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Abstract 11 

Increasing risk of soil loss as a result of climate change, has generated a need for 12 

reliable information on erosion rates at different temporal scales. Use of the fallout 13 

radionuclides 137Cs, 210Pbex and 7Be as tracers of sediment mobilisation and 14 

redistribution makes it possible to obtain estimates of soil redistribution rates within 15 

both undisturbed and cultivated landscapes over a range of timescales. Mediterranean 16 

landscapes are characterized by a great diversity of physiography and land use, and as a 17 

consequence erosion and deposition patterns are highly variable spatially. To document 18 

such spatial variability, a slope transect located in the subhumid Pre-pyrenean 19 

mountains (NE Spain) was selected to use 137Cs and 210Pbex to assess medium- and 20 

longer-term soil redistribution rates. A total of 23 sectioned soil cores spaced 50 m apart 21 

were collected along the slope transect, where 7Be had been previously used to 22 

document soil redistribution resulting from an individual storm event. The inventories 23 

of both radionuclides varied markedly, between 409 and 6080 Bq m-2 for 137Cs, and 24 

between 0 and 6734 Bq m-2 for 210Pbex. Estimates of soil redistribution, derived from the 25 

137Cs depth profiles, using appropriate conversion models, show that erosion rates along 26 
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the transect vary between 2.6 and 31.9 Mg ha-1 year-1, and that sedimentation rates vary 27 

between 0.2 and 24.5 Mg ha-1 year-1. The highest soil losses occur in cultivated fields, 28 

within the midslope zone of the transect, while the highest deposition rates are found in 29 

tilled fields within the lower part of the transect. Erosion rates from 210Pbex varied 30 

widely between 0.1 and 83.7 Mg ha-1 year-1 on the lower slope, whereas sedimentation 31 

rates ranged between 0.8 and 110 Mg ha-1 year-1 also at the bottom slope. The spatial 32 

distribution of the radionuclides along the transect reflects the effects of different land 33 

use and slope gradient on water erosion. The results obtained confirm the potential for 34 

using 137Cs and 210Pbex measurements for assessing soil redistribution on slopes in the 35 

Mediterranean environment over different temporal scales. 36 

 37 
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 40 

1. Introduction 41 

Soil erosion and sediment transport and deposition represent a serious problem 42 

throughout the world, because of their impact on sustainable agricultural production as 43 

well as on environmental conservation. Severe erosion may promote desertification, 44 

especially in semiarid environments that are common in Mediterranean regions (Sadiki 45 

et al., 2007). 46 

The Mediterranean environment is characterized by a seasonal climate with irregular 47 

but frequent and intense rain events, low vegetation cover, and soils with a high stone 48 

content. Rainfed crops, such as cereals, cover large areas in the drier parts of 49 

Mediterranean countries and frequently occupy mountainous areas. An increase of 50 

extreme daily rainfall in spite of a decrease in total annual rainfall has been reported for 51 
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Spain in recent years (López-Moreno et al., 2009). Highly erosive rainfall on these 52 

sloping landscapes can result in severe erosion of cultivated land (López-Vicente et al., 53 

2008). In northeastern Spain, agriculture developed intensively over the last centuries 54 

through widespread deforestation and subsequent land abandonment has led to 55 

increased runoff and soil erosion (Navas et al., 2009). 56 

To tackle the environmental threat posed by the loss of productive soil, the 57 

quantification of soil erosion rates is a first requirement. Thus, for Europe, the current 58 

state of scientific knowledge indicates that tolerable soil erosion rates range from ca. 0.3 59 

to 1.4 t ha−1 yr−1 (Verheijen et al., 2009). There are many limitations associated with 60 

traditional techniques for documenting rates of soil erosion and sediment redistribution. 61 

Isotopic techniques based on the use of fallout radionuclides “FRNs” such as 137Cs, 7Be 62 

and 210Pbex (e.g. Zapata, 2002) have been increasingly applied over the past 20 years as 63 

a means of obtaining spatially distributed information on erosion and deposition rates. 64 

The advantages and limitations associated with the use of the individual radionuclides 65 

for assessing soil erosion has recently been reviewed by Mabit et al. (2008). 66 

The potential for using caesium-137 to quantify medium-term (c.a 50 years) soil 67 

erosion rates under different agro-environmental and natural conditions has been 68 

successfully demonstrated in a wide range of environments in different regions of the 69 

world (Ritchie and Ritchie, 2007) including Spain (e.g. Navas and Walling, 1992; 70 

Quine et al., 1994; Schoorl et al., 2004; Navas et al., 2007). Naturally derived 210Pb, 71 

arriving at the land surface as fallout is rapidly and firmly adsorbed by the surface soil 72 

and subsequently redistributed across the landscape in a manner similar to 137Cs, offers 73 

potential for quantifying soil redistribution rates over a longer timescale than 137Cs (ca. 74 

100 years). Unlike 137Cs, deposition of fallout 210Pb from the atmosphere has been 75 

relatively constant through time because of its natural origin (Crickmore et al., 1990). 76 
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To date 210Pbex has been applied successfully in diverse agricultural landscapes of the 77 

world (e.g. Walling et al., 1995, 2003; Walling and He, 1999; Wallbrink and Murray, 78 

1996; He and Walling, 1997; Matisoff et al., 2002; Zhang et al., 2006). However, at 79 

present its potential as a tracer of soil erosion is less widely recognized than 137Cs and 80 

there have to date been few attempts to compare erosion rates estimated using both 81 

