1 Molecular evolution and phylogeography of *Potato virus* Y

2 based on the CP gene

José M. Cuevas^{1*}, Agnès Delaunay^{2**}, Matevz Rupar³, Emmanuel Jacquot^{2**},
Santiago F. Elena^{1,4}

¹ Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de
Investigaciones Científicas-Universidad Politécnica de Valencia, València,
Spain.

8 ² INRA-Agrocampus Ouest-Université Rennes 1, UMR1099 BiO3P (Biology of

9 Organisms and Populations Applied to Plant Protection), Le Rheu, France.

³ NIB, Department of Biotechnology and Systems Biology, Vecna pot 111, SI1000 Ljubljana, Slovenia.

⁴ The Santa Fe Institute, Santa Fe NM, United States of America.

13

*Corresponding author: José M. Cuevas, Instituto de Biología Molecular y
Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV,
Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022 València, Spain. Phone:
34 963 877 895, FAX: 34 963 877 859, e-mail: cuevast@uv.es.

¹⁸ **: present address: INRA-CIRAD-Supagro, UMR385 BGPI (Biology and Genetic

19 of Plant-Pathogen Interactions), Montpellier, France

20 Running title: PVY CP molecular evolution

21 2590 words in the main text, 146 words in the summary, 3 main tables, 622 supplementary tables and 1 supplementary figure.

23 KEYWORDS: RNA virus, genetic variability, positive selection, covariation,24 virus evolution.

Footnote page: The authors do not have a commercial or any other associationthat might pose a conflict of interest.

1 Summary

Potato virus Y (PVY) is an important plant pathogen with a wide host range that 2 includes, among others, potato, tobacco, tomato, and pepper. The coat protein 3 (CP) of PVY has been commonly used in phylogenetic studies for strain 4 classification. In this study, we used a pool of 292 CP sequences from isolates 5 collected worldwide. After detecting and removing recombinant sequences, we 6 applied Bayesian techniques to study the influence of geography and host 7 8 species in CP population structure and dynamics. Finally, we performed 9 selection and covariation analyses to identify specific amino acids involved in adaptation. Our results show that PVY CP diversification is significantly 10 accounted for by both geographic and host-driven adaptations. Amino acid 11 positions detected as positively selected concentrate in the N-terminal region of 12 13 the protein. Some of these selected positions may discriminate among strains, and to a much lesser extent, between potato and non-potato isolates. 14 15

Potato potyvirus Y (PVY) is responsible for serious diseases in potato, tobacco,
pepper, and tomato crops. PVY was originally classified into strain groups
(e.g., PVY^N, PVY^O and PVY^C) according to biological properties, serological
characteristics and/or genome sequences (Moury *et al.*, 2002; Singh *et al.*, 2008).
Recombination is highly pervasive in PVY and additional genomic
organizations have been recently described (Lorenzen *et al.*, 2008; Schubert *et al.*,
2007).

Molecular evolution studies are useful tools to shed light on the molecular 8 bases of virus geographical spread and adaptation to new hosts and for 9 designing better epidemics control strategies (Elena et al., 2011; Jones, 2009). We 10 recently studied the phylogeography and molecular evolution of PVY whole-11 genomes (Cuevas et al., 2012), showing that host and geographic origin 12 influenced PVY diversification, and detecting positively selected sites. Here we 13 14 revisit these topics but focusing on the CP. Novelties of this study are: i) a 15 much larger data set is available for the CP, which is expected to allow a more 16 robust characterization of phylogenetic and selection patterns, ii) the CP plays 17 an important role in host adaptation for many plant viruses, and iii) the CP is the most diverse and well-studied gene in PVY and other potyviruses (Moury & 18 19 Simon, 2011; Ogawa et al., 2008; Rohozkova & Navratil, 2011; Visser & Bellstedt, 2009). 20

A detailed description of the methods employed in this study can be found 21 elsewhere (e.g., Cuevas et al., 2012). For this study, we retrieved 198 PVY CP 22 sequences from GeneBank, plus 94 additional sequences from worldwide 23 24 isolates (PVYwide Organization, http://www.inra.fr/pvy_organization) (Table S1). This dataset was aligned with MUSCLE (Edgar, 2004) as implemented in 25 MEGA 5 (Tamura et al., 2011). We run recombination analyses to remove its 26 effect from subsequent analyses. Bayesian Markov chain Monte Carlo (MCMC) 27 coalescent analyses were performed with non-recombinant isolates to study the 28 effect of local adaptation and host species in the observed diversity. Finally, we 29 30 performed selection analyses to identify regions from the CP cistron that may be more likely involved in PVY adaptation dynamics. 31

Seventy-five out of the 292 isolates (Table S1) showed a breakpoint indicating 1 ancestral recombination between PVYN and PVYO strains at position 9170 2 (considering the full genome) in the CP (Schubert et al., 2007) and worldwide 3 distributed. Five other isolates showed uncommon breakpoints detected by at 4 least three of the methods implemented in RDP3 (Martin et al., 2010). N Nysa 5 isolate showed a newly described breakpoint at position 8896 (Cuevas et al., 6 2012). IAC and v951204-N isolates showed a breakpoint at position 8735 (being 7 Mont and SASA-110 the major and minor parents, respectively), almost 8 coincident with other previously described breakpoints (Moury et al., 2002). 9 10 Finally, S-RB96 and NN-UK-N isolates showed a new recombination point at position 8947 (SASA-110 and Mont are the major and minor parents, 11 respectively). All recombinants were excluded, reducing the dataset to 212 12 isolates. 13

Phylogenetic analyses were performed using the GTR + Γ_4 + I substitution 14 model in the Bayesian MCMC framework, as implemented in BEAST 1.6 15 16 (Drummond & Rambaut, 2007). Substitution rates were estimated using the relaxed uncorrelated exponential clock model. The three typical PVY strain 17 groups (PVY^C, PVY^O and PVY^N) could be observed (Figure S1), although the 18 differentiation between PVY^C and PVY^O strains was poorly supported. Chile3 19 occupies a basal position in the tree, outside any of the strain groups, 20 supporting its ancestry (Moury, 2010). Within the PVY^C clade, 17 out of 22 21 isolates were collected from five different non-potato hosts. However, host 22 species did not account for clustering within this clade, since most of the 23 isolates from a given host were dispersed along the clade or closely grouped 24 with isolates from other hosts. Only isolates PVY-MN and NC57 (from tobacco) 25 formed a differentiated cluster, as previously observed (Kehoe & Jones, 2011; 26 Mascia et al., 2010). PVY^C clade has been subdivided into PVY^{C1} and PVY^{C2} 27 subgroups depending on their ability to infect pepper (Blanco-Urgoiti et al., 28 1998). In our phylogenetic tree, only isolates PVY-C-CM and Adgen-C were of 29 pathotype PVY^{C2}, forming a differentiated cluster. Isolate CAA82 collected 30 from pepper, grouped outside the PVY^{C1} subgroup. More isolates from 31 subgroup PVY^{C2} are thus necessary to check the relative distance of isolate 32

CAA82 to those from non-pepper subgroup PVY^{C2}. Most isolates in our data 1 set belong to PVY^O. The globally low branch supports suggests a very 2 genetically homogeneous group, compatible with a recent origin with minimal 3 selection (Pagán et al., 2006; Roossinck et al., 1999). In fact, well-supported 4 clusters within the PVY^O clade included isolates with common geographic 5 origins. Finally, a similar trend was observed in the PVY^N clade, although 6 internal branches close to the basis of the tree were usually well supported, thus 7 differentiating several monophyletic clusters. Our study supports the 8 classification proposed by Ogawa et al. (2008) into two PVY^N main groups (i.e., 9 N-Europe and N-North America). Some well-supported clusters were observed 10 into each PVY^N group, although this differentiation was not strictly associated 11 with geographic origin. 12

A visual inspection of the maximum clade credibility (MCC) phylogeny did not 13 14 show a clear structure in terms of geographic origin at the continent level (Figure S1 and Table S1). For commercial and geographical reasons, North 15 16 African and Middle East isolates were included into the European group. For 17 the same reason, the only isolate from New Zealand was not included into any continental group. We used BATS 1.0b2 (Parker et al., 2008) to calculate three 18 19 statistics (AI: association index, PS: parsimony score and MC: maximum monophyletic clade size) describing the correlation between the geographic and 20 the phylogenetic relationships. Significant signatures for geographic structure 21 in the diversity of CP cistron were observed when grouped by geographic 22 origins (Table 1), as shown by the significant AI and PS values. 23 Asian, 24 European, South African, and North American groups showed differentiated subpopulations (significant MC values). South American group did not show a 25 significant association, which is accounted for by the small sample size, and no 26 inference was possible for the single New Zealand isolate. 27

Host-driven adaptation could also be tested using host as grouping variable, and a significant signature was also observed (Table 1). In this case, the differentiation was due to three subpopulations of isolates derived from potato, tobacco and pepper. For tomato and black nightshade no significant association was detected, whereas no inference was possible for single isolates from ají and

tamarillo. Since most of the samples in our data set are potato isolates, the 1 significance of AI and PS values could be a consequence of the global 2 distribution of the same state across most of the branches in the tree (Parker et 3 al., 2008). However, host structure explained quite well the phylogeny, since 4 clade PVY^C predominantly included non-potato isolates (17 out of 22), whereas 5 the remaining main clades only included 14 non-potato isolates (out of 189). 6 Twelve out of the 14 non-potato isolates falling outside the PVY^C clade were 7 collected from tobacco. In this sense, tobacco infection could accidentally take 8 9 place from potato crops early in the year, thus leading to misidentification of 10 some tobacco isolates (M. Chrzanowska pers. comm.). Besides, it is not surprising either that tomato isolate GR_PVY12 fell outside clade PVY^C, since 11 tomato can be infected with most PVY potato isolates (Singh et al., 2008), and 12 thus a recent introduction from potatoes cannot be excluded. Finally, the 13 14 inclusion of black nightshade isolate SYR-Sn into PVYO clade is surprising, 15 although the biological properties of this isolate are not yet available.

