyces represented in Fig. 1 by S. pombe. Two close homologues 

showing 64% to 42% identities respectively with the two S. pombe proteins are also present 

in Pneumocystis carinii, another member of the Taphrinomycotina (data not shown). The 

homologues present in the Taphrinomycotina are quite divergent from Pil1/PilA, but their 

position in the tree is consistent with the proposal that the ancestral “Pil protein” could have 

been Pil1/PilA like. This topology, indicating the occurrence of three independent 

duplications, one for each sub-phylum, is maintained when all available genomes are 

included in trees constructed with a variety of algorithms (our own unpublished data and 



Olivera-Couto A. and Aguilar P., personal communication, Olivera-Couto, 2009). The 

meu14 protein of S. pombe, necessary for the second division of meiosis and the accurate 

formation of the forespore membrane (Ohtaka et al., 2007), is clearly related to 

Pil1/Pil1A/Lsp1 (Okuzaki et al., 2003, 22% identity with both Pil1 and PilA, 24% identity 

with PilB,). When included in trees similar to that shown in Fig. 1, it appears as an outgroup 

to both the Pil1/Lsp1/PilA (including the S. pombe putative eisosomal proteins) and to the 

PilB clades (our data not shown and Olivera-Couto, 2009). 

The Sur7 transmembrane protein has been characterized as a component of eisosomes in both 

S. cerevisiae and C. albicans (see introduction). Three putative members of the Sur7 family 

of proteins are present in A. nidulans, ANID_04615.1, ANID_01331.1 and ANID_05213.1. 

These proteins represent each of the three clades of Sur7-like proteins present in the 

Aspergilli (Supplementary Figure 1) ANID_04615.1 (to be called SurG, cognate gene surG), 

is clearly the orthologue Sur7 proteins of S. cerevisiae and C. albicans (showing 21% and 

27% identities respectively). The position of the four transmembrane domains, typical of 

Sur7, is conserved in the three homologues, together with the sequence showing similarities 

with Claudin-like domain (Alvarez et al., 2008).  

 

The sub-cellular localization of eisosomal proteins is developmentally regulated  

To determine the subcellular localization of PilA, PilB and SurG we used strains carrying 

pilA-gfp, pilA-mrfp, pilB-gfp and surG-gfp alleles replacing the corresponding resident genes 

respectively. The GFP fusion strains behave like the wild type in relation to growth on 

complete media in the presence or absence of itraconazole (see below). It was also checked 

that the temporal pattern of expression of the mRNAs corresponding to each of the gfp fusion 

proteins is identical to that seen for the wild type genes from the wild type genes (not shown, 

see below).  



Epifluorescence microscopy of ungerminated conidia (Fig. 2) showed PilA-GFP, PilB-GFP 

and SurG-GFP localized as patches in the periphery of the spores. SurG-GFP is additionally 

localized perinuclearly. The perinuclear location of SurG is more clearly shown by confocal 

microscopy in a strain carrying both SurG-GFP and the H1 histone gene fused to mRFP, 

suggesting a localization of SurG to the endoplasmic reticulum, similar to that shown by the 

ER chaperone ShrA (Fig. 2, panel B; Erpapazoglou et al., 2006). Polar and equatorial 

sections of confocal microscopic images of ungerminated conidia showed that PilA-GFP 

patches are not as clearly separated as in S. cerevisiae (Supplementary Figure 2). 

No change in the localization of PilA or PilB is seen during the period of isotropic growth. 

The same stands for the peripheral localization of SurG, nevertheless, the perinuclear ring 

disappears before the emergence of the germination tube (this is better seen in Fig. 9, see 

below). All three proteins are restricted to the periphery of the conidial head opposite to the 

emergent germ tube, while in young and older mycelia they have different destinations. PilA 

is present in discrete patches in young (16 h, Fig. 2) but also older and branching mycelia (20 

and 24 h not shown). PilA spots in hyphae are not uniform in size and are not restricted to the 

periphery as they are in conidiospores. This is shown in Fig. 3, where the brightest PilA spots 

are localized at the periphery of the hyphae while smaller ones are present both at the interior 

of the hyphae and at its periphery. Furthermore, double-labelling of PrnB (the major proline 

transporter; Sophianopoulou and Scazzocchio, 1989; Tavoularis et al., 2001) and PilA 

indicates that hyphal membrane bound PilA punctate structures (which we can equate to 

eisosomes) are localized to the internal face of the membrane (Fig. 3E). In hyphae, PilB-GFP 

is seen as very low intensity, diffused fluorescence in the cytoplasm (Fig. 3A), the settings of 

the microscope being such as to reflect faithfully the difference of fluorescence between the 

ungerminated conidia and the germlings. This suggests that the protein is down-regulated 

after germination. PilB-GFP is excluded from nuclei as shown in a strain carrying both PilB-



GFP and the gene encoding the H1 histone fused to mRFP (Fig. 3 panel B). Finally, SurG-

GFP is in hyphae confined to the vacuole and endosomes (black arrows Fig. 3A), (some 

residual signal can be seen in the membrane of the conidial head) and this is confirmed by 

CMAC staining (not shown).  

 

Expression of the pilA, pilB and surG genes  

The accumulation of the three eisosomal proteins in conidia led us to investigate whether this 

is correlated with transcription of the cognate genes, from resting conidia through young 

mycelia. The results presented in Figure 4A show that both pilA and surG mRNAs 

accumulate more in resting conidia compared to all time points of germination tested. At 

variance with this, pilB mRNA is abundant in resting conidia and is not detectable within the 

sensitivity of the Northern blot at 4 h, 8 h, 12 h and 16 h after the onset of germination. The 

transcription of the pilB homologue of A. fumigatus, Afu6g08320, is also clearly detected in 

dormant conidia, and barely detectable at the onset of germination (Lamarre et al., 2008).  

