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Summary 1 

Potato virus Y (PVY) is an important plant pathogen with a wide host range that 2 

includes, among others, potato, tobacco, tomato, and pepper.  The coat protein 3 

(CP) of PVY has been commonly used in phylogenetic studies for strain 4 

classification.  In this study, we used a pool of 292 CP sequences from isolates 5 

collected worldwide.  After detecting and removing recombinant sequences, we 6 

applied Bayesian techniques to study the influence of geography and host 7 

species in CP population structure and dynamics.  Finally, we performed 8 

selection and covariation analyses to identify specific amino acids involved in 9 

adaptation.  Our results show that PVY CP diversification is significantly 10 

accounted for by both geographic and host-driven adaptations.  Amino acid 11 

positions detected as positively selected concentrate in the N-terminal region of 12 

the protein.  Some of these selected positions may discriminate among strains, 13 

and to a much lesser extent, between potato and non-potato isolates. 14 

15 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Potato potyvirus Y (PVY) is responsible for serious diseases in potato, tobacco, 1 

pepper, and tomato crops.  PVY was originally classified into strain groups 2 

(e.g., PVYN, PVYO and PVYC) according to biological properties, serological 3 

characteristics and/or genome sequences (Moury et al., 2002; Singh et al., 2008).  4 

Recombination is highly pervasive in PVY and additional genomic 5 

organizations have been recently described (Lorenzen et al., 2008; Schubert et al., 6 

2007). 7 

Molecular evolution studies are useful tools to shed light on the molecular 8 

bases of virus geographical spread and adaptation to new hosts and for 9 

designing better epidemics control strategies (Elena et al., 2011; Jones, 2009).  We 10 

recently studied the phylogeography and molecular evolution of PVY whole-11 

genomes (Cuevas et al., 2012), showing that host and geographic origin 12 

influenced PVY diversification, and detecting positively selected sites.  Here we 13 

revisit these topics but focusing on the CP.  Novelties of this study are: i) a 14 

much larger data set is available for the CP, which is expected to allow a more 15 

robust characterization of phylogenetic and selection patterns, ii) the CP plays 16 

an important role in host adaptation for many plant viruses, and iii) the CP is 17 

the most diverse and well-studied gene in PVY and other potyviruses (Moury & 18 

Simon, 2011; Ogawa et al., 2008; Rohozkova & Navratil, 2011; Visser & Bellstedt, 19 

2009). 20 

A detailed description of the methods employed in this study can be found 21 

elsewhere (e.g., Cuevas et al., 2012).  For this study, we retrieved 198 PVY CP 22 

sequences from GeneBank, plus 94 additional sequences from worldwide 23 

isolates (PVYwide Organization, http://www.inra.fr/pvy_organization) (Table 24 

S1).  This dataset was aligned with MUSCLE (Edgar, 2004) as implemented in 25 

MEGA 5 (Tamura et al., 2011).  We run recombination analyses to remove its 26 

effect from subsequent analyses.  Bayesian Markov chain Monte Carlo (MCMC) 27 

coalescent analyses were performed with non-recombinant isolates to study the 28 

effect of local adaptation and host species in the observed diversity.  Finally, we 29 

performed selection analyses to identify regions from the CP cistron that may 30 

be more likely involved in PVY adaptation dynamics. 31 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Seventy-five out of the 292 isolates (Table S1) showed a breakpoint indicating 1 

ancestral recombination between PVYN and PVYO strains at position 9170 2 

(considering the full genome) in the CP (Schubert et al., 2007) and worldwide 3 

distributed.  Five other isolates showed uncommon breakpoints detected by at 4 

least three of the methods implemented in RDP3 (Martin et al., 2010).  N Nysa 5 

isolate showed a newly described breakpoint at position 8896 (Cuevas et al., 6 

2012).  IAC and v951204-N isolates showed a breakpoint at position 8735 (being 7 

Mont and SASA-110 the major and minor parents, respectively), almost 8 

coincident with other previously described breakpoints (Moury et al., 2002).  9 

Finally, S-RB96 and NN-UK-N isolates showed a new recombination point at 10 

position 8947 (SASA-110 and Mont are the major and minor parents, 11 

respectively).  All recombinants were excluded, reducing the dataset to 212 12 

isolates. 13 

Phylogenetic analyses were performed using the GTR + Γ4 + I substitution 14 

model in the Bayesian MCMC framework, as implemented in BEAST 1.6 15 

(Drummond & Rambaut, 2007).  Substitution rates were estimated using the 16 

relaxed uncorrelated exponential clock model.  The three typical PVY strain 17 

groups (PVYC, PVYO and PVYN) could be observed (Figure S1), although the 18 

differentiation between PVYC and PVYO strains was poorly supported.  Chile3 19 

occupies a basal position in the tree, outside any of the strain groups, 20 

supporting its ancestry (Moury, 2010).  Within the PVYC clade, 17 out of 22 21 

isolates were collected from five different non-potato hosts.  However, host 22 

species did not account for clustering within this clade, since most of the 23 

isolates from a given host were dispersed along the clade or closely grouped 24 

with isolates from other hosts.  Only isolates PVY-MN and NC57 (from tobacco) 25 

formed a differentiated cluster, as previously observed (Kehoe & Jones, 2011; 26 

Mascia et al., 2010).  PVYC clade has been subdivided into PVYC1 and PVYC2 27 

subgroups depending on their ability to infect pepper (Blanco-Urgoiti et al., 28 

1998).  In our phylogenetic tree, only isolates PVY-C-CM and Adgen-C were of 29 

pathotype PVYC2, forming a differentiated cluster.  Isolate CAA82 collected 30 

from pepper, grouped outside the PVYC1 subgroup.  More isolates from 31 

subgroup PVYC2 are thus necessary to check the relative distance of isolate 32 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CAA82 to those from non-pepper subgroup PVYC2.  Most isolates in our data 1 