16 Selective pressures at a codon level were estimated using FEL, IFEL and MEME methods (www.datamonkey.org). Intramolecular covariation analyses were 17 carried out using CAPS 1 (Fares & Travers, 2006), as previously described 18 19 (Cuevas et al., 2012). Table 2 shows the distribution of codon positions under purifying, neutral and positive selection, and covarying positions. 20 As previously shown, most of the codons evolve neutrally, whereas purifying 21 selection is the main force driving the evolution of CP (Cuevas et al., 2012). 22 Negatively selected positions are scattered along the ORFs, suggesting that no 23 24 domain is particularly constrained. FEL and IFEL predicted codon one as positively selected, whereas MEME detected three additional codons (68, 193 25 and 216) to be under episodic diversifying selection (Table 2). Finally, a 26 covariation group of nine codons was also detected, all located at the first half 27 of the CP. Selected codon one was involved into this covariation group. 28

Previous phylogenetic studies showed that non-potato isolates mainly fell into clade PVY^C (Ogawa *et al.*, 2008; Schubert *et al.*, 2007), highlighting the importance of host-driven adaptation. Our study, which included a significantly larger number of non-potato isolates, clearly showed that, in spite

of the global consideration of non-potato isolates as belonging to the clade 1 PVY^C, several other non-potato isolates were dispersed in the phylogeny. In 2 fact, the analysis of amino acid composition for positively selected and 3 covarying positions showed no clear differences between potato and non-4 potato isolates (Tables S2 and S3). Globally, both groups, except for positions 5 24, 138 and 193, shared the same predominant amino acid at a given position. 6 Whereas similar amino acid composition between both groups was found for 7 positions 24 and 193, the main difference was found at position 138, since the 8 9 predominant amino acid for non-potato isolates was absent in potato isolates 10 (Table S3). Besides, with the exception of position 138, specific residues of potato and non-potato isolates were always present at low frequencies. We also 11 obtained the amino acid composition of positively selected and covarying 12 codons, but grouping in this case for the PVY^C, PVY^O and PVY^N strains, which 13 14 allowed us to check if selective forces were strain-specific (Tables S4 and S5). 15 Globally, the same predominant amino acid at a given position was usually shared by the three strains. 16 For those cases showing differences in the predominant amino acid, these predominant residues for a given strain were 17 also usually present at low frequencies in at least one of the alternative strains. 18 19 We observed positions 24 and 193 wherein the predominant amino acid for PVY^O strain was different from that of PVY^C and PVY^N strains. Besides, the 20 predominant amino acid from PVYN strain was different from that observed at 21 PVY^C and PVY^O strains for positions 1, 11, 17, 26, 29, and 31. Finally, positions 22 23 99 and 138 showed different predominant residues for the three strains. Interestingly, the predominant residue for the PVY^C strain at these two 24 positions was absent in the other two strains, although the predominant amino 25 acids from PVY^O and PVY^N strains were also present at low frequencies. 26 Consequently, the analysis of amino acid composition at selected and covarying 27 positions showed more partially discriminant residues among strains than 28 among potato and non-potato isolates, which indicates that selective forces are 29 30 mainly acting independently of the potato/non-potato distinction. In this sense, as mentioned before, PVY does not have a narrow host range, which 31

would account for the lack of association between selected positions and host
 usage.

Selection analyses at a branch level were performed using SWAPSC (Fares, 3 2004) to check the potential association between selective events and the 4 phylogeny. Thirty-four branches showed evidence of positive selection (18 5 internal and 16 terminal branches; Figure S1), and this selective signature was 6 detected in 13 regions, often overlapping (Table 3). Most of them fell into the 7 N-terminal region, congruently with the above selection and covariation 8 analyses (Tables 2 and 3). Respect to the distribution of the selected branches in 9 the phylogeny, we could differentiate between internal and terminal branches 10 (Figure S1). The frequency of selected internal branches was different among 11 clades (20%, 3.7% and 15.8% for PVY^C, PVY^O and PVY^N clades, respectively; 12 Fisher's exact test, P = 0.003), but not for terminal branches (with frequencies of 13 9.1%, 6.1%, and 10.5% for PVY^C, PVY^O and PVY^N clades, respectively; Fisher's 14 exact test, P = 0.568). These results suggest that selective forces are stronger 15 into the PVY^C and PVY^N clades and milder into PVY^O. It is worth mentioning 16 that one selected internal branch lead to PVY^C clade (named as b2 in Table 3 17 and Figure S1), except for the tamarillo isolate falling outside the selected 18 19 cluster. We obtained the amino acid composition of the region involved in this branch specific selection event (codons 187-194) for PVYC, PVYO and PVYN 20 clades (Table S6). This region included selected site 193, which have been 21 discussed above. Besides, the predominant amino acid for PVY^N clade was 22 different from that observed at PVY^C and PVY^O clades at position 187. Finally, 23 position 194 clearly discriminated between PVY^O and PVY^N clades, but the two 24 fixed residues present in these strains were also observed in the PVY^C strain. In 25 conclusion, branch selection analyses showed evidence of the differential effect 26 of selective events among strains, but did not provide particular positions 27 accounting for these differences at a strain level. 28

The role of CP protein in the pathology of potyviruses have been previously confirmed (Andrejeva *et al.*, 1999; Hu *et al.*, 2011; Ullah & Grumet, 2002) and symptom determinants may be different even between strains of PVY in a particular host (Bukovinszki *et al.*, 2007). The N-terminal part of CP protein is a

clear example of multifunctionality. It is exposed on the virion surface 1 (potential function in binding ligands), besides being involved in vector 2 transmission (Peng et al., 1998) and systemic plant colonization (Andersen & 3 Johansen, 1998; López-Moya & Pirone, 1998), becoming a potential target of 4 selection at both vector and plant levels. In addition, CP protein from PVY 5 interacts with different chloroplast proteins (Feki et al., 2005). Consequently, it 6 is not easy to discern if a given amino acid position is involved into one or more 7 functions. 8

Regarding biological functions of the CP protein, several commonalities were 9 10 found when comparing our results with those described by Moury and Simon (2011). All positions showing positive selection in this previous study are 11 within the N-terminal region of the CP cistron. In particular, positions 11, 24, 12 26, 68, and 138, were also detected to be under positive selection or covariation 13 in our study. Position 11 is close to the DAG conserved motif involved in aphid 14 15 transmission (Atreya et al., 1991, 1995), and it has been shown that mutations in a neighbor residue can reduce substantially transmissibility (Atreya et al., 1995). 16 Furthermore, position 25 was shown to affect virus accumulation in host plants 17 (Moury & Simon, 2011), and covarying positions detected in the vicinity could 18 19 have some influence in this respect. Regarding position 68, it is worth mentioning that a mutation in this codon promoted differences in viral 20 accumulation and transmissibility by aphids (Moury & Simon, 2011). Finally, 21 the region spanning amino acid positions 133 to 148 of the CP from Soybean 22 mosaic virus (positions 136-151 of PVY CP), is involved in binding to the HC-Pro 23 (Seo et al., 2010), and then a potential influence for the included covarying 24 position 138 could be postulated. 25

26

27 Acknowledgements

This research was supported by the Spanish Ministry of Science and Innovation grant BFU2009-06993 to SFE. JMC was supported by the JAE-Doc program from CSIC. We thank Mario A. Fares for fruitful bioinformatics guidance. PVY isolates used in this work were available thanks to PVYwide Organization members (Carole Balmelli, Peter Dedic, Stewart Gray, Christophe Lacomme,

- 1 Kestin Lindner, Benoit Moury, Maja Ravnikar, Laura Tomassoli, René Van der
- 2 Vlugt, and Christina Varaveri).
- 3

4 **References**

5 6 7	Andersen, K. & Johansen, I. E. (1998). A single conserved amino acid in the coat protein gene of pea seed-borne mosaic potyvirus modulates the ability of the virus to move systemically in <i>Chenopodium quinoa</i> . <i>Virology</i> 241, 304-311.
8 9 10 11	Andrejeva, J., Puurand, U., Merits, A., Rabenstein, F., Jarvekulg, L. & Valkonen, J. P. (1999). Potyvirus helper component-proteinase and coat protein (CP) have coordinated functions in virus-host interactions and the same CP motif affects virus transmission and accumulation. <i>J Gen Virol</i> 80 , 1133-1139.
12 13 14	Atreya, P. L., Atreya, C. D. & Pirone, T. P. (1991). Amino acid substitutions in the coat protein result in loss of insect transmissibility of a plant virus. <i>Proc Natl Acad Sci U S A</i> 88 , 7887-7891.
15 16 17	Atreya, P. L., López-Moya, J. J., Chu, M., Atreya, C. D. & Pirone, T. P. (1995). Mutational analysis of the coat protein N-terminal amino acids involved in potyvirus transmission by aphids. J Gen Virol 76, 265-270.
18 19 20	Blanco-Urgoiti, B., Sanchez, F., Perez de San, R. C., Dopazo, J. & Ponz, F. (1998). Potato virus Y group C isolates are a homogeneous pathotype but two different genetic strains. <i>J Gen Virol</i> 79 , 2037-2042.
21 22 23	Bukovinszki, A., Gotz, R., Johansen, E., Maiss, E. & Balazs, E. (2007). The role of the coat protein region in symptom formation on <i>Physalis floridana</i> varies between PVY strains. <i>Virus Res</i> 127, 122-125.
24 25 26	Cuevas, J. M., Delaunay, A., Visser, J. C., Bellstedt, D. U., Jacquot, E. & Elena, S. F. (2012). Phylogeography and molecular evolution of Potato virus Y. <i>PLoS ONE</i> 7, e37853.
27 28	Drummond, A. J. & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7, 214.
29 30	Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. <i>Nucl Acids Res</i> 32 , 1792-1797.
31 32 33	Elena, S. F., Bedhomme, S., Carrasco, P., Cuevas, J. M., de la Iglesia, F., Lafforgue, G., Lalic, J., Pròsper, A., Tromas, N. & Zwart, M. P. (2011). The evolutionary genetics of emerging plant RNA viruses. <i>Mol Plant Microbe Interact</i> 24, 287-293.
34 35	Fares, M. A. (2004). SWAPSC: sliding window analysis procedure to detect selective constraints. <i>Bioinformatics</i> 20 , 2867-2868.
36 37 38	Fares, M. A. & Travers, S. A. (2006). A novel method for detecting intramolecular coevolution: adding a further dimension to selective constraints analyses. <i>Genetics</i> 173 , 9-23.

