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 10 

ABSTRACT 11 

The co-existence patterns of two mytilid species were studied, in order to evaluate the performance of the 12 

alien mussel Xenostrobus securis and the indigenous one Mytilus galloprovincialis through independent 13 

and mixed co-habiting experiments in the Ría de Vigo (NW Spain). Mytilus galloprovincialis was found to 14 

be the best performer in all tests. Shell growth was approximately 4-fold greater for the indigenous mussel 15 

when deployed independently and regardless of density. Differences in shell growth were found to be 16 

similar within mixed populations wherein M. galloprovincialis showed greater ability for upward migratory 17 

movements on the mixed beds and distanced itself from the mud influence layer. The alien X. securis 18 

however was found to inhabit underneath the M. galloprovincialis layer which resulted in higher mortality 19 

rates. Species-specific features like byssus filaments and lifestyle may account for such different behaviour. 20 

Mytilus galloprovincialis secreted thicker and stronger shells and byssus regardless of their density in both 21 

independent and mixed experiments. This might indicate that the indigenous mussel performs better when 22 

faced with abiotic stress or biotic pressure. The alien X. securis is currently found to establish high-density 23 

patches of individuals at the confluence of main rivers that flow into the estuary (highly heterogeneous 24 

scenario). Such behaviour favours its settlement far from the native mussel influence area. Xenostrobus 25 
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securis also colonises hard substrates that are not-fully occupied by other invertebrates but its range was 26 

found to be limited by the presence of the indigenous mussel. 27 

 28 
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 32 

INTRODUCTION 33 

Biological invasions have emerged as a major topic in ecological studies and environmental policy issues 34 

(Pfeiffer and Voeks 2008). The presence of exotic species may bring significant changes in the recipient 35 

community structure as a consequence of inter-specific interactions which may give rise to the variability 36 

of species richness, community balance and diversity (Vermeij 1996; Crooks and Khim 1999; Grosholz 37 

2002; Fridley et al. 2007). Such interactions between species may lead to competition and eventually the 38 

exclusion of the worst performer (Branch and Steffani 2004; Castilla et al. 2004). Nevertheless, this 39 

negative consequence for the indigenous inhabitants does not occur in all cases because aspects like habitat 40 

heterogeneity may play a significant role and examples of co-existence (Zardi et al. 2008; Rius and 41 

McQuaid 2006; Nicastro et al. 2010; Dutton and Hofmann 2008; Bownes and McQuaid 2010 among 42 

others) and even facilitation (Rius and McQuaid 2009) have been reported for the specific case of bivalves 43 

performance. Sará et al. (2008) found that the potential for invasion can be enhanced through a number of 44 

advantageous physiological mechanisms of the exotic species. Although indigenous species may be 45 

displaced whenever the alien species show superior competitive abilities and physiological tolerance 46 

(Steffani and Branch 2005), the interactions with the environment and native species would nevertheless 47 

make such invasion unpredictable. The potential for adhesion by using byssus filaments within a changing 48 

abiotic scenario is a key feature for sessile mytilids survival. 49 

 50 
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The latter cited surveys have reported co-existence mechanisms in native and exotic bivalves with similar 51 

niches based on ecological traits comparison. Examples of certain competitive advantages of the invader 52 

species with respect to the indigenous species have been related to their abilities for escaping from natural 53 

enemies like predators and parasites (Shea and Chesson 2002). In our case, the alien mussel Xenostrobus 54 

securis has been reported to house fewer parasites than the native mussel (Pascual et al. 2010) and to be 55 

less vulnerable to predation by Carcinus maenas (Veiga et al. 2011). Therefore, such ecological release 56 

from parasites and predators (enemy release hypothesis) would facilitate invasion by X. securis. The 57 

spatial-temporal resource competition theory furthermore predicts that environmental disturbances in both 58 

space and time may produce major and different effects on indigenous and exotic species which would 59 

favour one or the other at different locations and times (Shea and Chesson 2002). 60 

Interestingly, the indigenous mussel Mytilus galloprovincialis involved in the present study is a successful 61 

invader in other latitudes e.g. along the South African coastline (Branch and Steffani 2004; Bownes and 62 

McQuaid 2010), the Pacific Northwest front (Shinen and Morgan 2009) and many other areas in America, 63 

Africa, Australia and Japan (Sanjuan et al. 1997). The presence of Xenostrobus securis (black pygmy 64 

mussel) in Galician waters was reported by Garci et al. (2007), however the species is endemic to the 65 

brackish waters of New Zealand and Australia. The introduced black pygmy mussel is nowadays found in 66 

very different areas of Europe (Spain and Italy; Garci et al. 2007; Sabelli and Speranza 1994; Barbieri et al. 67 

2011) and Japan (Kimura et al. 1999), and represents a relatively small mytilid whose size may have played 68 

a role in its invasion ability. Such a species-specific feature is proposed as a trait that is potentially 69 

associated with rapid population growth and high fecundity (Ehrlich 1989). The life-span of X. securis is 70 

relatively short (about one year) and it usually inhabits high-density populations (Wilson 1969) that might 71 

occasionally smother the native infaunal communities (Zenetos et al. 2004). Xenostrobus securis is 72 

considered to be a serious threat as a bio-invader with negative impact on indigenous ecosystems 73 

(Darrigran 2002) and it has been listed among the “100 Worst Invasive Species” in the Mediterranean Sea 74 

(Streftaris and Zenetos 2006). The current distribution of X. securis in Galicia (NW Spain) is restricted to 75 

the mouth of the River Oitavén-Verdugo (Sampaio, SP; 8.700 ± 550 individuals m-2 according to Garci et 76 
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al. 2007) where M. galloprovincialis is absent and the adjacent areas in the inner Ría de Vigo (San Simón, 77 

SS) (Figure 1) where it co-exists with the indigenous mussel at relatively balanced rates (Gestoso et al. 78 

2012). The competition between both mytilids was observed to take place on hard rocks along the intertidal 79 

coastline but the invader sometimes colonised muddy soft bottoms in the inner Ría (Garci et al. 2007; 80 

