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Electromagnetic scattering from very rough random surfaces
and deep reflection gratings
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A theoretical study of electromagnetic wave scattering from deep perfectly conducting one-dimensional random
rough surfaces and reflection gratings is performed by means of the extinction theorem. The scattering equations
are solved numerically (instead of being solved by the usual analytical procedures, which are valid only for slight
corrugations). This permits us to obtain an exhaustive collection of results for the mean scattered intensity as a
function of polarization and surface parameters. In particular, Lambertian scattering and enhanced backscatter-
ing are predicted for random surfaces. Also, the range of validity of the Kirchhoff approximation is established for
random surfaces whose correlation length is comparable with or smaller than the wavelength. Concerning gratings,
generalizations of the blaze for large angles of incidence, large periods, and arbitrary shapes are obtained. Finally, it
is shown that the blaze of the antispecular order for gratings is at the root of the enhanced backscattering for random
surfaces.

INTRODUCTION

The study of the scattering of light and other electromagnet-
ic waves from rough surfaces has been an active task for
many years. Despite the large amount of research reported
on this subject there are still several aspects that are not
understood well yet. For instance, the range of validity of
the Kirchhoff approximationls (KA) is not well known yet
for random surfaces. It is commonly believed that this
validity requires that T, the correlation length of the surface
height, be such that T >> X (X is the wavelength) and a, the
root-mean-square height, be such that alT is small. Also,
scattering models that account rigorously for the interaction
process apply to slightly rough surfaces, as they are pertur-
bative, in forms derived either from the known Rayleigh
hypothesis5-8 or from the extinction theorem9-16 (ET), which
constitutes an exact boundary condition. (A review may be
found in Refs. 17 and 18.) Therefore details of the behavior
of the mean scattered intensity as a function of polarization,
T, a, and X are not well known yet. This incomplete knowl-
edge is due both to the difficulty of making predictions with
an accurate theory capable of covering large and small T
and to the lack of sufficient experimental data.

Recently, some new experiments1920 yielded additional
results, including the effect of enhanced backscattering from
highly conductive deep random surfaces for both s and p
polarizations. This effect appears to be related to the phe-
nomenon of weak localization of photons in random media21-25

and also has been predicted for shallow finitely conductive
surfaces under p polarization.26 (We adopt the convention
of considering s or p polarization according to whether the
electric vector is perpendicular or parallel to the plane of
incidence.)

No theoretical study (to our knowledge) has been able to
account for moderately and extremely rough surfaces; thus
enhanced backscattering from deep surfaces has not been
accounted for. However, some preliminary results on this
phenomenon were obtained recently. 27 28

As for gratings, the situation is much more satisfactory

from both the theoretical and the experimental points of
view.2930 However, some new results have also been ob-
tained and are presented in this paper, as indicated below,
specifically in connection with enhanced backscattering.

In the present paper we attempt to fill some gaps between
experimental results and some of the available theory. We
examine in greater detail the preliminary results of Ref. 27,
in which the ET was used as a boundary condition for find-
ing the sources.

The corresponding equations are solved numerically in-
stead of analytically (which is possible only in the KA or in a
few orders of perturbation). Perfectly conductive random
surfaces are generated by means of a Monte Carlo procedure.
The surfaces are one dimensional; thus no depolarization
effects can be accounted for. However, we believe that for
given values of a and T, all the essentials (other than depo-
larization) can be interpreted adequately, in particular, the
phenomenon of enhanced backscattering, the behavior of
the mean intensity in the backscattering direction as X var-
ies, and the Lambertian regime at a certain combination of T
and a.

As for gratings, new results on blaze31-36 have been ob-
tained.37 We have confirmed that the enhancement of the
antispecular order can be observed for any shape and any
number of propagating orders3 436 and regardless of how
large the period or the angle of incidence is (provided, of
course, it is not close to the grazing incidence). Gratings can
be designed easily with enhancement in all antispecular or-
ders.

Also, we show that for any given profile both the specular
and the antispecular orders have the highest probability of
being enhanced and that, if the unit cell has no symmetry,
then the antispecular order has an even higher probability of
blaze than does the specular order. By considering the
averages of diffracted intensities from several gratings, we
show the intimate connection between the enhancement of
the antispecular order and the enhanced backscattering
from random surfaces.

It should be remarked that the results presented here still
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have two limitations for random surfaces, because of the
limited number of sampling points of the surface with which
it is possible to work. First, the theory is restricted to one-
dimensional surfaces; second, the illuminated length of the
surface is rather small, and hence the resolution of the scat-
tered intensity is not high.

1. RANDOM ROUGH SURFACES

A. Scattering Equations
Let us consider a linearly polarized electromagnetic wave
incident at an angle Oo upon a surface z = D(x) separating a
vacuum from a perfect conductor (see Fig. 1 and Appendix
A). Since the surface variation takes place only in the x
coordinate, we have to consider the problem only in the
plane of incidence. With reference to Fig. 1, the incident
electric vector is, for s polarization,

E(i)(r) = JE(i) exp[i(Kox - q0z)], (1)

where r = (x, z), 'is the unit vector along 0Y, Ei) is a complex
constant amplitude, and

Ko = k sin(0O), (2a)

q0 = k cos(00 ) (2b)

are the components of the incident wave vector; k = 27r/X. A
time dependence exp(-iwt) is suppressed everywhere.

The scattered field at any point above the surface is given
by Eq. (A16) (see Appendix A) and is linearly polarized
along the I direction. Therefore the one-dimensional sur-
face z = D(x) does not depolarize the s wave. The electric
current density component Jy[x', D(x')] representing the
sources in Eq. (A16) is obtained from the boundary condi-
tion, Eq. (A15), evaluated at r = [x, D(x)], given by the ET.

Since we are interested in the far-zone intensity, we take
the asymptotic expression for the Hankel function Ho(klr>
- r) (cf. Ref. 38) and expand Ir> - r r> - [x' sin(0) + z'
cos(0)], obtaining

E(s)(0) = (rkV2 'exp[i(kr -r/2)] J[x', D(x')]
\c;irkr> } 

X expl-ik[x' sin 0 + D(x')cos Oiii [1 + (dD)2] dx',

where

x = r sin(0),

z = r> cos(0),

(3)

(4a)

(4b)

By introducing Eq. (3) and relation (5) into Eq. (6), we
obtain the normalized mean scattered intensity in the far
zone for s waves:

- (I(S)(0)) = 2irh ____________
o0 (Is (0)) c2 IE(')I2L cos 0o

x KfJ dx'Jy[x', D(x')]expj-ik[x' sin 0 + D(x') cos 0]J

(7)

Equation (7) is the expression that we shall use in our calcu-
lations for s waves.