The fluorescence signal (Fig. 2) seen in germlings and mycelia for PilB (cytosolic) and SurG 

(vacuolar) could be due either to the presence of the intact fusion proteins, to degradation 

products conserving the proteins C-termini or simply to degradation resistant GFP 

accumulating respectively in the cytosol and vacuoles. Western blots (Fig. 4B) carried out on 

protein extracts of ungerminated conidia (0 h) or young mycelia (16 h) grown in the same 

conditions as those used to investigate intracellular localization, show that bands 

corresponding to full-length PilA-GFP and PilB-GFP are present in both conidia and 

mycelia, while bands corresponding to full-length SurG-GFP are present in conidia and 

faintly observed in mycelia. The slower migrating bands of PilA-GFP and PilB-GFP have 

approximate apparent molecular weights of 70 kDa and 80 kDa respectively (calculated MW 

67 kDa and 71.5 kDa respectively). The PilA and PilB bands running just below them have 



apparent MWs of 62 and 72 kDa respectively. We cannot conclude from these data if N-

terminal proteolysis and/or other post-translational modifications are responsible for the 

presence of these additional electrophoretic species, together with those seen between 48 and 

27 kDa of the protein marker. The apparent MW of SurG-GFP is about 48 kDa (calculated 

MW 54 kDa), a difference which is not surprising for a protein comprising a highly 

hydrophobic moiety. A band of apparent molecular weight of 27 kD corresponding to free 

GFP, is only seen in strains carrying the SurG-GFP fusion. This, together with the down-

regulation of the full length SurG-GFP observed after 16 h of growth, demonstrate that the 

vacuolar fluorescence detected in mycelia of SurG-GFP strains (Fig. 2A) mostly derives 

from free GFP and degradation intermediates.  

 

Eisosomal proteins assemble during conidiogenesis 

The presence and colocalization (see below) of the three eisosomal proteins in ungerminated 

conidia led us to investigate their appearance during conidial development. Figure 5 shows 

that during conidiogenesis the three proteins are present in late, mature conidia (Fig. 5B and 

5C for PilA-GFP, 5G for PilB-GFP and 5H for SurG-GFP). PilA spots can be detected in the 

stalk of the conidiophore, in the vesicle, in metulae and phialides (Fig. 5A). Differently from 

PilB and SurG, which are only seen in mature, older conidia on the conidiophore, the 

appearance of PilA in conidia budding from the phialides is quite variable from one 

conidiophore to the other and even within the same conidiophore. Figures 5D and 5F show 

two extremes in which none or almost all of the emerging conidia express PilA-GFP 

respectively, while the 5E micrograph show an intermediate situation, with only some of the 

budding conidia expressing PilA-GFP. Control strains which did not include any GFP fusion 

protein do not show any conidiophore or conidiospore fluorescence under the same 

observation conditions (not shown). 



 

Colocalization of PilA, PilB and SurG in quiescent conidia 

PilA, PilB and SurG are localized at the periphery of resting conidia. We thus investigated 

their colocalization. To this aim we constructed strains carrying PilA-mRFP and PilB-GFP or 

SurG-GFP. Figure 6 shows colocalization of PilA with PilB, and colocalization of PilA with 

SurG in the periphery of the conidia; while there is obviously no colocalization of PilA with 

the perinuclear fraction of SurG. PilB fluorescence intensity follows more consistently the 

peaks of PilA fluorescence than that of SurG. It can be seen from both Figs. 2 and 6 that the 

localization pattern of SurG is less discontinuous and punctate than that of PilA and PilB.  

 

Phenotypic characterization of deleted mutants: growth phenotypes 

We have constructed strains deleted for pilA, pilB and surG (see Experimental procedures). 

A strain deleted for both pilA and pilB was also constructed. No growth phenotype, at 25 
o
, 

37 ° and 42 °C was seen for any of the deleted strains on either complete or minimal media 

supplemented with urea, ammonium or nitrate as sole nitrogen sources (data not shown). 

Moreover, conidia from deleted pilA, pilB or surG strains exhibited swelling and polarity 

establishment (time of germination tube appearance) indistinguishable from that of a wild 

type strain at 25 
o
, 37 ° and 42 °C. This was seen after incubation of conidia in minimal 

media supplemented with urea as sole nitrogen source for 2 h, 4 h and 6 h respectively in the 

above conditions and observation of differential interference contrast (DIC) images  using a 

phase contrast fluorescent microscope (data not shown). As eisosomal proteins are localized 

in quiescent conidia, we investigated whether they are important for conidial survival. The 

latter is not significantly different from the wild type in strains deleted for pilA, pilB or surG 

after incubation of freshly harvested conidia for 4 h at 4 °C (<100%), 25 °C (<60-70%), and 



45 °C (<60-75%). Deleted strains were checked for sensitivity to caffeine, ethanol, SDS, 

Congo Red, CaCl2 and the antifungal drugs caspofungin and itraconazole. Figure 7 shows 

that pilA∆, pilA∆pilB∆ double mutants and surG∆, but not pilB∆ strains show resistance to 15 

µM itraconazole when compared to the wild type strain. The itraconazole resistance 

phenotype co-segregates in crosses with the genetic markers riboB and pyroA used to 

interrupt the pilA and surG genes respectively (see Materials and methods; data not shown). 

No other phenotype of resistance or hypersensitivity was observed.  