1 2 3 4 5	 Feki, S., Loukili, M. J., Triki-Marrakchi, R., Karimova, G., Old, I., Ounouna, H., Nato, A., Nato, F., Guesdon, JL., Lafaye, P. & Ben Ammar Elgaaied, A. (2005). Interaction between tobacco Ribulose-1,5-biphosphate Carboxylase/Oxygenase large subunit (RubisCO-LSU) and the PVY Coat Protein (PVY-CP). Eur J Plant Pathol 112, 221-234.
6 7 8	Hu, X., Nie, X., He, C. & Xiong, X. (2011). Differential pathogenicity of two different recombinant PVY(NTN) isolates in <i>Physalis floridana</i> is likely determined by the coat protein gene. <i>Virol J</i> 8, 207.
9 10 11	Jones, R. A. (2009). Plant virus emergence and evolution: origins, new encounter scenarios, factors driving emergence, effects of changing world conditions, and prospects for control. <i>Virus Res</i> 141 , 113-130.
12 13 14	Kehoe, M. A. & Jones, R. A. (2011). A proposal to help resolve the disagreement between naming of Potato virus Y strain groups defined by resistance phenotypes and those defined by sequencing. <i>Arch Virol</i> 156 , 2273-2278.
15 16	López-Moya, J. J. & Pirone, T. P. (1998). Charge changes near the N terminus of the coat protein of two potyviruses affect virus movement. J Gen Virol 79, 161-165.
17 18	Lorenzen, J., Nolte, P., Martin, D., Pasche, J. S. & Gudmestad, N. C. (2008). NE-11 represents a new strain variant class of Potato virus Y. <i>Arch Virol</i> 153, 517-525.
19 20 21	Martin, D. P., Lemey, P., Lott, M., Moulton, V., Posada, D. & Lefeuvre, P. (2010). RDP3: a flexible and fast computer program for analyzing recombination. <i>Bioinformatics</i> 26, 2462-2463.
22 23 24	Mascia, T., Finetti-Sialer, M. M., Cillo, F. & Gallitelli, D. (2010). Biological and molecular characterization of a recombinant isolate of Potato virus Y associated with a tomato necrotic disease occurring in Italy. <i>J Plant Pathol</i> 92 , 131-138.
25 26	Moury, B. (2010). A new lineage sheds light on the evolutionary history of Potato virus Y. <i>Mol Plant Pathol</i> 11 , 161-168.
27 28 29	Moury, B., Morel, C., Johansen, E. & Jacquemond, M. (2002). Evidence for diversifying selection in Potato virus Y and in the coat protein of other potyviruses. <i>J Gen Virol</i> 83 , 2563-2573.
30 31 32	Moury, B. & Simon, V. (2011). dN/dS-based methods detect positive selection linked to trade-offs between different fitness traits in the coat protein of Potato virus Y. <i>Mol Biol Evol</i> 28, 2707-2717.
33 34 35 36	Ogawa, T., Tomitaka, Y., Nakagawa, A. & Ohshima, K. (2008). Genetic structure of a population of Potato virus Y inducing potato tuber necrotic ringspot disease in Japan; comparison with North American and European populations. <i>Virus Res</i> 131 , 199-212.
37 38 39 40	Pagán, I., Carmen Córdoba-Sellés, M., Martínez-Priego, L., Fraile, A., Malpica, J. M., Jordá, C. & García-Arenal, F. (2006). Genetic Structure of the Population of Pepino mosaic virus Infecting Tomato Crops in Spain. <i>Phytopathology</i> 96, 274- 279.

1 2	Parker, J., Rambaut, A. & Pybus, O. G. (2008). Correlating viral phenotypes with phylogeny: accounting for phylogenetic uncertainty. <i>Infect Genet Evol</i> 8 , 239-246.
3	Peng, Y. H., Kadoury, D., Gal-On, A., Huet, H., Wang, Y. & Raccah, B. (1998).
4	Mutations in the HC-Pro gene of Zucchini yellow mosaic potyvirus: effects on
5	aphid transmission and binding to purified virions. J Gen Virol 79, 897-904.
6 7	Rohozkova, J. & Navratil, M. (2011). P1 peptidasea mysterious protein of family Potyviridae. <i>J Biosci</i> 36 , 189-200.
8	Roossinck, M. J., Zhang, L. & Hellwald, K. H. (1999). Rearrangements in the 5'
9	nontranslated region and phylogenetic analyses of Cucumber mosaic virus
10	RNA 3 indicate radial evolution of three subgroups. <i>J Virol</i> 73 , 6752-6758.
11	Schubert, J., Fomitcheva, V. & Sztangret-Wisniewska, J. (2007). Differentiation of
12	Potato virus Y strains using improved sets of diagnostic PCR-primers. J Virol
13	Methods 140, 66-74.
14	Seo, J. K., Kang, S. H., Seo, B. Y., Jung, J. K. & Kim, K. H. (2010). Mutational analysis
15	of interaction between coat protein and helper component-proteinase of
16	Soybean mosaic virus involved in aphid transmission. <i>Mol Plant Pathol</i> 11, 265-
17	276.
18	Singh, R. P., Valkonen, J. P., Gray, S. M., Boonham, N., Jones, R. A., Kerlan, C. &
19	Schubert, J. (2008). Discussion paper: The naming of Potato virus Y strains
20	infecting potato. <i>Arch Virol</i> 153, 1-13.
21	Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011).
22	MEGA5: Molecular evolutionary genetics analysis using maximum likelihood,
23	evolutionary distance, and maximum parsimony methods. <i>Mol Biol Evol</i> 28,
24	2731-2739.
25 26 27 28	Ullah, Z. & Grumet, R. (2002). Localization of Zucchini yellow mosaic virus to the veinal regions and role of viral coat protein in veinal chlorosis conditioned by the <i>zym</i> potyvirus resistance locus in cucumber. <i>Physiol Mol Plant Pathol</i> 60 , 79-89.
29	Visser, J. C. & Bellstedt, D. U. (2009). An assessment of molecular variability and
30	recombination patterns in South African isolates of Potato virus Y. Arch Virol
31	154, 1891-1900.
32 33	Yang, Z. (2007). PAML 4: phylogenetic analysis by maximum likelihood. <i>Mol Biol Evol</i> 24, 1586-1591.
34	

1	Table 1. Analysis of the geographic and host effect on the popula				
2	structure of PVY iso	olates.	-		
3	Analyses	# Isolates	Association	Test value	Р
4	Geographic		PS	106.985	< 0.001
F			AI	17.979	< 0.001
5	Asia	30	МС	1.911	0.0099
6	Europe	88	МС	3.623	0.0099
7	South Africa	47	МС	2.451	0.0099
8	North America	43	МС	2.272	0.0099
0	South America	3	МС	1.004	1
9	New Zealand	1	МС	NA^1	
10	Host species		PS	31.480	< 0.001
11			AI	6.651	< 0.001
10	Potato	180	МС	13.145	0.0199
12	Tobacco	14	МС	1.286	0.0400
13	Pepper	10	МС	1.136	0.0099
14	Tomato	4	МС	1.005	1
15	Black nightshade	2	МС	1.001	1
16	Ají	1	МС	NA^1	
17	Tamarillo	1	МС	NA ¹	

Table 1. Analysis of the geographic and host effect on the population structure of PVY isolates

¹insufficient sample size (n < 2). 18

Table 2. Results of the codon selection and covariation analyses at the CP gene.
For selection methods (FEL, IFEL and MEME), the number of codons detected
to be under negative, neutral or positive selection are given. The last column
indicates the location of positively selected sites besides those positions
showing covariation (CAPS).

			Location
113	153	1	1
76	190	1	1
NA	NA	4	1, 68, 193, 216
-	-	-	1, 11, 17, 24, 26, 29, 31, 99, 138
	13 6 JA	13 153 6 190 NA NA -	13 153 1 6 190 1 NA NA 4 - -

- 1 Table 3. Results of branch selection analysis. First column indicates all regions
- 2 (codons) showing evidence of positive selection and second column shows the
- 3 branches associated with the selection event for a given region. For terminal
- 4 branches, the name of the corresponding isolate is shown. Internal branches are
- 5 numbered as indicated in Figure S1 and marked in bold. Positively selected
- 6 and covarying positions falling into the regions providing a positive selection
- 7 signature are shown in the last two columns, respectively.