For p polarization, the incident wave is represented by the
magnetic vector,

H(r) = jH() exp[i(Kox -qz)], (8)

H(i) being a complex constant amplitude.
The scattered field above the surface is given by Eq. (A21)

of Appendix A and, once again, does not suffer depolariza-
tion. The electric current density component J.[x', D(x')]
representing the sources in Eq. (A21) is obtained from the
boundary condition, Eq. (A19), evaluated at r = [x, D(x)].

The scattered field in the far zone is expressed in a way
analogous to that for s polarization:

H(s)(0) = ik (2/rkr>) 12 exp(-i37r/4)exp(ikr>)

r+
X xp dk[x's + D(x')

X expi-ik[x' sin 0 + D(x')cos 0}

X( cosd- )[sino i+ (dD)
2

/2dx' dx a7) (9)

The normalized mean scattered intensity in the far zone
for p waves is expressed as

.1(1 (s)(0)) = 7k dx'Jx'W, D ')]I
Io P c2 IH()1 2L cos 00 1 -D

X expl-ik[x' sin 0 + D(x')cos 0])

X (cos - D sin 0)[1 + 2dD 11 2 ( )dx' I Y ) .10
Equation (10) is used in our calculation for p waves.

Equations (7) and (10) both must satisfy the unitarity
condition:

Ko -q°)

I\

I 6

0 being the observation angle. In practice, a finite length L
is illuminated; therefore the x interval in Eq. (A15), (A16), or
(3) is extended to the L integral only.

Let Io represent the total power flow or integrated intensi-
ty of the incident wave:

Io 1 IE(t )I2L cos(00 ); (5)

0/
then the mean scattered intensity, normalized to the inci-
dent power flow, will be

- (I(s)(0)) = I r (IE(s)(0)12).
o IO

(6)

Z

Y

k = ( K, q )

X

SURFACE/

Fig. 1. Illustration of the scattering geometry.
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I0 0X/2 (I (S)(0))d0 = 1.
(11)

The above equations contain all the information that is
needed to solve the scattering problem for random surfaces.
In Subsection 1.B a certain model for the profile z = D(x) is
made, and then the scattering equations are solved. This is
done numerically, since an exact analytical method seems
impossible.

B. Numerical Results
The surface profile z = D(x) is assumed to be a statistically
homogeneous random process with zero mean and a normal
probability-density function. The covariance function C(r)
is assumed to be Gaussian:

C(r) = (D(x)D(x + T)) = a 2 exp(- r2 /T), (12)

0

x

-4 M

0

-90 -54 -18
OBSERVATION

18 54
ANGLE (degrees)

cry- 1.50 X
(a ) 0f= 1.0 X

r)
0

T being the correlation length and a-2 being the variance or
mean-square deviation of the surface from the line z = 0.
With these statistics, all odd moments vanish and the higher
order ones can be expressed as combinations of C(r).

The surface profiles are generated by following the Monte
Carlo procedure used in Ref. 39; that is, a sequence of ran-
dom numbers (typically 105) with normal statistics, zero
mean, and unity variance is constructed from another series
of random numbers distributed uniformly in (0, 1) generated
directly by the computer. The former sequence is then
scaled to the desired variance or

2
, and the resulting sequence,

say, {Ykj, is correlated with a Gaussian, (2/l7T)exp[-2(k/T) 2 ],
to obtain the appropriate surface profile sequence {Zk =
D(xk)} with a Gaussian correlation function.

For a given incident plane wave with either s or p polariza-
tion, the corresponding induced current density is obtained
by solving the linear system represented by either Eq. (A15)
or Eq. (A19). The normalized mean scattered intensity in
the far zone is then obtained from either Eq. (7) or Eq. (10)
by averaging over many samples of length L, which repre-
sents the effective interval of x integration. In our case, we
averaged over 200 samples, with each sample of length L
being obtained by extraction of different segments of the
sequence {ZkI with typically N = 221 sampling points, so that
L = (N - 1)6, 6 being the sampling interval. The electric
current density, for each sample and at each incidence angle,
then was evaluated at each of the 220 sampling points, which
are at the midpoint of each of the resulting 220 intervals.
The mean scattered intensities obtained by this procedure
still contained ripples; a further smoothing was performed
by using a weighted average of every three consecutive sam-
pling points. The finite averaging record also produced
asymmetric curves for 00 = 0, which were symmetrized
subsequently by averaging every two values of the resulting
mean intensity at scattering angles 0 and -0. Calculations
were done on a CDC-Cyber 180/855 computer. The unitar-
ity condition [Eq. (11)], both its average and its variance
from the 200 samples, was used as a criterion of numerical
consistency of the results.

An additional smoothing of the resulting intensities may
be obtained by introducing a Gaussian window in the inci-
dent field, namely, by using an incident Gaussian beam with
almost zero amplitude at both extremes of the L interval.
However, the influence on the ripples of the mean scattered
intensities associated with the Monte Carlo procedure is
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Fig. 2. Mean scattered intensity from a random surface with T =
1.8X and a = 1.5X for s polarization (solid curves) and for p polariza-
tion (dotted curves): (a) 0o = 00, (b) 0 = 100, (c) Oo = 200, (d) Oo =
400. The two upper peaks mark the backscattering (left) and spec-
ular (right) directions. Unitarity of these results is kept within 4%
error.
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Fig. 3. Same as Fig. 2 for a = 0.1X, T = 0.25X, and 00 = 600.

more important than that due to edge diffraction. More-
over, in cases in which the sidelobes of the specular peak are
quite strong and can mask the diffuse part of the scattered
intensity, it is convenient to subtract the coherent part (ei-
ther I (E(s)(0) ) 12 or I (H(s)(0) ) 12, depending on whether it is s or
p polarization), from the total mean scattered intensity.

For T X A we take L = 22X (but L can be made three times
larger for a/T << 1). For T = 0.2X and T = 0.25X (see Figs. 3
and 4 below), we use L = 12X. For T > 3, L = 60X.
Therefore the corresponding lengths of the sampling inter-
vals are 0.1X, 0.05X, and 0.27X, respectively, for these three
cases. With these values we get 10 or more asperities of the
surface at each sample.