Pascual et al. 2010) by producing a great amount of byssal threads (Babarro and Lassudrie 2011). Such 81 

mud (and sand) accumulation in the inner areas of the estuary may eventually affect stability of mussel 82 

attachment (Zardi et al. 2008) and would therefore determine any co-existence pattern. Besides its potential 83 

to settle on very different substrates, X. securis also shows extremely high tolerance to salinity and flow 84 

speed variation (Wilson 1968; Babarro and Lassudrie 2011). Although the alien mussel has shown an 85 

extraordinary ability for strong attachment in wide abiotic conditions, such strength never exceeded that 86 

reported for the native mussel. No studies with mixed populations have been carried out to certify survival 87 

and growth performance of the two competing species. 88 

 89 

In Galicia (NW Spain), the cultivation of M. galloprovincialis represents a widely diversified industry with 90 

a great economic impact (Labarta et al. 2004). The potential expansion of the invader X. securis from the 91 

inner to the outer areas of the Ría de Vigo may threaten such successful activity and disturb ecological 92 

relationships in the Ría ecosystem. Biological interactions between species and their responses to 93 

environmental heterogeneity would provide a useful scheme to understand community structure (Nicastro 94 

et al. 2010) and any potential future changes. The crucial aspect to research here corresponds to the ability 95 

of the alien mussel to expand further from its main concentration site into other inner areas of the Ría de 96 

Vigo where M. galloprovincialis co-exists on mixed mussel beds. The aim of the study was to test the 97 

hypotheses that: (1) X. securis excludes M. galloprovincialis because of the poor growth rates and high 98 

mortality of the indigenous mussel, especially when the mud component becomes significant on mussel 99 

beds; and (2) energetic constraints derived from competition processes would distinctly limit energy 100 

allocation to protective structures (byssal and shell strength) of both species, in which the alien mussel 101 

would take advantage of its better adaptation to the heterogeneous environment. Independent and mixed 102 
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co-habiting tests were carried out in two consecutive seasons and on different (soft and hard) substrates in 103 

order to cover both spatial and temporal components of inter-specific competition. 104 

 105 

 106 

MATERIALS AND METHODS 107 

Region and general approach 108 

Field survey was conducted at two sites of the inner Ría de Vigo (NW Spain; Figure 1) where X. securis is 109 

highly and exclusively present (Sampaio, SP) and co-habiting with M. galloprovincialis forming mixed 110 

balanced mussel beds (San Simón, SS). SP site represents a highly changing environment for salinity and 111 

water flow values that depend on the river influence and tidal regime (Babarro and Lassudrie 2011). By 112 

contrast, soft muddy bottoms characterise the intertidal coastline of the sheltered and shallow SS waters 113 

and these may at times cover hard substrates where mytilids settle. 114 

The competition ability of mytilids was assessed through a) mortality and growth estimates in the natural 115 

environment with mud transport influence, and b) the strength of both byssal attachment and shell which 116 

are indicative of energy investment into these protective tissues. A common mussel size of 23 mm ( ± 1.3) 117 

shell length was selected at the beginning of the experiments. The surface units were made up of 10 x 10 x 118 

0.5 cm slate tiles with 9 and 3 different treatments at SS and SP sites, respectively, one treatment per tile 119 

(Table 1). Slate represents a high-energy surface and is a good substrate for mussel attachment (Young 120 

1985; Babarro and Carrington 2011). Density of mussels per slate tile corresponded to 5, 10 and 20 121 

individuals of each species within independent mussel beds (tiles 1-6 at SS and 1-3 at SP sites; Table 1). 122 

For mixed mussel beds at SS site (tiles 7-9; Table 1), a total of 20 mussels were used on each tile to 123 

establish a mixed balance (10 M. galloprovincialis, Mg / 10 X. securis, Xs) or unbalance (5 Mg / 15 Xs and 124 

15 Mg / 5 Xs) rates (Table 1). Two hundred individuals of each species were collected in the field and 125 

transported to the laboratory. After cleaning the shell of any biofouling and removal of byssus from the 126 

ventral margin, individuals were allowed to establish primary attachment in the laboratory for 2 days prior 127 

to their transportation to experimental sites (see Babarro and Fernández Reiriz 2010 for details on animal 128 
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maintenance). Nylon netting (5 mm mesh size) was used to cover mussels, in order to allow seawater to 129 

flow in but prevent any initial predation by macro-invertebrates, especially when attachment was relatively 130 

weak. The netting was progressively cut and individuals were allowed to freely attach to slate tiles and 131 

move. Mussel death and disappearance from the slate tiles was likewise taken into account for mortality 132 

values. Slate tiles were deployed haphazardly in the mesolittoral zone of both sites at approximately 20% 133 

of aerial exposure. Three replicates were deployed at each site which gave a sum total of 36 quadrants (27 134 

in San Simón and 9 in Sampaio). The first experiment was carried out during autumn 2010 (September-135 

December). This experimental set-up was repeated in winter-spring 2011 (February-April) by including a 136 

new factor, i.e. substrate, with the aim of eliminating any mud deposition effect on the mussel beds by 137 

placing slate tiles on hard rocks. The animals were maintained in the field for 3 months in both cases.   138 

 139 

Growth and mortality rates 140 

Shell growth was reported by measuring shell length using Vernier callipers (precision ± 1 mm) at the 141 

beginning and end of the experiment. The initial mussel shell length (23 mm) allowed easy differentiation 142 

between experimental animals and new recruits. Animals were not marked and mussel growth was 143 

measured as the mean shell length value of all survivors on a single tile unit per replicate. As described 144 

above, mortality represented dead animals plus any individual that had disappeared from the tiles. Growth 145 

and mortality rates were obtained for both autumn and spring-winter experiments. 146 