Region	Branch	FEL-IFEL-	Covariation
		MEME	
7-11	SASA-110, b3		11
8-13	PN-82		11
23-28	b12		24, 26
23-29	b14		24, 26, 29
25-28	PB_707, US05_30, SYR-NB-16		26
25-29	b15, b16, b17		26, 29
26-29	b5, b7, b11		26, 29
29-33	CAA141, PB_707, PB_602, PB_752, SC143, SC61, US05_30,		29, 31
	US05_7, NN71_111, SYR-NB-16, 605, b4 , b8 , b9 , b13 , b18		
62-65	German_45, US06_55, b6		
135-138	b1		138
187-193	Nicola	193	
187-194	b2, b3, b10	193	
214-217	German_45, b6	216	

Isolate	GenBank accession	Origin	Host	Collection date
156	AJ889867	Germany	S.tuberosum	
605	X97895	Switzerland	S.tuberosum	1976
12-94*	AJ889866	Poland	S.tuberosum	1994
156var	AJ889868	Germany	S.tuberosum	2004
261-4	AM113988	Germany	S.tuberosum	2004
34/01*	AJ890342	Poland	S.tuberosum	2001
423-3*	AY884982	USA	S.tuberosum	2002
53-29	AJ390298	Denmark	S.tuberosum	
53-49	AJ390299	Denmark	S.tuberosum	
Adgen-C	AJ890348	France	S.tuberosum	2005
Al-Baqa'*	EU073854	Jordan	S.tuberosum	
Al-Ghor*	EU073855	Jordan	S.tuberosum	
Al-Mafraq*	EU073857	Jordan	S.tuberosum	
aL-Ramtha	EU073859	Jordan	S.tuberosum	
Alt*	AY884985	USA	S.tuberosum	2002
Anqiu4	EF592517	China	N.tabacum	
AQ1	EF592513	China	N.tabacum	
Ca/H*	AJ535662	Hungary	C.annuum	
CAA141	JQ954317	France	C.annuum	1999
CAA15	JQ954318	France	C.annuum	2000
CAA82	JQ954315	Israel	C.annuum	1982
CAPA7	JQ954316	Tunisia	C.annuum	2006
CC24_5	GQ853667	South Africa	S.tuberosum	
CC55_8_146	GQ853652	South Africa	S.tuberosum	
CC62_20_156*	GQ853623	South Africa	S.tuberosum	
CC66_91_47	GQ853653	South Africa	S.tuberosum	
CC9_12_171*	GQ853621	South Africa	S.tuberosum	
CC9_30_175	GQ853650	South Africa	S.tuberosum	
CC9_47_177*	GQ853622	South Africa	S.tuberosum	
CC9_48_178	GQ853651	South Africa	S.tuberosum	
Chile3	FJ214726	Chile	C.baccatum	2005
DD019_141_138	GQ853661	South Africa	S.tuberosum	
DD020_92_30*	GQ853624	South Africa	S.tuberosum	
DD037F_31_186*	GQ853625	South Africa	S.tuberosum	
DD037F_35_188*	GQ853626	South Africa	S.tuberosum	
DD037F_9_154	GQ853655	South Africa	S.tuberosum	
DD051_14	GQ853660	South Africa	S.tuberosum	
DD051_7	GQ853659	South Africa	S.tuberosum	2007
DD103A_101_190	GQ853657	South Africa	S.tuberosum	
DD103A_184_191	GQ853603	South Africa	S.tuberosum	
DD103A_80_180	GQ853656	South Africa	S.tuberosum	
DD122A_25	GQ853658	South Africa	S.tuberosum	
DD122A_34	GQ853662	South Africa	S.tuberosum	

1 Table S1. PVY isolates used in the present study.	1	Table S1.	PVY isolates used in the present study.
---	---	-----------	---

DD122A_36*	GQ853627	South Africa	S.tuberosum	
Ditta*	AJ890344	Austria	S.tuberosum	1998
Fanzhen6	EF592515	China	S.tuberosum	
Fanzhen8	EF592521	China	S.tuberosum	
Foggia	EU482153	Italy	L.esculentum	2007
FX24	EF592514	China	S.tuberosum	
German 14*	JQ954384	Germany	S.tuberosum	2003
German 16*	JQ954295	Germany	S.tuberosum	2003
German 20	JQ954387	Germany	S.tuberosum	2004
German 33	JQ954296	Germany	S.tuberosum	2004
German 34	JQ954297	Germany	S.tuberosum	2004
German_35	JQ954298	Germany	S.tuberosum	2004
German 37	JQ954299	Germany	S.tuberosum	2004
German 38	JQ954300	Germany	S.tuberosum	2004
German 39	JQ954301	Germany	S.tuberosum	2004
German 4*	JQ954302	Germany	S.tuberosum	2002
German 41	JQ954303	Germany	S.tuberosum	2004
German 42	JQ954304	Germany	S.tuberosum	2004
German 43	JQ954305	Germany	S.tuberosum	2004
German 45	JQ954306	Germany	N.tabacum	2006
German 47	JQ954314	Germany	S.tuberosum	2003
German 51	JQ954307	Germany	S.tuberosum	2004
German 52	JQ954308	Germany	S.tuberosum	2004
German 55	JQ954309	Germany	S.tuberosum	2004
German 56	JQ954310	Germany	S.tuberosum	2004
German 57	JQ954311	Germany	S.tuberosum	2004
German 58	JQ954312	Germany	S.tuberosum	2004
German_62*	JQ954342	Germany	S.tuberosum	2004
German_65	JQ954313	Germany	S.tuberosum	2004
GG517_128	GQ853635	South Africa	S.tuberosum	2005
GG517_170_168	GQ853636	South Africa	S.tuberosum	
GG517_93_160	GQ853593	South Africa	S.tuberosum	
Gpost*	JN936420	South Africa	S.tuberosum	2010
<u>GR_PVY12</u>	JQ954319	Greece	L.esculentum	1998
<u>GR_PVY13</u>	JQ954320	Greece	L.esculentum	1999
GR_PVY84*	JQ954321	Greece	S.tuberosum	2004
Gr99*	AJ890343	Poland	N.tabacum	1999
Hangzhou	AJ488834	China	S.tuberosum	
HN2	GQ200836	China	S.tuberosum	2007
Thole*	M95491	Hungary	S.tuberosum	1993
IAC**	AY840082	Brazil	S.tuberosum	
Irbid*	EU073856	Jordan	S.tuberosum	
Isol5	AJ890350	Germany	S.tuberosum	
<u>IT_104</u>	JQ954323	Italy	S.tuberosum	1997
<u>IT_115*</u>	JQ954324	Italy	S.tuberosum	1998
<u>IT_117</u>	JQ954325	Italy	S.tuberosum	1998

IT 101*	JQ954322	Italy	S.tuberosum	1998
IT 215*	JQ954326	Italy	S.tuberosum	1998
L26*	FJ204165	USA	S.tuberosum	2007
Laiwu1	EF592525	China	S.tuberosum	
Laiwu29	EF592527	China	N.tabacum	
Laiwu3	EF592516	China	S.tuberosum	
Laiwu9*	EF592526	China	S.tuberosum	
Linda*	AJ890345	Germany	S.tuberosum	2004
Linkou29	EF592524	China	N.tabacum	
LW	AJ890349	Poland	S.tuberosum	1970
LYE842	AJ43954	Canary Islands	L.esculentum	1984
ME173	FI643479	USA	S tuberosum	2006
Mengvin3	EF592518	China	N tahacum	2000
Mengyina	EF592519	China	N tabacum	
MengyinC	EF592520	China	N tabacum	
Mont	AY884083	USA	S tuberosum	2001
Nvsa**	FJ666337	Poland	S.tuberosum S.tuberosum	1974
1484 1	CO853634	South A frice	S.tuberosum	1771
N404_1 Naur*	EU073858	Jordan	S.tuberosum	
NC57	DO200028		N taba oum	1072
NC3/ NE 11*	DQ309028	USA	N.Iabacum S.tubarosum	2003
	DQ137180	USA Essent	S.tuberosum	2003
N-Egypt	AF52229	Egypt	S.tuberosum	2001
New_Zealand	AM268435	New Zealand	S.tuberosum	2002
NIB-NIN*	AJ585342	Slovenia	S.tuberosum	1000
Nicola	AJ890346	Germany	N.tabacum	1999
N-Jg	AY166867	Canada	S.tuberosum	1991
NN300_155_19	GQ853597	South Africa	S.tuberosum	
NN300_155_22	GQ853598	South Africa	S.tuberosum	
NN300_41_123	GQ853595	South Africa	S.tuberosum	
JN300_60_23	GQ853663	South Africa	S.tuberosum	
NN300_76_118*	GQ853628	South Africa	S.tuberosum	
NN300_98_31	GQ853596	South Africa	S.tuberosum	
NN300_99_34	GQ853664	South Africa	S.tuberosum	
NN333B_28_149*	GQ853629	South Africa	S.tuberosum	
NN333B_87_152*	GQ853630	South Africa	S.tuberosum	
NN459_14	GQ853631	South Africa	S.tuberosum	
NN459_25	GQ853599	South Africa	S.tuberosum	
NN71_111	GQ853594	South Africa	S.tuberosum	2005
np*	AF237963	Italy	C.annuum	1992
NN-UK-N**	AJ390296	UK	S.tuberosum	
NN-UK-O	AJ390297	UK	S.tuberosum	
NTND6	AB331515	Japan	S.tuberosum	1997
NTNHO90	AB331517	Japan	S.tuberosum	1997
NTNHO92	AB331549	Japan	S.tuberosum	
NTNHO95	AB331550	Japan	S.tuberosum	

NTNNN99	AB331518	Japan	S.tuberosum	1997
NTNOK102	AB331546	Japan	S.tuberosum	
NTNOK105	AB331516	Japan	S.tuberosum	1997
NTNON92	AB331519	Japan	S.tuberosum	1997
O-Des	AJ390305	UK	S.tuberosum	
O-Gov	AJ390301	UK	S.tuberosum	
O-Tom	AJ390307	Portugal	S.tuberosum	
P21-82	AJ303097	Spain	C.annuum	
P21-82b	AJ005639	Spain	C.annuum	
PB 602	JQ954329	The Netherlands	S.tuberosum	1978
PB 702	JQ954327	The Netherlands	S.tuberosum	1957
PB 707	JQ954328	The Netherlands	S.tuberosum	1958
PB 752	JQ954330	The Netherlands	S.tuberosum	1995
PB312*	EF026075	USA	S.tuberosum	2003
PMB21	AJ390306	UK	S.tuberosum	
PN10A	DO008213	USA	S.tuberosum	2004
PN-82	AJ303096	Spain	C.annuum	
PO7	U09509	Canada	S.tuberosum	1994
PP026B 184 111*	GQ853606	South Africa	S.tuberosum	
PRI-509	EU563512	The Netherlands	S.tuberosum	1938
PVY-12*	AB185833	Syria	S.tuberosum	2003
PVY-C-CM	AJ390302	UK	S.tuberosum	
PVY-MN	AF463399	USA	N.tabacum	2001
PVY-NBR	AF255660	Brazil	S.tuberosum	
PVY-N-RB	AJ390285	UK	S.tuberosum	
PVYNTN1	GQ853632	South Africa	S.tuberosum	2007
PVYNTN17 1*	JN936429	South Africa	S.tuberosum	2007
PVYNTN3_3*	GQ853607	South Africa	S.tuberosum	
PVY-OBR	AF255659	Brazil	S.tuberosum	
PVY-Sumi*	EU885418	SouthKorea	S.tuberosum	2008
PVY-ThaiNguyen	FM201468	Vietnam	S.tuberosum	
RB	HM367076	Canada	S.tuberosum	
RRA-1	AY884984	USA	S.tuberosum	2001
S25774 1*	JQ954331	Switzerland	S.tuberosum	2008
S25776 3*	JQ954332	Switzerland	S.tuberosum	2008
S25777 4*	JQ954333	Switzerland	S.tuberosum	2008
S25781 8*	JQ954334	Switzerland	S.tuberosum	2008
S25783 10*	JQ954335	Switzerland	S.tuberosum	2008
S25789 16*	JQ954336	Switzerland	S.tuberosum	2008
S25907-134	JQ954393	Switzerland	S.tuberosum	2008
S25972-199*	JQ954394	Switzerland	S.tuberosum	2008
SASA-110	AJ585195	UK	S.tuberosum	1997
SASA-61	AJ585198	UK	S.tuberosum	1997
Satina*	AJ890347	Germany	S.tuberosum	2002
<u>SC143</u>	JQ954337	Scotland	S.tuberosum	1996
<u>SC190</u>	JQ954338	Scotland	S.tuberosum	2000