Even though the calculations presented here are one di-
mensional, they have a strong qualitative similarity with the
experimental mean scattered intensities obtained from two-
dimensional rough surfaces in Ref. 20. Figures 2(a), 2(b),
2(c), and 2(d) show our calculated mean scattered intensity,
corresponding to 0o values of 00, 100, 200, and 40°, respec-
tively, for a one-dimensional surface with T = 1.8X and a =
1.5X (solid curves, s waves; dotted curves, p waves). Figures
2(a), 2(c), and 2(d) for s waves are similar to Figs. 9, 10, and
11, respectively, of Ref. 20 for T = 2.2X and a = 1.6X, indicat-
ing the existence of enhanced backscattering. (The conven-
tion of angles in Ref. 20 is such that those figures appear
reflected with respect to ours.) Our results, however, lack
the resolution obtained in experiments, as we are con-
strained to using a finite number of sampling points. A
quantitative comparison cannot strictly be made, as our
theoretical model is one dimensional. In addition, the same
normalization for both kinds of data should be required.

In the range of parameters that we have worked with there
are many cases in which the results for s waves are different
from those for p waves, although we would expect that, as a
increases, both results would tend to be similar (cf. Ref. 40).
There is a regime in which this difference is markedly inter-
esting, namely, when a is small enough to produce a strong
difference between s and p scattered waves, but in which T is
also small (and comparable to a), so that the KA is not valid
and resonant scattering takes place. Figure 3 shows the s
and p calculated mean scattered intensities for T = 0.25X
and a = 0.1X at 00 = 600. The strong specular peak appear-
ing in both polarizations has been cut. It is remarkable that
the diffuse halo of p waves is larger than that of s waves.
This, once again, is in good qualitative agreement with re-
cent experimental results. 4 1 As a increases, at similar low T,

the difference between s and p waves becomes larger. Fig-
ures 4(a) and 4(b) show the mean scattered intensities ob-
tained for T = 0.2X and a = 0.2X at 0 = 100 and 50°,
respectively. Now the p wave does not yield an appreciable
specular peak, in contrast to the s wave, which still does
(note the broad width of this peak, which is due to the finite
extent L of the samples). Also, as 00 increases, the tiny
specular peak still observed at 00 = 100 for p waves tends to
disappear (it is not seen at 00 = 500, and, although the results
are not shown here, it is not seen at 300 either). Moreover,
the scattering halo of the p wave appears increasingly
skewed toward the backscattering direction as 0 increases.
Of course, at grazing incidence, everything is specularly re-
flected.

The enhanced backscattering peak appears more distin-
guishable with respect to the halo for 00 • 200 and decreases
as 00 increases. This can be seen again in Figs. 2(a)-2(d) as
well as in Figs. 5(a), 5(b), and 5(c), which correspond to T =
2.5X and a = 1.7X for 0 = 0, 10°, 20°, respectively. Of
course, the central peak shown in Fig. 5(a) at 00 = 00, for both
s and p polarizations, is backscattering. Note that for a as
large compared with T as in Figs. 5(a)-5(c), there is no
appreciable difference between s and p waves. This seems
to confirm that, for large -, s and p scattering must be similar
(in connection with the fact that no polaritions are excited
by p waves at large corrugations). From this result it is also
concluded that the backscattering peak increases as a-/T
increases.

Within the range of values of T that we are working with
(0.2 T 5) we observe that, when a/T is kept constant,
at 00 200 the value of the backscattering peak slightly
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increases as X decreases (i.e., as both a-A and T increase).
This is confirmed through comparison of Figs. 2(a) and 2(b)
(for a = 1.5X and T = 1.8X) with Figs. 6(a) and 6(b) (for a =
0.5X and T = 0.5X) and with Figs. 7(a) and 7(b) (for a = X and
T = X). [Note that a/T is slightly lower in Fig. 2(a) than in
Figs. 6(a) and 7(a).] However, its enhancement with respect
to the background halo increases markedly as X decreases, at
constant a-/T. Also, for constant a/T, the value of the back-
scattering peak at incidence angles 00 > 200 decreases as X
decreases. This can be seen by comparing Figs. 2(c) and
2(d) with Figs. 6(c) and 6(d) (- = 0.5X, T = 0.5X) and with
Figs. 7(c) and 7(d) (a- = , T = X). Even the results for the
case in which a = 0.2X and T = 0.2X fit in the above remarks
[see Figs. 4(a) and 4(b); see also Fig. 1(a) of Ref. 27]. The
increase in the value of the backscattering peak as X de-
creases while a-/T is kept constant in the regime of parame-

0
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Fig. 6. Same as Fig. 2 for T = 0.5X and a = 0.5X. (a) 0 = 0, (b) 
= 10°, (c) 0 = 200, (d) 0 = 40°.
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ters studied here is in clear contrast with the experimental
results of Ref. 42 for Oo < 200 for surfaces with T >> X and a <<

- T, which show no appreciable changes in the backscattering
values as X varies. From our figures we can also conclude
that the decrease in the backscattering peak with 00 is great-
er for p waves than for s waves when T ' 0.5 and a is
comparable with T, although for smaller T, i.e., T = 0.2X
[Figs. 4(a) and 4(b)], the decrease in the backscattering value
is sharper for the s wave than for the p wave (in agreement
with the results of Ref. 39).

90 As may be expected, at a given value of T the enhanced
backscattering peak increases as a increases. It is interest-

* ing, however, that, as a increases from small values at fixed
T, the distribution of scattered intensity becomes broader
and then reaches a Lambertian-like regime; then, as a in-
creases further, the enhanced backscattering peak appears.
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tering is furnished by Figs. 10(a), 10(b), and 10(c), corre-
sponding to T = 4.8X and a = 2, at 00 = 0, 100, 200.
(Incidentally, these figures confirm once again that for suffi-
ciently large a there is no difference between s and p scat-
tered waves.) A comparison of Figs. 10 and 8 shows that a-/T
is similar in both cases but that the Lambertian characteris-
tic is maintained in broader ranges of Oo and 0 in Fig. 10 than
in Fig. 8. Thus it seems that the Lambertian behavior at
fixed a-/T is maintained over a wider range of both incidence
and scattering angles as X decreases. It should be remarked
that the appearance of the Lambertian regime as a increases
was experimentally observed and reported in Ref. 42, al-
though for surfaces with T >> X and a << T (with a > X) and at
large incidence angles, 500 S 00 S 80°.
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It seems therefore that the Lambertian regime is a situation,
as a increases at fixed T, before the regime in which the
surface produces enhanced backscattering. This Lamber-
tian characteristic is kept approximately over a relatively
wide range of scattering angles and holds reasonably with
incidence angles O0, 0 00 • 20°. Figures 8(a), 8(b), and
8(c), for T = 1.8X and a = 0.5X, show an almost Lambertian
distribution of mean scattered intensity over a wide interval
of scattering angles and for O0 = 0, 100, 200 for both s and p
waves. Of course, as 0 increases, the range of 0 over which
the scattering is approximately Lambertian decreases. On
the other hand, Figs. 9(a), 9(b), and 9(c) show the mean
scattered intensity for T = 1.8X and a = X, also for 00 = 00,

100, 200, confirming that for the same T as a increases
further, the enhanced backscattering appears after the Lam-
bertian regime. Another example of Lambertian-like scat-
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Fig. 11. Plots of a/T cos(0o) versus T/A at three different incidence angles:
proximation.

