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Abstract: Classical Cubic spline interpolation needs to solve a 

set of equations of high dimension. In this work we show how to 
compute the interpolant using a FIR digital filter, with a reduced 
number of operations per interpolated point and high accuracy. 
Additionally, the computation can be made on real time as the 
signal samples are acquired.  Following this approach,  we show 
how to obtain easily the derivatives of the interpolant in a 
similar way, and also signal approximations to reduce the 
oscillations that appear when using high order splines. These 
techniques are very well suited to compute continuous 
representations of image contours on closed shapes and to find 
its curvature and singularities.    
 

Keywords: representation of contours; cubic spline interpolation, 
splines; least squares filter; B-splines; filter approximation.  

I. Introduction 

Features from images, like contours [1] or lines, often provide 
enough information to characterize and classify them.  
Examples are images from fingerprints, hand signatures, 
liquid level and palm print, [2], [3], [4], [5]. Other examples 
are images of fish otoliths, which can be used to accurately 
separate different species. Otoliths are calcified structures of 
the inner ear of teleost fish, and have auditory and sensory 
functions. The database AFORO is an example of online 
classification based on contours, it stores over 2000 images of 
otoliths and can be used to carry out morphometric analyses 
and online classification [6], [7], [8], [9] 
(http://www.cmima.csic.es/aforo/). 
 The classifiers used in AFORO apply a discrete polar 
representation of the contour radius, but this can lead to 
ambiguities in curves that are quite convex or concave. In 
these cases, using the contour curvature instead of the radius 
could solve this problem. However, the curvature is 
calculated with first and second order derivatives, which are 
not well defined in the discrete world. In addition they are 
very susceptible to noise, such as the quantization noise that is 
always present in digital signals.  

To solve these problems we propose using a continuous 
representation of the contour with splines, which results in a 
very suitable method for this type of operation. 
 The easiest option would be to use linear splines, but this 
does not guarantee the continuity of the derivatives at the 
connection points. In contrast, higher order, quadratic or 
cubic splines do not show this problem until the second or 
third derivative respectively. 
The splines are calculated by solving a system of equations 
with dimensions equal to the number of points to interpolate, 
multiplied by a number equal to or greater than the order of 
the splines. This is not viable in web applications that need to 
compute this representation in runtime.  
Unser [10], [11] developed a mathematical theory for 
implementing splines as digital filters for uniformly 
equispaced samples. Although his solution is very elegant it 
implies applying causal and anticausal IIR filters. Based on 
this solution  there is an efficient implementation of these 
splines, using approaches with FIR filters obtained by 
windowing the impulse response [12], [13].  
In this paper we show another way of implementing these 
splines with FIR filters.  The main advantages of using FIR 
filters instead of anticausal IIR filters is that they can be 
implemented online, that is, as they receive the data, although 
they do have a delay because they are not causal filters. In [14] 
there is a basic definition and hardware implementation of  
FIR  filters. 
If we interpolate the original contour points with splines 
directly, it is very possible that oscillations will appear in the 
continuous contour obtained. One cause could be the 
quantization noise. To avoid this we can first filter the data to 
obtain smooth contours that are still faithful to the original 
contour. We propose applying the least squares filter, defined 
in [11], which is a good compromise between computational 
needs and the desired result.  
In this paper we develop these points in the following 
sections: First, in section II, we show a way to implement FIR 
filters based on splines, such as mathematical operators for 
calculating first and second order derivatives. Section III 
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shows the connection between this work and Unser’s solution 
based on B-splines. We do this based on  the Z Transform of 
the spline equation system, and demonstrate the connection 
between the determinant of this equation system and the 
anticausal IIR filter he proposes for moving a signal to the 
B-spline domain. In the section IV we present an 
approximation of one FIR operator to do cubic spline 
interpolation with only 5 multiplications and ten additions, 
with an error less than 0.1%. In section V there are some 
examples of cubic spline interpolation. Section VI details the 
application for obtaining the best continuous approximation 
to a discrete contour, interpolating with cubic splines but first 
applying the FIR approximation and invariant to the 
translations of the least squares filter. The way of 
implementing this filter does not involve downsampling, 
unlike the solution given in [11].  
 Finally, we analyze the results, give some conclusions and 
outline possible future applications of the work. 