137Cs and 210Pb (Zhang et al., 2006; Porto et al., 2009; Kato et al, 2010). 7Be is as a 82 

natural short-lived (T1/2=53 days) fallout radionuclide of cosmogenic origin, that 83 

permits soil redistribution to be assessed for individual events or short periods of heavy 84 

rainfall (Walling et al., 1999; Schuller et al., 2006) and it has been applied successfully 85 

in Mediterranean environments (Navas et al., 2008). As with 137Cs and 210Pbex 86 

measurements, the estimation of short--term soil redistribution rates from 7Be 87 

measurements is based on a comparison between the 7Be inventories for individual 88 

sampling points and the local reference inventory. 89 

Concern for the increasing risk of erosion under climate change in the 90 

Mediterranean region (Meehl et al., 2005) has emphasised the need for data on soil 91 

erosion rates at different temporal scales in order to quantify the potential changes that 92 

might occur and their impacts. Furthermore, important land use changes occurring 93 

during the past century that are recognized to have had clear impacts on soil 94 

redistribution (Navas et al., 2005) could be traced for different timescales using 95 

“FRNs”. 96 

Measurements of artificial 137Cs and natural 210Pbex inventories in the landscape can 97 

be used to obtain average soil redistribution rates integrating many years of erosion and 98 

deposition processes. In the case of 137Cs, estimates of soil redistribution rates will 99 

extend from the commencement of 137Cs fallout in the late 1950s to the present. In 100 

contrast, the continuous fallout of Pb result in 210Pbex inventories sensitive to erosion 101 
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and deposition occurring within a period equivalent to four times the half-life, i.e. the 102 

past 100 years, although the progressive reduction in the effect of past changes in the 103 

contemporary 210Pbex inventory would mean that 210Pbex inventory will be more 104 

sensitive to recent soil redistribution (Walling, 2003). 105 

To date few studies have used 210Pbex to derive information on soil erosion in 106 

Mediterranean landscapes (Porto et al., 2006, 2009). In Spain, preliminary research 107 

involving the combined use of both 137Cs and 210Pbex to assess soil redistribution has 108 

been undertaken in the Pyrenees (Navas et al., 2003). The potential of combining 137Cs 109 

and 210Pbex to document soil redistribution over different time scales needs further 110 

exploration, because at present little information exits on the use of this approach, 111 

especially in stony soils of mountain landscapes. 112 

In this study, 210Pbex is used in combination with 137Cs to derive additional 113 

information on the pattern of soil redistribution along a mountain slope transect 114 

representative of rainfed agrosystems in mountain landscapes of the Pre-Pyrenean 115 

Range that includes different soil types, land use and slope gradients. Estimates of soil 116 

erosion and sedimentation rates have been derived using appropriate models (Walling 117 

and He, 1999; Soto and Navas, 2004, 2008). Soil redistribution estimates have also been 118 

compared with values derived from 7Be measurements that were undertaken at the same 119 

location during a previous study (Navas et al., 2008) to compare the soil redistribution 120 

rates for the longer temporal scale provided by 137Cs and 210Pbex with those for an 121 

individual storm event derived from 7Be measurements. This research aims to explore 122 

further the potential for combining 137Cs and 210Pbex measurements to document soil 123 

redistribution over different time scales in stony soils of Mediterranean rangeland and 124 

agricultural landscapes. 125 

 126 
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2. Materials and methods 127 

2.1. Radionuclides as sediment tracers 128 

Fallout 137Cs (half-life 30.2 year) was introduced in the stratosphere as a result of 129 

thermonuclear weapons test, with fallout beginning in 1952 and continuing to the mid 130 

1970s, with a peak in 1963, the year of the Nuclear Test Ban Treaty. Pb-210 is a natural 131 

product of the 238U decay series derived from the decay of gaseous 222Rn, the daughter 132 

of 226Ra. 226Ra is found naturally in most soils and rocks and will generate 210Pb which 133 

will be in equilibrium with its parent. A small quantity of 222Rn diffuses upwards from 134 

the soil and introduces 210Pb into the atmosphere and provides an input of this 135 

radionuclide to surface soils and sediments which +is not in equilibrium with its parent 136 

226Ra. This fallout component is termed unsupported or excess 210Pb (210Pbex) when 137 

incorporated into soils in order to distinguish it from 210Pb produced in situ by the decay 138 

of 226Ra. 139 

Like 137Cs, 210Pbex fallout will be rapidly adsorbed by the clay minerals and organic 140 

matter in the surface soil and its redistribution in the soil and across the land surface 141 

will occur in association with soil and sediment particles and will be primarily 142 

controlled by its interaction with land use practices, erosion and sediment transport 143 

processes (Walling and He, 1999), although some 137Cs or 210Pbex can be mobilized by 144 

chemical and biological processes. 145 

Estimates of soil redistribution rates derived from 137Cs and 210Pbex measurements 146 

are based on a comparison of the total inventory for an individual sampling point and 147 

the local reference inventory. Where inventories are lower than the local reference 148 

inventory, the loss of radionuclide points to loss of soil. Similarly, inventories in excess 149 

of the reference level are indicative of addition of radionuclide and soil, by deposition. 150 

The magnitude and direction of the measured deviations from the local reference level 151 
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provide a qualitative assessment of soil redistribution (Walling and Quine, 1990; 152 

Walling and He, 1999). 153 

 As indicated by Zhang et al. (2006) and unlike 137Cs, the 210Pbex inventory for a 154 

stable site can be assumed to be in steady state, with fallout inputs balanced by 155 

radioactive decay of the existing 210Pbex inventory. For an eroding soil, loss of 210Pbex 156 

through erosion will reduce the inventory, but the continuing fallout input introduces an 157 

important contrast with 137Cs, for which fallout inputs effectively ceased in the 1970s, 158 

and for which inventories will progressively decline through time, even in the absence 159 

of erosion. 160 

The redistribution rates based on 210Pbex measurements have been estimated using 161 

the mass balance model developed by Walling and He (1999). The models reported by 162 