Oo = 00, 350, 70°, marking the zones of validity of the Kirchhoff ap-

C. Validity of the Kirchhoff Approximation
The above calculations allow us to obtain criteria about the
range of validity of the KA for which the normalized mean
scattered intensity [Eq. (6)] acquires the form4 3

1 ((0)) k [ + Cos(0 0 + 0) 2
o 7 os 0 Cos 00 + os 0 

X | cos(v.,)expj-v, 2 [a-2 -c(T)])dT, (13)

Where

v = k[sin(0 0) - sin(0)],

v = -k[cos(0 0 ) + cos(0)],

0

14

(14a)

(14b)

and c(r) is the height covariance given by Eq. (11).
Using the same surface statistics as in Subsection 1.C, we

have performed computations with Eq. (12). A study has
been made of how the resulting mean scattered intensity
satisfies the unitarity condition versus O0 and the surface
parameters a and T. Comparisons with the exact numerical
calculations of Subsection 1.B are made.

Figure 11 shows curves of a/(T cos 00) versus T/X, for
several angles of incidence, 00 = 0, 350, 700, marking the
frontier below which the unitarity of the KA [Eq. (12)] dif-
fers from 1 [cf. Eq. (11)] by less than 1 or 2% and above which
it differs from 1 by more than 1 or 2%. Thus these curves (or
those similarly drawn for other angles of incidence) should
mark the range within which the KA is approximately valid.
For instance, for T = 4.8X and a = X at 00 = 00, there exists a
point in Fig. 11 with a/[T cos(00)] = 0.2, which is well down
curve (b), below which the error in unitarity, e, is less than
1%. Thus, if the KA mean scattered intensity were com-
pared with that obtained from the ET, we would expect
strong matching of the results. In Fig. 12(a) the exact mean
scattered intensity is plotted, showing no differences be-
tween s and p polarizations, as expected; the coincidence
with the KA approximation is total. Note that, in order to
make the comparison easier, the KA mean scattered intensi-
ty has been plotted by two different methods: by using the
smooth result of Eqs. (13) and by calculating the KA scat-
tered field from each of 200 samples (the same samples from
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Fig. 12. (a) Same as Fig. 2 for T = 4.8X, a = X, and 00 = 00. Solid
curves, ET result, s polarization; dotted curves, ET result, p polar-
ization; short-dashed curves, KA averaging over 200 samples; long-
dashed curves, KA from Eq. (12). (b) Same as (a) for T = X, a =
0.2X, and 00 = 20°.