II. Polynomial splines 

Interpolating with splines implies defining polynomials 
between samples [15], so that at the junction points the 
polynomials coincide but there is also continuity in their 
derivatives up to one order immediately below the level of the 
splines. In the case of cubic splines, the polynomials that join 
the samples show continuity until the second derivative and 
have the following form (1): 
 

3
nn

2
nnnnn )x- x(d + )x- x( c + )x-(x  b + Y= (x) P n   (1) 

In the case of equispaced samples and normalized period 
(T=1), each n polynomial exists between x=xn and x=xn+1.  
Each polynomial has 3 unknowns: bn, cn and dn. Yn is the 
value of the left sample from where the n polynomial starts. 
The equations (2), (3) and (4) are  taken from the conditions of 
continuity of the polynomials and from the first and second 
derivatives in the knots; however, there are always two 
degrees of freedom,  which are usually fixed by imposing that 
the first or the second derivative at the beginning and ending 
sample are zero or imposing that the interpolation is periodic 
so that the last sample continues from the first. 
 

    Y=)(xP = d + c + b + Y=1)+(xP  1+n1+n1+nnnnnnn  (2) 

1+nnnn b = d · 3 + 2·c +b  (3) 

1+nnn 2·c = d 6 + c · 2   (4) 

 
As an example of magnitude, interpolating 16  samples will 
involve solving a linear system of 48 equations, and a system 
of 100 samples implies solving a system of 300 equations. In 
this paper we have solved this equation system for different 
numbers of samples, and experimentally, by simple 
observation, we have concluded that the polynomial 
coefficients can be calculated using the discrete convolution 
between the samples and coefficients that can be represented 
perfectly by an anticausal FIR filter. For example, if there are 
5 samples to interpolate, coefficient b, which coincides with 
the first derivative at the point where the sample is, can be 
determined with the following expression (5): 

2))-y(n - 2)+(y(n0.21-

- 1))-y(n - 1)+(y(n0.80 =  b(n)




 (5) 

b(n) =  the coefficient b of the polynomial n.  
y(n) =  the n-th sample of  the sequence.   

The inverse matrix method was used to solve the equation 
system. To find the stability of the solution the equation 
system has been solved for different numbers of samples. 
Table I  shows the result of the filter coefficients for 
calculating the first derivative with cubic splines in periodic 
form,  interpolating between 16 and 32 samples respectively 
 

with 16 Knots with 32 Knots

k=0 0 0

k=+/-1 +/- 0,80384757 0,803847577

k=+/-2 -/+ -0,21539028 -0,215390309

k=+/-3 +/- 0,057713549 0,057713659

k=+/-4 -/+ -0,015463918 -0,015464328

k=+/-5 +/- 0,004142121 0,004143654

k=+/-6 -/+ -0,001104566 -0,001110289

k=+/-7 +/- 0,000276141 0,000297501

k=+/-8 -/+ 0,00E+00 -7,97E-05

k=+/-9 +/- 2,14E-05

k=+/-10 -/+ -5,72E-06

k=+/-11 +/- 1,53E-06

k=+/-12 -/+ -4,11E-07

k=+/-13 +/- 1,10E-07

k=+/-14 -/+ -2,94E-08

k=+/-15 +/- 7,34E-09

k=+/-16 -/+ -1,22E-09

Table 1.  Coefficients of the first derivative operator based 
on cubic splines 

 

 
 
Figure 1. Time response of the first derivative operator, 
based on cubic splines. 
 

99 Ferrer-Arnau, Reig-Bolañ  o, Marti-Puig, Manjabacas and Parisi-Baradad



100

In the same way, similar results are obtained for the second 
derivative calculation, which at the point of the sample is 
equal to 2·cn. It can be concluded that calculating the first and 
second derivative of a discrete signal, which has become 
continuous with splines, is equivalent to carrying out the 
convolution of the samples with the discrete operators shown 
in Fig. 1 and Fig. 2. 
 

Figure 2. Time response of the second derivative operator, 
based on cubic splines. 
 
In Fig. 3 and Fig. 4 are shown the magnitude of the frequency 
response of the first and second derivative operators. 
 

Figure 3.  Magnitude of the frequency response of the first 
derivative operator based on cubic splines.  Band pass filter. 
 
We can see that the first derivative operator is a band pass 
filter and the second derivative operator is a high pass filter. 

Figure 4.  Magnitude of the frequency response of the second 
derivative operator based on cubic splines. High pass filter. 