SC61	JQ954339	Scotland	S.tuberosum	1986
SCRI-N	AJ585197	UK	S.tuberosum	1985
SCRI-O	AJ585196	UK	S.tuberosum	1985
Shanxi	EU719650	China	S.tuberosum	
Si15 Italy	AJ303093	Italy	C.annuum	
Si15 Turkey	AJ303094	Turkey	C.annuum	
SLO4	JO954376	Slovenia	S.tuberosum	2009
SLO7*	JO954377	Slovenia	S.tuberosum	2007
S-NTN	AJ390295	UK	S.tuberosum	
SON41	AJ439544	France	S.nigrum	1972
S-RB96**	AJ390308	UK	S.tuberosum	
SS082A 171 4	GO853601	South Africa	S.tuberosum	
SS082A 194 14*	GQ853608	South Africa	S.tuberosum	
SS082A_88	GO853600	South Africa	S.tuberosum	2005
SS121 154 10	GQ853633	South Africa	S.tuberosum	
SS121 166 56	GO853637	South Africa	S.tuberosum	
SS121_100_00 SS121_197_16*	GQ853610	South Africa	S.tuberosum	
SS121 53 42*	GO853609	South Africa	S.tuberosum	
SS121 82 1*	GQ853612	South Africa	S.tuberosum	
SS147_144_144*	GO853611	South Africa	S tuberosum	
SYR-D4*	AB295477	Svria	S.tuberosum	2004
SYR-D9*	AB295478	Svria	S.tuberosum	
SYR-II-2-8	AB461451	Svria	S tuberosum	2006
SYR-II-Be1	AB461452	Svria	S.tuberosum	2004
SYR-NB-16	AB270705	Svria	N.tabacum	2006
SYR-Sn	AB295475	Syria	S.nigrum	2004
Г50	AB331544	Japan	S.tuberosum	
Famarillo	FM244834	Taiwan	C.betacea	2008
ГС 2-186	JQ954340	Czech Republic	S.tuberosum	2006
ГС 2-187	JQ954341	Czech Republic	S.tuberosum	2006
<u>FC_2-191*</u>	JQ954343	Czech Republic	S.tuberosum	2006
ГС_2-196	JQ954344	Czech Republic	S.tuberosum	2006
ГС <u>2-197</u>	JQ954345	Czech Republic	S.tuberosum	2006
TC_2-198	JQ954346	Czech Republic	S.tuberosum	2006
<u>FC_2-199</u>	JQ954347	Czech Republic	S.tuberosum	2006
ГС 2-200	JQ954348	Czech Republic	S.tuberosum	2006
TT014_184_135*	GQ853613	South Africa	S.tuberosum	
ГТ019А_107_52	GQ853665	South Africa	S.tuberosum	
ГТ026В_195_58	GQ853602	South Africa	S.tuberosum	
ГТ026В_86_128	GQ853638	South Africa	S.tuberosum	
ГТ026В_88_115	GQ853639	South Africa	S.tuberosum	
ГТ138D_111_79	GQ853640	South Africa	S.tuberosum	
ГТ138D_13_68*	GQ853614	South Africa	S.tuberosum	
ГТ138Е_102_96	GQ853641	South Africa	S.tuberosum	
TT138E_111_104	GQ853666	South Africa	S.tuberosum	
TT138E_113_106	GQ853642	South Africa	S.tuberosum	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
Tu_660AY166866CanadaS.tuberosum1991Tu12.3AJ303095TurkeyC.annuumTU619AJ390309USAS.tuberosumUS04JQ954392USAS.tuberosum2004US05_11JQ954392USAS.tuberosum2005US05_12*JQ954391USAS.tuberosum2005US05_13JQ954349USAS.tuberosum2005US05_14JQ954350USAS.tuberosum2005US05_17JQ954351USAS.tuberosum2005US05_20JQ954351USAS.tuberosum2005US05_21JQ954351USAS.tuberosum2005US05_22JQ954352USAS.tuberosum2005US05_23JQ954353USAS.tuberosum2005US05_24JQ954354USAS.tuberosum2005US05_33JQ954355USAS.tuberosum2005US05_31JQ954355USAS.tuberosum2005US05_31JQ954357USAS.tuberosum2005US05_32JQ954357USAS.tuberosum2005US05_34JQ954359USAS.tuberosum2005US05_35JQ954351USAS.tuberosum2005US05_35JQ954357USAS.tuberosum2005US05_44JQ954360USAS.tuberosum2005US05_45JQ954361USAS.tuberosum2005US05_45JQ954361USAS.tuberosum<	TT141A_76_73	GQ853643	South Africa	S.tuberosum	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tu_660	AY166866	Canada	S.tuberosum	1991
TU619 A1390309 USA S.tuberosum US04 24 JQ954373 USA S.tuberosum 2004 US05 11 JQ954373 USA S.tuberosum 2005 US05 12* JQ954371 USA S.tuberosum 2005 US05 13 JQ954349 USA S.tuberosum 2005 US05 14 JQ954350 USA S.tuberosum 2005 US05 17 JQ954351 USA S.tuberosum 2005 US05 19 JQ954351 USA S.tuberosum 2005 US05 20 JQ954352 USA S.tuberosum 2005 US05 25 JQ954353 USA S.tuberosum 2005 US05 26 JQ954354 USA S.tuberosum 2005 US05 30 JQ954355 USA S.tuberosum 2005 US05 31 JQ954356 USA S.tuberosum 2005 US05 33 JQ954356 USA S.tuberosum 2005 US05 31 JQ954357 USA <td>Tu12.3</td> <td>AJ303095</td> <td>Turkey</td> <td>C.annuum</td> <td></td>	Tu12.3	AJ303095	Turkey	C.annuum	
US04 24 JQ954392 USA S.tuberosum 2004 US05 11 JQ954373 USA S.tuberosum 2005 US05 12* JQ954391 USA S.tuberosum 2005 US05 12* JQ954349 USA S.tuberosum 2005 US05 14 JQ954350 USA S.tuberosum 2005 US05 17 JQ954351 USA S.tuberosum 2005 US05 19 JQ954351 USA S.tuberosum 2005 US05 20 JQ954352 USA S.tuberosum 2005 US05 25 JQ954353 USA S.tuberosum 2005 US05 26 JQ954354 USA S.tuberosum 2005 US05 3 JQ954355 USA S.tuberosum 2005 US05 31 JQ954356 USA S.tuberosum 2005 US05 37 JQ954357 USA S.tuberosum	TU619	AJ390309	USA	S.tuberosum	
US0511JQ954373USAS.tuberosum2005US0512*JQ954391USAS.tuberosum2005US0513JQ954349USAS.tuberosum2005US0514JQ954350USAS.tuberosum2005US0517JQ954385USAS.tuberosum2005US0519JQ954351USAS.tuberosum2005US0520JQ954386USAS.tuberosum2005US0520JQ954352USAS.tuberosum2005US0526JQ954353USAS.tuberosum2005US0528JQ954354USAS.tuberosum2005US053JQ954355USAS.tuberosum2005US0530JQ954355USAS.tuberosum2005US0531JQ954360USAS.tuberosum2005US0533JQ954375USAS.tuberosum2005US0537JQ954375USAS.tuberosum2005US0539JQ954360USAS.tuberosum2005US0541JQ954361USAS.tuberosum2005US0551JQ954362USAS.tuberosum2005US0548JQ954360USAS.tuberosum2005US0549JQ954361USAS.tuberosum2005US0551JQ954362USAS.tuberosum2005US0556JQ954361 </td <td><u>US04_24</u></td> <td>JQ954392</td> <td>USA</td> <td>S.tuberosum</td> <td>2004</td>	<u>US04_24</u>	JQ954392	USA	S.tuberosum	2004
US05 12* JQ954391 USA S.tuberosum 2005 US05 13 JQ954349 USA S.tuberosum 2005 US05 14 JQ954350 USA S.tuberosum 2005 US05 17 JQ954385 USA S.tuberosum 2005 US05 19 JQ954386 USA S.tuberosum 2005 US05 20 JQ954351 USA S.tuberosum 2005 US05 20 JQ954352 USA S.tuberosum 2005 US05 26 JQ954353 USA S.tuberosum 2005 US05 28 JQ954354 USA S.tuberosum 2005 US05 3 JQ954355 USA S.tuberosum 2005 US05 31 JQ954356 USA S.tuberosum 2005 US05 31 JQ954357 USA S.tuberosum 2005 US05 37 JQ954357 USA S.tuberosum <	<u>US05_11</u>	JQ954373	USA	S.tuberosum	2005
US0513JQ954349USAS.tuberosum2005US0514JQ954350USAS.tuberosum2005US0517JQ954385USAS.tuberosum2005US0519JQ954351USAS.tuberosum2005US0520JQ954386USAS.tuberosum2005US0520JQ954352USAS.tuberosum2005US0526JQ954353USAS.tuberosum2005US0528JQ954354USAS.tuberosum2005US053JQ954355USAS.tuberosum2005US0530JQ954355USAS.tuberosum2005US0531JQ954356USAS.tuberosum2005US0533JQ954356USAS.tuberosum2005US0536JQ954375USAS.tuberosum2005US0537JQ954375USAS.tuberosum2005US0539JQ954359USAS.tuberosum2005US0541JQ954360USAS.tuberosum2005US0548JQ954361USAS.tuberosum2005US0548JQ954361USAS.tuberosum2005US0544JQ954364USAS.tuberosum2005US0552*JQ954365USAS.tuberosum2005US0556JQ954364USAS.tuberosum2005US056JQ954366 <td><u>US05_12*</u></td> <td>JQ954391</td> <td>USA</td> <td>S.tuberosum</td> <td>2005</td>	<u>US05_12*</u>	JQ954391	USA	S.tuberosum	2005
US05 14 JQ954350 USA S.tuberosum 2005 US05 17 JQ954385 USA S.tuberosum 2005 US05 19 JQ954351 USA S.tuberosum 2005 US05 20 JQ954386 USA S.tuberosum 2005 US05 20 JQ954352 USA S.tuberosum 2005 US05 26 JQ954353 USA S.tuberosum 2005 US05 28 JQ954354 USA S.tuberosum 2005 US05 3 JQ954355 USA S.tuberosum 2005 US05 31 JQ954356 USA S.tuberosum 2005 US05 31 JQ954366 USA S.tuberosum 2005 US05 33 JQ954375 USA S.tuberosum 2005 US05 39 JQ954357 USA S.tuberosum 2005 US05 41 JQ954360 USA S.tuberosum <t< td=""><td><u>US05_13</u></td><td>JQ954349</td><td>USA</td><td>S.tuberosum</td><td>2005</td></t<>	<u>US05_13</u>	JQ954349	USA	S.tuberosum	2005
US05_17 JQ954385 USA S.tuberosum 2005 US05_19 JQ954351 USA S.tuberosum 2005 US05_20 JQ954386 USA S.tuberosum 2005 US05_25 JQ954352 USA S.tuberosum 2005 US05_26 JQ954353 USA S.tuberosum 2005 US05_28 JQ954354 USA S.tuberosum 2005 US05_30 JQ954355 USA S.tuberosum 2005 US05_31 JQ954356 USA S.tuberosum 2005 US05_36 JQ954376 USA S.tuberosum 2005 US05_37 JQ954376 USA S.tuberosum 2005 US05_37 JQ954377 USA S.tuberosum 2005 US05_41 JQ954359 USA S.tuberosum 2005 US05_42 JQ954360 USA S.tuberosum 2005 US05_43 JQ954360 USA S.tuberosum 2005 US05_51 JQ954361 </td <td><u>US05_14</u></td> <td>JQ954350</td> <td>USA</td> <td>S.tuberosum</td> <td>2005</td>	<u>US05_14</u>	JQ954350	USA	S.tuberosum	2005
US05 19 JQ954351 USA S.tuberosum 2005 US05_20 JQ954386 USA S.tuberosum 2005 US05_25 JQ954352 USA S.tuberosum 2005 US05_26 JQ954353 USA S.tuberosum 2005 US05_28 JQ954354 USA S.tuberosum 2005 US05_30 JQ954355 USA S.tuberosum 2005 US05_31 JQ954356 USA S.tuberosum 2005 US05_36 JQ954375 USA S.tuberosum 2005 US05_37 JQ954357 USA S.tuberosum 2005 US05_41 JQ954358 USA S.tuberosum 2005 US05_45 JQ954360 USA S.tuberosum 2005 US05_51	<u>US05_17</u>	JQ954385	USA	S.tuberosum	2005
US05_20 JQ954386 USA S.tuberosum 2005 US05_25 JQ954352 USA S.tuberosum 2005 US05_26 JQ954353 USA S.tuberosum 2005 US05_28 JQ954354 USA S.tuberosum 2005 US05_3 JQ954354 USA S.tuberosum 2005 US05_30 JQ954355 USA S.tuberosum 2005 US05_31 JQ954355 USA S.tuberosum 2005 US05_31 JQ954356 USA S.tuberosum 2005 US05_33 JQ954356 USA S.tuberosum 2005 US05_37 JQ954375 USA S.tuberosum 2005 US05_39 JQ954357 USA S.tuberosum 2005 US05_41 JQ954358 USA S.tuberosum 2005 US05_45 JQ954360 USA S.tuberosum 2005 US05_48 JQ954361 USA S.tuberosum 2005 US05_51 JQ954362 <td><u>US05_19</u></td> <td>JQ954351</td> <td>USA</td> <td>S.tuberosum</td> <td>2005</td>	<u>US05_19</u>	JQ954351	USA	S.tuberosum	2005
US05 25 JQ954352 USA S.tuberosum 2005 US05 26 JQ954353 USA S.tuberosum 2005 US05 28 JQ954389 USA S.tuberosum 2005 US05 3 JQ954354 USA S.tuberosum 2005 US05 30 JQ954355 USA S.tuberosum 2005 US05 31 JQ954356 USA S.tuberosum 2005 US05 33 JQ954356 USA S.tuberosum 2005 US05 34 JQ954375 USA S.tuberosum 2005 US05 37 JQ954377 USA S.tuberosum 2005 US05 41 JQ954358 USA S.tuberosum 2005 US05 44 JQ954360 USA S.tuberosum 2005 US05 45 JQ954361 USA S.tuberosum 2005 US05 48 JQ954361 USA S.tuberosum <t< td=""><td><u>US05_20</u></td><td>JQ954386</td><td>USA</td><td>S.tuberosum</td><td>2005</td></t<>	<u>US05_20</u>	JQ954386	USA	S.tuberosum	2005
US05_26 JQ954353 USA S.tuberosum 2005 US05_28 JQ954389 USA S.tuberosum 2005 US05_3 JQ954354 USA S.tuberosum 2005 US05_30 JQ954355 USA S.tuberosum 2005 US05_31 JQ954355 USA S.tuberosum 2005 US05_33 JQ954356 USA S.tuberosum 2005 US05_36 JQ954356 USA S.tuberosum 2005 US05_36 JQ954375 USA S.tuberosum 2005 US05_37 JQ954377 USA S.tuberosum 2005 US05_41 JQ954358 USA S.tuberosum 2005 US05_45 JQ954360 USA S.tuberosum 2005 US05_48 JQ954361 USA S.tuberosum 2005 US05_49 JQ954361 USA S.tuberosum 2005 US05_51 JQ954362 USA S.tuberosum 2005 US05_56 JQ954363 <td><u>US05_25</u></td> <td>JQ954352</td> <td>USA</td> <td>S.tuberosum</td> <td>2005</td>	<u>US05_25</u>	JQ954352	USA	S.tuberosum	2005