 

Phenotypic characterization of deleted mutants: cell localization patterns and processes  

PilA (but not PilB or SurG) is present in punctate structures in mycelia. The presence of 

ammonium results in endocytosis in germlings and mycelia of a number of transporters 

involved in the utilisation of nitrogen sources (Valdez-Taubas et al., 2004; Pantazopoulou et 

al., 2007; Apostolaki et al., 2009). We have investigated whether the ammonium elicited 

endocytosis of the di-carboxylic amino acid transporter AgtA (Apostolaki at al., 2009) was 

affected in a pilA deletion. The expression of AgtA is identical in pilA
+
 and pilA∆ strains (not 

shown). The endocytosis of AgtA-GFP, checked at time intervals of 30, 60 and 120 min after 

addition of ammonium is identical in pilA
+
 and pilA∆ strains, within the limits of the 

confocal microscope observation, being completed at 120 min in both strains (results not 

shown). Similarly, the rate of endocytosis of the lipophilic fluorochrome FM4-64 is no 

different, within the limits of the epifluorescence microscopic observation between a pilA
+
 

and a pilA∆ strain (not shown). Moreover, deletion of PilA does decrease neither the uptake 

of FM4-64 nor its early internalization pattern. As reported by Peñalva (2005) the earliest 

FM4-64 internalization intermediates are cortical punctuate structures. Figure 8 shows that 

these structures do not usually colocalize with PilA in germlings. Such colocalization as 

could be seen may well be coincidental. Thus, PilA foci are not obligatory endocytic portals 



for this lipid marker as it has been proposed for eisosomes in S. cerevisiae (Walther et al., 

2006).  

We have checked if any of the deleted strains is affected the distribution of filipin, a polyene 

antibiotic which selectively stains ergosterol and which can be detected by its blue 

fluorescence in UV light. No changes in filipin binding were seen in young mycelia of strains 

deleted for pilA and surG (data not shown). In these strains the strong filipin staining at the 

tip of the hypha is not altered. However, preliminary results strongly suggest that the 

distribution of filipin staining is affected in ungerminated conidia by the deletion of either 

pilA or surG, but not by the deletion of pilB (not shown). 

 

Phenotypic characterization of deleted mutants: effects on eisosome assembly 

We have checked the distribution of SurG-GFP and PilB-GFP in strains deleted for pilA and 

PilA-GFP and PilB-GFP in strains deleted for surG. Figure 9A shows that in pilA∆ 

 ungerminated conidia (0 h), PilB-GFP patches become larger and more distinctly separated 

from each other. After 5 h of isotropic growth PilB is distributed in the cytoplasm as it is in 

the wild type, with less patches persisting at the conidial periphery. In a pilA∆ background, 

ungerminated conidia (0 h) show a significant decrease of SurG-GFP peripheral patches 

while the inner perinuclear ring remains intact indicating that PilA is required for proper 

localization of SurG at the conidial periphery. In the absence of SurG (Fig. 9B) the peripheral 

targeting and distribution of PilB-GFP is drastically affected, the protein being localized to a 

few bright clusters at the periphery of ungerminated conidia, which project into the 

cytoplasm, and to a diffuse cytoplasmic pool, which becomes more evident after 5 h of 

isotropic growth. At this time point PilB-GFP clusters are not only peripheral but appear also 



in the cytoplasm. On the other hand deletion of SurG does not affect the localization of PilA-

mRFP. 

 

Discussion 

Our own data (see supplementary data) and that of others (Olivera-Couto, A., and Aguilar, 

P., unpublished; Olivera-Couto, 2009) establish the universal presence of homologues of Pil1 

and Lsp1 in the ascomycetes. The sequence divergence between the PilA and PilB clades of 

the Pezizomycotina, including differences in the conservation of putative phosphorylation 

sites (not shown), and the presence of a second coiled-coil domain in PilB, is associated, in 

A. nidulans, with a different fate in the course of development. While Pil1 and Lsp1 are 

integral components of eisosomes in all stages of the S. cerevisiae cell cycle, in A. nidulans, 

PilB shows colocalization with PilA only in conidia. The eisosomes of the A. nidulans 

conidiospore can be considered equivalent to those of S. cerevisiae, as they contain both Pil 

paralogues and SurG, the orthologue of Sur7 (see below). However, there are some intriguing 

differences between the S. cerevisiae cellular eisosomes and those of the conidiospores of A. 

nidulans. In S. cerevisiae there is about 1 eisosome / 3 µm
2
 of surface area, well separated 

from each other at a distance >0.5 µm (Moreira et al., 2009). In the A. nidulans conidiospore, 

eisosomes are more tightly packed; seem to touch each other and thus cannot be easily 

counted (Supplementary Figure 2). The peripheral localization of SurG does not match 

exactly the localization of PilA in conidia, but shows a more continuous distribution (Fig. 6). 

The perinuclear ring of SurG has not been reported for either S. cerevisiae or C. albicans. 