III. Connection between polynomial 
interpolation with splines and B-splines 

Next we determine the connection between the interpolation 
method presented in the previous section and that based on 
B-splines proposed by Unser in [10] and [11]. 
The first thing we will do is to consider that with the 
interpolation with splines we have a sequence of polynomials 
and we also have a sequence of coefficients bn, cn and dn of the 
polynomials, therefore we can calculate the Z Transform of 
these sequences.  We can also find the Z Transform of the 
equation system (2), (3) and (4) implied by the interpolation 
with splines: 
 
B(z) + C(z) + D(z) =( z-1) · Y(z)                                        (6) 
 
B(z) +2 ·C(z) + 3·D(z) = z · B(z)                                     (7) 
 
2·C(z) + 6·D(z) = z · 2 · C(z)                                          (8) 
 
B(z) = Z Transform of the coefficients bn of the spline 
polynomials. 
C(z) = Z Transform of the coefficients cn of the spline 
polynomials. 
D(z) = Z Transform of the coefficients dn of the spline 
polynomials. 
Y(z) =  Z  Transform of  the samples (the input  signal). 
 
The first equation (6) is the continuity of the polynomial. The 
second equation (7) represents the continuity of the first 
derivative in the knots, and the third (8) is due to the 
continuity of the second derivative. 
This equation system written in matrix is the following (9): 
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The solutions are the expressions (10),  (11) and (12) 
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Figure 5.  Impulse response of the operator for moving a 
signal to the cubic B-spline domain, (B3(z))-1. 
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The determinant of this equation system is equation (13): 
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Figure 6. Continuous cubic B-spline, and discrete cubic 
B-spline (z-1+4+z)/6. 
 

It can be seen that this determinant (13) coincides with the Z 
Transform of the discrete symmetric and shifted cubic  
B-spline B3(z) [10],  multiplied by a constant factor equal to 
12, figure 6. 
Similar results are obtained for splines of any order. This 
proves the connection between the interpolation with splines 
polynomials presented in section II and the B-splines 
functions proposed by Unser [10], [11]. 
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The inverse of the discrete cubic B-spline B3(z) is the Direct 
B-spline operator (B3(z))-1, (14),  proposed in [11] to move 
samples to the  B-spline domain; however, it has the 
inconvenience of being an anticausal IIR filter, even though 
Unser proposed a system for solving it, it cannot be applied in 
real time as it is necessary to have the entire complete signal 
from the beginning. 
The advantage of the system we propose in  section II is that 
we can obtain an approximation of this splines filter with a 
finite impulse response. The impulse response of the operator 
(B3(z))-1 is shown in Fig. 5., and its Z transform is (15).  
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Figure 7. Example of cubic B-splines interpolation. 
 
In figure 7 is shown an example of interpolation like a lineal 
combination of shifted and weighted B-splines. The bn 
coefficients are calculated with the operator (B3(z))-1, figure 5. 
The way of calculating the first derivative proposed by Unser 
[10] in the case of cubic splines is: 
 With the (B3(z))-1 filter move samples to the cubic     

B-spline domain. 
 Apply the operator (1-z-1). 
 Apply the operator (z+1)/2  
Equation (16) evidences that the method proposed by Unser 
and the method that we propose (10) for calculating the first 
derivative are the same. 
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IV. Cubic spline interpolator 

Spline interpolators allow to compute all the points between 
each two samples, although the most common is to find the 
medium point, at twice the original sampling rate. Figure 8 
shows the steps required to compute it. First we need to 
upsample the signal, insert zeros between each two samples. 
Then we apply the filter Ip and obtain the medium point of the 
cubic spline polynomial. These steps can be repeated 
iteratively, and at each iteration we'll obtain a version of the 
signal with double sampling rate 
 

Figure 8. Diagram to interpolate. 
 
Next, we show how to compute the interpolating filter  Ip(z). 
First we must to calculate with equation 17  the medium point 
of the each spline polynomial,  x=0.5 
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Use for  B(z), C(z) and  D(z) the expressions obtained in (10), 
(11) and  (12), and the result is the equation  (18). 
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Simplify in (19): 
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Upsample and delay, equation (20): 
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Add 1 to the filter in order to keep the original signal values, 
equation (21) 
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Finally, use a FIR approximation of (B3(z))-1  to obtain the 
final equation (22) of the interpolator. The accuracy obtained 
will depend on the FIR order. With 10 coefficients (10 
additions, 5 multiplications), the differences between our 

approximation and the cubic spline interpolant, computed 
with the system of equations is less than 0.1 %.  
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Figure 9. Time response of the cubic B-spline interpolator.  
 