US05 28 JQ954389 USA S.tuberosum 2005 US05 3 JQ954354 USA S.tuberosum 2005 US05 30 JQ954355 USA S.tuberosum 2005 US05 31 JQ954356 USA S.tuberosum 2005 US05 33 JQ954356 USA S.tuberosum 2005 US05 33 JQ954356 USA S.tuberosum 2005 US05 36 JQ954375 USA S.tuberosum 2005 US05 37 JQ954357 USA S.tuberosum 2005 US05 39 JQ954358 USA S.tuberosum 2005 US05 41 JQ954360 USA S.tuberosum 2005 US05 48 JQ954361 USA S.tuberosum 2005 US05 51 JQ954361 USA S.tuberosum 2005 US05 52 JQ954363 USA S.tuberosum <t< td=""><td><u>US05_26</u></td><td>JQ954353</td><td>USA</td><td>S.tuberosum</td><td>2005</td></t<>	<u>US05_26</u>	JQ954353	USA	S.tuberosum	2005
US05_3 JQ954354 USA S.tuberosum 2005 US05_30 JQ954355 USA S.tuberosum 2005 US05_31 JQ954356 USA S.tuberosum 2005 US05_33 JQ954356 USA S.tuberosum 2005 US05_36 JQ954356 USA S.tuberosum 2005 US05_37 JQ954375 USA S.tuberosum 2005 US05_39 JQ954357 USA S.tuberosum 2005 US05_41 JQ954358 USA S.tuberosum 2005 US05_45 JQ954360 USA S.tuberosum 2005 US05_48 JQ954361 USA S.tuberosum 2005 US05_51 JQ954361 USA S.tuberosum 2005 US05_52* JQ954363 USA S.tuberosum 2005 US05_64 JQ954365 USA S.tuberosum 2005 US05_7 JQ954366 USA S.tuberosum 2005 US05_9 JQ954368 <td><u>US05_28</u></td> <td>JQ954389</td> <td>USA</td> <td>S.tuberosum</td> <td>2005</td>	<u>US05_28</u>	JQ954389	USA	S.tuberosum	2005
US05 30 JQ954355 USA S.tuberosum 2005 US05 31 JQ954390 USA S.tuberosum 2005 US05 33 JQ954356 USA S.tuberosum 2005 US05 33 JQ954356 USA S.tuberosum 2005 US05 36 JQ954375 USA S.tuberosum 2005 US05 37 JQ954357 USA S.tuberosum 2005 US05 39 JQ954357 USA S.tuberosum 2005 US05 41 JQ954358 USA S.tuberosum 2005 US05 45 JQ954360 USA S.tuberosum 2005 US05 48 JQ954361 USA S.tuberosum 2005 US05 51 JQ954362 USA S.tuberosum 2005 US05 56 JQ954364 USA S.tuberosum 2005 US05 6 JQ954365 USA S.tuberosum <t< td=""><td><u>US05_3</u></td><td>JQ954354</td><td>USA</td><td>S.tuberosum</td><td>2005</td></t<>	<u>US05_3</u>	JQ954354	USA	S.tuberosum	2005
US05_31 JQ954390 USA S.tuberosum 2005 US05_33 JQ954356 USA S.tuberosum 2005 US05_36 JQ954388 USA S.tuberosum 2005 US05_37 JQ954375 USA S.tuberosum 2005 US05_39 JQ954357 USA S.tuberosum 2005 US05_41 JQ954358 USA S.tuberosum 2005 US05_45 JQ954359 USA S.tuberosum 2005 US05_48 JQ954360 USA S.tuberosum 2005 US05_49 JQ954361 USA S.tuberosum 2005 US05_51 JQ954362 USA S.tuberosum 2005 US05_56 JQ954364 USA S.tuberosum 2005 US05_66 JQ954365 USA S.tuberosum 2005 US05_77 JQ954366 USA S.tuberosum 2005 US05_71 JQ954367 USA S.tuberosum 2005 US05_64 JQ954366 USA S.tuberosum 2005 US05_7 JQ954367	<u>US05_30</u>	JQ954355	USA	S.tuberosum	2005
US05_33 JQ954356 USA S.tuberosum 2005 US05_36 JQ954388 USA S.tuberosum 2005 US05_37 JQ954375 USA S.tuberosum 2005 US05_39 JQ954357 USA S.tuberosum 2005 US05_41 JQ954358 USA S.tuberosum 2005 US05_45 JQ954359 USA S.tuberosum 2005 US05_48 JQ954360 USA S.tuberosum 2005 US05_49 JQ954361 USA S.tuberosum 2005 US05_51 JQ954362 USA S.tuberosum 2005 US05_52* JQ954363 USA S.tuberosum 2005 US05_56 JQ954364 USA S.tuberosum 2005 US05_64 JQ954365 USA S.tuberosum 2005 US05_7 JQ954367 USA S.tuberosum 2005 US05_64 JQ954367 USA S.tuberosum 2005 US05_7 JQ954367 USA S.tuberosum 2005 US05_9 JQ954369	<u>US05_31</u>	JQ954390	USA	S.tuberosum	2005
US05_36JQ954388USAS.tuberosum2005US05_37JQ954375USAS.tuberosum2005US05_39JQ954357USAS.tuberosum2005US05_41JQ954358USAS.tuberosum2005US05_45JQ954359USAS.tuberosum2005US05_48JQ954360USAS.tuberosum2005US05_49JQ954361USAS.tuberosum2005US05_51JQ954362USAS.tuberosum2005US05_56JQ954363USAS.tuberosum2005US05_64JQ954365USAS.tuberosum2005US05_7JQ954366USAS.tuberosum2005US05_9JQ954368USAS.tuberosum2005US05_52JQ954367USAS.tuberosum2005US05_64JQ954367USAS.tuberosum2005US05_7JQ954369USAS.tuberosum2005US05_9JQ954369USAS.tuberosum2005US05_52JQ954370USAS.tuberosum2006US06_55JQ954370USAS.tuberosum2006US06_56JQ954371USAS.tuberosum2005	<u>US05_33</u>	JQ954356	USA	S.tuberosum	2005
$US05_{37}$ JQ954375USAS.tuberosum2005 $US05_{39}$ JQ954357USAS.tuberosum2005 $US05_{41}$ JQ954358USAS.tuberosum2005 $US05_{45}$ JQ954359USAS.tuberosum2005 $US05_{48}$ JQ954360USAS.tuberosum2005 $US05_{48}$ JQ954361USAS.tuberosum2005 $US05_{49}$ JQ954361USAS.tuberosum2005 $US05_{51}$ JQ954362USAS.tuberosum2005 $US05_{52}^*$ JQ954363USAS.tuberosum2005 $US05_{56}$ JQ954364USAS.tuberosum2005 $US05_{64}$ JQ954365USAS.tuberosum2005 $US05_{7}$ JQ954367USAS.tuberosum2005 $US05_{9}$ JQ954368USAS.tuberosum2005 $US06_{52}$ JQ954369USAS.tuberosum2005 $US06_{55}$ JQ954370USAS.tuberosum2006 $US06_{56}$ JQ954371USAS.tuberosum2006	<u>US05 36</u>	JQ954388	USA	S.tuberosum	2005
US05 39 JQ954357USAS.tuberosum 2005 US05 41 JQ954358USAS.tuberosum 2005 US05 45 JQ954359USAS.tuberosum 2005 US05 48 JQ954360USAS.tuberosum 2005 US05 48 JQ954361USAS.tuberosum 2005 US05 49 JQ954361USAS.tuberosum 2005 US05 51 JQ954362USAS.tuberosum 2005 US05 52^* JQ954363USAS.tuberosum 2005 US05 56 JQ954364USAS.tuberosum 2005 US05 6 JQ954365USAS.tuberosum 2005 US05 64 JQ954366USAS.tuberosum 2005 US05 7 JQ954367USAS.tuberosum 2005 US05 9 JQ954368USAS.tuberosum 2005 US05 9 JQ954369USAS.tuberosum 2005 US06 52 JQ954370USAS.tuberosum 2006 US06 55 JQ954371USAS.tuberosum 2005	US05 37	JQ954375	USA	S.tuberosum	2005
US0541JQ954358USAS.tuberosum2005US0545JQ954359USAS.tuberosum2005US0548JQ954360USAS.tuberosum2005US0549JQ954361USAS.tuberosum2005US0551JQ954362USAS.tuberosum2005US0552*JQ954363USAS.tuberosum2005US0556JQ954364USAS.tuberosum2005US056JQ954365USAS.tuberosum2005US0564JQ954366USAS.tuberosum2005US057JQ954367USAS.tuberosum2005US059JQ954368USAS.tuberosum2005US0552JQ954370USAS.tuberosum2005US0655JQ954370USAS.tuberosum2006US0656JQ954371USAS.tuberosum2005	US05 39	JQ954357	USA	S.tuberosum	2005
US0545JQ954359USAS.tuberosum2005US0548JQ954360USAS.tuberosum2005US0549JQ954361USAS.tuberosum2005US0551JQ954362USAS.tuberosum2005US0552*JQ954363USAS.tuberosum2005US0556JQ954364USAS.tuberosum2005US056JQ954365USAS.tuberosum2005US056JQ954366USAS.tuberosum2005US057JQ954367USAS.tuberosum2005US059JQ954367USAS.tuberosum2005US059JQ954369USAS.tuberosum2005US0652JQ954370USAS.tuberosum2006US0656JQ954371USAS.tuberosum2006US0656JQ954371USAS.tuberosum2005	US05 41	JQ954358	USA	S.tuberosum	2005
US05_48 JQ954360 USA S.tuberosum 2005 US05_49 JQ954361 USA S.tuberosum 2005 US05_51 JQ954362 USA S.tuberosum 2005 US05_52* JQ954363 USA S.tuberosum 2005 US05_56 JQ954364 USA S.tuberosum 2005 US05_66 JQ954365 USA S.tuberosum 2005 US05_64 JQ954366 USA S.tuberosum 2005 US05_7 JQ954367 USA S.tuberosum 2005 US05_9 JQ954368 USA S.tuberosum 2005 US05_55 JQ954369 USA S.tuberosum 2005 US05_55 JQ954367 USA S.tuberosum 2005 US05_5 JQ954369 USA S.tuberosum 2005 US06_55 JQ954370 USA S.tuberosum 2006 US06_56 JQ954371 USA S.tuberosum 2005	US05 45	JQ954359	USA	S.tuberosum	2005
US05_49 JQ954361 USA S.tuberosum 2005 US05_51 JQ954362 USA S.tuberosum 2005 US05_52* JQ954363 USA S.tuberosum 2005 US05_56 JQ954364 USA S.tuberosum 2005 US05_66 JQ954365 USA S.tuberosum 2005 US05_64 JQ954366 USA S.tuberosum 2005 US05_77 JQ954367 USA S.tuberosum 2005 US05_9 JQ954368 USA S.tuberosum 2005 US06_52 JQ954369 USA S.tuberosum 2005 US06_55 JQ954370 USA S.tuberosum 2006 US06_56 JQ954371 USA S.tuberosum 2006	US05 48	JQ954360	USA	S.tuberosum	2005
US05_51 JQ954362 USA S.tuberosum 2005 US05_52* JQ954363 USA S.tuberosum 2005 US05_56 JQ954364 USA S.tuberosum 2005 US05_66 JQ954365 USA S.tuberosum 2005 US05_64 JQ954366 USA S.tuberosum 2005 US05_77 JQ954367 USA S.tuberosum 2005 US05_9 JQ954368 USA S.tuberosum 2005 US06_52 JQ954369 USA S.tuberosum 2005 US06_55 JQ954370 USA S.tuberosum 2006 US06_56 JQ954371 USA S.tuberosum 2006	US05 49	JQ954361	USA	S.tuberosum	2005
US05_52* JQ954363 USA S.tuberosum 2005 US05_56 JQ954364 USA S.tuberosum 2005 US05_6 JQ954365 USA S.tuberosum 2005 US05_64 JQ954366 USA S.tuberosum 2005 US05_77 JQ954367 USA S.tuberosum 2005 US05_9 JQ954368 USA S.tuberosum 2005 US06_52 JQ954369 USA S.tuberosum 2005 US06_55 JQ954370 USA S.tuberosum 2006 US06_56 JQ954371 USA S.tuberosum 2005	US05 51	JQ954362	USA	S.tuberosum	2005
US05_56 JQ954364 USA S.tuberosum 2005 US05_6 JQ954365 USA S.tuberosum 2005 US05_64 JQ954366 USA S.tuberosum 2005 US05_77 JQ954367 USA S.tuberosum 2005 US05_9 JQ954368 USA S.tuberosum 2005 US06_52 JQ954369 USA S.tuberosum 2006 US06_55 JQ954370 USA S.tuberosum 2006 US06_56 JQ954371 USA S.tuberosum 2005	US05 52*	JQ954363	USA	S.tuberosum	2005
US05_6 JQ954365 USA S.tuberosum 2005 US05_64 JQ954366 USA S.tuberosum 2005 US05_7 JQ954367 USA S.tuberosum 2005 US05_9 JQ954368 USA S.tuberosum 2005 US06_52 JQ954369 USA S.tuberosum 2005 US06_55 JQ954370 USA S.tuberosum 2006 US06_56 JQ954371 USA S.tuberosum 2005	US05 56	JQ954364	USA	S.tuberosum	2005
US05_64 JQ954366 USA S.tuberosum 2005 US05_7 JQ954367 USA S.tuberosum 2005 US05_9 JQ954368 USA S.tuberosum 2005 US06_52 JQ954369 USA S.tuberosum 2006 US06_55 JQ954370 USA S.tuberosum 2006 US06_56 JQ954371 USA S.tuberosum 2006	US05 6	JO954365	USA	S.tuberosum	2005
US05_7 JQ954367 USA S.tuberosum 2005 US05_9 JQ954368 USA S.tuberosum 2005 US06_52 JQ954369 USA S.tuberosum 2006 US06_55 JQ954370 USA S.tuberosum 2006 US06_56 JQ954371 USA S.tuberosum 2006 US06_56 JQ954371 USA S.tuberosum 2005	US05 64	JO954366	USA	S.tuberosum	2005
US05_9 JQ954368 USA S.tuberosum 2005 US06_52 JQ954369 USA S.tuberosum 2006 US06_55 JQ954370 USA S.tuberosum 2006 US06_56 JQ954371 USA S.tuberosum 2006 US06_56 JQ954371 USA S.tuberosum 2005	US05 7	JO954367	USA	S.tuberosum	2005
US06_52 JQ954369 USA S.tuberosum 2006 US06_55 JQ954370 USA S.tuberosum 2006 US06_56 JQ954371 USA S.tuberosum 2005 US06_56 JQ954371 USA S.tuberosum 2005	US05 9	JO954368	USA	S.tuberosum	2005
US06_55 JQ954370 USA S.tuberosum 2006 US06_56 JQ954371 USA S.tuberosum 2005 US06_56 JQ954371 USA S.tuberosum 2005	US06 52	JO954369	USA	S.tuberosum	2006
<u>US06_56</u> JQ954371 USA <i>S.tuberosum</i> 2005	US06 55	JO954370	USA	S.tuberosum	2006
	US06 56	JO954371	USA	S.tuberosum	2005
US06 59 JO954372 USA S.tuberosum 2005	US06 59	JO954372	USA	S.tuberosum	2005
USMN20 JO954374 USA S.tuberosum 2004	USMN20	JO954374	USA	S.tuberosum	2004
v942490* EF016294 UK <i>S.tuberosum</i> 1994	v942490*	EF016294	UK	S.tuberosum	1994
v951156-1 AJ390286 UK <i>S.tuberosum</i>	v951156-1	AJ390286	UK	S.tuberosum	
v951175 AJ390304 UK S.tuberosum	v951175	AJ390304	UK	S.tuberosum	
v951204 AJ390292 UK Stuberosum	v951204	AJ390292	UK	S. tuberosum	
v951204-N** AJ390291 UK S.tuberosum	v951204-N**	AJ390291	UK	S.tuberosum	
v951218 AJ390287 UK Stuberosum	v951218	AJ390287	UK	S.tuberosum	
v97005 AJ390303 UK S tuberosum	v97005	AJ390303	UK	S.tuberosum	
Wilga EF558545 Poland S.tuberosum 1984	Wilga	EF558545	Poland	S.tuberosum	1984