In S. cerevisiae, Pil1 but not Lsp1 is essential for proper eisosome assembly (Walther et al., 

2007, Moreira et al., 2009). In contrast to S. cerevisiae, in A. nidulans, the absence of PilA 

does not affect markedly the localization of its paralogue, PilB in conidia. In the absence of 

PilA, PilB patches are still uniformly distributed at the conidial periphery, but larger and 



more widely spaced than in the wild type. In S. cerevisiae, Sur7 and Lsp1 are similarly 

affected by a pil1 deletion. In A. nidulans, the distribution of SurG in a pilA∆ background 

(see Fig 10 and results section) is drastically altered, but the scanty SurG patches are very 

different from the large peripheral Sur7 clusters seen in pil1 strains. A deletion of SUR7 in S. 

cerevisiae has no effect on the localization of Pil1 and Lsp1. This applies also to strains 

deleted additionally for the two paralogues clustering with Sur7 in the phylogenetic tree 

(Supplementary Figure 1). Similar results were obtained for the deletion of Sur7 in C. 

albicans (Alvarez et al., 2008). The situation is quite different in A. nidulans. While the 

distribution of PilA is not affected in surG∆ strains, that of PilB is affected drastically. The 

distribution of PilB in surG∆ strains is partly reminiscent, in quiescent conidia, of the 

distribution of Lsp1 in pil1∆ strains. That SurG is necessary for PilB localization is also 

consistent with the localization of PilB to the cytoplasm of wild type hyphae, where SurG is 

sequestered in the vacuole and endosomes and consequently may not be available to interact 

with PilB. Thus, the strong similarity of eisosomal components in S. cerevisiae cells and A. 

nidulans conidiospores is not correlated with identical interactions leading to their assembly.  

Eisosomes have been defined as portals of endocytosis (Walther et al., 2006). However, the 

data presented in this article implies that if they play a role in endocytosis in A. nidulans, this 

role is minor or limited to specific cargos, which remain unidentified. Neither the 

endocytosis of FM4-64 nor the ammonium-elicited endocytosis of the AgtA (di-carboxylic 

amino acid transporter, Apostolaki et al., 2009 not shown) or PrnB (the major proline 

transporter, Sophianopoulou and Scazzocchio, 1989; not shown) are visibly affected in 

mycelia by a deletion of pilA, encoding the only eisosomal protein present in discrete foci in 

hyphae. It should be noted that although AgtA and PrnB proteins of A. nidulans and Hxt2 of 

S. cerevisiae are transporters with a homogeneous distribution in the plasma membrane, upon 



endocytosis Hxt2 accumulates in discrete plasma membrane associated foci (Walther et al., 

2006), while the two A. nidulans proteins do not (Apostolaki et al., 2009). 

Endocytosis in A. nidulans has been investigated in mycelia (Peñalva, 2005), where is 

involved in the cycling of transporters (Valdez-Taubas, 2004; Pantazopoulou et al., 2007; 

Apostolaki et al., 2009; Gournas et al., 2010) and in sensing external pH (Vincent et al., 

2003; Herranz et al., 2005; Rodriguez-Galán et al., 2009), but has not been investigated in 

the process of conidial germination, and the possibility remains open that the yeast-like 

eisosomes of conidiospores have a role in early, germination-related endocytosis events. The 

endocytic pathway is nearly-essential in A. nidulans. Deletion of components of ESCRT-III 

(Vps24, Rodriguez-Galán et al., 2009, Vps20, Vps32, Vsp36, Calcagno-Pizzarelli, A.M. and 

Arst H.N., personal communication) results in a drastic impairment of growth. This contrasts 

with the absence of any obvious growth phenotype in surG∆, pilA∆ and pilB∆ strains. A 

possible explanation of this apparent paradox is that, as proposed for S. cerevisiae, 

endocytosis could proceed by two independent pathways, one of which would not involve 

eisosomes (Grossmann et al., 2008).  

A vexing result, common to S. cerevisiae and A. nidulans is the absence of any drastic 

phenotype in deletion mutants of the eisosomal soluble (Pil1/Lsp1/PilA/PilB) or membrane 

proteins (Sur7/SurG). We did not observe any growth phenotype in any media or temperature 

tested for pilA, pilB, pilA pilB or surG deletions. Nevertheless it was reported at a recent 

meeting that a deletion of ANID_04615.1 (surG) results in growth impairment on minimal 

medium with nitrate as nitrogen source at 37 ° and 42 °C, an impairment that is only seen on 

complete medium at 42 °C (D. Chung and B. Shaw Abstract 322, 25
th

 Fungal Genetics 

Meeting Asilomar, 2009, and personal communication). We did not observe this phenotype 

on minimal medium using a variety of nitrogen sources including nitrate, or on complete 

media at any temperature. The phenotype did not appear after outcrossing our deleted strain, 



which eliminates the possibility that our strain could carry a suppressor of the growth 

phenotype. We do not know the reason for this difference, which merits investigation. 

However, a growth phenotype was observed for both surG and pilA deletions. This is the 

mild but clear resistance to itraconazole which co-segregates in crosses with each deletion. 

This is surprising, as deletions of SUR7 in Candida albicans, result in marked 

hypersensitivity to fluconazole (Alvarez et al., 2008), another triazole antifungal agent to 

which Aspergillus species are tolerant (Osherov et al., 2001). Most probably this resistance 

operates at the level of conidial survival or germination and it may be in some way related 

with the miss- localization of filipin staining in conidia but not in mycelia, in both surG and 

pilA deletion strains. Triazole drugs act by inhibiting the cytochrome P450-dependent 

conversion of lanosterol to ergosterol. Filipin is a polyene macrolide antifungal agent that 

selectively binds and stains ergosterol at the plasma membrane.  

One of the surprising results from this work is that, in A. nidulans, S. cerevisiae-like 

eisosomes assemble during conidial formation and disassemble during germination, resulting 

in germlings and mycelia in eisosome-like punctate structures comprising PilA and a novel 

cellular distribution (respectively cytosolic and vacuolar) for PilB and SurG. As no specific 

conidial survival phenotype was found in strain deleted for eisosomal components, this 

developmentally regulated distribution remains baffling. EglD, a putative endoglucanase 

comprising an expansin-like domain, also localizes at the periphery of ungerminated conidia 

(Bouzarelou et al., 2008). It would be of interest to study whether this localization implies a 

topological or functional association with eisosomes. In mycelia, PalI and PalH, involved in 

pH sensing, have been reported to form membrane-associated punctate structures (Calcagno 

Pizarelli et al., 2007). The connection between PilA and these proteins is under investigation. 