Soto and Navas (2004, 2008) for uncultivated and cultivated soils have been applied to 163 

estimate soil redistribution estimates based on 137Cs measurements. 164 

 Statistical analysis was performed by one-way analysis of variance (ANOVA), and 165 

the means were subjected to a least-significant difference test (F test) to indicate the 166 

main differences in radionuclide activities and the soil redistribution rates derived from 167 

137Cs and 210Pbex between the different parts of the transect. Pearson's linear correlations 168 

were also performed to find relationships between 137Cs and 210Pbex inventories and 169 

between the radionuclides and soil properties. 170 

 171 

2.2. The study area 172 

The study was conducted along a south facing slope transect located at the “Solá de 173 

Estaña” in the endorheic catchment of the Estaña lake (central part of the Pre-Pyrenees, 174 

NE Spain) (Fig. 1). The climate is continental Mediterranean, with an average annual 175 

rainfall of about 500 mm, distributed through the year to provide two wet periods, 176 
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spring and autumn, and a dry summer with frequent high intensity rainfall events 177 

(López-Vicente et al., 2008). A 1250 m long transect extending from the catchment 178 

divide to the Estaña lake and with altitude ranging from 894 to 670 m was selected 179 

because is representative of mountain rainfed agrosystems in the region. Along the 180 

transect, the underlying parent material comprises Mesozoic strata, composed of 181 

limestone and clays with evaporite and gypsum deposits that correspond to the 182 

Muschelkalk and Keuper facies, respectively. A total of five types of soil have been 183 

identified along the transect. Calcisols and Leptosols, the predominant types, are 184 

associated with the limestones and Gypsisols, Regosols and Gleysols are associated 185 

with the clay materials. 186 

Different land use, including natural forest, abandoned fields and cultivated fields, 187 

and different slope gradients are found along the transect. Agriculture commenced in 188 

the area several hundred years ago, occupying the lowland with gentle slopes 189 

surrounding the lake. Land use has since changed considerably, especially over the last 190 

two centuries. At the end of the 19th century demographic pressure caused an expansion 191 

of cultivation which transformed the rangeland slopes into agricultural land by 192 

constructing terraces and planting almond and olive trees as well as cereal crops. 193 

Subsequently land abandonment occurred during the 1950s as a result of major socio-194 

economic changes in the 20th century that promoted migration to urban areas and 195 

abandonment of the less productive lands located on steep slopes. More recently under 196 

the European Agrarian Policy some of the steep marginal lands have been returned to 197 

cultivation. 198 

 199 

2.3. Soil sampling and analyses 200 
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The soil sampling programme carried out along the Solá transect divided the transect 201 

into three parts, namely, the upper slope, midslope and bottom slope, to reflect the key 202 

contrasts in land use and slope gradient. Twenty four sampling points, each separated by 203 

50 m, were located along the transect. Sampling point 13 was located on a thick 204 

Muschelkalk outcrop and a soil sample was not collected from this point. A total of 23 205 

sectioned soil cores were therefore collected along the downslope transect. The upper 206 

slope with dense oak forest and a 24% slope provided 9 sectioned cores. The midslope 207 

with a mix of land use, including dense forest, scrubland, cultivated and abandoned land 208 

and an average slope of 21% provided 8 sectioned cores. The bottom slope, which has 209 

been cultivated for cereals over the last centuries has a 15% slope and was represented 210 

by 6 soil cores. In this section there is a pathway that interrupts the topographic profile 211 

of the slope between points 21 and 22 (Fig.1). 212 

In order to characterize the depth distribution of 210Pbex and 137Cs, the soil cores 213 

were sampled at 5 cm depth intervals, reaching a maximum value of 55 cm in depth. 214 

Due to the abundance of stones that caused difficulties when sectioning the cores, some 215 

depth increments were 10 and 15 cm thick and in some cases the increments were less 216 

than 5 cm. At some points the maximum depth did not extend below 10 cm, although 217 

this situation was restricted to the Leptosols. The reference cores were collected from 218 

level undisturbed sites with a mature and natural vegetation cover that protects the soil 219 

surface from erosion. 220 

Soil samples were collected using an 8 cm diameter automatic core driller. Also a 221 

hand-operated corer was used in shallow soils. A total of 143 soil samples were air-222 

dried, ground, homogenised and quartered and passed through a 2 mm sieve. The 223 

weight of the fractions was recorded and subsamples of less than 2 mm were prepared 224 

for analyses. For the radionuclide gamma assays 50 g subsamples were transferred into 225 



10 
 

airtight plastic pots and sealed for a period of 30 days prior to assay, in order to achieve 226 

equilibrium between 226Ra and its daughter 222Rn. 227 

The 137Cs and 210Pbex activities were measured using a high resolution, low 228 

background, low energy, hyperpure coaxial gamma-ray detector coupled to an amplifier 229 

and multichannel analyser. The detector had an efficiency of 20%, and a 1.86 keV 230 

resolution (shielded to reduce background), and was calibrated using standard samples 231 

in the same geometry as the measured samples. 232 

Gamma emissions of 137Cs (661.6 keV line), 210Pb (46.5 keV line) and 226Ra (351.9 233 

keV line of 214Pb), were measured on 143 sub-samples. Counting times were 30000 s 234 

for 137Cs and 86000 – 105000 s for 210Pb, and the analytical precision of the 235 

measurements was approximately ±8% and ± 14% (95% level of confidence), 236 

respectively. The unsupported or excess 210Pb (210Pbex) concentration was calculated by 237 

subtracting the 226Ra-supported 210Pb concentration from the total 210Pb concentration. 238 

The content of 137Cs and 210Pbex in the soil sample may be expressed as a concentration 239 

or mass activity (Bq kg-1) and as activity per unit area or the inventory (Bq m-2). 240 