WW002_22_147*	GQ853615	South Africa	S.tuberosum	
WW002_74_150*	GQ853616	South Africa	S.tuberosum	
WW002_82_151*	GQ853617	South Africa	S.tuberosum	
WW010_146_164	GQ853645	South Africa	S.tuberosum	
WW010_147_166	GQ853646	South Africa	S.tuberosum	
WW010_70_158	GQ853644	South Africa	S.tuberosum	
WW154_175_62	GQ853647	South Africa	S.tuberosum	
WW154A_62_86	GQ853648	South Africa	S.tuberosum	
WW202B_21_172*	GQ853618	South Africa	S.tuberosum	
WW202B_24_184*	GQ853619	South Africa	S.tuberosum	
WW282E_3	GQ853649	South Africa	S.tuberosum	
Xinyang	EU719648	China	S.tuberosum	
Z14*	JN936440	South Africa	S.tuberosum	2009
Z16*	JN936441	South Africa	S.tuberosum	2010
Z26*	GQ853620	South Africa	S.tuberosum	2005
Zhuanglang103	EF592523	China	N.tabacum	
	GQ496607	Latvia	S.tuberosum	2007
	AM931253	China	N.tabacum	
	AM931254*	China	S.tuberosum	

*isolates showing the common recombination point at position 9170 **isolates showing other recombination points at the CP cistron Underlined isolates in column one, newly described in this paper.