The work presented above is a first study of eisosomal structure and function in a model 

filamentous ascomycete. The universal presence of eisosomal proteins in the ascomycetes, 



and probably in other fungal phyla (Alvarez et al., 2008; Olivera-Couto, A., and Aguilar, P., 

unpublished; Olivera-Couto, 2009, Scazzocchio C., unpublished data) coupled with the 

paucity and diversity of the phenotypes of the deletion mutants observed in three different 

fungal species (S. cerevisiae, C. albicans and A. nidulans) and the striking developmental 

pattern of eisosomal proteins distribution seen in A. nidulans continues to be an unsolved 

paradox. The role of the Meu14 protein, a relative of the Pil1/PilA proteins in the meiosis of 

S. pombe, suggests that eisosomal proteins may have acquired entirely new functions in 

different ascomycete phylogenetic groups. Eisosomes, as defined in S. cerevisiae are present, 

within the asexual cycle, only in the conidia of A. nidulans, positing the question of their 

functional significance in this developmental stage. Punctate structures seen in mycelia can 

be considered to define a new class of assemblies comprising only one Pil paralogue. Thus it 

would be of interest to explore in this filamentous ascomycete the developmental fate of 

other conserved proteins known to share the S. cerevisiae MCC localization pattern. 
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Figure legends 

 

Figure 1  

Eisosomal proteins in the Pezizomycotina. Phylogenetic unrooted tree including the Pil1 

(YGR086C) and Lsp1 (YPL004C) proteins of S. cerevisiae, the two putative eisosomal 

proteins of second member of the Saccharomycotina, Kluvermyces lactis (KLLA); a member 

of the Taphrinomycotina, S. pombe (SPAC3C7.02c, SPCC736.15) and the PilA and PilB 

homologues (see text) of a number of representative fungi of the sub-phylum 

Pezizomycotina. The proteins of A. nidulans (Euriotiomycetes) are referred PilA as 

(ANID_05217.1) and PilB (ANID_03931.1) Other species are referred as: BC, Botritis 

cynerea (Leotiomycetes) CIGH Coccidioides immitis (Euriotiomycetes), MGG Magnaporthe 

grisæ, NCU, Neurospora crassa (Sordariomycetes) SNOG Stegonospora nodorum 

(Dothideomycetes) followed by their systematic numbers in the relevant databases. 

Alignments were carried out with T-Coffee, curated with the Phylogeny site internal curation 

programme (see Experimental procedures), the tree was obtained with the maximum 

likelihood program alLRT-PhyML (Anisimova and Gascuel, 2006, 

http://www.phylogeny.fr/version2_cgi/alacarte.cgi, 3) and re-drawn after a Drawtree image. 

The digits at the nodes represent aLRT (approximate likelihood ratio test) non-parametric 

branch support values (http://atgc.lirmm.fr/alrt/). The PilA clade is clustered with all the 

homologues of the Saccharomycotina (alTR=1), but note the weak support (0.25) of the node 

where the PilA clade branches out from the homologues in the Saccharomycotina; in trees 

(not shown) where many more species of Saccharomycotina and Pezizomycotina are 

included, the topology is maintained and the aLTR raises to >0. 80. For reasons of space we 

do not show the branch support aLTR values within the PilA clade, all nodes have strong 

support (aLRT>0.80) with the exception of the node where PilA branches out (aLRT=0.43). 



While in this tree we show only representative species, the topology of a tight cluster of PilA 

homologues and a more loose cluster of PilB homologues is maintained in a tree constructed 

with the same or other algorithms and including at least one species of every genus of the 

Pezizomycotina for which there is an available sequence. Arrows show the nodes 

corresponding to the three independent duplications that gave origin to the PilA and PilB 

clades of the Pezizomycotina, the Pil1 and Lsp1 clades of the Saccharomycotina and the two 

clades of the Taphrinomycotina. 

 

Figure 2 

Subcellular localization of PilA, PilB and SurG proteins at various asexual developmental 

stages of the A. nidulans life cycle. (A) Representative pictures from epifluorescence 

microscopy of strains expressing chimeric PilA-GFP, PilB-GFP and SurG-GFP molecules in 

ungerminated (0 h), swollen (4 h) and germinated (8 h) conidia and young mycelia (12 h, 16 

h). Strains were grown in the presence of 5 mM urea and 1% w/v glucose as sole nitrogen 

and carbon sources, at 25 
o
C. GFP fluorescence is shown on the upper panels of each row 

while Nomarski pictures of the same samples are shown on the lower panels. Black arrows 

indicate the central vacuole and endosomes. Bar 5 µm. (B) Representative pictures from laser 

scanning confocal microscopy of strains expressing both SurG-GFP and HhoA-mRFP 

(histone1-RFP) molecules in ungerminated wild type conidia (left panel) and both PilB-GFP 

and HhoA-mRFP molecules in young mycelia (16 h) (right panel). The strains were grown as 

in (A). Bar 5 µm  

 

Figure 3  



Panel A: Confocal z-stack sections showing PilA-GFP in a wild type strain. The strain was 

grown in the presence of 5 mM urea and 1% w/v glucose as sole nitrogen and carbon 

sources, for 16 h at 25 
o
C. Panels B, C and D: inverted black and white (b/w) fluorescence 

first z-stack section merged to the corresponding DIC. Bar 5 µm. Note that PilA spots are not 

uniform in size and are not restricted at the periphery of mycelia. The largest PilA eisosomes 

(filled arrows in Fig. 3D) are localized at the periphery while the smaller ones both at the 

interior and the periphery (dashed arrows). Panel E: Subcellular localization of PilA and 

PrnB proteins in mycelia. Representative pictures from laser scanning confocal microscopy 

of strains expressing both PilA-mGFP and PrnB-GFP molecules in young mycelia (12 h). 