The stone content, soil texture and organic matter were determined following 241 

standard techniques (CSIC, 1976). To quantify organic matter a Mettler Toledo 242 

titrimeter and electrode were used. Granulometric, analyses of the sand, silt and clay 243 

size fractions was undertaken using a Coulter laser granulometer. To remove the 244 

organic matter prior to grain size analysis, samples were disaggregated chemically using 245 

10% H202 heated to 80 ºC, stirred, and subjected to ultrasound to facilitate particle 246 

dispersion. 247 

 248 

3. Results and discussion 249 
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The reference 137Cs inventory for the study area is 1570 (±80) Bq m-2 and was 250 

established from nine cores collected from level and stable sites that were not affected 251 

by erosion or deposition. The reference inventory agrees with the values found in other 252 

areas with similar environmental conditions in Spain. A reference inventory of 1940 Bq 253 

m-2 has been reported for the southern part of Spain (Schoorl et al., 2004) and a value of 254 

1900 Bq m-2 for the Las Bardenas steppe in the north (Navas and Walling, 1992; Quine 255 

et al., 1994). In areas of higher annual precipitation, such as the Pyrenees, inventories of 256 

4000 Bq m-2 in the Central Pyrenees (Navas et al., 2005) and even 6911 Bq m-2 in the 257 

Oriental Pyrenees (Sanchez-Cabeza et al., 2007) have been found. The reference 210Pbex 258 

inventory of 1943 (±78) Bq m-2 for the study site was established from three depth 259 

profiles collected from level stable areas with no evidence of erosion or deposition. The 260 

depth distributions of both 137Cs and 210Pbex in the reference profiles exhibit peak 261 

concentrations at the surface and decline following the typical pattern with an 262 

exponential decay distribution with depth. 263 

To date, few values of 210Pbex reference inventory or 210Pbex fallout flux have been 264 

reported for Spain, and the availability of such information is very limited more 265 

generally. A reference inventory for 210Pbex of 5170 Bq m-2 has been reported for 266 

Devon, UK (Walling and He, 1999) and a value of 5730 Bq m-2 was reported for a site 267 

in China (Zhang et al., 2006). In northern Spain, reported values range from 1044 to 268 

7044 Bq m-2 for the Lerida Pyrenees and from 2048 to 8204 Bq m-2 for Palencia 269 

(Sanchez-Cabeza et al., 2007). Information of the annual 210Pbex fallout deposition 270 

fluxes in different areas of the world (Liu et al., 2001) include values ranging from 23 to 271 

367 Bq m-2 equivalent to inventories between 767 and 12233 Bq m-2, respectively. 272 

Assuming that the 210Pbex inventory in a soil reflects a steady state between input from 273 

the atmosphere and radioactive decay, the average annual atmospheric 210Pb flux for the 274 
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study site is 60.39 Bq m-2 yr-1, calculated according to the equation by Sanchez-Cabeza, 275 

et al. (2007), 276 

210Pbflux (Bq m-2 yr 
-1) = λ (yr 

-1) x 210Pbex inventory (Bq m-2) 277 

where λ is the 210Pb decay constant. 278 

The 137Cs flux from global fallout varies according to latitude. In the study area, 279 

located at 41º N, the impact of the Chernobyl accident appears to be negligible although 280 

some Chernobyl-derived radiocaesium was detected in the air around Valencia (Ferrero 281 

et al., 1987) and on the Mediterranean coast (Molero et al., 1999). 282 

The 137Cs and 210Pbex mass activities in the sectioned cores varied greatly and for all 283 

depth increments (n=143) ranged between nd and 83.1 (±10.2) with a mean value of 5.3 284 

Bq kg-1 for 137Cs and between nd and 55.0 (±9.4) with a mean of 6.1 Bq kg-1 for 210Pbex. 285 

The 137Cs and 210Pbex inventories for all depth increments ranged between 0.0 and 286 

4029.0 (±529.8) with a mean of 291.5 Bq m-2 for 137Cs and between 0.0 and 2335.6 287 

(±475.3) with a mean of 329.6 Bq m-2 for 210Pbex. 288 

The large range of variation of the mass activities and inventories of both 289 

radionuclides reflect the depth distribution of the samples involved as well as the 290 

erosional status of the sampling point (i.e. eroding or deposition site). Within the soil 291 

profile, the lowest values occur at the deeper layers and highest values at the soil 292 

surface. However, depleted levels are found in the upper layers of eroded sites and also 293 

some enriched levels are found at the soil surface due to deposition. Accumulation of 294 

137Cs was found in deeper layers at point 24 located on the margin of the Estaña lake, 295 

that corresponds to a lake sediment deposit. In Mediterranean environments, large 296 

variations in the spatial distribution of radionuclides due to local factors, including 297 

vegetation distribution, stoniness, topographic roughness, tillage and large variety of 298 
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land uses have been widely recognized in the literature (e.g. Quine et al., 1994; Schoorl 299 

et al., 2004; Navas et al., 2007). 300 

Along the study transect, the mean mass activity 137Cs and 210Pbex decreases 301 

downslope, and the Anova test indicates that statistically significant differences only 302 

existed between the mean activities for the upper slope and bottom slope for 210Pbex 303 

(Table 1). The largest variability of 137Cs and 210Pbex mass activity was found at the 304 

upper slope and, in general, the variability decreased from the upper to the bottom 305 

slope. The mean 137Cs inventories increase from the upper to the midslope and the 306 

bottom slope. On the upper slope, the mean of 137Cs inventories was close to the 307 

reference inventory, whereas the greatest variability was found on the bottom slope. For 308 