- 0°

__ -- 350

--- 700

~~~ ~~(a) e=2 %

I I I I I I II %

.1- ( ) e = a _ _ _- - _ _- __ __

/ / 1 . (e ) e = 2 °/4/- _ -----

- / ~~~~~~~(f ) e = %

J. M. Soto-Crespo and M. Nieto-Vesperinas

90



Vol. 6, No. 3/March 1989/J. Opt. Soc. Am. A 375

which the ET numerical intensities were obtained) and then
averaging. If the second procedure is used, the random
fluctuations of the averaged KA intensity are exactly coinci-
dent with those fluctuations of the numerical ET intensity
when the KA is valid, as in this example.

If we proceed to larger angles of incidence for this surface,
we observe good matching of the KA and ET intensities up
to o = 300; at this 0, we have -/(T cos o) = 0.27, which,
together with T/A = 4.8, corresponds to a point in Fig. 11
that is in curve (c), that is, with an error of approximately 2%
at Oo = 30°.

As another example, Fig. 12(b) shows a comparison of the
KA and ET intensities for T = , a = 0.2, and Oo = 20 [I(T
cos Oo) = 0.21]. This corresponds to a point between curves
(b) and (c) of Fig. 11 for which Eq. (12) has an error e = 1.3%
in the unitarity condition. In Fig. 12(b) the solid and dotted
curves show the ET intensities for s and p polarizations,
respectively, and the short- and long-dashed curves show the
KA results obtained from an average over 200 samples and
from Eqs. (13), respectively. As shown in the figure, the
discrepancy exists, although it is small. On the other hand,
at o = 0 [a-IT cos(Oo) = 0.2], the corresponding point in Fig.
11 is below curve (b) and (although not shown here) shows a
strong matching between the KA and ET intensities.

From the curves drawn in Fig. 11 we can see that the KA
may be valid even for T < X, provided that a/[T cos(Oo)] is
small. Of course, the valid -I[T cos(0o)] quickly decreases
for T < X if the KA is valid, and, as expected, the lower 00 is,
the larger a/[T cos(Oo)] can be for T/A fixed within the range
of validity of the KA. From a certain value of T/A onward,
the value of -/[T cos(Oo)] below which the KA is valid keeps
constant. For instance, at o = 0 and for T > 2, the KA is
valid for a/(T cos ) values lower than 0.26; whereas, for o =
350, the validity holds for T 3 and -/(T cos 00) lower than
0.20. For o = 700 the validity of the KA is satisfied for T >
14X and for a/(T cos o) values lower than 0.2. In this
connection, the criterion -IT cos o < 0.2 proposed in Ref. 27
may be considered an overall criterion that contains less
detail than Fig. 11.

For TX values lower than those plotted in Fig. 11 for the
corresponding o, the specular peak contains most of the
reflected energy, and thus the unitarity criterion used here is
no longer appropriate.

Finally, it should be pointed out that the agreement be-
tween the KA and the results of experiments for T 2, a =
0.2A, and o = 200 [/(T cos o) = 0.11] was illustrated in Fig.
6 of Ref. 20. This agreement is obvious in Fig. 11.

general phenomenon for any shape and any number of dif-
fraction orders and is possible for large n, a fact of practical
interest in applications; the enhancement is also intimately
connected with enhanced backscattering from random sur-
faces.

We wish to remark, first, that the aforementioned calcula-
tions are computationally expensive. The number of terms
required in Eq. (B11) or (B12) below is usually more than 30
and could even be 80 if good unitarity is required. The
computation time may be reduced by a factor of 200, howev-
er, if an approximate method is used instead. This method
consists of using Eqs. (A15) and (A18) below for calculating
the current densities, with the x integrals extended over a
few periods (typically 3 or 5, depending on the size of the
period a, so that edge effects are avoided as much as possi-
ble). This is equivalent to taking just the = 0 term in Eqs.
(Bll) and (B12) and integrating over several periods. The x
interval of integration must be chosen with its ends x = 0 and
x = L coincident with points x at which D(x) has a peak
value. (It is intuitively clear that this choice of the interval
of integration can account more easily for multiple reflec-
tions than can any other choice. The numerical results
confirm that it gives the closest agreement with the exact
calculation.) Although it is less accurate (as manifested by
the worse unitarity and hence the deviations from the exact
method of calculation), this procedure is worthwhile in
many cases, even though, in order to minimize the loss of
accuracy, we are limited to dealing with shallower gratings
than those that we could consider by using the exact calcula-
tion. (It should be remarked in this connection that a simi-
larity between the diffraction pattern obtained by consider-

1-4

2. PERIODIC ROUGH SURFACES
(REFLECTION GRATINGS)

A. Enhancement of Diffraction Orders
A method of calculation has been established for dealing
with diffraction of either s- or p-polarized waves from deep,
perfectly reflecting gratings. The essentials are presented
in Appendix B. In Refs. 37 and 44 it was shown, by using
this method, that both sinusoidal profiles and profiles con-
taining few Fourier coefficients may produce (with appro-
priate combinations of period a and amplitudes) an en-
hancement of either the specular order or all antispecular
orders. We show here that this enhancement is quite a

1-4

0 1 2 3 4 5 6
h/X

Fig. 13. (a) Specular and (b) antispecular intensities for s waves
versus h/X from z = h cos(27rx/a), with a = 4.44X and 00 = 13°.
Shown are exact results (solid curves) and results of the approxi-
mate calculation (dashed curves) as described in text.
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Fig. 14. Diffracted intensities of
with a = 6X, h = 1.98X, and 00 = 5
enhancement at n = -10.

'-

0.0 0.6

= 56 40 the diffraction orders for s waves (for p waves the result is
practically identical and is not shown here) for a sinusoidal

UN I TAR I TY grating with a = 6 and h = 2 at 0 = 56.40, showing an
S: 0 . 99437 enhancement of approximately 60% of the diffracted energy

in the antispecular order n = -10. A variation in h of
approximately 10% from this value does not produce a sig-
nificant change in this result. With arbitrary profiles it can
also be obtained easily. Figure 15 depicts the variation of
the antispecular order n = -15 with a for the arbitrary

5 4 grating profile shown. The period is a = 8X. This profile
D(x) has been simulated from an infinite random series with

ANGLE (d e g r e e s ) adjustable variance (ranging from - = 0.1X to a = 2.5X). If

h = 1 . 98 X we take from this series a portion of length a = 8X and then
periodically repeat it, the resulting grating has many Fourier

5w.4a showing approximately 60% coefficients. The enhancement of the antispecular order n
= -15 is obtained at Oo = 700 and for a = 0.9X, showing an
intensity of 65% of the total reflected energy. As shown in
Fig. 15, the variation in this order with a oscillates with a
large period, since the incidence angle is large. This slow
oscillation with a at large 00 (and hence at large orders) was
pointed out before and permits deviations in a that still give
large enhancement with respect to the value at which it is

a 8 \ maximum.
T = 07X The two examples just presented illustrate some of themany possibilities of designing gratings with blaze in a high