set belong to PVYO.  The globally low branch supports suggests a very 2 

genetically homogeneous group, compatible with a recent origin with minimal 3 

selection (Pagán et al., 2006; Roossinck et al., 1999).  In fact, well-supported 4 

clusters within the PVYO clade included isolates with common geographic 5 

origins.  Finally, a similar trend was observed in the PVYN clade, although 6 

internal branches close to the basis of the tree were usually well supported, thus 7 

differentiating several monophyletic clusters.  Our study supports the 8 

classification proposed by Ogawa et al. (2008) into two PVYN main groups (i.e., 9 

N-Europe and N-North America).  Some well-supported clusters were observed 10 

into each PVYN group, although this differentiation was not strictly associated 11 

with geographic origin. 12 

A visual inspection of the maximum clade credibility (MCC) phylogeny did not 13 

show a clear structure in terms of geographic origin at the continent level 14 

(Figure S1 and Table S1).  For commercial and geographical reasons, North 15 

African and Middle East isolates were included into the European group.  For 16 

the same reason, the only isolate from New Zealand was not included into any 17 

continental group.  We used BATS 1.0b2 (Parker et al., 2008) to calculate three 18 

statistics (AI: association index, PS: parsimony score and MC: maximum 19 

monophyletic clade size) describing the correlation between the geographic and 20 

the phylogenetic relationships.  Significant signatures for geographic structure 21 

in the diversity of CP cistron were observed when grouped by geographic 22 

origins (Table 1), as shown by the significant AI and PS values.  Asian, 23 

European, South African, and North American groups showed differentiated 24 

subpopulations (significant MC values).  South American group did not show a 25 

significant association, which is accounted for by the small sample size, and no 26 

inference was possible for the single New Zealand isolate. 27 

Host-driven adaptation could also be tested using host as grouping variable, 28 

and a significant signature was also observed (Table 1).  In this case, the 29 

differentiation was due to three subpopulations of isolates derived from potato, 30 

tobacco and pepper.  For tomato and black nightshade no significant association 31 

was detected, whereas no inference was possible for single isolates from ají and 32 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tamarillo.  Since most of the samples in our data set are potato isolates, the 1 

significance of AI and PS values could be a consequence of the global 2 

distribution of the same state across most of the branches in the tree (Parker et 3 

al., 2008).  However, host structure explained quite well the phylogeny, since 4 

clade PVYC predominantly included non-potato isolates (17 out of 22), whereas 5 

the remaining main clades only included 14 non-potato isolates (out of 189).  6 

Twelve out of the 14 non-potato isolates falling outside the PVYC clade were 7 

collected from tobacco.  In this sense, tobacco infection could accidentally take 8 

place from potato crops early in the year, thus leading to misidentification of 9 

some tobacco isolates (M. Chrzanowska pers. comm.).  Besides, it is not 10 

surprising either that tomato isolate GR_PVY12 fell outside clade PVYC, since 11 

tomato can be infected with most PVY potato isolates (Singh et al., 2008), and 12 

thus a recent introduction from potatoes cannot be excluded.  Finally, the 13 

inclusion of black nightshade isolate SYR-Sn into PVYO clade is surprising, 14 

although the biological properties of this isolate are not yet available. 15 

Selective pressures at a codon level were estimated using FEL, IFEL and MEME 16 

methods (www.datamonkey.org).  Intramolecular covariation analyses were 17 

carried out using CAPS 1 (Fares & Travers, 2006), as previously described 18 

(Cuevas et al., 2012).  Table 2 shows the distribution of codon positions under 19 

purifying, neutral and positive selection, and covarying positions.  As 20 

previously shown, most of the codons evolve neutrally, whereas purifying 21 

selection is the main force driving the evolution of CP (Cuevas et al., 2012).  22 

Negatively selected positions are scattered along the ORFs, suggesting that no 23 

domain is particularly constrained.  FEL and IFEL predicted codon one as 24 

positively selected, whereas MEME detected three additional codons (68, 193 25 

and 216) to be under episodic diversifying selection (Table 2).  Finally, a 26 

covariation group of nine codons was also detected, all located at the first half 27 

of the CP.  Selected codon one was involved into this covariation group. 28 

Previous phylogenetic studies showed that non-potato isolates mainly fell into 29 

clade PVYC (Ogawa et al., 2008; Schubert et al., 2007), highlighting the 30 

importance of host-driven adaptation.  Our study, which included a 31 

significantly larger number of non-potato isolates, clearly showed that, in spite 32 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of the global consideration of non-potato isolates as belonging to the clade 1 

PVYC, several other non-potato isolates were dispersed in the phylogeny.  In 2 

fact, the analysis of amino acid composition for positively selected and 3 

covarying positions showed no clear differences between potato and non-4 

potato isolates (Tables S2 and S3).  Globally, both groups, except for positions 5 

