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ABSTRACT 
 
Previous work indicated that changes in Ca2+/calmodulin (CaM) signaling pathway are involved in the 

control of proliferation and survival of immortalized lymphocytes from Alzheimer’s disease (AD) 

patients. We examined the regulation of cellular CaM levels in AD lymphoblasts. An elevated CaM 

content in AD cells was found when compared with control cells from age-matched individuals. We did 

not find significant differences in the expression of the three genes that encode CaM: CALM1, 2, 3, by 

real time RT-PCR.  However, we observed that the half-life of CaM was higher in lymphoblasts from AD 

than in control cells, suggesting that degradation of CaM is impaired in AD lymphoblasts. The rate of 

CaM degradation was found to be dependent on cellular Ca2+ and ROS levels. CaM degradation occurs 

mainly via the ubiquitin-proteasome system. Increased levels of CaM were associated with overactivation 

of PI3K/Akt and CaMKII. Our results suggest that increased levels of CaM synergize with serum to 

overactivate PI3K/Akt in AD cells by direct binding of CaM to the regulatory !-subunit (p85) of PI3K. 

The systemic failure of CaM degradation, and thus of Ca2+/CaM-dependent signaling pathways, may be 

important in the etiopathogenesis of AD.  
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INTRODUCTION 
 
 
Dysregulation of calcium homeostasis is among the major cellular alterations in Alzheimer's disease, 

leading to neuronal dysfunction and ultimately apoptosis [1-3]. As the major cellular Ca2+-binding 

protein, CaM responds to calcium fluxes by binding and regulating the activity of multiple CaM-

dependent proteins [4]. Some of these CaM-binding proteins (CaMBPs) are involved in fundamental 

events of calcium-mediated neuronal function, as well as in processes such as learning and memory [5]. 

Moreover, a search for CaMBPs revealed that many of the proteins intimately linked to AD, such as tau 

or presenilins, may be calmodulin-binding proteins [5]. CaM consists of two homologous domains (N- 

and C-terminal), and each domain contains two EF-hand Ca2+-binding motifs [6, 7]. Apo-CaM forms a 

closed conformation by its two homologous domains. Once Ca2+ binds to the EF-hand motifs in both 

domains, the conformation of CaM changes into an open form, allowing for its client proteins to access 

hydrophobic pockets located in the inner parts of each domain [8, 9]. Consequently, the protein is 

implicated in a variety of cellular functions, and most importantly CaM levels change with age [10].  

Since the concentration of CaM-dependent target proteins exceeds that of cellular CaM, changes in rates 

of CaM expression and/or degradation will have important physiological effects on the availability of 

CaM for target protein regulation [11, 12]. In particular, during biological aging, the cellular abundance 

of CaM is altered, and oxidized fragments accumulate. Underlying these age-dependent changes in CaM 

abundance may be oxidant-induced structural changes that promote the recognition and degradation of 

CaM [10].  

On the other hand, alterations in calcium signaling are not restricted to neuronal cells. They also have 

been reported for peripheral cells such as fibroblasts and lymphocytes, which represent easy to obtain 

diagnostic material [13-15]. Changes in CaM availability and/or in the intrinsic functional properties of 

the molecule were linked to disruption of Ca2+ homeostasis in immortalized lymphocytes from late-onset 

AD patients [14]. Interestingly, the distinct Ca2+ response of AD was associated with enhanced cell 

proliferation compared to control lymphoblasts from age-matched individuals [16, 17]. These features 

were considered as peripheral signs of the disease, as current evidence relates the process of neuronal 

apoptosis occurring in AD to the aberrant reentry of differentiated neurons into the cell cycle [18-20].  

The source of signals that drive cell division in the neurons of AD patients is not yet known. Since CaM 

has long been implicated in the regulation of cell proliferation [21, 22], and alterations in CaM content 

and activity have been reported in AD brain [23, 24], the possibility that this molecule could play a 
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significant role in the cell cycle-mediated neurodegeneration in AD should be considered. 

 
We previously reported that Ca2+/CaM stimulates proliferation and increases resistance to serum 

deprivation-mediated cell death in lymphoblasts from AD patients. [16, 17, 25, 26]. It was proposed that 

there is a functional relationship between Ca2+/CaM and the main signaling pathways controlling cell 

survival or death depending upon growth factors availability. Moreover, we demonstrated that the 

survival of peripheral mononuclear cells from AD patients was also dependent on Ca2+/CaM signaling 

[25]. This observation, together with the fact that similar changes were found in cell signaling molecules 

or cell cycle regulatory proteins in fresh isolated or EBV-immortalized lymphocytes from AD patients 

[17], indicates that cell responsiveness is not altered by transformation. The present work aimed at 

elucidating whether there is a distinct regulation of CaM levels in AD lymphoblasts.   Calcium binding 

protein is encoded by three genes, CALM1, 2, and 3, which are located on chromosome 2 (2p21.1-p21.3), 

14 (14q24–31) and 19 (19q13.2–13.3) [27] respectively.  We investigated the expression of these genes 

and protein levels, as well as determined the rate of CaM degradation in control and AD cells. In addition, 

we examined crosstalk between CaM and the PI3K/Akt signaling pathway in the stimulation of 

proliferation of peripheral cells from AD patients. 
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MATERIAL AND METHODS  
 

Materials. 