 147 

Byssal attachment and shell compressive forces 148 

Before measuring the shell length of the survivors, a representative number of individuals were used for 149 

dislodgement and shell compressive force measurements (sub-samples). About a half (lowest density) to a 150 

fourth (highest density) of the mussel population on each slate tile was selected to that end. The attachment 151 

force of individuals on the substrate or to each other’s shells was measured by connecting the mussel to a 152 

spring scale (Digital Force Gauge DN431 with peak hold measurement, resolution of 0.01N). The spring 153 

scale was pulled perpendicular (normal) to the substrate until dislodgement occurred (Bell and Gosline 154 
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1997; Babarro and Carrington 2011). Care was taken to avoid disturbing neighbours when sampling one 155 

individual. Therefore, mussels that were immediately adjacent to those selected for dislodgement were not 156 

considered when they had interconnected byssus threads. Byssal attachment of mussels was measured in 157 

both autumn and spring-winter experiments. 158 

A group of five individuals from those selected for dislodgement measurements were also considered for 159 

shell compressive force analyses in the autumn 2010 experiment. The left valve was chosen for all 160 

compressive analyses. The compressive force required to crack the shell was measured using an universal 161 

testing machine, Instron 5566, with 1 kN load cell and at the rate of 2 mm s-1. Each specimen was placed 162 

horizontally with the shell edge on the plane surface. The compressive force was then applied with a 2 mm 163 

diameter steel tip placed on the curved surface at the highest point of an isolate dry single valve. Load-164 

displacement curves up to shell break point were obtained. Shell strength was calculated from the 165 

maximum force measured in the curves and was then normalized by the shell thickness measured using a 166 

micro-calliper (Mitutoyo 0-25 mm, ± 0.01mm, Made in Japan) at the point where the force was applied. 167 

Although such data do not provide an absolute value for compression strength of the shells, they can be 168 

used to compare the mechanical behaviour of the different shells. 169 

After removing the mussels from slate tiles, any mud accumulated was scraped and collected as a function 170 

of mussel density (independent test) and species dominance (mixed test). The sediment was dried 171 

separately to constant weight (60ºC, 48h). 172 

 173 

Statistical analysis 174 

The two-way ANOVA was used for the autumn experiment, in order to estimate the effects of species 175 

(fixed, two levels: X. securis and M. galloprovincialis) and density (fixed, three levels: n = 5, 10, 20 for 176 

independent tests) or co-habiting balance (fixed, three levels: Mg / Xs 5 / 10, 10 / 10 and 15 / 5 for mixed 177 

tests) on mortality, shell length growth, byssal attachment, shell thickness and compressive force of the 178 

mussels deployed for both independent and mixed beds, respectively. The two-way ANOVA was also 179 

performed to estimate the effects of site (fixed, two levels: San Simón and Sampaio) and density (fixed, 180 
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three levels: n = 5, 10, 20 for independent tests) between the previous response parameters for the alien X. 181 

securis and the autumn experiment. The latter results for the alien mussel at the two very distinct sites are 182 

presented in appendix 1.  183 

The three-way ANOVA was selected to test the effect of species (fixed, two levels: X. securis and M. 184 

galloprovincialis), substrate (fixed, two levels: mud and hard rocks) and density (fixed, three levels: n = 5, 185 

10, 20 for independent tests) or co-habiting balance (fixed, three levels: Mg / Xs 5 / 10, 10 / 10 and 15 / 5) 186 

on mortality, shell length growth and byssal attachment force of the mussels, respectively, and deployed 187 

either within independent or mixed mussel beds for the winter-spring experiment. Normality and 188 

homogeneity of variances were tested by Shapiro-Wilk´s W and Levene tests. Homogeneous groups were 189 

established a posteriori by using Tukey test. Whenever the analysis of variance assumption was violated, 190 

rank transformation to create data with a perfect fit to a uniform distribution was followed. All analyses 191 

were performed using the STATISTICA 7.0 software. 192 

 193 

 194 

RESULTS 195 

Mortality and shell growth rates: autumn 2010 196 

Variability of the mortality of mytilids deployed independently at San Simón was clearly dependent on the 197 

interaction term (species x density) which is on the basis for the significant effect of both species and 198 

density factors (Figure 2A; Table 2A). Mortality was higher for the alien X. securis in the species 199 

comparison and the highest value (50.0%) was obtained with the lowest density (Figure 2A). By contrast, 200 

mortality of M. galloprovincialis remained much lower regardless of density (0-2.5%; Figure 2A). Habitat 201 

comparison for the alien X. securis in the independent experiments showed that mortality was consistently 202 

lower in Sampaio at the mouth of the River and similarly to San Simón, high density caused greater 203 

mortality rates (Figure 2A; Appendix 1).  204 

Mortality was also higher for the alien mussel in the mixed beds deployed in San Simón but interestingly, 205 

its presence caused an increase in the mortality of the indigenous mussel with regard to independent tests 206 
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(Figure 2B). This is reflected in the significant incidence of species and co-habiting balance factors (Table 207 

2A) and indicates that mortality in the mixed population as a unit dropped significantly whenever there was 208 

abundance of the indigenous mussel (Figure 2B). 209 

 210 

Mud accumulation on slate tiles varied within a narrow range for the independent experiment in San 211 

Simón, regardless of the mytilid species present (Figure 2C). The only exception was reported for the 212 

lowest density of the alien mussel (Figure 2C). Habitat comparison for the alien X. securis showed that 213 

mud accumulated was much lower in the Sampaio samples regardless of density (Figure 2C). The mud 214 

content on the slate tiles within mixed beds represented also a narrow range for the different co-habiting 215 

balance rates between mytilids (Figure 2D). 216 

 217 

The shell length growth of mussels deployed independently at San Simón was significantly affected by the 218 

factor species which accounted for a 4-fold higher growth for the indigenous M. galloprovincialis (Figure 219 

2E; Table 2B). By contrast, no effect of density was reported (Table 2B) with mean values of 38.42 and 220 