24, 138 and 193, shared the same predominant amino acid at a given position.  6 

Whereas similar amino acid composition between both groups was found for 7 

positions 24 and 193, the main difference was found at position 138, since the 8 

predominant amino acid for non-potato isolates was absent in potato isolates 9 

(Table S3).  Besides, with the exception of position 138, specific residues of 10 

potato and non-potato isolates were always present at low frequencies.  We also 11 

obtained the amino acid composition of positively selected and covarying 12 

codons, but grouping in this case for the PVYC, PVYO and PVYN strains, which 13 

allowed us to check if selective forces were strain-specific (Tables S4 and S5).  14 

Globally, the same predominant amino acid at a given position was usually 15 

shared by the three strains.  For those cases showing differences in the 16 

predominant amino acid, these predominant residues for a given strain were 17 

also usually present at low frequencies in at least one of the alternative strains.  18 

We observed positions 24 and 193 wherein the predominant amino acid for 19 

PVYO strain was different from that of PVYC and PVYN strains.  Besides, the 20 

predominant amino acid from PVYN strain was different from that observed at 21 

PVYC and PVYO strains for positions 1, 11, 17, 26, 29, and 31.  Finally, positions 22 

99 and 138 showed different predominant residues for the three strains.  23 

Interestingly, the predominant residue for the PVYC strain at these two 24 

positions was absent in the other two strains, although the predominant amino 25 

acids from PVYO and PVYN strains were also present at low frequencies.  26 

Consequently, the analysis of amino acid composition at selected and covarying 27 

positions showed more partially discriminant residues among strains than 28 

among potato and non-potato isolates, which indicates that selective forces are 29 

mainly acting independently of the potato/non-potato distinction.  In this 30 

sense, as mentioned before, PVY does not have a narrow host range, which 31 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would account for the lack of association between selected positions and host 1 

usage. 2 

Selection analyses at a branch level were performed using SWAPSC (Fares, 3 

2004) to check the potential association between selective events and the 4 

phylogeny.  Thirty-four branches showed evidence of positive selection (18 5 

internal and 16 terminal branches; Figure S1), and this selective signature was 6 

detected in 13 regions, often overlapping (Table 3).  Most of them fell into the 7 

N-terminal region, congruently with the above selection and covariation 8 

analyses (Tables 2 and 3).  Respect to the distribution of the selected branches in 9 

the phylogeny, we could differentiate between internal and terminal branches 10 

(Figure S1).  The frequency of selected internal branches was different among 11 

clades (20%, 3.7% and 15.8% for PVYC, PVYO and PVYN clades, respectively; 12 

Fisher's exact test, P = 0.003), but not for terminal branches (with frequencies of 13 

9.1%, 6.1%, and 10.5% for PVYC, PVYO and PVYN clades, respectively; Fisher's 14 

exact test, P = 0.568).  These results suggest that selective forces are stronger 15 

into the PVYC and PVYN clades and milder into PVYO.  It is worth mentioning 16 

that one selected internal branch lead to PVYC clade (named as b2 in Table 3 17 

and Figure S1), except for the tamarillo isolate falling outside the selected 18 

cluster.  We obtained the amino acid composition of the region involved in this 19 

branch specific selection event (codons 187-194) for PVYC, PVYO and PVYN 20 

clades (Table S6).  This region included selected site 193, which have been 21 

discussed above.  Besides, the predominant amino acid for PVYN clade was 22 

different from that observed at PVYC and PVYO clades at position 187.  Finally, 23 

position 194 clearly discriminated between PVYO and PVYN clades, but the two 24 

fixed residues present in these strains were also observed in the PVYC strain.  In 25 

conclusion, branch selection analyses showed evidence of the differential effect 26 

of selective events among strains, but did not provide particular positions 27 

accounting for these differences at a strain level. 28 

The role of CP protein in the pathology of potyviruses have been previously 29 

confirmed (Andrejeva et al., 1999; Hu et al., 2011; Ullah & Grumet, 2002) and 30 

symptom determinants may be different even between strains of PVY in a 31 

particular host (Bukovinszki et al., 2007).  The N-terminal part of CP protein is a 32 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clear example of multifunctionality.  It is exposed on the virion surface 1 

(potential function in binding ligands), besides being involved in vector 2 

transmission (Peng et al., 1998) and systemic plant colonization (Andersen & 3 

Johansen, 1998; López-Moya & Pirone, 1998), becoming a potential target of 4 

selection at both vector and plant levels.  In addition, CP protein from PVY 5 

interacts with different chloroplast proteins (Feki et al., 2005).  Consequently, it 6 

is not easy to discern if a given amino acid position is involved into one or more 7 

functions. 8 

Regarding biological functions of the CP protein, several commonalities were 9 

found when comparing our results with those described by Moury and Simon 10 

(2011).  All positions showing positive selection in this previous study are 11 

within the N-terminal region of the CP cistron.  In particular, positions 11, 24, 12 

26, 68, and 138, were also detected to be under positive selection or covariation 13 

in our study.  Position 11 is close to the DAG conserved motif involved in aphid 14 

transmission (Atreya et al., 1991, 1995), and it has been shown that mutations in 15 

a neighbor residue can reduce substantially transmissibility (Atreya et al., 1995).  16 

Furthermore, position 25 was shown to affect virus accumulation in host plants 17 

(Moury & Simon, 2011), and covarying positions detected in the vicinity could 18 

have some influence in this respect.  Regarding position 68, it is worth 19 

mentioning that a mutation in this codon promoted differences in viral 20 

accumulation and transmissibility by aphids (Moury & Simon, 2011).  Finally, 21 

the region spanning amino acid positions 133 to 148 of the CP from Soybean 22 

mosaic virus (positions 136-151 of PVY CP), is involved in binding to the HC-Pro 23 