All components for cell culture were obtained from Invitrogen (Carlsbad, CA). Calmidazolium (CMZ), 

W-13, N-(4-aminobutyl)-5-chloro-1-naphthalene sulfonamide, ionomycin, BAPTA, GSH, trolox and the 

proteasome inhibitor lactacystin were obtained from Sigma Aldrich (Alcobendas, Spain). The caspase 

inhibitor benzyloxy-carbonyl-Val-Asp-fluoromethylketone (Z-VAD-Fmk) was obtained from 

Calbiochem (Darmstad, Germany). Poly (vinylidene) fluoride (PVDF) membranes for western blots were 

purchased from Bio-Rad (Richmond, CA). Rabbit polyclonal antibodies (pAbs) against human phospho-

Akt (Ser473) and rabbit anti-total CaMKII were obtained from Cell Signaling (Beverly, MA) Mouse 

monoclonal antibody anti-human PI3K p85! (sc-1637) and pAbs such as rabbit anti-human CaM I (FL-

149), rabbit anti-human Ub (FL-76), rabbit anti-human pCaMKII (Thr286) (sc-12886-R) and goat anti-

human total-Akt (sc-1618) were from Santa Cruz Biotechnologies (Santa Cruz, CA). Rabbit anti-human 

ß-actin antibody was from Sigma. The enhanced chemiluminiscence (ECL) system was from Amersham 

(Uppsala, Sweden).  All other reagents were of molecular grade.  

Cell lines 

A total of 20 patients diagnosed in the department of Neurology of the University Hospital Doce de 

Octubre (Madrid, Spain) of probable Alzheimer according to NINCDS-ADRDA (National Institute of 

Neurological and Communicative Diseases and Stroke-Alzheimer’s Disease and Related Disorders 

Association) criteria were used in this study. The average age of onset of the disease was 74±2 years. A 

group of 20 non-demented age-matched individuals was used as control. The frequency of the ApoE 4 

allele was found to be 3% in the control group and 39% in the AD group in agreement with values 

previously reported for the control and AD population of Spain [28], and consistent with the late-onset 

form of AD. In all cases peripheral blood samples were obtained after written informed consent of the 

patients or their relatives.  

Establishment of lymphoblastic cell lines was performed in our laboratory as previously described by 

infecting peripheral blood lymphocytes with the Epstein Barr virus [29]. Cells were grown in suspension 

in T flasks in an upright position, in approximately 10 ml of RPMI-1640 (Gibco, BRL) medium that 

contained 2 mM L-glutamine, 100 mg/ml penicillin/streptomycin and, unless otherwise stated, 10 % (v/v) 

fetal bovine serum (FBS) and maintained in a humidified 5% CO2 incubator at 37 ºC. Fluid was routinely 
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changed every two days by removing the medium above the settled cells and replacing it with an equal 

volume of fresh medium.  

Determination of cell proliferation. 

Proliferation was determined by cell counting in a Neubauer chamber. Potential toxicity of the reagents 

used was routinely checked by trypan blue exclusion under inverted phase-contrast microscopy.  

Quantitative reverse transcription-PCR.  

Total RNA was extracted from cell cultures using the Trizol" reagent (Invitrogen). RNA yields were 

quantified spectrophotometrically and RNA quality was checked by the A260/A280 ratio and on a 1.2% 

agarose gel to observe the integrity of 18S and 28S rRNA. RNA was then treated with DNase I 

Amplification Grade (Invitrogen). One microgram was reverse transcribed with the Superscript III 

Reverse Transcriptase kit (Invitrogen). Quantitative real-time PCR was performed in triplicates using 

TaqMan Universal PCR MasterMix No Amperase UNG (Applied Biosystems) reagent according to the 

manufacturer’s protocol. Primers were used at a final concentration of 20 µM. The sequences of the 

primers used for real time PCR are listed in Table 1. 

Real time quantitative PCR was performed in the BioRad iQ5 system using a thermal profile of an initial 

5-min melting step at 95ºC followed by 40 cycles at 95ºC for 10s and 60ºC for 60s. 

Relative mRNA levels of the genes of interest were normalized to ß-actin expression using the simplified 

comparative threshold cycle delta CT method [2 -(!CT CaM- !CT Actin].  