210Pbex the mean inventories were also highest at the bottom of the slope that was also 309 

characterized by the largest variability of the inventories. The mean of the inventories 310 

was closer to the reference inventory for the upper slope. When compared with the 311 

reference inventories for 137Cs and 210Pbex obtained for the study area, 137Cs loss and 312 

gain along the transect ranged between 17.8% and 74.0% and between 2.4% and 313 

127.8%, respectively. Similarly, a large variability was found for 210Pbex, with losses 314 

ranging between 2.6% and 100.0%, and gains between 20.3% and 246.8%. 315 

As shown in Table 2, the mean values for the various measures of depth distribution 316 

of 137Cs showed differences that were tested with Anova between the different parts of 317 

the transect. The depth containing 80% of the 137Cs inventory increases along the 318 

transect and the mean values for the upper slope and midslope differed significantly 319 

from those in the bottom slope. Mixing by tillage of 137Cs in the profiles of the 320 

cultivated fields on the bottom slope results in deeper profiles, in which the depth 321 

containing 80% of the 137Cs inventory is double that for the profiles from the upper 322 

slope. The depth to undetectable 137Cs increases along the transect and on the bottom 323 
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slope is more than double and significantly different from the upper slope. This pattern 324 

is similar to what it was observed along a transect in the Las Bardenas area (Navas and 325 

Walling, 1992). Similar trends are observed for 210Pbex, as the mean of the depth 326 

containing 80% of the 210Pbex in the bottom slope is significantly different from that in 327 

the upper slope. The depth to undetectable 210Pbex increased from the upper slope to the 328 

bottom slope, reflecting the influence of tillage although differences were not 329 

significant. 330 

Considering all the depth intervals separately for the uncultivated and the cultivated 331 

soils (Fig. 2), the box plots of the depth distribution of 137Cs and 210Pbex follow the 332 

normal pattern for the respective land uses although that of 210Pbex shows higher 333 

variability. As expected, 137Cs and 210Pbex were positively and significantly related. 334 

Although the correlation was only moderate (r = 0.451) it demonstrates the similar 335 

behaviour of the two radionuclides once they become attached to the fine soil fraction. 336 

The soil properties show different behaviour along the transect. Stoniness and the 337 

sand and organic matter content decrease from the upper slope to the bottom slope 338 

whereas the opposite trend is shown by the clay content. The Anova test indicate that 339 

mean clay contents in the upper part of the transect differed significantly from those in 340 

the midslope and bottom slope whereas the opposite was found for stoniness and mean 341 

contents of organic matter were significantly different for the three parts of the slope. 342 

(Table 3). This spatial pattern reflects in part the different soil types developed on the 343 

diverse lithologies but is mainly a reflection of the impact of land use associated with 344 

the occurrence of cultivated fields at the bottom of the slope, which accounts for the low 345 

organic matter content and stoniness. 346 

The 137Cs and 210Pbex mass activities were not significantly correlated with clay 347 

content, but were significantly and positively correlated with organic matter content, 348 
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reflecting the higher organic matter content in the upper soil layers that generally 349 

coincide with the highest activity of these radionuclides (Table 4). The lack of 350 

correlation with clay appears to be related to the fairly uniform depth distribution of 351 

clay content in the soil profiles and the absence of any clear decrease with depth as 352 

shown by the organic matter for uncultivated soils. Another reason could be the limited 353 

range of clay contents. 354 

Estimates of soil redistribution (Mg ha-1 year-1) derived from the 137Cs inventories, 355 

using models reported by Soto and Navas (2004,2008), documented along the transect 356 

show that erosion rates range between 2.6 and 31.9 Mg ha-1 year-1 and sedimentation 357 

rates range between 0.2 and 24.5 Mg ha-1 year-1 (Fig. 3). The magnitude and variation of 358 

the 137Cs inventories, and thus the soil redistribution rates recorded along the transect 359 

appear to be related to the different land use, slope gradient and soil properties that were 360 

distinguished on the three main parts of the transect. 361 

In the upper part of the transect, the natural forest is dense and, in spite of the 362 

presence of the steepest slopes (24%), little soil redistribution occurs. Deviations from 363 

the reference inventory are within the range of uncertainty for 4 of the 9 sampling 364 

points. The sedimentation rates are low (mean 1.8 (±1.5) Mg ha-1 year-1), and at three 365 

points range between 2.9 and 4.0 Mg ha-1 year-1. Erosion occurs at point 6, an old 366 

abandoned field (-3.2 Mg ha-1 year-1), and at point 8, where, in accordance with field 367 

observations, it reaches -19.2 Mg ha-1 year-1 because of the increased slope. 368 

On the midslope (21% slope), areas with both cultivated and abandoned fields are 369 

interspersed with patches of natural forest and the slope shape is highly variable, with 370 

relatively flat terraced fields alternating with regular straight slopes. As a result, the 371 

magnitude of soil redistribution within this part of the transect varies considerably and 372 

both erosion and deposition occur in equal proportions. High erosion rates were found 373 
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for cultivated points 12, 14, 15 (-14.6, -15.1, -31.9 Mg ha-1 year-1, respectively) but a 374 

much lower erosion rate of only -2.6 Mg ha-1 year-1 was found for a sampling point 375 

within an abandoned field (point 18). Stable conditions were found at point 10 (old 376 

abandoned field) and point 11 under forest. Within the lower part of this section of the 377 

transect, deposition occurred at points 16 and 17 (6.3 and 12.8 Mg ha-1 year-1, 378 

respectively) coinciding with an inflexion of the slope. 379 

The bottom slope, which represents the gentler part of the transect (15% slope), is 380 

cultivated for cereals. In this section the largest variability of soil redistribution rates 381 

was found. The highest sedimentation rates (24.5, 7.1 and 17.3, Mg ha-1 year-1) were 382 

recorded for points 20, 21 and 23, respectively, whereas points 19 and 22 suffered 383 

relatively high erosion rates (-12.1 and -17.2 Mg ha-1 year-1). Therefore, as found in 384 

other studies (Quine et al., 1994), cultivation appears to exert a key influence on soil 385 