(Seo et al., 2010), and then a potential influence for the included covarying 24 

position 138 could be postulated. 25 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Table 1.  Analysis of the geographic and host effect on the population 1 
structure of PVY isolates. 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

1insufficient sample size (n < 2). 18 

19 

Analyses # Isolates Association 

statistics 

Test value P 
Geographic 

regions 

 PS 106.985 

 

<0.001 
  AI 17.979 

 

<0.001 
Asia 30 MC 1.911 

 

0.0099 
Europe 88 MC 3.623 

 

0.0099 
South Africa 47 MC 2.451 0.0099 

North America 43 MC 2.272 

 

0.0099 
South America 3 MC 1.004 

 

1 
New Zealand 1 MC NA1  

Host species  PS 31.480 

 

<0.001 
  AI 6.651 

 

<0.001 
Potato 180 MC 13.145 

 

0.0199 
Tobacco 14 MC 1.286 

 

0.0400 
Pepper 10 MC 1.136 

 

0.0099 
Tomato 4 MC 1.005 

 

1 

Black nightshade 2 MC 1.001 

 

1 
Ají 1 MC NA1  

Tamarillo 1 MC NA1  
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Table 2.  Results of the codon selection and covariation analyses at the CP gene.  1 

For selection methods (FEL, IFEL and MEME), the number of codons detected 2 

to be under negative, neutral or positive selection are given.  The last column 3 

indicates the location of positively selected sites besides those positions 4 

showing covariation (CAPS).   5 

 
Negative Neutral Positive Location 

FEL 113 153 1 1 
IFEL 76 190 1 1 
MEME NA NA 4 1, 68, 193, 216 
CAPS - - - 1, 11, 17, 24, 26, 29, 31, 99, 138 
 6 

7 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Table 3.  Results of branch selection analysis.  First column indicates all regions 1 

(codons) showing evidence of positive selection and second column shows the 2 

branches associated with the selection event for a given region.  For terminal 3 

branches, the name of the corresponding isolate is shown.  Internal branches are 4 

numbered as indicated in Figure S1 and marked in bold.  Positively selected 5 

and covarying positions falling into the regions providing a positive selection 6 

signature are shown in the last two columns, respectively. 7 

Region Branch FEL-IFEL-
MEME 

Covariation 

7-11 SASA-110, b3  11 
8-13 PN-82  11 
23-28 b12  24, 26 
23-29 b14  24, 26, 29 
25-28 PB_707, US05_30, SYR-NB-16  26 
25-29 b15, b16, b17  26, 29 
26-29 b5, b7, b11   26, 29 
29-33 CAA141, PB_707, PB_602, PB_752, SC143, SC61, US05_30, 

US05_7, NN71_111, SYR-NB-16, 605, b4, b8, b9, b13, b18  
 29, 31 

62-65 German_45, US06_55, b6   
135-138 b1  138 
187-193 Nicola 193  
187-194 b2, b3, b10 193  
214-217 German_45, b6 216  

8 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Table S1.  PVY isolates used in the present study. 1 

Isolate GenBank 
accession 

Origin Host Collection 
date 

156 AJ889867 Germany S.tuberosum 
 605 X97895 Switzerland S.tuberosum 1976 

12-94* AJ889866 Poland S.tuberosum 1994 
156var AJ889868 Germany S.tuberosum 2004 
261-4 AM113988 Germany S.tuberosum 2004 
34/01* AJ890342 Poland S.tuberosum 2001 
423-3* AY884982 USA S.tuberosum 2002 
53-29 AJ390298 Denmark S.tuberosum 

 53-49 AJ390299 Denmark S.tuberosum 
 Adgen-C AJ890348 France S.tuberosum  2005 

Al-Baqa'* EU073854 Jordan S.tuberosum  
Al-Ghor* EU073855 Jordan S.tuberosum  
Al-Mafraq* EU073857 Jordan S.tuberosum  
aL-Ramtha EU073859 Jordan S.tuberosum 

 Alt* AY884985 USA S.tuberosum 2002 
Anqiu4 EF592517 China N.tabacum 

 AQ1 EF592513 China N.tabacum 
 Ca/H* AJ535662 Hungary C.annuum  

CAA141 JQ954317 France C.annuum 1999 
CAA15 JQ954318 France C.annuum 2000 
CAA82 JQ954315 Israel C.annuum 1982 
CAPA7 JQ954316 Tunisia C.annuum 2006 
CC24_5 GQ853667 South Africa S.tuberosum 

 CC55_8_146 GQ853652 South Africa S.tuberosum 
 CC62_20_156* GQ853623 South Africa S.tuberosum  

CC66_91_47 GQ853653 South Africa S.tuberosum 
 CC9_12_171* GQ853621 South Africa S.tuberosum  

CC9_30_175 GQ853650 South Africa S.tuberosum 
 CC9_47_177* GQ853622 South Africa S.tuberosum  

CC9_48_178 GQ853651 South Africa S.tuberosum 
 Chile3 FJ214726 Chile C.baccatum 2005 

DD019_141_138 GQ853661 South Africa S.tuberosum 
 DD020_92_30* GQ853624 South Africa S.tuberosum  

DD037F_31_186* GQ853625 South Africa S.tuberosum  
DD037F_35_188* GQ853626 South Africa S.tuberosum  
DD037F_9_154 GQ853655 South Africa S.tuberosum 

 DD051_14 GQ853660 South Africa S.tuberosum 
 DD051_7 GQ853659 South Africa S.tuberosum 2007 