9.34 µm day-1 for M. galloprovincialis and X. securis, respectively (Figure 2E). Habitat comparison for the 221 

alien X. securis showed that the shell growth rate was significantly greater in the San Simón (4-fold factor) 222 

than in the Sampaio samples (Figure 2E). Just as at the San Simón site, density did not cause any 223 

significant change in shell growth in the Sampaio samples (Figure 2E; Appendix 1).  224 

Surprisingly though, the shell growth of the indigenous M. galloprovincialis was also significantly higher 225 

within mixed beds and regardless of any population balance (Figure 2F; Table 2B). Despite any inter-226 

specific competition on mixed beds, the magnitude of differences between the species was similar than that 227 

reported for the independent tests. This result can be linked to mussel behaviour illustrated in Figures 3A-B 228 

for mixed experiments in which two differentiated layers were obtained at the end of the experiment, each 229 

corresponding to a different mytilid. The indigenous mussel climbed to the upper layers of the bed while 230 

the alien mussel was clearly smothered and obliged to attach underneath within the mud influence zone 231 

(Figure 3A). 232 
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 233 

Mortality and shell growth rates: winter-spring 2011  234 

Mussel mortality within independent tests varied slightly with species factor and more significantly within 235 

substrates comparison (Figure 4A; Table 3A). The alien X. securis presented higher mortality rates as 236 

compared to M. galloprovincialis when deployed on hard rocks (Figure 4A). However, mortality increased 237 

significantly for both species on soft bottoms (Figure 4A).  238 

In like manner, mussel mortality on mixed beds varied significantly with species and substrate factors 239 

(Figure 4B; Table 3A). Significance of interaction terms for co-habiting experiments (Table 3A) indicated 240 

that survival of both mytilids benefited again from fixation on hard rocks although the alien mussel still 241 

showed higher mortality whenever its balance rate was observed to be favourable (5 / 15 Mg / Xs; Figure 242 

4B). The winter-spring experiment confirmed the differentiation in two layers within mixed beds as 243 

presented in Figures 3A-B and regardless of substrate used which indicated the great ability of the 244 

indigenous mussel to climb upwards to the top layers not only to escape the mud influence but also to 245 

smother the alien mussel. 246 

 247 

The mud accumulated on slate tiles deployed independently varied inversely with the density of individuals 248 

(Figure 4C). Moreover, mud content accumulated in the winter-spring experiment was much higher than in 249 

the autumn experiment, especially at low densities (Figures 2C, 4C). Mud content on the slate tiles used for 250 

the mixed co-habiting populations varied within a narrow range (Figure 4D). 251 

 252 

The shell growth of mussels sampled within the independent series varied significantly with all fixed 253 

factors such as species, density and substrate (Figure 4E; Table 3B). Significance of the density interacting 254 

with species and substrate factors (Table 3B) was, at least partially, linked to mud content (Figures 4C, 4E). 255 

Growth of M. galloprovincialis on soft bottoms was highest when animals were deployed at the highest 256 

density and occupied most of the substrate area, which coincided with the lowest mud accumulation. Such 257 

benefit of a higher occupation area was not observed when animals were deployed on hard substrates away 258 
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from the mud effect (Figure 4E). The growth rate of the alien X. securis did not respond to different mud 259 

accumulation patterns but also increased when deployed on hard rocks (Figure 4E). As general pattern, 260 

shell growth was much higher for the indigenous M. galloprovincialis in the species comparison and on 261 

hard rocks for substrate comparison (Figure 4E). With regard to the mixed co-habiting experiment, the 262 

highest growth rates were also reported for M. galloprovincialis (species comparison) and hard rocks 263 

(substrate comparison) (Figure 4F; Table 3B). Differences encountered by the co-habiting balance (Table 264 

3B) corresponded to a drop in growth rate of the alien X. securis when its abundance on the mixed bed was 265 

lower (15 / 5; Figure 4F). 266 

 267 

Byssal attachment and shell compressive forces: autumn 2010 268 

Both mytilids exhibited similar byssal attachment force in the independent experiments with the only 269 

exception of the lowest density deployed for the indigenous mussels whose force value increased 270 

significantly (Figure 5A). The latter value meant that the significance of the species factor would depend 271 

on density as illustrated by the interaction term (Table 4A). Habitat comparison for the alien X. securis 272 

showed no differences for byssal attachment force between sites, regardless of mussel density (Figure 5A; 273 

Appendix 1). 274 

With regard to mixed mussel beds, the indigenous mussel showed greater attachment force regardless of 275 

the co-habiting balance (Figure 5B; Table 4A). Strength of attachment for the mixed population as a unit 276 

dropped with abundance of the indigenous mussel (Figure 5B; Table 4A). 277 

 278 

The indigenous mussel M. galloprovincialis secreted 15% thicker and stronger shells than the alien X. 279 

securis deployed independently in San Simón and regardless of the density (Figures 5C, 5E; Tables 4B, 280 

4C). Habitat comparison for the alien X. securis showed no significant differences for shell compressive 281 

force values despite the slightly thinner shells secreted by this species at the Sampaio site and regardless of 282 

density values (Figures 5C, 5E) (Appendix 1). 283 
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Magnitudes of differences in shell thickness and strength between mytilids were even higher for the mixed 284 

beds (Figures 5D, 5F) although incidence of the species factor with higher values for the indigenous mussel 285 

depended on the co-habiting density, i.e. equally balanced and more abundant rates for the latter mytilid 286 

(see interaction terms; Tables 4B, 4C). 287 

 288 

The shell compressive forces standardized by shell thickness showed no differences between species and 289 

densities for the independent experiment (Figure 6A). Habitat comparison for the alien X. securis likewise 290 

did not report any difference between sites and densities (Figure 6A).  291 

By contrast, standardized compressive forces of the shell were significantly higher for the indigenous 292 

mussel when deployed on mixed beds, especially for the equal (10 / 10 Mg / Xs) and favourable (15 / 5 Mg 293 

/ Xs) balance rates with values ranging between 156.4-157.1 and 89.9-117.1 N mm-1 for the indigenous and 294 

alien mussels, respectively (Figure 6B; Appendix 1 for statistical analysis). 295 