Measurement of free intracellular Ca2+. 

Intracellular Ca2+ levels were determined using the Fluo4-AM probe (Molecular Probes), which binds 

Ca2+ with a 1:1 stoichiometry. Control and AD lymphoblasts were incubated in RPMI medium containing 

10% FBS for 24 h. Then, cells were harvested, washed once with PBS and resuspended in fresh buffer. 

The cells were then incubated in the dark with 1 µM Fluo4-AM for 30 min at 37ºC, and the fluorescence 

was measured at FL-1 (530 nm) in a flow cytometer (EPICS-XL cytofluorimeter (Coulter Científica, 

Móstoles, Spain)) with an excitation laser at 488 nm. At least 10,000 events per sample were acquired. 

Measurement of Reactive Oxygen Species. 

 The intracellular accumulation of ROS was determined using the fluorescent probe CM-H2DCFDA 

(Invitrogen, C6827). After treatment of AD lymphoblasts with the antioxidant agents for 24 hours the 

cells were collected by centrifugation, resuspended in PBS, and loaded with 10 µM CM-H2DCFDA 
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during 30 min. Fluorescence measurements were carried out using a POLARstar Galaxy 

spectrofluorimeter (BMG Labtechnologies, Offenburg, Germany). The excitation wavelength was 495 nm 

and the emission wavelength was 510nM. 

Immunological analysis. 

Cell extracts. To prepare whole cell extracts, cells were harvested, washed in PBS and then lysed in ice-

cold buffer (50 mM Tris pH 7.4, 150 mM NaCl, 50 mM NaF, 1% Nonidet P-40), containing 1 mM 

sodium orthovanadate, 1 mM PMSF, 1 mM sodium pyrophosphate and protease inhibitor Complete Mini 

Mixture (Roche, Mannhein).  

The protein content of the extracts was determined by the Pierce BCA Protein Assay kit (Thermo 

Scientific, Rockford, IL, USA). 

Western blot analysis. 

 50-100 µg of protein from whole cell extracts were fractionated on a SDS polyacrylamide gel, and 

transferred to PVDF membrane (BioRad, Hercules CA). The amount of protein and the integrity of 

transfer were verified by staining with Ponceau-S solution (Sigma). The filters were then blocked with 1-

5% BSA and incubated, overnight at 4ºC, with primary antibodies at the following dilutions: 1:1000 anti-

phospho Akt, 1:1000 anti-Akt, 1:5000 anti-# -actin, 1:500 anti-pCaMKII, 1:1000 anti-CaMKII, 1:500 

anti-CaM, 1:500 anti-p85!, 1:500 anti-Ub. Signals from the primary antibodies were amplified using 

species-specific antisera conjugated with horseradish peroxidase (Sigma) and detected with a 

chemiluminiscent substrate detection system ECL (Amersham). The specificity of the antibodies, used in 

this work, was checked by omitting the primary antibodies in the incubation medium. Blots were stripped 

and reprobed with anti-ß-actin as a protein loading control. The relative protein levels were determined by 

scanning the bands with a GS-800 imaging densitometer provided with the Quantity One 4.3.1. software 

from BioRad, and normalized by that of ß-actin. 

Co-immunoprecipitation assays. 

For CaM/Ub experiments, lymphoblasts from control and AD individuals were seeded at an initial 

density of 1x106 cells/ml and incubated for 6 hours in the absence or in the presence of 1µM MG132. 

Lysates were collected and 1 mg of protein extract was subjected to immunoprecipitation overnight at 4ºC 

with anti-CaM antibody. Samples were incubated with protein G Sepharose (GE Healthcare Bio-
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Sciences) and the resultant immunoprecipitates were washed three times in ice-cold lysis buffer. The 

samples were then treated with protein sample buffer and boiled prior to immunoblotting. Western 

blotting was then performed using the indicated antibodies 

For p85/CaM experiments, lymphoblasts from control and AD individuals were seeded at an initial cell 

density of 1 x 106 cells/ml and incubated for 24 h. Protein extracts (1 mg) were subjected to 

immunoprecipitation overnight at 4ºC with an anti-p85 monoclonal antibody in the presence of 0.1mM 

CaCl2 or 2mM EGTA. Samples were incubated then with protein G Sepharose (GE Healthcare Bio-

Sciences) for 2 h at 4ºC. Immunocomplexes were washed three times with ice-cold lysis buffer containing 

CaCl2, 1 µM CMZ or 2 mM EGTA, suspended with sample buffer, boiled, resolved in SDS-

polyacrylamide gel, and transferred onto PVDF transfer membrane filters. Blots were probed with an 

anti-CaM polyclonal antibody. Membranes were reprobed with the anti-p85 antibody to check for equal 

immunoprecipitation efficiency. 

Statistical analysis. 