redistribution, causing high soil redistribution rates within this portion of the transect, in 386 

spite of the lower slope gradient. Furthermore, in the study area storm events are more 387 

frequent after the harvest when the soil surface is left bare (López-Vicente et al., 2008) 388 

thus contributing to increase soil redistribution. 389 

The soil redistribution estimates based on 137Cs are consistent with the physiography 390 

and the land use along the transect. On the upper slope, little soil movement occurred as 391 

indicated by the low rates of erosion and deposition derived from inventories close to 392 

the range of uncertainty/stability, suggesting that the presence of dense forest protects 393 

the soil surface very effectively. The highest soil losses occur within the cultivated 394 

fields of the midslope and the highest deposition rates are found on the bottom slope of 395 

the transect that terminates at point 24 which is characterized by the depth distribution 396 

to be expected of a lake deposit, as indicated by the presence of the 1963 137Cs peak at a 397 

depth of 45 cm. 398 
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The magnitude and variation of the 210Pbex inventories along the transect is greater 399 

than that of the 137Cs inventories and therefore the soil redistribution rates estimated 400 

using 210Pbex measurements show greater variability, especially on the bottom slope 401 

(Fig. 3). Larger variability in 210Pbex inventories compared to 137Cs inventories has also 402 

been documented by Mabit et al. (2009) and Porto et al. (2009) and this could also be 403 

related with accuracy of gamma measurements of 210Pbex (Shakhashiro and Mabit, 404 

2009) especially for soils with low 210Pb activities as in highly eroded sites or in tilled 405 

profiles. On the upper part of the transect both erosion and deposition occurred, but 406 

rates were low. The 210Pbex inventories were also close to the reference inventory and 407 

erosion was only evident at point 4 (-4.2 Mg ha-1 year-1). Little deposition occurred at 408 

the bottom of this section and rates were around 2.2 Mg ha-1 year-1. Low rates of soil 409 

erosion was found for the uncultivated soil profiles associated with the upper and lower 410 

parts of the midslope (points 10, 11 and 16), which, based on the 137Cs profiles, 411 

provided evidence of low rates of deposition, although values were quite close to 412 

stability at points 10 and 11. These discrepancies can be included within the range of 413 

uncertainty around stability indicated by the reference inventories of the radiotracers. 414 

The land at points 12, 14 and 15 was first abandoned and then cultivated more recently 415 

under the European Agrarian Policy. The land use changes that affected this section of 416 

the transect during the 20th century introduce problems for the use of 210Pbex 417 

measurements to estimate soil redistribution rates, since these profiles do not meet the 418 

required steady state conditions for a period of ca. 100 years (Walling and He, 1999; 419 

Zhang et al. 2006). 420 

On the bottom slope, the inventories of both 137Cs and 210Pbex for the profiles 421 

indicate similar patterns of soil redistribution over the different time periods, but the 422 

absolute magnitude of the rates of erosion and deposition estimated for each point 423 
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differ. Consequently, some points are seen to experience greater rates of erosion and 424 

deposition, over the medium-term, as compared to the longer-term as for points 19 and 425 

20, respectively; and vice versa at points 21 and 23 for deposition and 22 for erosion. 426 

Deposition based on 210Pbex reached a maximum of 110 Mg ha-1 year-1 for point 23 427 

which is close to the lake, this value deviates greatly from the 137Cs estimate (17.3 Mg 428 

ha-1 year-1). High deposition was also found at point 21 (48 Mg ha-1 year-1) which is 429 

located above a steep bank that separates the field from the pathway and this might help 430 

to account for the distinctive processes of soil movement for the different time-periods. 431 

Important soil movement that could have been associated with the transformation to 432 

agricultural land during the transition between the 19th and 20th centuries on the 433 

midslope area, generated substantial amounts of sediment that accumulated in the area 434 

close to the steep bank. Furthermore, after the process of land abandonment during the 435 

20th century the collapse of some portions of the terraces due to lack of maintenance 436 

may have supplied additional sediment to the lower parts of the slope. After the period 437 

of 137Cs fallout, this area still functioned as an accumulation site but rates are not as 438 

great. Within the time scale of 137Cs the main changes in land use involving the change 439 

to intensive agricultural use at the beginning of the 20th century and the subsequent 440 

abandonment and collapse of the agricultural terraces during the last part of the past 441 

century would not have affected the contemporary 137Cs inventories as much as it would 442 

had affected the 210Pbex inventories. The highest rate of erosion on the transect (-83.7 443 

Mg ha-1 year-1) was also found at the bottom of the slope at point 22 that is located 444 

below the pathway. The consistency of the pattern of soil movement demonstrated by 445 

both radiotracers is evidenced by the high rate of accumulation found at point 23 and 446 

also at point 24. 447 
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In general, there is reasonable agreement in the evidence for the soil redistribution 448 

occurring along the transect during the two different time periods. Means of soil 449 

deposition estimates from both 137Cs and 210Pbex measurements and of soil erosion from 450 

210Pbex measurements were much higher and significantly different on the bottom slope 451 

than those in the upper and mislope parts of the transect. However, the magnitude of 452 

erosion and deposition differed between the estimates derived from the 137Cs and 210Pbex 453 

measurements (Table 5). Walling et al. (2003) and Zhang et al. (2006) recognized that 454 

the two radionuclides are unlikely to provide identical results, due to the different time 455 

periods involved. This can be especially relevant in areas, such as the study area, that 456 

have been affected by important land use changes occurring during different periods but 457 

differences in rainfall intensity over the two different periods may also have had an 458 

effect. 459 

 The rates of soil redistribution based on 210Pbex estimates are in general lower than 460 

those based on 137Cs, especially at the upper and middle parts of the transect. However, 461 

the contrary was observed in sites of the lower slope where high sediment accumulation 462 

could reflect increased soil erosion and sediment supply that may have occurred during 463 

the 20th century due to the collapse of some of the terraces after land abandonment. 464 