DD103A_101_190 GQ853657 South Africa S.tuberosum 
 DD103A_184_191 GQ853603 South Africa S.tuberosum 
 DD103A_80_180 GQ853656 South Africa S.tuberosum 
 DD122A_25 GQ853658 South Africa S.tuberosum 
 DD122A_34 GQ853662 South Africa S.tuberosum 
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DD122A_36* GQ853627 South Africa S.tuberosum  
Ditta* AJ890344 Austria S.tuberosum 1998 
Fanzhen6 EF592515 China S.tuberosum 

 Fanzhen8 EF592521 China S.tuberosum 
 Foggia EU482153 Italy L.esculentum 2007 

FX24 EF592514 China S.tuberosum 
 German_14* JQ954384 Germany S.tuberosum 2003 

German_16* JQ954295 Germany S.tuberosum 2003 
German_20 JQ954387 Germany S.tuberosum 2004 
German_33 JQ954296 Germany S.tuberosum 2004 
German_34 JQ954297 Germany S.tuberosum 2004 
German_35 JQ954298 Germany S.tuberosum 2004 
German_37 JQ954299 Germany S.tuberosum 2004 
German_38 JQ954300 Germany S.tuberosum 2004 
German_39 JQ954301 Germany S.tuberosum 2004 
German_4* JQ954302 Germany S.tuberosum 2002 
German_41 JQ954303 Germany S.tuberosum 2004 
German_42 JQ954304 Germany S.tuberosum 2004 
German_43 JQ954305 Germany S.tuberosum 2004 
German_45 JQ954306 Germany N.tabacum 2006 
German_47 JQ954314 Germany S.tuberosum 2003 
German_51 JQ954307 Germany S.tuberosum 2004 
German_52 JQ954308 Germany S.tuberosum 2004 
German_55 JQ954309 Germany S.tuberosum 2004 
German_56 JQ954310 Germany S.tuberosum 2004 
German_57 JQ954311 Germany S.tuberosum 2004 
German_58 JQ954312 Germany S.tuberosum 2004 
German_62* JQ954342 Germany S.tuberosum 2004 
German_65 JQ954313 Germany S.tuberosum 2004 
GG517_128 GQ853635 South Africa S.tuberosum 2005 
GG517_170_168 GQ853636 South Africa S.tuberosum 

 GG517_93_160 GQ853593 South Africa S.tuberosum 
 Gpost* JN936420 South Africa S.tuberosum 2010 

GR_PVY12 JQ954319 Greece L.esculentum 1998 
GR_PVY13 JQ954320 Greece L.esculentum 1999 
GR_PVY84* JQ954321 Greece S.tuberosum 2004 
Gr99* AJ890343 Poland N.tabacum 1999 
Hangzhou AJ488834 China S.tuberosum 

 HN2 GQ200836 China S.tuberosum 2007 
Thole* M95491 Hungary S.tuberosum 1993 
IAC** AY840082 Brazil S.tuberosum  
Irbid* EU073856 Jordan S.tuberosum  
Isol5 AJ890350 Germany S.tuberosum 

 IT_104 JQ954323 Italy S.tuberosum 1997 
IT_115* JQ954324 Italy S.tuberosum 1998 
IT_117 JQ954325 Italy S.tuberosum 1998 
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IT_101* JQ954322 Italy S.tuberosum 1998 
IT_215* JQ954326 Italy S.tuberosum 1998 
L26* FJ204165 USA S.tuberosum 2007 
Laiwu1 EF592525 China S.tuberosum 

 Laiwu29 EF592527 China N.tabacum 
 Laiwu3 EF592516 China S.tuberosum 
 Laiwu9* EF592526 China S.tuberosum  

Linda* AJ890345 Germany S.tuberosum 2004 
Linkou29 EF592524 China N.tabacum 

 LW AJ890349 Poland S.tuberosum 1970 
LYE842 AJ43954 Canary Islands L.esculentum 1984 
ME173 FJ643479 USA S.tuberosum 2006 
Mengyin3 EF592518 China N.tabacum 

 MengyinA EF592519 China N.tabacum 
 MengyinC EF592520 China N.tabacum 
 Mont AY884983 USA S.tuberosum 2001 

N_Nysa** FJ666337 Poland S.tuberosum 1974 
N484_1 GQ853634 South Africa S.tuberosum 

 Naur* EU073858 Jordan S.tuberosum  
NC57 DQ309028 USA N.tabacum 1973 
NE-11* DQ157180 USA S.tuberosum 2003 
N-Egypt AF52229 Egypt S.tuberosum 2001 
New_Zealand AM268435 New Zealand S.tuberosum 2002 
NIB-NTN* AJ585342 Slovenia S.tuberosum  
Nicola AJ890346 Germany N.tabacum 1999 
N-Jg AY166867 Canada S.tuberosum 1991 
NN300_155_19 GQ853597 South Africa S.tuberosum 

 NN300_155_22 GQ853598 South Africa S.tuberosum 
 NN300_41_123 GQ853595 South Africa S.tuberosum 
 NN300_60_23 GQ853663 South Africa S.tuberosum 
 NN300_76_118* GQ853628 South Africa S.tuberosum  

NN300_98_31 GQ853596 South Africa S.tuberosum 
 NN300_99_34 GQ853664 South Africa S.tuberosum 
 NN333B_28_149* GQ853629 South Africa S.tuberosum  

NN333B_87_152* GQ853630 South Africa S.tuberosum  
NN459_14 GQ853631 South Africa S.tuberosum 