Unless otherwise stated, all data represent means±SE. Statistical analysis was performed on the Data 

Desk package (version 4.0) for Macintosh. Statistical significance was estimated by the Student’s t-test 

or, when appropriated, by analysis of variance (ANOVA) followed by the Fischer’s LSD test for multiple 

comparisons. Differences were considered significant at a level of p<0.05. 
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RESULTS 

 
CaM levels and proliferative activity of control and AD lymphoblasts. 
 

Fig. 1A shows a comparative analysis of CaM content after 72 h of serum addition between control and 

AD lymphoblasts. It is shown that lymphoblasts from AD patients had increased levels of CaM compared 

with CaM content in control cells. In these conditions, lymphoblasts from AD patients showed higher 

rates of cell proliferation (Fig. 1B) in agreement with previous reports [16]. Treatment of cells with two, 

structurally unrelated, antagonists of CaM, such as calmidazolium (CMZ) or W13 [30, 31], abrogated the 

serum-enhanced proliferation of AD cells, without affecting the proliferative activity of control 

lymphoblasts (Fig. 1B). 

Regulation of CaM levels. 

Bearing in mind the apparent relevance of CaM for the enhanced proliferative response of AD 

lymphoblasts, we were interested in elucidating the mechanisms by which CaM levels are regulated. First, 

by using real time quantitative PCR, CALM 1, 2, and 3 mRNAs expression levels were determined in 

control and AD lymphoblasts and the results are shown in Table 2. No differences in CaM mRNA 

abundance were detected between control and AD cells. Therefore, the increased CaM protein content of 

AD lymphoblasts, had to be ascribed to a post-transcriptional event.  

To test whether the higher CaM content of AD lymphoblasts was dependent on altered protein 

degradation, we evaluated the stability of the CaM protein, by treating control and AD cells with 20 

µg/ml of cycloheximide to inhibit de novo protein synthesis. At the indicated time, steady-state levels of 

CaM were determined by immunoblotting (Fig. 2). It is shown that CaM disappeared faster in control 

than in AD cells. The half-life of CaM was estimated in 22.1 ± 4 h in AD lymphoblasts versus 6.1 ± 1.2 h 

in control cells. The decreased rates of CaM degradation in AD cells was not due to nonspecific 

impairment of general protein degradation since no differences were observed in the rate of degradation 

of #-actin between control and AD lymphoblasts (Fig. 2). 

Differences in degradation of apo-form of CaM or Ca2+-bound CaM had been reported [10]. For this 

reason we determined whether half-life of CaM could be influenced by alteration of intracellular Ca2+ 

levels. For these experiments, we incubated control cells with the ionophore, ionomycin, and AD cells 

with the intracellular Ca2+ chelator BAPTA to increase or decrease the respective intracellular Ca2+ levels. 

Fig. 3 shows how ionomycin decreased the rate of degradation of CaM in control cells. Conversely, 
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decreasing the intracellular Ca2+ content of AD lymphoblasts resulted in enhanced CaM degradation 

approaching a half-life value close of that of control cells (Fig. 3).  Fig. 4 depicts the intracellular Ca2+ 

levels under these conditions. The relative cellular Ca2+ content was assessed by Fluo-4AM staining and 

flow cytomertry. As expected, the peak fluorescence was displaced to higher intensity values, indicating 

increased levels of intracellular Ca2+ in control cells treated with ionomycin (Fig. 4). On the other hand 

treatment of AD cells with BAPTA effectively decreased the intracellular levels of Ca2+. Fig. 4B 

summarizes the comparison of peak fluorescence displacement in control and AD lymphoblasts in the 

absence or in the presence of ionomycin or BAPTA. In agreement with previous reports [14], the basal 

Ca2+ concentration of AD lymphoblasts was higher than that of control cells (Fig. 4B).  

It has been suggested that cellular aging and degenerative diseases lead to increased generation of reactive 

oxygen species (ROS) and a decline in proteolytic activity, resulting in the progressive accumulation of 

oxidatively damaged proteins and cellular dysfunction [32]. For this reason, we found it interesting to 

elucidate whether treatment of AD lymphoblasts with the antioxidants GSH or trolox, modifies the rate of 

CaM degradation. Fig. 5A shows that both treatments decreased significantly the half-life of CaM in AD 

lymphoblasts. Fig. 5B shows that untreated AD cells had increased ROS levels than control cells, and the 

efficacy of either GSH or trolox in decreasing ROS generation up to levels found in control cells. 

The degradation of the CaM protein is mainly proteasome-dependent. 