n= -i5 order (n = -10, -15, or even higher) in Littrow mounting
0 = 700 and show that this effect can be obtained for any profile and

for any a, even though, if a is large, the existence of many
propagating orders makes the blaze much lower than 100%.
It can be increased further by making h (or a) even larger.
(In a sinusoidal grating the mean height is a = h/W.)

In fact, at large 00, the high antispecular order progressive-
ly increases, with the possibility of oscillation but with an
increasing envelope, thus showing that we must consider
large values for h (or a-) to see a large enhancement of this
order in Littrow mounting. Also, the h (or a-) value at which

1 .2 1 .8 2.4 the order starts increasing is greater the larger is the period
JA a. This is illustrated in Fig. 16, in which the behavior with h

Fig. 15. Diffracted intensities of s waves n =-15 versus a/ for the
profile at the top: a = 8X, 0o = 700. The random series from which
this profile has been simulated has T = O.7X.

ing just a few periods and that obtained from an infinitely
extended grating was pointed out previously, 45 although this
result was obtained for shallow gratings only.)

For example, for a sinusoidal grating with a profile D(x) =
h cos(27rx/a), with a = 4.44X, the approximate result ob-
tained for s waves, as described above, for the diffracted
orders versus h is similar to the exact result shown in Fig. 7 of
Ref. 37. Figure 13 shows that the specular and antispecular
(n = -2) results for both methods display strong similarity
even at large h. Observe the characteristic oscillation of the
orders with h (note that, in the way in which we define h, the
depth of the grating is actually 2h). All subsequent calcula-
tions, unless it is stated explicitly otherwise, are made by
this approximate method, based on the fact that, whenever
we have checked the approximate results with the exact
ones, we have obtained good agreement.

The antispecular enhancement may be strong for high
orders even if the grating supports many propagating orders
and has any shape. Figure 14 shows an exact calculation of

0
6

I-I

0 2 4 6
h/X

Fig. 16. Diffracted intensities of s waves from sinusoidal gratings
versus h/X. Curve (a), a = 1.78X, 00 = 57.60, n = -3; curve (b), a =
3.2X, 00 = 700, n = -6; curve (c), a = 4.44X, 00 = 640, n = -8; curve
(d), a = 8X, 00 = 700, n = -15.
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Fig. 17. Diffracted intensities of s waves from a sinusoidal grating
with a = 21.33X and 00 = 700. (a) h = 0.71X, (b) h = 5.66X, (c) h =
11.31X.

of high-n antispecular orders for s polarization is shown for
sinusoidal gratings with periods: a = 1.78X (00 = 57.60, n =
-3), a = 3.2 ( = 700, n = -6), a = 4.4AX (00 = 640, n =-8),
and a = 8 (00 = 700, n = -15). Although not shown here,
the specular order has the opposite behavior [cf. Figs. 4(a)
and 7 of Ref. 37]. Therefore we would expect that, when 00 is
large and the period is large enough to support many propa-
gating orders, these would tend to gather nearer the antispe-
cular direction as the grating becomes deeper, without the
fluctuations observed at lower 00 (cf. Refs. 37 and 44).
Figures 17(a), 17(b), and 17(c) confirm this fact for a sinusoi-
dal grating with a = 21.3X and h = 0.71X, 5.65X, 11.3,
respectively (remember that the depth is 2h), at 00 = 700.
The calculations used in these figures are exact and have
been made for both s and p polarizations. We show the
results only for s waves; however, the p waves are practically

identical: this happens in Fig. 7(a) because the KA is valid
(we have observed the KA to be valid for sinusoidal gratings
within criteria similar to those for random gratings). The
results for the p waves are, on the other hand, similar to
those for the s waves in Figs. 17(b) and 17(c) because h is
large in these cases. As shown in these figures, the bulk of
diffracted orders progressively shifts toward the antispecu-
lar direction as h increases. For such a large period as in this
case, the amplitude h should be increased further to obtain
the stronger order exactly in the antispecular. However, the

0
0-T_

0 
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0
0_
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0.0 0.6 1.2

(a)

0.0 0.6
a/

1.2

( b )
Fig. 18. Diffracted intensities of s waves for 00 = 340 versus a/- for
two gratings (a) and (b) with a period a = 1.78X and with a profile
shown at the top, extracted from two different portions of the same
series with T = 0.24X. Solid curves, specular order; long-dashed
curves, antispecular order (n = -2); short-dashed curves, order n =
-1.
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Fig. 19. Same as Fig. 18 for grating profile shown at the top, with 0o
= 270, a = 4.44X; and T = 0.7X. Short-dashed curve, antispecular
order (n = -4); solid curves, specular order.
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Fig. 20. Averaged diffracted intensities of s waves from 200 pro-
files with T = 0.24X, a = 0.5X, and a = 1.78X, for Oo = 0, 160, 460,
570

calculation beyond h = 11.3X starts to lose accuracy. The
figures suggest, however, that at larger h an enhanced anti-
specular order would be expected.

B. Connection with Enhanced Backscattering from
Random Surfaces
It has been shown that the enhancement of a diffraction
order, in particular, the antispecular order, can be obtained
for any shape and regardless of how large the period is. It
can even occur for the antispecular orders in gratings with
large period and under great incidence angles 00. In Refs. 37
and 44 it was shown that, for deep sinusoidal gratings and
also for those with a few Fourier coefficients, the enhance-,
ment takes place predominantly either in the specular order
or in the antispecular order. Of course, a special profile
could be devised with enhancement in some particular order
different from the specular or antispecular; however, if a
deep profile is indicated a priori, then either the antispecu-
lar or the specular order has the highest probability of being
enhanced. If the profile over one period is not symmetric,
then the antispecular order has an even higher probability
than the specular of being enhanced. This result suggests
that this effect may occur for any shape, even if we construct
D(x) by periodically repeating, with period a, an interval of a
deep random series with a- and T given. If a became large,
we would then get a supergrating with a random profile

0 20 40 60 80
INCIDENCE ANGLE (degrees)

Fig. 21. Mean efficiencies versus 00 for the same gratings as in Fig.
20.
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Fig. 22. Same as Fig. 20 for T = 0.7X, a = 1.2X, and a = 8, 0 = 40,
140,430,540.

inside the period. According to the above results, the dif-
fracted intensity will probably present either an enhanced
specular order or an enhanced antispecular order. For each
particular profile anything can happen. However, we may
expect that if we average over many diffracted intensities
and if each intensity results from a supergrating obtained by
choosing a different interval of the random series, then the
enhancement of the antispecular order will result if the pro-