 NN459_25 GQ853599 South Africa S.tuberosum 
 NN71_111 GQ853594 South Africa S.tuberosum 2005 

nnp* AF237963 Italy C.annuum 1992 
NN-UK-N** AJ390296 UK S.tuberosum  
NN-UK-O AJ390297 UK S.tuberosum 

 NTND6 AB331515 Japan S.tuberosum 1997 
NTNHO90 AB331517 Japan S.tuberosum 1997 
NTNHO92 AB331549 Japan S.tuberosum 

 NTNHO95 AB331550 Japan S.tuberosum 
 NTNK114 AB331540 Japan S.tuberosum 
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NTNNN99 AB331518 Japan S.tuberosum 1997 
NTNOK102 AB331546 Japan S.tuberosum 

 NTNOK105 AB331516 Japan S.tuberosum 1997 
NTNON92 AB331519 Japan S.tuberosum 1997 
O-Des AJ390305 UK S.tuberosum 

 O-Gov AJ390301 UK S.tuberosum 
 O-Tom AJ390307 Portugal S.tuberosum 
 P21-82 AJ303097 Spain C.annuum 
 P21-82b AJ005639 Spain C.annuum 
 PB_602 JQ954329 The Netherlands S.tuberosum 1978 

PB_702 JQ954327 The Netherlands S.tuberosum 1957 
PB_707 JQ954328 The Netherlands S.tuberosum 1958 
PB_752 JQ954330 The Netherlands S.tuberosum 1995 
PB312* EF026075 USA S.tuberosum 2003 
PMB21 AJ390306 UK S.tuberosum 

 PN10A DQ008213 USA S.tuberosum 2004 
PN-82 AJ303096 Spain C.annuum 

 PO7 U09509 Canada S.tuberosum 1994 
PP026B_184_111* GQ853606 South Africa S.tuberosum  
PRI-509 EU563512 The Netherlands S.tuberosum 1938 
PVY-12* AB185833 Syria S.tuberosum 2003 
PVY-C-CM AJ390302 UK S.tuberosum 

 PVY-MN AF463399 USA N.tabacum 2001 
PVY-NBR AF255660 Brazil S.tuberosum 

 PVY-N-RB AJ390285 UK S.tuberosum 
 PVYNTN1 GQ853632 South Africa S.tuberosum 2007 

PVYNTN17_1* JN936429 South Africa S.tuberosum 2007 
PVYNTN3_3* GQ853607 South Africa S.tuberosum  
PVY-OBR AF255659 Brazil S.tuberosum 

 PVY-Sumi* EU885418 SouthKorea S.tuberosum 2008 
PVY-ThaiNguyen FM201468 Vietnam S.tuberosum 

 RB HM367076 Canada S.tuberosum 
 RRA-1 AY884984 USA S.tuberosum 2001 

S25774_1* JQ954331 Switzerland S.tuberosum 2008 
S25776_3* JQ954332 Switzerland S.tuberosum 2008 
S25777_4* JQ954333 Switzerland S.tuberosum 2008 
S25781_8* JQ954334 Switzerland S.tuberosum 2008 
S25783_10* JQ954335 Switzerland S.tuberosum 2008 
S25789_16* JQ954336 Switzerland S.tuberosum 2008 
S25907-134 JQ954393 Switzerland S.tuberosum 2008 
S25972-199* JQ954394 Switzerland S.tuberosum 2008 
SASA-110 AJ585195 UK S.tuberosum 1997 
SASA-61 AJ585198 UK S.tuberosum 1997 
Satina* AJ890347 Germany S.tuberosum 2002 
SC143 JQ954337 Scotland S.tuberosum 1996 
SC190 JQ954338 Scotland S.tuberosum 2000 
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SC61 JQ954339 Scotland S.tuberosum 1986 
SCRI-N AJ585197 UK S.tuberosum 1985 
SCRI-O AJ585196 UK S.tuberosum 1985 
Shanxi EU719650 China S.tuberosum 

 Si15_Italy AJ303093 Italy C.annuum 
 Si15_Turkey AJ303094 Turkey C.annuum 
 SLO4 JQ954376 Slovenia S.tuberosum 2009 

SLO7* JQ954377 Slovenia S.tuberosum 2007 
S-NTN AJ390295 UK S.tuberosum 

 SON41 AJ439544 France S.nigrum 1972 
S-RB96** AJ390308 UK S.tuberosum  
SS082A_171_4 GQ853601 South Africa S.tuberosum 

 SS082A_194_14* GQ853608 South Africa S.tuberosum  
SS082A_88 GQ853600 South Africa S.tuberosum 2005 
SS121_154_10 GQ853633 South Africa S.tuberosum 

 SS121_166_56 GQ853637 South Africa S.tuberosum 
 SS121_197_16* GQ853610 South Africa S.tuberosum  

SS121_53_42* GQ853609 South Africa S.tuberosum  
SS121_82_1* GQ853612 South Africa S.tuberosum  
SS147_144_144* GQ853611 South Africa S.tuberosum  
SYR-D4* AB295477 Syria S.tuberosum 2004 
SYR-D9* AB295478 Syria S.tuberosum  
SYR-II-2-8 AB461451 Syria S.tuberosum 2006 
SYR-II-Be1 AB461452 Syria S.tuberosum 2004 
SYR-NB-16 AB270705 Syria N.tabacum 2006 
SYR-Sn AB295475 Syria S.nigrum 2004 
T50 AB331544 Japan S.tuberosum 