To elucidate the involvement of the major pathways for protein turnover in CaM degradation, we used a 

battery of protease inhibitors with selective specificity. Data in Fig. 6A show that both in control and AD 

lymphoblasts, CaM accumulated only in the presence of the highly selective proteasome inhibitor 

lactacystin. In contrast, treatment of cells with the lysomotropic agents hydroxychloroquine, CH3NH2 or 

NH4Cl had no effect on cellular CaM content (Fig. 6A). Similarly, the lack of effect of z-VAD-fmk ruled 

out the involvement of caspases on CaM degradation (Fig. 6A). None of these inhibitors increased the 

levels of ß-actin, which was used as control. Collectively, these results suggested a predominant role for 

the proteasome system on CaM proteolysis. 

To investigate if CaM degradation was accompanied by ubiquinitation of the molecule, we incubated 

control and AD lymphoblasts in the absence or in the presence of the proteasome inhibitor MG132 to 

ensure that ubiquitinated CaM was accumulated. CaM was imnunoprecipitated from these cells extracts 

with the anti-CaM antibody and then probed for ubiquitin with the anti-Ub antibody (Fig. 6B).  It is 
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shown that indeed CaM is ubiquitinated. Although small, it seems to be a decrease in CAM 

polyubiquitination in AD cells (Fig. 6B).  

Ca2+/CaM regulation of AD lymphoblasts activity 

The upregulation of CaM protein levels in lymphoblasts from AD patients raises the question as to 

whether higher CaM levels are related with increased activity of Ca2+/CaM targets in these cells lines. 

Fig. 7A shows, that indeed CaMKII was overactivated in AD cells as compared to control cells, and that 

the CaM antagonist CMZ prevented CaMKII autophosphorylation. Similarly, PI3K/Akt activity, 

monitored by Akt phosphorylation, is enhanced in AD lymphoblasts (Fig. 7B). The overactivation was 

prevented by the CaM antagonists CMZ and W-13, but not with the CaMKII inhibitor KN-62, indicating 

that CaM-induced activation of PI3K/Akt was not mediated by this CaM-dependent kinase. These 

inhibitors didn’t change basal levels of PI3K activity in control cells, suggesting the existence a threshold 

for CaM activation. Since the p85 regulatory subunit of PI3K/Akt had been shown to bind CaM [33, 34], 

we investigated whether the enhanced PI3K/Akt activity in AD lymphoblasts was due to differences in 

the CaM-p85 interaction between control and AD cells. To this end, cell lysates from control and AD 

lymphoblasts were immunoprecipitated with the anti-p85 antibody. The immunoprecipitates were 

resolved by SDS-PAGE, and the immunoblots were probed with an anti-CaM antibody. Clearly, CaM 

was found to co-immunoprecipitate with p85 in AD extracts (Fig. 8). Immunocomplexes formation was 

scarce in control extracts (Fig. 8). As previously described [34], CaM and p85 interaction was found to be 

Ca2+-dependent (Fig. 8). When CMZ or W-13 was added during the immunoprecipitation process the 

association was strongly reduced (Fig. 8).  These results suggest that treatment of AD cells with CaM 

antagonists could prevent CaM-mediated overactivation of PI3K, and therefore overcome the enhanced 

proliferative activity of AD lymphoblasts [17]. 



DISCUSSION 
 
 
Previous work from our laboratory indicated impaired Ca2+/CaM-dependent signaling in immortalized 

lymphocytes from AD patients, resulting in increased proliferative activity upon serum stimulation, and higher 

resistance to serum deprivation-induced apoptosis [16, 17, 25]. The present work was undertaken to evaluate 

whether the regulation of CaM content was altered in lymphoblastoid cell lines from late-onset AD patients. 

These cell lines, easily accessible, had previously proved to be useful model to study cell cycle-related events 

associated to neurodegeneration [16, 35]. Three major conclusions can be drawn from our work: first, CaM 

levels are increased in AD lymphoblasts; second, CaM half-life is enhanced in AD cells, and third, the rate of 

CaM degradation is dependent on intracellular Ca2+ levels and ROS status of the cell.  

Increased levels of CaM were associated with overactivation of PI3K/Akt and enhanced proliferation of AD 

cells. These results are in line with the known role of CaM in regulating cell cycle progression [22]. In addition, 

both processes were sensitive to CaM antagonists, although these compounds were not able to decrease 

proliferation or PI3K/Akt activity in control cells [17], indicating the existence of a threshold of CaM dependent 

activation of PI3K/Akt and cell proliferation.  

Our results suggested that the increased CaM levels in AD cells synergize with serum to overactivate PI3K/Akt 

pathway. In agreement with previous reports [33, 34] we found that CaM is able to bind to the 85 KDa 

regulatory subunit of PI3K (p85). Moreover it was observed a significant higher binding of CaM to p85 in AD 

lymphoblasts compared to control cells, thereby resulting in enhanced Akt phosphorylation. 