The upper right inset in the “Merge” picture show a magnification of the boxed region. 

Strains were grown in the presence of 5 mM urea and 1% w/v glucose as sole nitrogen and 

carbon sources, at 25 
o
C. To induce prnB gene expression 20 mM of L-proline was added the 

last 2 h of growth (Tavoularis et al., 2001). Bar 5 µm.  

 

Figure 4  

Panel Α: Expression of the pilA, pilB and surG genes in a wild type strain. pilA, pilB and 

surG transcript levels in ungerminated (0 h), swollen (4 h) and germinated (8 h) conidia, 

young (12 h, 16 h) and older (20 h) mycelia. Strains were grown in the presence of 5 mM 

urea and 1% w/v glucose as sole nitrogen and carbon sources, at 25 
o
C. 18 S rRNA steady-

state levels are used to monitor the amount of RNA loading in each lane.  

Panel B: Western blot analysis of the PilA, PilB, SurG tagged proteins. Approximately 20 µg 

of total protein fractions of conidia (0 h) and young mycelia (16 h) derived from strains 

expressing PilA-, PilB- or SurG-tag with GFP proteins, were fractionated on 10 % SDS-

PAGE gel, transferred to a PVDF membrane and probed with a primary mouse anti-GFP 



monoclonal antibody and a secondary goat anti-mouse IgG HRP-linked antibody. Protein 

markers are indicated on the right. Equal loading was checked by Comassie-blue staining.  

 

Figure 5 

Localization of PilA, PilB and SurG proteins during conidial development. Representative 

wide field fluorescence and DIC pictures of wild type conidiophores expressing chimeric 

PilA-GFP (A-F), PilB-GFP (G) and SurG-GFP (H) proteins are shown. The “Merge” section 

of panel A shows in inverted black and white an enlarged portion of the same conidial head 

shown in the PilA-GFP and DIC panels in order to highlight the PilA-GFP spots present in 

metulae and a budding phialide. Expression of PilB-GFP (G) and SurG-GFP (H) during 

conidial development is also presented. Young PilA-GFP expressing conidiophores are 

shown in A and D-F and mature in B and C. All strains were inoculated on microscope slides 

covered with MM containing 2% glycerol, 0.8% agarose and grown at 37 
o
C for two days. 

Bar 5 µm .  

 

Figure 6 

Colocalization of PilB with PilA and SurG with PilA in resting conidiospores. Representative 

confocal fluorescence micrographs (A-C and F-H) and fluorescence intensity profiles of PilA 

(red curve in E and J), PilB (green curve in E) and SurG (green curve in J) are shown. The 

fluorescence intensity, plotted along the yellow line in D (magnification of C) and I 

(magnification of H) that runs through both the inside and the periphery of the arrowed cell 

in C and H respectively, was calculated using the ImageJ software and normalised to the 

maximum value. Bar: 5 µm.  

 



Figure 7 

Itraconazole resistance of pilA∆, pilAB∆ and surG∆ strains. Cotton filtered pilA∆, pilB∆, 

pilAB∆, surG∆ and wild type conidiospore suspensions were prepared in PBS, counted using 

a Neubauer Counting Chamber  to a concentration of ~10
6
 conidia / ml and then plated (5 µl) 

as 10
-1

, 10
-2

 and 10
-3

 serial dilutions on complete media (CM) in the absence or the presence 

of 15 µM itraconazole. The plates were grown at 37 °C for 3 days. 

 

Figure 8 

Representative epifluorescence (A-C) and confocal (D) images of a PilA-GFP strain labeled 

with FM4-64 Samples were taken after loading the dye on ice for 5 min (panel A). Note 

cortical punctate structures indicated by arrows: empty arrows indicate FM4-64 

internalization sites free of PilA while filled arrows indicate FM4-64 internalization sites 

colocalizing with PilA.  

 

Figure 9 

Subcellular localization of PilB-GFP and SurG-GFP proteins expressed in conidia of a pilA∆ 

strain and of PilA-mRFP, PilB-GFP proteins expressed in conidia of a surG∆ strain. (A) 

Representative equatorial sections from laser scanning confocal microscopy of strains 

expressing chimeric PilB-GFP and SurG-GFP molecules in ungerminated (0 h) and swollen 

(5 h) conidia of a wild type and a pilA∆ strain. (B). Representative pictures from laser 

scanning confocal microscopy of strains expressing chimeric PilA-mGFP and PilB-GFP 

molecules in ungerminated (0 h) and swollen (5 h) conidia of a wild type and a surG∆ strain. 

In both (A) and (B) Nomarski pictures (DIC) of 0 h wild type conidia are shown. Bar 5 µΜ. 

Except for wt, PilA-GFP and PilB-GFP, two independent conidia are shown. 
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Supplementary Figure 1  

Sur7 homologues in the Aspergilli. A phylogenetic tree of homologues of Sur7 found in 

available genome sequences of the genus Aspergillus. Methods of tree-construction as in Fig. 