Porto et al. (2009) found that soil redistribution rates from 210Pbex were higher than 465 

those derived from 137Cs measurements and these differences were interpreted as being 466 

a result of the different temporal sensitivity of the two radionuclides to ongoing soil 467 

redistribution. Zhang et al. (2006) recognized that although 210Pbex measurements will 468 

reflect the erosional history over a longer time period, the shorter half-life and the 469 

continuous fallout mean that 210Pbex inventories are also likely to be more sensitive to 470 

recent changes in erosional activity than 137Cs. 471 
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Over the time-scale reflected by the 137Cs measurements, higher intensity soil 472 

erosion occurred especially at the midslope as a consequence of the process of land 473 

abandonment in the middle part of the past century that was followed by increased 474 

accumulation of sediment on the bottom slope, although erosion was here less intense. 475 

The relationship between the soil redistribution rates derived from 137Cs and 210Pbex 476 

measurements shows a statistically significant positive relationship (r = 0.596) between 477 

both estimates, which, although of only moderate significance, indicates similarity in 478 

the overall pattern of soil redistribution over the past 100 years. Walling et al. (2003) 479 

also found a clear positive relationship between the soil redistribution rates derived for 480 

the longer- (210Pbex - ca. 100 years) and medium-term (137Cs - ca. 50 years) time scales. 481 

However, the greater deviations found in our study may be due to greater changes in the 482 

intensity of processes through time, which are in turn related to important land use 483 

changes. Several studies in Northern Spain (e.g. Navas et al., 2009) have confirmed that 484 

in the first part of the 20th century the intensity and frequency of floods were 485 

particularly high due to increased runoff from cultivated fields, because of the large 486 

surface area covered by agricultural land in this period. 487 

Estimates of soil redistribution based on 7Be measurements undertaken along a 488 

parallel transect on the same slope for an individual storm event of 22 mm in 2007 489 

(Navas et al., 2008) indicated that apart from one, all points suffered erosion and that 490 

the highest rate occurred on the upper part of the transect and the lowest at the bottom 491 

slope. These results highlight the complexity of the soil redistribution process and 492 

emphasise the need to consider a range of factors, including land use, topography and 493 

rainfall intensity, when interpreting changing patterns of soil movement in space and 494 

time. The influence of temporal scale on soil redistribution estimates will reflect many 495 

factors, particularly the changes in land use and rainfall characteristics (López-Moreno 496 
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et al., 2009) that have occurred during the past century in the study area and that need 497 

further exploration. 498 

 499 

4. Conclusions 500 

The deviation of the measured 137Cs and 210Pbex inventories from the reference 501 

inventories and the associated estimates of soil redistribution rates indicated that within 502 

the upper part of the transect investigated in this study, with an average slope gradient 503 

of 24%, soil stability predominated under forest. On the midslope portion of the transect 504 

(21% slope), which is characterized by a great variety of land use and vegetation cover, 505 

erosion predominates but deposition also occurs. On the bottom slope of the transect 506 

(15% slope), where cultivation is the main land use, both radionuclides indicated high 507 

sediment deposition but also significant erosion was found immediately below a 508 

pathway, reflecting the impact of agricultural land use on the pattern of soil 509 

mobilization. 510 

The different magnitude and patterns of soil movement along the transect documented 511 

by both radionuclides demonstrate that both land use and slope gradient exert important 512 

controls on soil redistribution rates. For steep slopes the dense forest on the upper part of 513 

the transect protects the soil surface from erosion. 514 

The estimates of soil loss obtained from the 7Be measurements suggested that soil 515 

loss predominated along most of the transect. However, over the longer temporal scale 516 

provided by the 137Cs and 210Pbex measurements, a different spatial pattern of soil 517 

redistribution, that more closely reflects the topography and land use along the transect 518 

were documented. 519 

This research demonstrates the potential for coupling 210Pbex and 137Cs 520 

measurements for assessing soil redistribution in Mediterranean environments at 521 
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different temporal scales and provides evidence of the complex patterns of erosion and 522 

deposition that exist in the landscape. Uncertainties associated with the application of 523 

210Pbex in highly heterogeneous environments, such as found in Mediterranean 524 

mountains, need to be investigated further to improve the accuracy of estimates of soil 525 

redistribution provided by 210Pbex measurements, by better defining the appropriate 526 

depth increment for core sectioning, as a function of land use. 527 
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Tables  651 

 652 

Table 1. Summary statistics of 137Cs and 210Pbex mass activities and inventories in the 653 

soil profiles for the whole transect and for the different parts of the transect. 654 

 655 

 137Cs 137Cs 210Pbex 
210Pbex

 Bq kg-1 Bq m-2 Bq kg-1 Bq m-2

total transect   n=23  

mean 8.1 1812.1 8.4 2049.1

median 5.4 1671.1 7.8 1787.4

standard deviation 8.7 1135.6 9.4 1746.3

standard error 1.8 236.8 2.0 364.1

range 0.8 – 37.9 408.7 – 6080.1 0.0 – 41.3 0.0 – 6734.4

upper slope   n=9  

mean 12.6 1650.3 13.8 1890.7

median 8.0 1688.9 8.9 2335.6

standard deviation 11.9 505.6 12.9 948.6

standard error 4.0 168.5 4.3 316.2

range 2.4 – 37.9 671.6 – 2455.6 0.0 – 41.3 0.0 – 3019.2

midslope   n=8  

mean 5.9 1682.3 5.5 1783.2

median 6.4 1420.5 4.8 1534.8

standard deviation 3.2 881.4 3.6 1646.3

standard error 1.1 311.6 1.3 582.0

range 2.2 – 10.0 829.8 – 3575.9 0.0 – 10.2 0.0 – 4941.9

bottom slope   n=6  

mean 4.1 2228.1 4.0 2641.1

median 2.5 1776.3 3.8 1936.0

standard deviation 5.0 1973.9 3.6 2757.6

standard error 2.0 805.8 1.5 1125.8

range 0.8 – 14.1 408.7 – 6080.1 0.0 – 8.4 0.0 – 6734.4

 656 
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Table 2. Average values of the total 137Cs and 210Pbex inventories, depth containing 80% of 137Cs and 210Pbex inventories and depth to 657 

undetectable 137Cs and 210Pbex inventories in the three  parts of the transect. 658 