The up-regulation of CaM levels in AD lymphoblasts is not the consequence of altered expression of any of the 

three different genes that encode CaM, but rather the result of decreased rates of CaM degradation. The half-life 

of CaM in AD lymphoblasts was estimated in 22 h, approximately 3 times fold of that of control cells. These 

values are in consonance with the reported half-life of CaM in rat brain [36]. It is worth to highlight that CaM 

has a very much shorter half-life than other calcium homeostasis related enzymes, such as plasma membrane Ca-

ATPase (12 days) in the same tissue, but resembles the half-life of the bulk of cell proteins [36].  

CaM exhibited proteasome-sensitive turnover. CaM accumulated when control or AD cells were treated with 

lactacystin, while CaM content was not affected by either caspase or autophagy inhibitors. The proteasomal 

degradation of CaM was accompanied by ubiquitination of the molecule, as co-immunoprecipitation of ubiquitin 

and CaM was observed in cell extracts from control and AD lymphoblasts.  Apparently there is a slight decrease 

in the polyubiquitation of CaM in AD cells, which may contribute to the reduced CAM degradation in these cell 

lines.  However, it was reported that aged or oxidized CaM can be efficiently degraded by either the 20S or 26S 
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proteasome in an ubiquitin-independent manner [10, 37]. More likely, both ubiquitin-dependent and independent 

mechanisms of proteasome degradation of CaM can operate in vivo. Further work is needed to clarify this point 

and to evaluate their potential contribution to CaM levels regulation. 

Work from our and other laboratories demonstrated no global proteasome activity deficiency in lymphocytes 

from AD patients [17, 38, 39]. Indeed we reported enhanced proteasome-dependent degradation of the CDK 

inhibitor p27 in AD lymphoblasts [17]. On the other hand, the rate of #-actin degradation is similar in both 

control and AD lymphoblasts. Thus, the decreased rate of CaM degradation cannot be the result of nonspecific 

impairment of protein degradation in lymphoblasts from AD patients.   

Intracellular Ca2+ levels and oxygen reactive species content appear to regulate the rate of CaM degradation in 

immortalized lymphocytes. Buffering the intracellular Ca2+ increase by BAPTA, restored the normal rate of 

CaM degradation. Conversely, treatment of control cells with ionomycin increased the CaM half-life in control 

cells. Reducing the rate of CaM degradation could be the cellular response to buffer Ca2+ overload. Previous 

work indicated that ubiquitination and degradation of CaM in vitro show opposite sensitivity to Ca2+ [10]. The 

rate of CaM degradation decreased in the presence of Ca2+. It was suggested that ubiquitinated CaM could retain 

sufficient Ca2+ binding capacity to maintain a structure too rigid to be unfolded and directed to the proteasome 

[10]. On the other hand, treatment with antioxidants also normalized CaM degradation in AD lymphoblasts. It is 

known that enhanced ROS generation perturbs Ca2+ fluxes [40]. Thus, the effect of ROS controlling the rate of 

CaM degradation may play an additional role in ROS-induced disruption of Ca2+ homeostasis. 

Despite the increased levels of CaM, AD lymphoblasts showed elevated intracellular concentration of Ca2+ in 

agreement with reports showing diminished Ca2+ buffering capacity in lymphoblasts from late-onset AD patients 

[14]. Moreover, decreased Ca2+ binding proteins in AD brain had also been reported [41]. These observations 

together with altered Ca2+ fluxes may contribute to the increased cytosolic Ca2+ of AD cells [42].  

The binding of up to four calcium ions to CaM elicits significant conformational changes that increase the 

exposure of hydrophobic residues, e.g., Met, that serve as binding sites for target proteins [4]. In addition, the 

extent of Ca2+ saturation and location of bound Ca2+ ions within the CaM molecule also influence CaM’s binding 

to targets [43]. As already mentioned we observed enhanced binding of CaM with the p85 regulatory subunit of 

PI3K in AD lymphoblasts.  The activity of PI3K, as assessed by monitoring Akt phosphorylation, was also 

enhanced in AD lymphoblasts and sensitive to CaM antagonists. The activity of other CaM-dependent protein, 

CAMKII, was also found to increase in lymphoblasts from AD patients. This protein plays an important role in 

controlling the cellular response to serum-deprivation-induced apoptosis in immortalized lymphocytes [25, 26]. 
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Despite the role of Ca2+/CaM signaling in AD pathology, the mechanisms controlling CaM levels have received 

little attention. The increased CaM content of AD lymphoblasts reported here contrasts with previously reported 

reduction of CaM in AD-affected cerebral cortex [44]. The discrepancy may be due to differences in the ability 

of some anti-CAM antibodies to recognize CaM only in certain conformational states. Overactivation of 

PI3K/Akt has been, however, reported in AD brain. Increased posphorylation of Akt was detected in AD brain 