 296 

Byssal attachment force: winter-spring 2011 297 

The byssal attachment force of mytilids varied significantly with the factors species, density and substrate 298 

(Figure 7A; Table 5). Strength of attachment was the highest in M. galloprovincialis for species 299 

comparison and on hard rocks for comparison between substrates (Figure 7A). The significant effect of 300 

density (as independent and interaction terms; Table 5) in the statistical model was a consequence of the 301 

highest attachment strength recorded for M. galloprovincialis on soft bottoms with highest density (Figure 302 

7A) whereas values for the alien mussel remained unchanged for different densities. The attachment force 303 

of both mussel species deployed on hard rocks remained unchanged over densities although values were 304 

higher for the indigenous mussel (17.7-17.9 N) as compared to the alien mussel (9.5-12.1 N) (Figure 7A). 305 

The attachment force variability of mussels inhabiting mixed beds was significantly affected by species and 306 

substrate but not by the co-habiting balance (Figure 7B; Table 5). The attachment values of the indigenous 307 

mussel increased from a range of 10.6-16.6 N when deployed on muddy bottoms up to values of 17.4-20.5 308 
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N on hard rocks (Figure 7B). By contrast, the alien mussel attached with similar strength values regardless 309 

of substrate but constantly weaker when compared to the indigenous mussel (Figure 7B). 310 

 311 

 312 

DISCUSSION 313 

Successful invasions of bivalve species may be regulated by the competitive ability of the introduced 314 

species into the new habitat (Shinen and Morgan 2009; Caro et al. 2011). Nevertheless, co-existence of the 315 

two mytilids investigated here as well as prevention of competitive exclusion may occur as consequence of 316 

the relatively calm environment i.e. moderate disturbance levels for water hydrodynamics (Erlandsson et al. 317 

2006). Deployment of both mytilids on space-limiting mussel beds revealed that the indigenous mussel 318 

Mytilus galloprovincialis was an extraordinary competitor and dominant species over the alien Xenostrobus 319 

securis. Firstly, the alien mussel showed much higher mortality rates within independent and mixed 320 

populations (Figures 2A, 2B). Secondly, the indigenous survivors exhibited greater growth (4-fold higher) 321 

when deployed independently regardless of density (Figure 2E) and more surprisingly, similar growth 322 

differences were reported in the mixed experiments, also regardless of population balance rates (Figure 2F).  323 

Reduced growth and high mortality rates represent two basic consequences of competition (Fréchette et al. 324 

2005). Inter-specific competition within mixed beds significantly increased mortality of both mytilids 325 

although in a higher magnitude for the alien X. securis (autumn experiment). Despite high mortality of the 326 

independently deployed X. securis coincided with the highest mud accumulation (and lowest density), 327 

mortality within mixed beds cannot be accounted for by mud only but rather due to the physical 328 

competition for space. Such competition made possible that growth of the indigenous survivors was 329 

consistently higher for independent and mixed beds. 330 

These responses of both mytilids highly depended on behavioural patterns. Most mussels deployed within 331 

independent experiments maintained their positions (primarily attached to the substrate) while few others 332 

(mainly of the indigenous species) were found to attach on shells of other individuals (pers. obs. JMFB). 333 

Interestingly, a clear gradient between distinct layers occupied by both mytilids was observed within mixed 334 
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beds (Figure 3). The alien X. securis was clearly smothered and restricted to the mud influence area 335 

whereas M. galloprovincialis migrated and colonised the upper sites with better access to cleaner seawater. 336 

Therefore, the native M. galloprovincialis interacted with the alien X. securis primarily through physical 337 

interference competition (see also Fréchette et al. 1992; Alunno-Bruscia et al. 2001) because of its higher 338 

ability to move and occupy more advantageous positions outside any mud influence. Other surveys in 339 

which M. galloprovincialis was an invader also illustrated such potential for aggregation and restriction the 340 

mobility of other species e.g. Mytilus californianus (Shinen and Morgan 2009). In earlier studies, Paine and 341 

Levin (1981) showed how adult mussels can move short distances to establish a dynamic mussel bed 342 

structure with constant rearrangement of individuals, which led to significant changes in mortality 343 

(Schneider et al. 2005). Consequently, M. galloprovincialis as epibenthic mytilid was more vulnerable to 344 

the action of mud and escaped from the bottom layer aided by its extensible (and larger) byssus (Brazee 345 

and Carrington 2006; Babarro and Carrington 2011) and mobility patterns (Shinen and Morgan 2009; 346 

present study). In one hand, mud accumulation may exert a great influence on the competitive dynamics 347 

between mytilids (Zardi et al. 2008; Rius and McQuaid 2006) and this is clearly reflected in the higher 348 

mortality rates of M. galloprovincialis after the winter-spring experiment with regard to autumn most likely 349 

linked to higher mud accumulation on experimental substrates (Figures 4C, 2C). On the other hand, such 350 

ability of the indigenous mussel to migrate helped by its byssus features would represent a great advantage 351 

especially in calmer waters of the present survey in which the hydrodynamic load suffered on top of the 352 

mussel patches would not be excessive (Babarro and Carrington 2011). 353 

With regard to byssus secretion, the native mussel possesses larger and much thicker (and stronger) 354 

filaments than the alien mussel (Babarro and Lassudrie 2011) and this would permit such performance on 355 

mixed mussel beds. Shorter byssus would oblige the alien mussel to be attached near the bottom where the 356 

mud influence is greater and could occasionally block its valve gaping and thus interfere with particle 357 

acquisition (Cheung and Shin (2005) and gas exchange. The latter scenario may include anoxic events with 358 

negative consequences for survival. In case the amount of mud becomes significant, the radial byssus 359 

disposition adopted by M. galloprovincialis (pers. obs. JMFB; see also Brazee and Carrington 2006) and its 360 
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larger foot organ (Babarro and Lassudrie 2011) may be crucial to partially remove any accumulated mud 361 