files are not symmetric over one period. In what follows we
illustrate this process.

Figure 18(a) shows for s polarization the orders 0, -1, and
-2 (antispecular) at O0 = 340 from a grating of period a =
1.78X whose shape (enclosed) corresponds to a portion of a
random profile with T = 0.24X and a varying from 0.1 to
1.2X. All orders oscillate as a varies, following a well-known
rainbow pattern,3 0 46 and most of the diffracted energy goes
either to the specular order or to the antispecular order. A
similar behavior takes place for other incidence angles 00 (at
high 00 the oscillation period becomes large). Figure 18(b)
shows the results for another profile with the same values of
T and a as in Fig. 18(a). Now the antispecular order, and
even the n = -1 order, is stronger than the specular order.
Figure 19 plots the antispecular (-4) and specular orders
under Oo = 270 for a grating with a = 4.44X simulated from a

random series with T = 0.7X. Here, again, the antispecular
order is dominant.

The above examples show some of the diverse possible
situations for one particular profile. In fact, it is known that
the enhanced backscattering is generally difficult to observe
from just one random sample, since it can appear to be
swamped in the speckle fluctuations of the intensity distri-
bution. The same difficulty may occur with the intensity
diffracted from these random gratings. For one particular
grating it may be that the antispecular order is not the
stronger one. However, from all the above results, we have
reasons to believe that the nonspecular order will dominate
on the average. This is shown in what follows.

Figure 20 shows the average of the diffracted intensities at
Oo = 0, 16°, 460, 570, each obtained from a grating with a =
1.78X, corresponding to a different portion of an infinite
random series with T = 0.24X and a = 0.5X. The average has
been made over 200 gratings. The result is practically the
same for both s and p polarizations. As can be seen, in this
average the antispecular order is the larger one whenever it
exists. Figure 21 shows the variation of the average of each
diffracted order with Oo, the maximum of each order exactly
at that angle at which it is antispecular. Between the peaks
the specular order can grow and be dominant, such as nearly
So = 460, and of course, the specular order is dominant at
large 00.

0 20 40 60 80
INCIDENCE ANGLE (degrees)

Fig. 23. Mean efficiencies versus 0 for the same gratings as in Fig.
22.
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When the period increases, there exist more orders, and
then for almost any incidence angle there exists an antispec-
ular order, which is dominant. Figure 22 shows the diffract-
ed intensities for 0 = 4, 14°, 430, 540 (no appreciable
differences between s and p polarizations), averaged over
200 gratings with a = 8, T = 0.7X, and a = 1.2X. The
variations of these mean intensities with 00 are plotted in
Fig. 23, which shows the maxima exactly at the antispecular
directions. The specular order cannot grow except near 00 =
800. When the period is infinite, the grating becomes strict-
ly a random rough surface, and every angle of incidence has
exactly an antispecular scattering direction at which the
mean scattered intensity appears enhanced.

3. CONCLUSIONS

In this paper we have presented results based on the numeri-
cal use of the extinction theorem for one-dimensional per-
fectly conducting deeply rough surfaces. Two different
cases were considered: random rough surfaces and reflec-
tion gratings.

For random surfaces the main results concerning the
mean scattered intensity can be summarized as follows:

(1) When a/ is small but T/A is also small, so that a is
comparable with T, s polarization gives a strong specular
peak, in contrast to p polarization, which gives a broad halo
skewed toward the backscattering direction.

(2) Enhanced backscattering is predicted for one-di-
mensional random surfaces with moderate and high a-IT,
and the backscattering peak increases as a-IT increases.

(3) The backscattering peak appears more enhanced
with respect to the background halo at an incidence angle of
6o = 20°. It also decreases as 0o increases.

(4) Within the range 0.2 • T/ • 5, the backscattering
peak has two different behaviors:

(a) At 0 < 20° with a-T constant, the peak increases
slightly as X decreases.

(b) At 00 > 200 with a-T constant, the peak decreases
slightly as X decreases.

(5) As a-A increases from low values at fixed T/A, there is
a regime at which the mean scattered intensity follows ap-
proximately Lambert law; this is before the intensity reaches
the regime at which it produces enhanced backscattering.
The Lambertian distribution of mean scattered intensity is
obtained approximately for 00 S 200, and it is maintained
under a broad range of scattering angles 0. This range be-
comes narrower as 0 increases.

(6) When a-/X is larger than unity we do not observe a
difference between s and p polarizations within the numeri-
cal accuracy that we obtain.

(7) We have established the range of validity of the KA
for random surfaces and T/A > 0.4. On the whole, the KA is
approximately valid for a-IT cos 00 < 0.2, T > 0.5X, and O0 <
40°. For larger 00 the KA is still valid for larger T, whereas
for T/A < 0.4 the ratio a-T cos Oo decreases further. Precise
curves marking the range of validity of the KA are shown in
Fig. 11 for several angles of incidence.

For deep reflection gratings we have obtained results from
both an exact numerical method and an approximate proce-
dure that performs the x integration over a few periods,
saving a large amount of computing time. The main results
are as follows:

(1) Enhancement (blaze) of the antispecular order can
be obtained for any shape regardless of how large the period
is, even at large incidence angles. Therefore blaze of >50%
can be obtained for high orders. For deep gratings there is
no significant difference between the results for s polariza-
tion and those for p polarization.

(2) We can easily devise gratings that present enhance-
ment in all antispecular orders.

(3) Although particular profiles may yield enhancement
of any order that is neither specular nor antispecular, statis-
tically these two orders are those with the highest probabili-
ty of enhancement if the profile is given a priori. If the
period is large and the unit cell has no symmetry, the anti-
specular is even more likely to be enhanced than the specular
order.

(4) All orders oscillate following a rainbow pattern as the
grating depth increases. These oscillations have a larger
period as 00 increases.

(5) The statistically predominant enhancement of the
antispecular order for deep gratings with a large period and
whose unit cell has no center of symmetry is connected
directly with the enhanced backscattering observed in deep
random surfaces. This is understood by considering the
mean scattered intensity from a random surface to be the
distribution obtained by averaging over many samples, each
being a supergrating (namely, one with a large period, so that
for any incidence angle there is an antispecular order). Af-
ter the average is obtained, the antispecular appears en-
hanced with respect to the other orders.