 Tamarillo FM244834 Taiwan C.betacea 2008 
TC_2-186 JQ954340 Czech Republic S.tuberosum 2006 
TC_2-187 JQ954341 Czech Republic S.tuberosum 2006 
TC_2-191* JQ954343 Czech Republic S.tuberosum 2006 
TC_2-196 JQ954344 Czech Republic S.tuberosum 2006 
TC_2-197 JQ954345 Czech Republic S.tuberosum 2006 
TC_2-198 JQ954346 Czech Republic S.tuberosum 2006 
TC_2-199 JQ954347 Czech Republic S.tuberosum 2006 
TC_2-200 JQ954348 Czech Republic S.tuberosum 2006 
TT014_184_135* GQ853613 South Africa S.tuberosum  
TT019A_107_52 GQ853665 South Africa S.tuberosum 

 TT026B_195_58 GQ853602 South Africa S.tuberosum 
 TT026B_86_128 GQ853638 South Africa S.tuberosum 
 TT026B_88_115 GQ853639 South Africa S.tuberosum 
 TT138D_111_79 GQ853640 South Africa S.tuberosum 
 TT138D_13_68* GQ853614 South Africa S.tuberosum  

TT138E_102_96 GQ853641 South Africa S.tuberosum 
 TT138E_111_104 GQ853666 South Africa S.tuberosum 
 TT138E_113_106 GQ853642 South Africa S.tuberosum 
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TT141A_76_73 GQ853643 South Africa S.tuberosum 
 Tu_660 AY166866 Canada S.tuberosum 1991 

Tu12.3 AJ303095 Turkey C.annuum 
 TU619 AJ390309 USA S.tuberosum 
 US04_24 JQ954392 USA S.tuberosum 2004 

US05_11 JQ954373 USA S.tuberosum 2005 
US05_12* JQ954391 USA S.tuberosum 2005 
US05_13 JQ954349 USA S.tuberosum 2005 
US05_14 JQ954350 USA S.tuberosum 2005 
US05_17 JQ954385 USA S.tuberosum 2005 
US05_19 JQ954351 USA S.tuberosum 2005 
US05_20 JQ954386 USA S.tuberosum 2005 
US05_25 JQ954352 USA S.tuberosum 2005 
US05_26 JQ954353 USA S.tuberosum 2005 
US05_28 JQ954389 USA S.tuberosum 2005 
US05_3 JQ954354 USA S.tuberosum 2005 
US05_30 JQ954355 USA S.tuberosum 2005 
US05_31 JQ954390 USA S.tuberosum 2005 
US05_33 JQ954356 USA S.tuberosum 2005 
US05_36 JQ954388 USA S.tuberosum 2005 
US05_37 JQ954375 USA S.tuberosum 2005 
US05_39 JQ954357 USA S.tuberosum 2005 
US05_41 JQ954358 USA S.tuberosum 2005 
US05_45 JQ954359 USA S.tuberosum 2005 
US05_48 JQ954360 USA S.tuberosum 2005 
US05_49 JQ954361 USA S.tuberosum 2005 
US05_51 JQ954362 USA S.tuberosum 2005 
US05_52* JQ954363 USA S.tuberosum 2005 
US05_56 JQ954364 USA S.tuberosum 2005 
US05_6 JQ954365 USA S.tuberosum 2005 
US05_64 JQ954366 USA S.tuberosum 2005 
US05_7 JQ954367 USA S.tuberosum 2005 
US05_9 JQ954368 USA S.tuberosum 2005 
US06_52 JQ954369 USA S.tuberosum 2006 
US06_55 JQ954370 USA S.tuberosum 2006 
US06_56 JQ954371 USA S.tuberosum 2005 
US06_59 JQ954372 USA S.tuberosum 2005 
USMN20 JQ954374 USA S.tuberosum 2004 
v942490* EF016294 UK S.tuberosum 1994 
v951156-1 AJ390286 UK S.tuberosum 

 v951175 AJ390304 UK S.tuberosum 
 v951204 AJ390292 UK S.tuberosum 
 v951204-N** AJ390291 UK S.tuberosum  

v951218 AJ390287 UK S.tuberosum 
 v97005 AJ390303 UK S.tuberosum 
 Wilga EF558545 Poland S.tuberosum 1984 
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WW002_22_147* GQ853615 South Africa S.tuberosum  
WW002_74_150* GQ853616 South Africa S.tuberosum  
WW002_82_151* GQ853617 South Africa S.tuberosum  
WW010_146_164 GQ853645 South Africa S.tuberosum 

 WW010_147_166 GQ853646 South Africa S.tuberosum 
 WW010_70_158 GQ853644 South Africa S.tuberosum 
 WW154_175_62 GQ853647 South Africa S.tuberosum 
 WW154A_62_86 GQ853648 South Africa S.tuberosum 
 WW202B_21_172* GQ853618 South Africa S.tuberosum  

WW202B_24_184* GQ853619 South Africa S.tuberosum  
WW282E_3 GQ853649 South Africa S.tuberosum 

 Xinyang EU719648 China S.tuberosum 
 Z14* JN936440 South Africa S.tuberosum 2009 

Z16* JN936441 South Africa S.tuberosum 2010 
Z26* GQ853620 South Africa S.tuberosum 2005 
Zhuanglang103 EF592523 China N.tabacum 

 
 

GQ496607 Latvia S.tuberosum 2007 

 
AM931253 China N.tabacum 

 
 AM931254* China S.tuberosum  

*isolates showing the common recombination point at position 9170 1 
**isolates showing other recombination points at the CP cistron 2 
Underlined isolates in column one, newly described in this paper. 3 