1. All possible homologues of S. pombe, S. cerevisiae and C. albicans are also included. The 

possible homologues of a third member of the Saccharomycotina, phylogenetically distant 

from S. cerevisiae, Yarrowia lipolytica are included, as this inclusion results in a more robust 

tree. Functionally characterised genes (Sur7: YML025W; FMP45: YDL222C; CASur7: 

orf19.3414; SurG: ANID_04615.1) are indicated with the names reported in the literature, 

and shown in larger font, others by the accession number of the relevant data-bases. The 



three physiologically characterised Sur7 orthologues are highlighted by grey rectangles. CA 

indicates C. albicans; Sur7, FMP45, YNL194C and YLR414C are the four Sur7 paralogues 

of S. cerevisiae, SPAC15A10.09c is the possible Sur7 homologue of S. pombe. YALI 

indicates homologues from Yarrowia lipolytica. Accession numbers starting with An 

corresponds to A. niger, Afu, A. fumigatus, ATG, A. terreus, AO, A. oryzæ, ACL A. clavatus, 

AFL A. flavus, ANID, A. nidulans, NFI, N. fischeri. For reasons of space only some aLRT 

non-parametric branch support values are shown, we have omitted those within tightly 

related groups. The crucial node separating where the Sur7/SurG clade branches from all 

other homologues has value of 1.00, which is indicated by a larger font within a grey frame. 

The three distinct tight clades found within the Aspergilli are highlighted by a grey 

background. After this tree was completed it come to our attention that A. oryzæ 

AO090005001554 has an exact orthologue in A. flavus (AFL2G_01448.2, 1000% identity). 

 

Supplementary Figure 2 

A: Comparison of Pil1 localization in S. cerevisiae cells (left panel adopted from Moreira et 

al., 2009) and A. nidulans PilA localization in conidiospores (right panel) respectively. 

B: Equatorial and polar confocal sections of ungerminated conidia. Panel I and II: inverted 

black/white confocal images resecting the equator and a pole respectively of three 

ungerminated conidia expressing PilA-GFP. Panel III and IV: ImageJ generated surface plots 

of fluorescence signal intensity of A and B respectively. 
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Table 1 

Aspergillus nidulans strains used in this study 

Strains Genotypes Reference 

wt (1) pabaA1 CS2498 (Fungal Genetics Stock Center) 

nkuA∆ pyrG89 riboB2 pyrG89;argB2;nkuA∆::argB
+
 pabaB22;riboB2 (provided by Dr. M. Peñalva) 

nkuA∆ pyrG89 pyroA4 pyrG89;argB2;nkuA∆::argB
+
 pyroA4 (provided by Dr. M. Peñalva) 

LO1516 pyrG89;argB2;nkuA∆::argB
+
 pyroA4;hhoA::mrfp::Afribo;riboB2  (provided by Prof. C. Scazzocchio) 

VS79 pyrG89;argB2;nkuA∆::argB
+
 pabaB22;pilA::sgfp::AfpyrG

+
;riboB2 This study 

VS80 pyrG89;pilB::sgfp::AfpyrG
+
;argB2;nkuA∆::argB

+
 pabaB22;riboB2 This study 

VS81 pyrG89;surG::sgfp::AfpyrG
+
argB2;nkuA∆::argB

+
 pabaB22;riboB2 This study 

VS83 pyrG89;argB2;nkuA∆::argB
+ 

pyroA4;pilA::mrfp::AfpyrG
+
 This study 

VS84 pyrG89;argB2 surG∆::Afpyro
+
;nkuA∆::argB

+ 
pyroA4 This study 

VS85 pyrG89;pilB∆::AfpyrG
+
;argB2;nkuA∆::argB

+ 
pabaB22;riboB2 This study 

VS86 pyrG89;argB2;nkuA∆::argB
+ 

pabaB22 pilA∆::Afribo
+
;riboB2 This study 

VS87 pyrG89;pilB∆::AfpyrG
+
;argB2;nkuA∆::argB

+ 
pabaB22;pilA∆::Afribo

+
;riboB2 This study 

VS91 pyrG89;argB2 surG::sgfp::AfpyrG
+
;nkuA∆::argB

+
;pilA::mrfp::AfpyrG

+
;riboB2 This study 

VS94 pyrG89;pilB::sgfp::AfpyrG
+
;argB2;nkuA∆::argB

+
;pilA::mrfp::AfpyrG

+
;riboB2 This study 



VS118 pyrG89;argB2 surG∆::Afpyro
+
;nkuA∆::argB

+
 pyroA4;pilA::mrfp::AfpyrG

+
 This study 

VS125 agtA::sgfp::AfpyrG
+
;argB2;riboB2 This study 

VS128 pyrG89;pilB::sgfp::AfpyrG
+
;argB2;nkuA∆::argB

+
 pabaB22;pilA∆::Afribo

+
;riboB2 This study 

VS129 pyrG89;surG::sgfp::AfpyrG
+
argB2;nkuA∆::argB

+
 pabaB22;pilA∆::Afribo

+
;riboB2 This study 

VS132 pyrG89;pilB::sgfp::AfpyrG
+
;argB2 surG∆::Afpyro

+
;nkuA∆::argB

+
 pyroA4 This study 

VS145 pyrG89;surG::sgfp::AfpyrG
+
argB2;nkuA∆::argB

+
 pabaB22;hhoA::mrfp::Afribo

+
;riboB2 This study 

VS153 pyrG89;pilB::sgfp::AfpyrG
+
;argB2;nkuA∆::argB

+
 pyroA4;hhoA::mrfp::Afribo

+
;riboB2 This study 

VS172 pyrG89 agtA::sgfp::AfpyrG
+
;argB2;nkuA∆::argB

+
;pilA∆::Afribo

+
;riboB2  This study 

VS186 yA2; pantoB100, prnB::sgfp::trpC C-term;pyrG89;argB2; nkuA∆::;pilA::mrfp::AfpyrG
+
 This study 

 



Table 2 

Plasmids used in this work 

Cloning vector Description Reference 

pRG3 pGEM:18SrRNA Delcasso-Tremousaygue et al., (1988) 

p1548 AfriboB Szewczyk et al., 2006 (provided by Dr. M. Peñalva). 

p1547 AfpyroA Szewczyk et al., 2006 (provided by Dr. M. Peñalva). 

p1439  5GA:sgfp:AfpyrG Szewczyk et al., 2006 (provided by Dr. M. Peñalva). 

p1491  5GA:smrfp:AfpyrG Szewczyk et al., 2006 (provided by Dr. M. Peñalva). 