 659 
 660 
 137Cs 210Pbex 

 137Cs depth 

containing 80% 

depth to zero 210Pbex depth    

containing 80% 

depth to zero 

 Bq m-2 cm cm Bq m-2 cm cm 

upper slope 1650.3  (±505.6)  a 13 (±5.6) a 16 (±5.5) a 1890.7  (±948.6) a 13 (±9.1) a 19  (±14.7) a

midslope 1682.3  (±881.4) a 16 (±6.8) a 26 (±12.1) a 1783.2  (±1646.3) a 14 (±9.9) ab 25 (±14.9) a

bottom slope 2228.1  (±1973.9) a 29  (±10.7) b 36 (±8.0) b 2641.1  (±2757.6) a 28  (±18.1) b 34  (±20.1) a

 661 
Different letters indicate significant differences at the p-level <0.05  662 
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Table 3. Summary statistics for the physico-chemical soil properties in the sample 663 

intervals along the transect and for the different parts of the transect. 664 

 665 

 organic matter clay silt sand stone content

 % % % % %

total   n=143  

mean 3.2 24.5 69.0 6.5 27.9

median 2.3 23.9 73.4 0.2 25.6

standard deviation 2.4 10.7 13.7 15.2 21.1

standard error 0.2 0.9 1.1 1.3 1.8

range 0.2 – 12.9 0.6 – 83.4 14.4 – 84.9 0.0 – 85.0 0.0 – 76.2

upper slope   n=38  

mean 4.8 20.8 63.6 15.6 33.7

median 4.5 19.4 72.4 3.9 31.0

standard deviation 2.5 11.8 18.2 22.0 20.3

standard error 0.4 1.9 3.0 3.6 3.3

range 1.0 – 12.9 4.3 – 77.9 17.3 – 84.9 0 – 76.3 3.4 – 76.2

midslope   n=47  

mean 3.7 25.7 71.1 3.2 40.0

median 3.2 24.9 73.1 0.1 39.7

standard deviation 2.6 6.6 7.5 8.3 19.4

standard error 0.4 1.0 1.1 1.2 2.8

range 0.5 – 12.3 12.0 – 48.0 42.4 – 83.2 0 – 45.6 4.1 – 68.2

bottom slope   n=58  

mean 1.7 26.0 70.8 3.1 14.4

median 1.6 24.1 73.6 0.1 11.5

standard deviation 1.2 12.2 13.3 11.6 14.4

standard error 0.2 1.6 1.7 1.5 1.9

range 0.2 – 7.8 0.6 – 83.4 14.4 – 81.3 0 – 85.0 0 – 55.8

 666 
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Table 4. Pearson correlation coefficients between 137Cs and 210Pbex inventories and soil 667 

properties for the sample intervals along the transect and for the different parts of the 668 

transect. 669 

 670 

 total 

n=143 

upper slope   

n=38 

midslope 

n=47 

bottom slope   

n=58 

 137Cs  210Pbex 
137Cs 210Pbex 

137Cs 210Pbex 
137Cs 210Pbex 

clay -0.17 0.01 -0.26 0.03 -0.41 0.08 -0.00 0.03

organic matter 0.50 0.32 0.70 0.60 0.36 0.01 0.67 0.22

stone -0.07 -0.02 -0.01 0.18 -0.20 -0.35 -0.22 -0.13

silt 0.01 -0.05 0.02 -0.09 0.02 0.04 0.07 0.06

sand 0.11 0.04 0.12 0.05 0.30 -0.10 -0.07 -0.10

Bold face numbers significant at the 95% confidence level 671 

672 
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Table 5. Mean values of 137Cs and 210Pbex soil redistribution rates and values of standard 673 

deviation in the three parts of the transect. 674 

 675 

 137Cs 210Pbex
 

 erosion 

Mg ha-1 year-1 

deposition 

Mg ha-1 year-1 

erosion 

Mg ha-1 year-1 

deposition 

Mg ha-1 year-1 

upper slope       11.2  ±11.3 a 1.8   ±1.5 a 1.7    ±1.8 a 1.3    ±0.6 a

midslope 16.1  ±12.0 a 5.1   ±5.8 a 2.2    ±1.7 a          -  

bottom slope 14.7    ±3.6  a 16.3   ±8.7 b 44.0  ±56.2 b 57.1  ±49.0 b
         

total transect 14.5    ±9.3 5.9   ±7.4 9.6  ±24.6  22.2  ±39.0

 676 
Different letters indicate significant differences at the p-level <0.05  677 
 678 

679 
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Figures 680 

 681 

Fig. 1. The study area, showing its location, the position of the sampling points along 682 

the transect and the geology, land use and soil types associated with the upper slope, 683 

midslope and bottom slope portions of the transect. 684 

 685 

 686 

 687 

 688 

689 
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Fig. 2. The distribution of 210Pbex and 137Cs mass activities and inventories in 690 

uncultivated and cultivated soils. 691 

 692 

 693 

694 
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Fig. 3. Estimates of soil redistribution rates and errors for the individual sampling points 695 

along the transect based on the 210Pbex and 137Cs measurements. 696 
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