[45]. Furthermore, overactivated Akt in AD brain is accompanied by increased phosphoryaltion of Akt 

substrates, such as GSK3 or mTOR, and decreased levels of the CDKi p27 [46]. In this regard it is worth 

mentioning the enhanced Ca2+/CaM/PI3K/Akt-dependent degradation of p27 previously reported in AD 

lymphoblasts [17]. Similarly, impaired CaMKII activation has been also detected in AD brain, associated with 

increased phosphorylation of tau and neurofibrillary tangle formation [47]. Thus, our results obtained in 

peripheral, easily accessible cells from AD patients, suggest that CaM degradation may also be perturbed in AD 

brain. Altered CaM levels in AD brain could play a role in the cell cycle disturbances-induced neuronal 

apoptosis. Therefore, the systemic failure of mechanism involved in CaM degradation, and thus of Ca2+/CaM-

dependent signaling pathways may be important to unravel the pathomechanism of AD.  
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LEGENDS TO THE FIGURES 

 
 

Fig. 1 
 
Calmodulin levels and proliferative activity of control and AD lymphoblasts. 
 

A: Immortalized lymphoblasts from control and AD individuals were seeded at an initial density of 1 x 106 x ml-1 

and cultured for three days in RPMI medium containing 10% FBS. CaM was detected by immunoblotting. Band 

intensity was measured and normalized by that of #-actin. Values shown are the mean±standard error for 11 

independent determinations carried out with cell lines derived from different control and AD individuals. 

Statistical significance was determined by the t test *p<0.05.  B: Control and AD lymphoblasts were incubated 

as above in the absence or in the presence of 1µM CMZ or 10µM W-13 for three days. Everyday thereafter, cells 

were enumerated.  Values shown are the mean ± S for at least six observations carried out with different cell 

lines from control or AD individuals. Statistical significance was determined by the t test *p<0.05. 

Fig. 2 

Half-life of CaM in control and AD lymphoblasts 

Cells were serum-deprived and then stimulated by adding 10% FBS. At this moment cycloheximide (20µg/ml) 

was added. Cells were harvested 4, 8, and 24 h thereafter and CaM was detected by immunoblotting.  Blots from 

a representative experiment are shown. The decay of the CaM signal was graphed as a function of time post-

cycloheximide addition. Curves were fitted to calculate the half-lives of the proteins, using data from different 

experiments carried out with of cell lines derived from six control and six AD subjects.   

Fig. 3 

Influence of intracellular Ca2+ levels on the rate of CaM degradatiom. 

A: Immortalized lymphoblasts from control individuals were seeded at an initial density of 1 x 106 x ml-1 and 

serum-deprived for 24 h. Cells were preincubated for 30 minutes in the presence of 1µM ionomycin and 

stimulated by adding 10%FBS. Then, cycloheximide (20µg/ml) was added. Cells were harvested 4, 8, and 24 h 

thereafter and CaM was detected by immunoblotting. The experiment was repeated obtaining similar results. B: 

AD lymphoblasts were incubated as above in the presence of the intracellular Ca2+ chelator BAPTA at a final 

concentration of 30µM. A representative immunoblot is shown. The decay of the CaM signal was graphed as a 

function of time post-cycloheximide addition. Curves were fitted to calculate the half-lives of the proteins, using 
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data from independent experiments carried out with four cell lines derived from AD individuals.   

Fig. 4 

Intracellular Ca2+ levels in control and AD lymphoblasts treated with ionomycin or BAPTA. 

Control and AD lymphoblasts were incubated with 1µM ionomycin and 30µM BAPTA respectively for 24 hours 

as described in the legend to Fig. 3. Intracellular Ca2+ levels were then measured with the fluorescent probe 

Fluo4-AM. The upper plot shows peak displacement to higher or lower fluorescence in the presence of 

ionomycin or BAPTA respectively. Below, it is shown the relative mean fluorescence intensity ± SE, for at least 

six observations carried out in cell lines derived from different individuals.  

Fig. 5 

Effects of antioxidants on the rate of CaM degradation and ROS generation.  

A: Serum-deprived lymphoblasts from AD patients were preincubated for 30min in the absence or in the 

presence of 10mM GSH or 1mM Trolox, and then stimulated by adding 10%FBS. Afterwards, cycloheximide 

(20µg/ml) was added. Cells were harvested 4, 8, and 24h thereafter and CaM was detected by immunoblotting. 

Results shown are the mean ± SE for at least 3 experiments carried out with different cell lines. B: Lymphoblasts 

from AD patients were incubated for 24 h in the absence or in the presence of 10mM GSH and 1mM Trolox. 