for survival purposes (see Figure 2A and 2C for zero mortality of the indigenous mussel at lower density 362 

linked to much lower mud accumulation). By contrast, the alien mussel has shown great ability to secreted 363 

huge amount of extremely thin byssus filaments (up to thousand; Babarro and Lassudrie 2011) which may 364 

favour better attachment on soft bottoms through many anchorage points.  365 

 366 

As a general pattern, Mytilus galloprovincialis secreted thicker and stronger shells as well as byssus 367 

filaments especially within mixed experiments (Figures 5A-F). Better access to natural resources by being 368 

at the top of mussel beds and other species-specific features like greater filtration capacity (unpublished 369 

results) would permit to allocate more energy to these protective structures, providing better arguments for 370 

the indigenous mussel to withstand biotic and abiotic stress and show competitive dominance. Surprisingly, 371 

standardized shell compressive force (by shell thickness) showed no differences between species for the 372 

independent tests but were significantly higher for the indigenous mussels on mixed mussel beds which 373 

indicated that shell thickness alone does not explain strength differences (i.e. energy allocation patterns 374 

from available resources). Veiga et al. (2011) observed that M. galloprovincialis is greatly consumed by C. 375 

maenas because of its shorter handling and breaking time values as compared to X. securis which in turn 376 

might facilitate the invasion of the alien. Our results do not support such hypothesis although other factors 377 

like shell morphology especially on the ventral side and umbones curves for predator’s access (Veiga et al. 378 

2011) could have played a role. Veiga and co-workers carried out their survey in controlled-laboratory 379 

conditions and results may vary significantly in the field where mussels form dense conglomerates firmly 380 

attached to the substratum and other congeners with less space available for predator attack. Differences 381 

between laboratory and field results on other related eco-physiological responses such as attachment 382 

strength of both mytilids were recently highlighted (Babarro and Lassudrie 2011) based on the relatively 383 

short and long-term exposure of the mussels, respectively. 384 

 385 
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Performance of the alien mussel at two very different sites showed that mortality was consistently lower at 386 

the mouth of the river although growth rate of survivors was observed to decrease here as compared to San 387 

Simón (Figure 2A, 2E). By contrast, no differences were obtained for the byssal attachment and shell 388 

compressive forces despite slightly thinner shells obtained in the mouth of the river samples which 389 

represent a rather constant energy investment in protective tissues regardless of environment. The alien X. 390 

securis established densely aggregated assemblages at the river site and most likely benefitted by the lower 391 

presence of predators in this highly variable habitat (Babarro and Lassudrie 2011) and by the lower mud 392 

content. On the other hand, the alien mytilid would have allocated more energy to shell growth when 393 

deployed in the inner Ría site (SS) because of the higher availability of resources in terms of total seston 394 

and specially other particulate material fraction of marine origin (Babarro and Carrington 2011). 395 

 396 

Competition patterns between species can vary over space and time and consequently, dominance features 397 

of one species over the other cannot be fixed (Rius and McQuaid 2006). When mussel responses were 398 

extended to another season and new substrate, the differences between species were even larger which 399 

ensured M. galloprovincialis as the dominant species regardless of any population balance rate and 400 

substrate. Surprisingly, despite its infaunal lifestyle, the alien X. securis was also able to extract a clear 401 

benefit (in terms of survival and growth), from the absence of mud on slate tiles which highlights the 402 

negative impact of mud accumulation on population dynamics. 403 

Although theory predicts that a successful invader must have some advantageous features over indigenous 404 

species, at least over particular time or space scales (Shea and Chesson 2002), the alien mussel X. securis 405 

did not perform better than the native M. galloprovincialis in any parameter tested for different seasons and 406 

substrates. Nevertheless, aspects like fecundity, re-colonisation rates, early recruitment, good dispersal 407 

ability and large genetic variations (Erlandsson et al. 2006) may help to complete the actual invasive 408 

potential towards other areas. Given the fact that the distribution of mytilids along the sheltered waters of 409 

the inner Ría coastline does not follow any clear vertical segregation, factors like tidal movements, salinity 410 

and predation pressure would play a significant role for the expansion of the alien species in the near 411 
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future. The much lower biotic pressure and extreme salinity variation at the mouth of the river would create 412 

optimal conditions for the great prevalence of the alien, outside the native mussel influence area. The larval 413 

dispersal of the alien mytilid might potentially reach other areas of the Ría according to the currents regime 414 

persistent that exchange surface waters between the inner and outer areas (Álvarez Salgado et al. 2000), 415 

even though eggs of the alien might be successfully fertilised in salinities within the range of 8-17.5 ppt 416 

(Santaclara et al. 2007). If larval dispersal patterns of the alien mytilid expand far from the highly variable 417 

inner Ría, X. securis would suffer physical interference by the indigenous mussel even at higher 418 

magnitudes than shown here. The displacement of the native species will not take place just by aggression 419 

of the alien X. securis but rather as a consequence of its worse performance on a large-scale mud influence 420 

and extreme salinity exposure that would limit the performance of the indigenous mussel. 421 

 422 
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Table 1. Experimental design (number of mussels per treatment) followed to study competition 
patterns between both mytilids Mytilus galloprovincialis and Xenostrobus securis.   

  
Slate tile unit: 100 cm2 

         

  A. San Simón (SS) SS 1 SS 2 SS 3 SS 4 SS 5 SS 6 SS 7 SS 8 SS 9   
                        
                        
  Mytilus galloprovincialis (number) 5 10 20 --- --- --- 5 10 15   
                        
  Xenostrobus securis (number) --- --- --- 5 10 20 15 10 5   
                        
  

  
  

  
  
                     

  B. Sampaio (SP) SP 1 SP 2 SP 3               
                        
                        
  Mytilus galloprovincialis (number) --- --- ---               

                        

  Xenostrobus securis (number) 5 10 20               
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Table 2. Two-way ANOVA of the mean mortality and shell length growth rates of the mussels as a function  
of species (fixed: sp M. galloprovincialis and X. securis) and density (fixed: n 5, 10, 20 for independent experiment  
or 5 / 15, 10 / 10 and 15 / 5 Mg / Xs for mixed co-habiting experiments). Autumn 2010. 