4 



  23 

Table S2.  Amino acid composition for potato (P) and non-potato (NP) isolates 1 

(180 and 32, respectively) at positively selected codons.  The last two columns 2 

indicate those amino acids that have been detected only in P or NP isolates, 3 

respectively, for a given position.  Codon positions are given as the 4 

corresponding amino acid positions in the CP cistron. 5 

 6 

 7 

 8 

9 

Position P composition NP composition P specific NP specific 
1 113A, 60G, 5V 24A, 5G, 3V     
68 173E, 4K, 3G 31E, 1D K, G D 
193 98V, 57G, 25M 11G, 8V, 7I, 4M, 1R, 1T   I, R, T 
216 178A, 1E, 1G 32A E, G   
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 1 

Table S3.  Amino acid composition for potato (P) and non-potato (NP) isolates 2 

(180 and 32, respectively) at covarying codons.  The last two columns indicate 3 

those amino acids that have been detected only in potato or non-potato isolates, 4 

respectively, for a given position.  Codon positions are given as the 5 

corresponding amino acid positions in the CP cistron. 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

Position P composition NP composition P specific NP specific 
1 113A, 60G, 5V 24A, 5G, 3V     
11 113S, 45T, 21N, 1A  22S, 9N, 1T A   
17 125P, 53Q, 1L, 1R 28P, 4Q L, R   
24 116S, 59P, 3L, 2R 16P, 9S, 5R, 2L     
26 119P, 61L,  27P, 4L, 1S   S 
29 126G, 54E 27G, 4E, 1A   A 
31 126D, 53E, 1V 25D, 7E V   
99 122M, 53L, 5V 17M, 8V, 5L, 1T, 1I   T, I 
138 94D, 86N 14S, 10N, 8D   S 
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Table S4.  Amino acid composition for PVYC, PVYO and PVYN strain isolates (22, 132 and 57 isolates, respectively) at positively 1 

selected codons.  The last three columns indicate those amino acids that have been detected only in PVYC, PVYO or PVYN groups, 2 

respectively, for a given position. Codon positions are given as the corresponding amino acid positions in the CP cistron. 3 

 4 

 5 

 6 

  7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

Position PVYC 

composition  
PVYO  
composition 

PVYN 

composition 
PVYC 

specific 
PVYO 

specific 
PVYN 

specific 

1 20A, 2V 108A, 18G, 4V 47G, 8A, 2V   
  68 21E, 1D 132E 50E, 4K, 3G  D 
 

K, G 
193 13G, 6I, 1M, 1T, 1V 104V, 28M 55G, 1R, 1V I, T 

 
R 

216 22A 130A, 1E, 1G 57A 
 

E, G 
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Table S5.  Amino acid composition for PVYC, PVYO and PVYN strain isolates (22, 132 and 57 isolates, respectively) at covarying 1 

codons.  The last three columns indicate those amino acids that have been detected only in PVYC, PVYO or PVYN groups, 2 

respectively, for a given position. Codon positions are given as the corresponding amino acid positions in the CP cistron. 3 

 4 

Position PVYC 

composition  
PVYO  
composition 

PVYN 

composition 
PVYC 

specific 
PVYO 

specific 
PVYN 

specific 

1 20A, 2V 108A, 18G, 4V 47G, 8A, 2V       
11 19S, 3N  114S, 18N 46T, 9N, 1S, 1A      T, A 

17 22P 130P, 1Q, 1L  56Q, 1R   L R 

24 11P, 7R, 3S, 1L 122S, 7P, 3L  56P, 1L R     
26 21P, 1S 122P, 10L 55L, 2P S     
29 21G, 1A 131G, 1E 57E A     
31 19D, 3E 131D, 1V 57E   V   
99 12V, 7M, 1I, 1L, 1T  132M 57L V,  I, T     
138 14S, 6N, 2D 79N, 53D  47D, 10N S     
 5 

6 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Table S6.  Amino acid composition for PVYC, PVYO and PVYN strain isolates (22, 132 and 57 isolates, respectively) at the region 1 

showing evidence of positive selection for the internal branch leading to PVYC clade (branch b2, codons 187-194, shown in Figure 2 

S1).  The last three columns indicate those amino acids that have been detected only in PVYN, PVYO or PVYC groups, respectively, 3 

for a given position. 4 

 5 

Position PVYC 

composition  
PVYO  
composition 

PVYN 

composition 
PVYC 

specific 
PVYO 

specific 
PVYN 

specific 

187 19I, 1H, 1N, 1V 130I, 2T 55V, 2I  H, N T 
 188 22R 132R 57R 

   189 22N 132N 56N, 1T 
  

T 
190 22L 132L 56L, 1V 

  
V 

191 22R 132R 57R 
   192 21D, 1V 132D 57D V 

  193 13G, 6I, 1M, 1T, 1V 104V, 28M  55G, 1R, 1V I, T 
 

R 
194 17S, 5G  132G 57S 
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Figure S1.  MCC phylogeny of the PVY isolates for the CP cistron.  The tree was 1 

calculated from the posterior distribution of trees generated by Bayesian MCMC 2 

coalescent analyses with BEAST (Drummond & Rambaut, 2007).  Posterior 3 

probabilities are indicated above branches.  Branches detected to be under positive 4 

selection are shown in red, and internal branches are identified numbering in the 5 

range b1-b18.  For clarity, branches were transformed as proportional using FigTree 6 

(www.tree.bio.ed.ac.uk). 7 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