The intracellular ROS levels were determined in control and AD lymphoblasts with the fluoresecent probe CM-

H2DFCDA. Values shown are the mean ± SE for independent determinations carried out with eight different cell 

lines derived from control or AD individuals. *p<0.05 significantly different from control cells. **p<0.05 

significantly different from AD cells without antioxidant treatment. 

 

Fig. 6 

CaM degradation appears to occur in the proteasome  

A:  Control and AD lymphoblasts were incubated for 24 h in the presence of the proteasome inhibitor lactacystin 

(L) (15µM), the caspase inhibitor z-VAD-fmk (Z) (50µM) or the autophagy inhibitors, hydroxychloroquine (H) 

(250µM); CH3NH2 (C) (15mM) or NH4Cl (N) (15mM). CaM accumulated only in the presence of lactacystin. 

Values shown are the mean ± SE for 6-8 determinations carried out with cell lines derived from different 

individuals. B: Control and AD lymphoblasts were incubated for 24 h in the absence or in the presence of 

presence of the proteasome inhibitor MG132 (1µM).  Lysates from these cell cultures were immunoprecipitated 

with anti-CaM antibody and probed for ubiquitin with the anti-Ub antibody. Efficiency of the 
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immunoprecipitation procedure was checked by reprobing the membranes using the anti-CaM antibody. The 

experiment was repeated once obtaining similar results. 

Fig. 7 

CaMKII and PI3K/Akt activities in control and AD lymphoblasts. 

A: Immortalized lymphoblasts from control and AD patients were seeded at an initial density of 1 x 106 x ml-1 

and cultured for 24 h in the absence or in the presence of the CaM antagonists CMZ (1mM) or the CaMKII 

inhibitor KN-62 (1µM). Whole cell lysates were immunoblotted with antibodies anti-phospho-CaMKII (Ser286) 

and total CaMKII. The densitometric data represents the mean ± SE for three independent determinations carried 

out with different cell lines *p<0.05 significantly different from control cells. **p<0.05 significantly different 

from AD cells incubated without inhibitors. B: Control and AD lymphoblasts were incubated as above in the 

absence or in the presence 1 µM CMZ, 10µM W-13 or 1µM KN-62. Phospho-Akt (Ser473) and total Akt were 

determined by immunoblotting. Representative immunoblots are presented. The densitometric data below 

represents the mean ± SE for determinations carried out with six different control and AD cell lines. *p<0.01 

significantly different from control cells. **p<0.01 significantly different from AD cells incubated without 

inhibitors 

Fig. 8 

Effects of Ca2+ levels and calmodulin antagonists on CaM binding to p85 regulatory subunit of PI3K. 

Lysates from control and AD lymphoblasts were immunoprecipitated with the anti-p85 antibody (!-p85) in the 

presence of 0.1 mM CaCl2 or 2 mM EGTA, and 0.1 mM CaCl2 plus 1µM CMZ or 10 µM W-13. 

Immunocomplexes were analyzed by Western blot with an anti-CaM antibody. Efficiency of p85 

immunoprecipitation, in the different conditions, was checked by reprobing the membranes with the anti-!-p85 

antibody. Representative experiments are shown. W-13 was used in two different experiments, while the effect 

of CMZ and EGTA was determined in four different immunoprecipitation experiments. Below it is presented the 

densitometric analysis. When present the bars represent the SE of the mean. *p<0.01, significantly different from 

control cells, **p<0.01 significantly different from AD cells incubated without inhibitors. 
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Table 1 

 
Sequences of oligodeoxyribonucleotide primers used for quantitative real-time PCR  
 

 

Primer sequence 
 

Gene Forward (5’ ! 3’) Reverse (5’! 3’) 

CALM 1 AACAGAAGCTGAATTGCAGGA AATTCGGGGAAGTCAATGG 

CALM 2 ATGGCTGACCAACTGACTGA CAGTTCCAATTCCTTTGTTG 

CALM 3 AACCTTGATCCCCGTGCT AGGCCTCCTTGAACTCTGC 

#-ACTIN CCAACCGCGAGAAGATGA CCAGAGGCGTACAGGGATAG 

Probes were designed using the Universal ProbeLibrary for Human (Roche Applied Science)
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Table 2 

 

 

Relative  Calmodulin mRNA  abundance 

 

 

 
 
 
 
 
Immortalized lymphoblasts from control and AD individuals were seeded at an initial density of 1 x 
106 x ml-1 and cultured for 3 days in RPMI medium containing 10% FBS. Cells were collected and 
subjected to RT-qPCR. Relative mRNA levels of the CaM genes were normalized to ß-actin 
expression, and values for control cells were set as one. Values shown are the mean ± SE for six 
different cell lines. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 CONTROL AD 

CALM 1 1 ± 0.109 1.12 ± 0.051 

CALM 2 1 ± 0.183 0.86 ± 0,122 

CALM 3 1 ± 0.123 1 ± 0.120 
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