 
  

              

  A. Mortality (%)           
Independent experiment Factor df MS F p   

  sp 1 27.2321 118.4752 <0.001   
  n 2 3.1866 13.8635 <0.001   
  sp x n 2 2.0377 8.8652       <0.01   
  Error 12 0.2299       
              

Co-habiting experiment Factor df MS F p   
  co-habiting (n) 2 2.6106 10.9013       <0.01   
  sp 1 5.0469 21.0747 <0.001   
  co-habiting (n) x sp 2 0.4480 1.8708   0.196   
  Error 12 0.2395       
              

  B. Shell growth (µm day-1)         
Independent experiment Factor df MS F p   

  sp 1 9.1784 89.5570 <0.001   
  n 2 0.3581 3.4950   0.064   

  sp x n 2 0.0166 0.1620   0.853   

  Error 11 0.1025       
              

Co-habiting experiment Factor df MS F p   
  co-habiting (n) 2 0.7550 3.0352  0.089   
  sp 1 10.7308 43.1368       <0.001   
  co-habiting (n) x sp 2 0.2344 0.9422   0.419   
  Error 11 0.2488       
              

              
 576 

 577 

 578 

 579 

 580 



 25 

 581 
Table 3. Three-way ANOVA of the mean mortality and shell length growth rate of the mussels as a function of species (fixed: sp M. 
galloprovincialis and X. securis), density (fixed: n 5, 10, 20 for independent experiment or 5 / 15, 10 / 10 and 15 / 5 Mg / Xs for mixed co-habiting 
experiments) and substrate (fixed: su mud and hard rock). Winter-spring 2011   

 
    

                          

  A.Mortality (%)           B. Shell growth (µm day-1)       
Independent experiment Factor df MS F p   Factor df MS F p   
  sp 1 12.1961 5.9192 <0.05   sp 1 7.9929 256.2024 <0.001   
  n 2 5.1036 2.4769   0.105   n 2 0.2302 7.3808 <0.01   
  su 1 21.7075 10.5353 <0.01   su 1 2.4127 77.3321 <0.001   
  sp x n 2 0.9617 0.4667   0.633   sp x n 2 0.3427 10.9800 <0.001   
  sp x su 1 0.0003 0.0001   0.991   sp x su 1 0.0125 0.4014   0.533   
  n x su 2 2.4615 1.1947   0.320   n x su 2 0.4722 15.1342 <0.001   
  sp x n x su 2 1.4833 0.7199   0.497   sp x n x su 2 0.1701 5.4510 <0.05   
  Error 24 2.0605       Error 24 0.0312       
                          
Co-habiting experiment Factor df MS F p   Factor df MS F p   
  sp 1 3.153 12.2095 <0.01   sp 1 21.6943 308.5390 <0.001   

  Co-habiting (n) 2 0.9796 3.3082   0.054   Co-habiting (n) 2 0.3415 4.8570 <0.05   
  su 1 51.9631 175.4904 <0.001   su 1 5.1268 72.9140 <0.001   
  sp x n 2 0.4256 1.4374   0.257   sp x n 2 0.2537 3.6080 <0.05   
  sp x su 1 0.1299 0.4387   0.514   sp x su 1 0.2373 3.3750   0.079   

  n x su 2 4.1539 14.0286 <0.001   n x su 2 0.0503 0.7150   0.499   

  sp x n x su 2 4.7260 15.9608 <0.001   sp x n x su 2 0.0196 0.2790   0.759   
  Error 24 0.2961       Error 24 0.0703       
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Table 4. Two-way ANOVA of the byssal attachment force, shell thickness and shell compressive force of the mussels  
as a function of species (fixed: sp M. galloprovincialis and X. securis) and density (fixed: n 5, 10, 20 for independent 
experiment or 5 / 15, 10 / 10 and 15 / 5 Mg / Xs for mixed co-habiting experiments). Autumn 2010 

              
  A. Byssal attachment (N)         

Independent experiment Factor df MS F p   
  sp 1 0.8752 6.3040   <0.05   
  n 2 0.1023 0.7370   0.483   
  sp x n 2 0.7389 5.3220   <0.01   
  Error 59 0.1388       
              

Co-habiting experiment Factor df MS F p   
  co-habiting (n) 2 0.6177 3.5150     <0.05   
  sp 1 7.1651 40.6760   <0.001   
  co-habiting (n) x sp 2 0.4521 2.5720     0.084   
  Error 67 0.1758       
              

  B. Shell thickness (mm)         
Independent experiment Factor df MS F p   

  sp 1 0.1888 5.7386    <0.05   
  n 2 0.0009 0.0267    0.974   
  sp x n 2 0.0068 0.2062    0.815   

  Error 22 0.0329       
              

Co-habiting experiment Factor df MS F p   
  co-habiting (n) 2 0.0068 0.2746   0.763   
  sp 1 0.1097 4.4039   <0.05   
  co-habiting (n) x sp 2 0.1515 6.0813   <0.01   
  Error 21 0.0249       
              

  C. Shell compressive force (N)         
Independent experiment Factor df MS F p   

  sp 1 0.3998 4.4004   <0.05   
  n 2 0.0125 0.1378  0.872   
  sp x n 2 0.0217 0.2391  0.789   
  Error 21 0.0909       
              

Co-habiting experiment Factor df MS F p   
  co-habiting (n) 2 0.0349 0.3150     0.733   
  sp 1 0.9888 8.9307 <0.01   
  co-habiting (n) x sp 2 0.7095 6.4083 <0.01   
  Error 21 0.1107       
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Table 5. Three-way ANOVA of the byssal attachment force established by the mussels as a function of species 
(fixed: sp M. galloprovincialis and X. securis), density (fixed: n 5, 10, 20 for independent experiment or 5 / 15, 10 
/ 10 and 15 / 5 Mg / Xs for mixed co-habiting experiments) and substrate (fixed: su mud and hard rock). Winter-
spring 2011 