 

 



Table 3 

Oligonucleotides used in this study 

Name Sequence 5΄       3΄ 

PilA∆-Ribo F GCA GAA TAT CGG CTG GTC TC CGC TCT AGA ACT AGT GGA TCC 

PilA∆-Ribo R GCT CAT TCA GTG AGT GCT CG CCT CGA GGT CGA CGG TAT CG 

PilB∆-PyrG F  CAC CTG TCT AGC CTC AGC AA GTC GCC TCA AAC AAT GCT CTT C 

PilB∆-PyrG R CAC AAA GCA CTA ATC ACC CCT T CTG AGA GGA GGC ACT GAT GC 

SurG∆-Pyro F  GTC TAC TCG TCT CTC ATC AGA CGC TCT AGA ACT AGT GGA TCC 

SurG∆-Pyro R. GTG TAT AGC CGA CAG CAG CA CCT CGA GGT CGA CGG TAT CG 

P1 PilA∆  CGA TCC TAG CTC TCA GGA TC 

P3 PilA∆  GGA TCC ACT AGT TCT AGA GCG GAG ACC AGC CGA TAT TCT GC 

P4 PilA∆ CGA TAC CGT CGA CCT CGA GG CGA GCA CTC ACT GAA TGA GC 

P6 PilA∆ ACC AAC CTA GTC GAC GTG AC 

P1 PilB∆  CTC AGC TGA GAG ACT GTC AG 

P3 PilB∆  GAA GAG CAT TGT TTG AGG CGA C TTG CTG AGG CTA GAC AGG TG 

P4 PilB∆ GCA TCA GTG CCT CCT CTC AG AAG GGG TGA TTA GTG CTT TGT G 

P6 PilB∆ TCG GAG TCA ATG TAG TAC AGC 

P1 SurG∆ GCT CAC ATC CAC AAT GTC TAG 

P3 SurG∆ GGA TCC ACT AGT TCT AGA GCG TCT GAT GAG AGA CGA GTA GAC 

P4 SurG∆ CGA TAC CGT CGA CCT CGA GG TGC TGC TGT CGG CTA TAC AC 

P6 SurG∆ GAC TGC CAC ACC TCA CCT C 

P2 PilA∆ GCT GAA CCA GAA GAG GCT GC 

P5 PilA∆ GCA TCC ATG ATG TCA GCA TAC 

P2 PilB∆ TCA TCA CCA GGC AAG ATC ATC 

P5 PilB∆ CAT CGT TCC CAT GCT CAG AC 



P2 SurG∆ TCT TGT GCT GAG GGA ACT AAG 

P5 SurG∆ CGT CCT CAT CCG TGT CTG C 

PilA F CGG GAG CCT GTC CCT GTC GGA GCT GGT GCA GGC GCT G 

PilA R GCT CAT TCA GTG AGT GCT CG CTG AGA GGA GGC ACT GAT GC 

PilA P1 GCA TCG TAC ATA CTC TAT GCG 

PilA P2 CAC CAC TCT CCT CGA CCA AG  

PilA P3 CAG CGC CTG CAC CAG CTC C GAC AGG GAC AGG CTC CCG 

PilA P4 GCA TCA GTG CCT CCT CTC AG CGA GCA CTC ACT GAA TGA GC  

PilA P5 GCA TCC ATG ATG TCA GCA TAC 

PilA P6 ACC AAC CTA GTC GAC GTG AC 

PilB F AGC GAG TTG CAG TGC CCA TT GGA GCT GGT GCA GGC GCT G 

PilB R CAC AAA GCA CTA ATC ACC CCT T CTG AGA GGA GGC ACT GAT GC 

PilB P1 GCA GAA GAA GGA GCT CTG TC  

PilB P2 CGT GCT GAT GGC AGA AAT GG  

PilB P3 CAG CGC CTG CAC CAG CTC C AAT GGG CAC TGC AAC TCG CT  

PilB P4 GCA TCA GTG CCT CCT CTC AG AAG GGG TGA TTA GTG CTT TGT G  

PilB P5 CAT CGT TCC CAT GCT CAG AC  

PilB P6  TCG GAG TCA ATG TAG TAC AGC  

SurG F GCA ACA AGG AAA TCG CTC CCG GAG CTG GTGCAG GCG CTG GAG 

SurG R GTG TAT AGC CGA CAG CAG CAC TGA GAG GAG GCA CTG ATG CGT G  

SurG P1 CTT CAT CGT TCA AGC TTC AGG  

SurG P2 TCT ACT CGT CTC TCA TCA GAG  

SurG P3 C TCC AGC GCC TGC ACC AGC TCC GGG AGC GAT TTC CTT GTT GC 

SurG P4 CAC GCA TCA GTG CCT CCT CTC AG TGC TGC TGT CGG CTA TAC AC  

SurG P5 TGT CGA GTT TCT GCC TCT CC 

SurG P6 GAC TGC CAC ACC TCA CCT C  

 