- Table S2. Amino acid composition for potato (P) and non-potato (NP) isolates
 (180 and 32, respectively) at positively selected codons. The last two columns
 indicate those amino acids that have been detected only in P or NP isolates,
 respectively, for a given position. Codon positions are given as the
 corresponding amino acid positions in the CP cistron.

Position	P composition	NP composition	P specific	NP specific
1	113A, 60G, 5V	24A, 5G, 3V		
68	173E, 4K, 3G	31E, 1D	K, G	D
193	98V, 57G, 25M	11G, 8V, 7I, 4M, 1R, 1T		I, R, T
216	178A, 1E, 1G	32A	E, G	

Table S3. Amino acid composition for potato (P) and non-potato (NP) isolates (180 and 32, respectively) at covarying codons. The last two columns indicate those amino acids that have been detected only in potato or non-potato isolates, respectively, for a given position. Codon positions are given as the corresponding amino acid positions in the CP cistron.

8

7

1

Position	P composition	NP composition	P specific	NP spec	cific
1	113A, 60G, 5V	24A, 5G, 3V			
11	113S, 45T, 21N, 1A	22S, 9N, 1T	А		10
17	125P, 53Q, 1L, 1R	28P, 4Q	L, R		
24	116S, 59P, 3L, 2R	16P, 9S, 5R, 2L			11
26	119P, 61L,	27P, 4L, 1S		S	40
29	126G, 54E	27G, 4E, 1A		А	12
31	126D, 53E, 1V	25D, 7E	V		10
99	122M, 53L, 5V	17M, 8V, 5L, 1T, 1I		Т, І	13
138	94D, 86N	14S, 10N, 8D		S	1/

Table S4. Amino acid composition for PVY^C, PVY^O and PVY^N strain isolates (22, 132 and 57 isolates, respectively) at positively
selected codons. The last three columns indicate those amino acids that have been detected only in PVY^C, PVY^O or PVY^N groups,
respectively, for a given position. Codon positions are given as the corresponding amino acid positions in the CP cistron.

6	Position	PVY ^C	PVY ⁰	PVY ^N	PVY ^C	PVYO	PVY ^N
7		composition	composition	composition	specific	specific	specific
	1	20A, 2V	108A, 18G, 4V	47G, 8A, 2V			
8	68	21E, 1D	13 2 E	50E, 4K, 3G	D		K, G
9	193	13G, 6I, 1M, 1T, 1V	104V, 28M	55G, 1R, 1V	Ι, Τ		R
10	216	22A	130A, 1E, 1G	57A		E, G	
11							
12							
13							
14							
15							
16							
17							
18							

Table S5. Amino acid composition for PVY^C, PVY^O and PVY^N strain isolates (22, 132 and 57 isolates, respectively) at covarying
codons. The last three columns indicate those amino acids that have been detected only in PVY^C, PVY^O or PVY^N groups,
respectively, for a given position. Codon positions are given as the corresponding amino acid positions in the CP cistron.

Position	PVYC	PVYO	PVY ^N	PVYC	PVYO	PVY ^N
	composition	composition	composition	specific	specific	specific
1	20A, 2V	108A, 18G, 4V	47G, 8A, 2V			
11	19S, 3N	114S, 18N	46T, 9N, 1S, 1A			Т, А
17	22P	130P, 1Q, 1L	56Q, 1R		L	R
24	11P, 7R, 3S, 1L	122S, 7P, 3L	56P, 1L	R		
26	21P, 1S	1 22 P, 10L	55L, 2P	S		
29	21G, 1A	131G, 1E	57E	А		
31	19D, 3E	131D, 1V	57E		V	
99	12V, 7M, 1I, 1L, 1T	132M	57L	V, I, T		
138	14S, 6N, 2D	79N, 53D	47D, 10N	S		

Table S6. Amino acid composition for PVY^C, PVY^O and PVY^N strain isolates (22, 132 and 57 isolates, respectively) at the region
showing evidence of positive selection for the internal branch leading to PVY^C clade (branch b2, codons 187-194, shown in Figure
S1). The last three columns indicate those amino acids that have been detected only in PVY^N, PVY^O or PVY^C groups, respectively,
for a given position.

Position	PVYC	PVYO	PVY ^N	PVYC	PVYO	PVY ^N
	composition	composition	composition	specific	specific	specific
187	19I, 1H, 1N, 1V	130I, 2T	55V, 2I	H, N	Т	
188	22R	132R	57R			
189	22N	132N	56N, 1T			Т
190	22L	132L	56L, 1V			V
191	22R	132R	57R			
192	21D, 1V	132D	57D	V		
193	13G, 6I, 1M, 1T, 1V	104V, 28M	55G, 1R, 1V	Ι, Τ		R
194	17S, 5G	132G	57S			

Figure S1. MCC phylogeny of the PVY isolates for the CP cistron. The tree was calculated from the posterior distribution of trees generated by Bayesian MCMC coalescent analyses with BEAST (Drummond & Rambaut, 2007). Posterior probabilities are indicated above branches. Branches detected to be under positive selection are shown in red, and internal branches are identified numbering in the range b1-b18. For clarity, branches were transformed as proportional using FigTree (www.tree.bio.ed.ac.uk).