              
  Byssal attachment (N)         

Independent experiment Factor df MS F p   
  sp 1 3.2038 20.7431 <0.001   
  n 2 0.6123 3.9643   <0.05   
  su 1 5.1931 33.6220 <0.001   
  sp x n 2 0.6993 4.5282   <0.05   
  sp x su 1 0.5245 3.3961    0.068   

  n x su 2 0.1882 1.2194    0.300   
  sp x n x su 2 1.2558 8.1312  <0.001   
  Error 103 0.1545       
              

Co-habiting experiment  Factor df MS F p   
  sp 1 8.4211 43.2712  <0.001   

  Co-habiting (n) 2 0.0181 0.0931 0.911   
  su 1 2.0512 10.5407  <0.01   
  sp x n 2 0.4160 2.1372  0.123   

  sp x su 1 0.5774 2.9670  0.088   

  n x su 2 0.5154 2.6482  0.076   

  sp x n x su 2 0.2833 1.4564  0.238   
  Error 103 0.1946       
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 602 

 603 

Legend of Figures 604 

Figure 1. Experimental sites at the inner Ría de Vigo (NW Spain). San Simón (SS) and Sampaio (SP) 605 

represent the inner sheltered site and the mouth of River Oitavén-Verdugo flowing into the Ría, 606 

respectively. 607 

 Figure 2. Autumn. Mean mortality rates (%), mud content (g) and shell length growth rate (µm day-1) 608 

values of the mussels deployed in independent (A,C,E) and mixed co-habiting (B,D,F) beds as function of 609 

density and population balance at San Simón. Values obtained in the independent tests with the alien 610 

Xenostrobus securis deployed at Sampaio are also shown for site comparison (A,C,E). Numbers 5 / 15, 10 611 

/ 10 and 15 / 5 refer to the balance rates between both mytilids Mytilus galloprovincialis / Xenostrobus 612 

securis in the mixed mussel beds at San Simón. nd: not detected.  613 

Figure 3. Autumn. Mussel bed disposition observed at the end of the experimental time illustrating the 614 

two layers differentiation after interaction of mytilids. The indigenous Mytilus galloprovincialis colonised 615 

top layers of the mixed beds smothering the alien Xenostrobus securis underneath and restricting the latter 616 

species in the mud influence layer (A) or simply colonising top layers on hard rocks (B). 617 

Figure 4. Winter-spring. Mean mortality rates (%), mud content (g) and shell length growth rate (µm day-618 
1) values of the mussels deployed in independent (A,C,E) and mixed co-habiting (B,D,F) beds as function 619 

of density, population balance and type of substrate. For other specificities, see legend of Figure 2. 620 

Figure 5. Autumn. Byssal attachment force (N), shell thickness (mm) and shell compressive force (N) 621 

values of the mussels deployed in independent (A,C,E) and mixed co-habiting (B,D,F) mussel beds as 622 

function of density and population balance at San Simón. Values obtained in the independent tests with 623 

the alien Xenostrobus securis deployed at Sampaio are also shown for site comparison (A,C,E). For other 624 

specificities, see legend of Figure 2. 625 

Figure 6. Autumn. Standardized shell compressive force (N mm-1) values of the mussels deployed in 626 

independent (A) and mixed co-habiting (B) mussel beds as function of density and population balance at 627 

San Simón. Values obtained in the independent tests with the alien Xenostrobus securis deployed at 628 

Sampaio are also shown for site comparison (A). For other specificities, see legend of Figure 2. 629 

Figure 7. Winter-spring. Byssal attachment force (N) of the mussels deployed in independent (A) and 630 

mixed co-habiting (B) mussel beds as a function of density, population balance and type of substrate. 631 
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Figure 3 716 
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Figure 4 725 
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Figure 6 773 
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Appendix 1.

function of site (fixed: San Simón and Sampaio) and density (fixed: n 5, 10, 20) for the independent experiments. Standardized shell compressive force variability was analysed

Mortality (%)
Independent experiment Factor df MS F p

site 1 0.2395 9.2261 <0.05
n 2 0.1567 6.0366 <0.05

site x n 2 0.0680 2.6211      0.1136
Error 12 0.0259

Shell growth (µm day-1)
Independent experiment Factor df MS F p

site 1 3.0396 50.7355 <0.001
n 2 0.0983 1.6408    0.2345

site x n 2 0.1886 3.1490    0.0795
Error 12 0.0599

                                 Byssal attachment (N)
Independent experiment Factor df MS F p

site 1 0.0006 0.0189 0.8910
n 2 0.0864 2.8095 0.0673

site x n 2 0.0069 0.2257 0.7892
Error 67 0.0308

Shell thickness (mm)
Independent experiment Factor df MS F p

site 1 0.1552 5.1994 <0.05 
n 2 0.0008 0.0268     0.9736

site x n 2 0.0140 0.4695     0.6317
Error 21 0.0299

Shell compressive force (N)
Independent experiment Factor df MS F p

sp 1 0.0380 1.1628 0.2931
n 2 0.0250 0.7649 0.4779

sp x n 2 0.0152 0.4657 0.6340
Error 21 0.0327

Standardized shell compressive force (N mm-1)
Co-habiting experiment Factor df MS F p

co-habiting (n) 2 0.0229 1.5332       0.2399
sp 1 0.0905 6.0702   <0.05 

co-habiting (n) x sp 2 0.0352 2.3592       0.1191
Error 21 0.0149

as a function of species (fixed: M. galloprovincialis and X. securis ) and co-habiting number (fixed: 5/15, 10/10 and 15/5 for Mg/Xs) for the mixed experiments. Autumn 2010

Two-way ANOVA of the mean mortality, shell length growth, byssal attachment, shell thickness and shell compressive force of the mussel Xenostrobus securis as a
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