Finally, we remark that when this paper was completed,
Thorsos4 7 reported a study on the validity of the KA that
used a procedure similar to ours.

APPENDIX A

Let [E(')(r), HM(r)] be the electromagnetic field incident
upon the scatterer; the integral equations for the interaction
are as follows.9 For the electric vector, the extinction theo-
rem yields

E()(r<) + (l/47r)Se(r<) = 0, (Al)

whereas in the upper half-space the scattered field satisfies

E(s)(r>) = (l/4ir)Se(r>). (A2)

In Eqs. (Al) and (A2), r> and r< denote the position
vectors of points outside and inside the scatterer, respective-
ly. In the case under consideration, r> and r< correspond to
points with z > D(x) and z < D(x), respectively.

For perfect conductors, Se(r) is9

(A3)Se(r) = (4'riklc) J J(r)G(r, r')dS',
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for which J(r) is the induced electric current density, dS' is
the surface element, and G(r, r') is Green's dyadic:

G(r, r') = (M + 1/k2VV)GO(r, r'), (A4)

where GO(r, r') is the scalar Green's function and C is the
unit dyadic.

For the magnetic field, in the lower half-space we have

H(&)(r<) + (1/47r)Sh(r<) = 0, (AS)

and in the upper half-space we have

H(,)(r,) = (/47r)Sh(r>), (A6)

where

Sh(r) = (4i/c) Js J(r') -V X G(r, r'd. (A7)

In the two-dimensional geometry associated with the one-
dimensional surface under consideration, G(r, r') is given
by the zeroth-order Hankel function of the first kind:
i7rHoM (klr - r'l); on the other hand, the element of surface is

[ (dx') ] x' (A8)

For the electric field, Eq. (A3) becomes

Se(r) = 47 k J J(r')(U + + VV)

X H0(1)(kr - r')[1 + () ]dx', (A9)

where

r' = [x', z' = D(x')]. (AlO)

By extracting components along OX, OY, and OZ from the
vector Eq. (A9), we obtain

[Se(r)]x = - c |kJx(r)-Jx(r) o2 d

k2 dz' - dD2 l/2J2r' a 8 1 )(klr 'Ilfl+ (\a I dx', (Alla)

[Se(r)]y =- c J__ J(r')H(1(kr - r'I)

X [1+ (d) 2 ]1/2 dx', (Allb)

[S,(r)]y = 4 | [J(r) + Jx(r') a aey c J L ~~~k2 ax' a'

+ J2 2' H0(1)(klr - r)[1 + (4 ]dx', (Alc)

for which n is the local outward normal to the surface,

n = (_ dd' 0, 1)/1 + (dD)211,

and the current density J has the property that

J s n = 0

so that

(A12)

-J~dD/dx' + J, = 0. (A14)

By introducing Eqs. (All) into Eq. (Al) and taking Eq.
(A14) into account, we readily obtain, for s waves [for which
E(i) is given by Eq. (1)], that Jx = J = 0. Therefore, for s
waves, the extinction theorem yields

Ei) exp[(Kox - q0z)]

= rk L J(r')H(1)(klr - r'I) [1 + (dD)2]1/2 dx'. (A15)

Similarly, by introducing Eqs. (All) into Eq. (A2), we obtain
the scattered field above the surface z = D:

Ey(S)(r>) = rk | Jy(r')H,(1)(k r - )[ 1 + D ] dx'.

(A16)

For p waves and the magnetic field, Eqs. (AS) and (A7) yield
Jy = 0 in a similar way. Finally, by expressing J, in terms of
Jx through Eq. (14), we obtain

[Sh(r)]Y = 4 f J(r')H('(kr - r'l)

(z _ z') - d (x - x') (D)]/

- x') dx' Z 212d.
+ (-z,2 - Z')2 12_

(A17)

In Eq. (A17), Hi(') is the first-order Hankel function of the
first kind.

For p waves, therefore, Eqs. (8), (AS), and (A17) give the
expression for the extinction theorem integral equation for

H(i) exp[i(kox - q0z)] = - 7ri | J,(r)Hj(1(kr - )

(x ,)2 _dD ( _ ,)
(z-z)-dx' (x- ') 'dD 2 1/2 

[(X - X,2 + (Z- ]1/2[ 1 + x(. ) I dx' (A18)

The singularity of Hj(1) (klr - r'l) at r = r'is not integrable
[in contrast to that of Ho() (kir - r) for s waves]. In
addition, we must consider the geometric factor in Eq. (A18).
This makes it necessary to evaluate the principal value of
this integral. The procedure was developed in Ref. 48 and
leads to the following expression for Eq. (A18):

H(i) exp[i(Kox - q0z)]

rik A2i (r - r')+ [1 - A(r - r')]

X Jx(r')H(')(klr - rl)

(z - z') - d (x-x') }x

[(X - X)2 + (Z Z)2]e/2 dx'
where

A(r - r'), ={1 r =S r'

(A19)

(A13)
(A20)
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Similarly, from Eqs. (A17) and (A6) we obtain the scat-
tered magnetic vector:

Hy(s)(r>) = 7ik J,(r')H('(klr> - r'l)

(z> - z') - (x> - X') (dD' \1/2

[x>-)+( - z')2 ' 2 + 1dx)J dx'. (A21)

APPENDIX B

For periodic surfaces we can take advantage of the pseudo-
periodicity of the induced electric current density2 94 9:

J (x + a) = J (x) exp (iKOa), (Bl)

for which a is the grating period and Ko is given according to
Eq. (2a).

The extinction theorem and the diffracted field above the
surface are considered first for s waves.

By using the expansion of the Hankel function into plane
waves (similar to the Weyl expansion), we obtain, from Eq.
(A16),

Ey(s)(r>) = rk dx'J(r') dK exp[iK(x - x')]

X exp(iqlz - z'1) 1 + (dD) 21 2

q I + J 4 J (B2)

In Eq. (B2) K and q are related by

q = (k
2

- K2)'/ 2 if K S k (homogeneous waves) (B3a)

= i(K2 - k2)"/2 if K > k (evanescent waves). (B3b)

The x' integral in Eq. (B2) may be decomposed into an
infinite sum of integrals, each extended over one period.
Hence, if we use Eq. (Bl), then Eq. (B2) yields

Ey(s)(r>) = - c I Jy(r') {f dK exp[iK(x - x')

X exp[iqlz - D(x')I]
q

X E exp[i(K0 - K)la] + dx'.

(B4)

We can now use the following equation, 5' which expresses
the Fourier transform of the Dirac comb5 2:

exp[-i(K- K)M 2 6[K -(K + 27n)]

(B5)

Equation (B4) then gives

Ey(')(r>) = a Jy(r') exp[iK(x - )]

X exp[iqnlz - D(x')I] [1 + (d 2 ] dx'. (B6)

In Eq. (B6) we have

Kn = Ko + 2irn/a, (B7)

which is a well-known expression for diffraction gratings.
Also, we have

q = (k2 _ K)1/2 if Kn S k (homogeneous waves) (B8a)

= i(Kn - k2)/2 if Kn > k (evanescent waves). (B8b)

Finally, for points r> such that z> > Dmax, where Dmax is
the highest value of z = D(x), we can write Iz - D(x')l = z -
D(x'); then Eq. (B6) takes the form

Ey(s)(r>) = - 3 An exp[i(Knx + qnZ)]
n=--

where the diffraction-order amplitudes are

A = 2 Jrk a JY[x', D(x')]exp[-i(Knx' + qnD(x')]caqX [0 (

and the diffracted intensity for each order, normalized to the
incident intensity E(i)12, is given by

(B6')

(B9)

qn AnL12I =q0 IE(i)12 (B10)

The calculation of the electric current Jy by means of the
extinction theorem can be done by using the following ex-
pression, which can be obtained by a method analogous to
that used for Eq. (B6):

E) exp[i(Kox - q0z)] = Irk I Jy[x', D(x')]

X H0 ('(kf[x-(x' + la)]2

+ [z - D(x)]21/2)exp(iKola)]

X [1 + (d) 21/2 dx'.

For p waves we obtain in a similar fashion the expression
for the extinction theorem that yields the boundary condi-
tion (from which we can obtain the electric current density),

H(i) exp[i(Kox - q0z)] =_ k J.[x', D(x')]

r ~~dD
[z-D(x')] -dD [x-(x' + la)]

, R(x - (x' + la)]2 + [z -

X exp(iK0 la)Hj(l)(kj[x - (x' + la)]2 + (z - D(x,)]21/2)]

X [1 + (D) 2 ] 2 dx', (B12)

and the diffracted magnetic vector for points r> such that z>
> Dmaxt

(Bll)
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Hy(s)(r>) = E Bn exp[i(Knx + qnz)], (B13)
n=-

where the amplitude of each diffraction order is

Bn - a Jx[x', D(x')]exp{-i[Knx' + qnD(x')]l

X MdD Kn-qn) 1+ /dD)2]1 dx'. (B 14)

Thus the diffracted intensity for each order, normalized to
the incident intensity, H(i)12, for p waves is given by

Inp = n § (Z1)l2- (B15)

Both InP and Ins must satisfy the unitarity condition,

E = 18I (B16)
n

where the sum is made over only the propagating orders.
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