 
Figure 9 shows the impulse response of the cubic spline 
interpolator and figure 10  shows the magnitude of its 
frequency response. We can see it's a low pass filter. 
 
 

Figure 10. Magnitude of the frequency response of the cubic 
B-spline interpolator. 
 
The number of operations depends on the required accuracy 
and is independent of the total number of samples of the 
signal, while the classical resolution of the cubic interpolant 
needs to solve a system with 3 equations per sample 
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V. Interpolating examples 

In this section we show three examples of interpolation of 
shapes defined by their contour (a circle, a square and a 
contour of an otolith). We use the interpolator from section IV 
recursively to obtain a signal with a sampling rate 1024 times 
the original one. 
The circle has initially only 4 samples. In  Fig. 11  is shown 
the four initial samples and the figure interpolated.  
 

Figure 11. Example of interpolating a circumference from 
only 4 samples. 
 
 
The cubic spline interpolation of the square shape, Fig. 12,  
from only four samples does not allow to represent it without 
ambiguities. We need more samples to represent it accurately.  
 

Figure 12. Example of interpolating a square from only 4 
samples. 
 
The best interpolant for this shape would be a linear spline, 
although cubic splines can give good results if we increment 
the number of original samples. In Fig. 13 the interpolation of  
4 samples square appears in blue, while the results for the 8 
samples versions appear in red. 
 

Figure 13. Example of cubic spline interpolation of a square. 
In blue, exterior continuous line, from 4 samples. In red, 
interior continuous line, from 8 samples.  
 
 
Other application of the interpolator is approximate a contour 
of an otolith with a few samples. In the figure 14 it’s shown 
the original contour and the interpolated with the cubic spline 
operator of equation (22) from only eight samples. The error 
of this approximation is due to the little number of samples, 
not from the cubic interpolator.  
 
 

Figure 14. Interpolation of otolith contour from only 8 
samples. 

VI. Obtaining an optimum continuous contour 
from its discrete representation with pixels  

The contours of the figures defined by pixels are a discrete 
representation with a quantization error. In the continuous 
representation of the contour interpolated with splines (cubic 
splines in our case) there are oscillations that not fit the 
original contour. This effect can be observed in Fig.  15, and 
happen when interpolate all the pixels of the contour. When 
interpolate from only   a few samples of the contour, like in 
figure 14 section V, this effect doesn’t happen.   
The solution of first filtering the signal is not simple. The 
problem is that if the signal is filtered with a very narrow filter 
the contour will be smooth but will not fit the original contour, 
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and if the filter is not so discriminant then the oscillations will 
not be removed completely. There are many types of low-pass 
filters that can be used, but in this work we propose a new FIR 
approximation of  the least squares filter based on cubic 
B-splines [11]. This filter obtains an approximation with 
splines without making these go through the samples exactly, 
and therefore the curve obtained is smoother. The result is 
shown in Fig.  16. 
 

Figure 15. Oscillations produced by interpolating a discrete 
contour with cubic splines. 
 
 

Figure 16. Interpolated contour with cubic splines after 
filtering with a least squares filter. 
 
Another proposal is to apply this filter iteratively, as long as 
the error between the original signal and the filtered signal 
does not exceed a threshold.  
Obtaining the FIR version of this filter is similar to the 
procedure proposed in Section  II. 

Conclusions  

In this work we found a direct connection between the 
determinant of the equation system of the spline interpolation 
and the Z Transform of the discrete B-spline described in [10]. 
Based on this connection we proposed another way of 

obtaining the FIR approximation of the cubic spline 
interpolator. By using only 10 coefficients (10 additions and 5 
multiplications), the accuracy is as high as 99.9 %.   

We also proposed applying  a FIR approximation and 
invariant to the translations of  the least squares filter based on 
cubic B-splines, to obtain a very good continuous 
representation of the contour of a figure from its image in 
pixels. 

Another contribution of this work is a procedure for obtaining 
a temporal and frequency representation of the operators that 
are applied to calculate the derivatives of different orders of 
discrete signals.  
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