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Generation of pulse trains in the normal dispersion regime of a dielectric 
medium with a relaxing nonlinearity 

Jose M. Soto-Crespo and Ewan M. Wright 
Optical Sciences Center, University of Arizona, Tucson, Arizona 85721 

(Received 18 March 1991; accepted for publication 15 August 1991) 

We show that modulation-type instability can occur in the normal dispersion regime of a 
dielectric medium for the case of a relaxing self-focusing nonlinearity. This instability leads to 
the generation of pulse trains with almost no pedestal when periodic boundary conditions 
are applied. 

It is well known that the combination of linear group 
velocity dispersion (GVD) and self-phase modulation 
(SPM) as arises in optical fibers or other nonlinear dielec- 
tric media can give rise to a variety of soliton’-4 and insta- 
bility phenomena5-’ which are well described by the non- 
linear Schrijdinger equation (NLSE). In the anomalous 
dispersion regime, the NLSE has a family of bound-state 
multisoliton solutions,’ which have been verified 
experimentally,2 and modulation instability is also 
present.5-7 Modulation instability (MI) is a process by 
which the amplitude of a weak periodic perturbation on a 
continuous wave (cw) background can grow exponentially 
leading to a temporal modulation.* 

In this letter we show that modulation-type instability 
can also occur in the normal dispersion regime of a dielec- 
tric medium for the case of a relaxing self-focusing nonlin- 
earity. We use the name modulation-type instability since 
MI is usually reserved for that instability which occurs for 
an instantaneous response in the anomalous GVD 
regime.‘-’ However, as we demonstrate, the present insta- 
bility shows many of the features of the usual MI. This 
instability was previously predicted by Trill0 et al9 who 
referred to it as a Raman MI.’ It is well known that a 
relaxing nonlinearity provides an approximate model” of 
the effects of stimulated Raman scattering (SRS) in silica- 
core fibers.“*” Recently there has been considerable inter- 
est in understanding the effects of SRS on MI in the anom- 
alous dispersion regime, 12-16 and numerical results predict 
that it should be possible to generate pulse trains without 
the pedestal which appears for an instantaneously respond- 
ing medium.6*‘6 We present numerical results which show 
that similar trains of pulses can be generated in the normal 
dispersion regime for a relaxing nonlinearity when periodic 
boundary conditions are imposed. In an analogous but dis- 
tinct problem Fleck and Carman” have previously shown 
that trains of pulses can also be generated during the spa- 
tial self-focusing of ultrashort pulses in a medium with a 
relaxing nonlinearity. 

To investigate the effects of a relaxing nonlinearity we 
consider the following modified NLSE written in soliton 
units’ 

.a~ Da% 
'~=‘z~+, 

where 

(1) 

r, g= - gJ + 11112, (2) 

where u is the electric field envelope and 4 is the nonlinear 
phase shift. The two terms on the right hand side of Eq. 
( 1) describe the effects of GVD and nonlinear phase mod- 
ulation, respectively, with fi = + 1 corresponding to nor- 
mal GVD and /3 = - 1 to anomalous GVD. Equation (2) 
accounts for the relaxing nature of the nonlinear phase 
shift 4, tR being the dimensionless response time (if tR = 0 
Eqs. ( 1) and (2) reduce to the usual NLSE). The stability 
of the cw solutions (a/& = 0) of Eqs. ( 1) and (2) can be 
investigated using a perturbed homogeneous solution of 
the form (Icl,l,ul<l) 

u(t,z)=uo[l + Eeiinr+W +~e(-i~~+6*z)~eilu~12z, 

(3) 

where the right-most exponential factor accounts for the 
SPM due to the cw wave, $2 is the detuning of the side- 
bands E and p from the frequency of the cw field, and 6 is 
generally a complex number. The side bands E and p cor- 
respond to the down-shifted Stokes field and the up-shifted 
anti-Stokes field components respectively (a > 0). By sub- 
stituting Eq. (3) into Eqs. ( 1) and (2) an eigenproblem 
results whose eigenvalues determine S, and the correspond- 
ing eigenvectors yield E and p. These eigenvectors can be 
used to investigate the effects of Stokes anti-Stokes 
coupling,g~“~‘8 but here we concentrate on the eigenvalues. 
A straightforward calculation gives 

ifi 
6= *y d 4filuo12 

$a” + (l+ i.ntR) 3 (4) 

and instability follows when Re(6) > 0. Figure 1 (a) shows 
the growth rate Re(S) as a function of scaled detuning 0 
for u. = 1, tR = 0.05, and both anomalous GVD (dashed 
line) and normal GVD (solid line). It is straightforward to 
show that in both cases the cw solution is unstable for all 
fi > 0 if the response time tR is nonzero. For anomalous 
GVD the growth rate displays two maxima at fiMr 
= JzIucj, and OR r_ l/t,. The first maximum &r corre- 
sponds to the usual MI (with some modification due to the 
finite response time), and the second occurs at the detun- 
ing fiR of peak Raman gain.g’“‘14 In contrast, for normal 
GVD there is a single maximum at finrfln,.9 
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FIG. 1. (a) Growth rate Re(6) as a function of scaled detuning Ll for 
uc = 1,-r, = 0.05, and both anomalous (dashed line) and normal (solid 
line) GVD, and (b) maximum value of ju(f,z) 1’ over the range [O&J as 
a function of the propagation coordinate z. 

We have solved Eqs. ( 1) and (2) using the split step 
Fourier method” with periodic boundary conditions on 
the time interval [OJ,,], and the initial condition 

u(t,O) =uo[ 1 + E(t)e’nR’] , (5) 

where I is the amplitude of the perturbation which has 
a mean detuning equal to that for peak Raman gain fiR. 
The amplitude e(t) is assumed periodic with period tmax, 
and this provides the natural time scale for the introduc- 
tion of periodic boundary conditions. As is usual the split 
step method entails splitting the propagation into linear 
and nonlinear steps, and at each nonlinear step Rq. (2) is 
solved numerically, for a given intensity distribution I u12, 
using the fast Fourier transform which automatically im- 
poses periodic boundary conditions.20 The temporal grid 
size tmax was chosen such that fl&,, = 2n-m, where m is 
an integer, and up to 512 temporal grid points were used. 
In the numerical algorithm the sampled frequencies are 
then integer multiples of slR/m.20 For the numerical cal- 
culations reported here we set u. = 1, tR = 0.05 (flR = 20)) 
m = 10 (t,,, = rr), and e(t) =A exp [ - B2 
(t/t,,, - l/2)‘], with A = 10B3 and B = 4. (With these 
parameter values E( 0) = E( t,,,) r0 and E(t) approximates 
a periodic perturbation.) 

Figure 1 (b) shows the periodic nature of the predicted 
instability in the normal GVD regime. Here we show the 
maximum value of lu( t,z) I2 over the range [Ott,,,] as a 
function of the propagation coordinate z. For the range of 
z values shown two oscillation periods are observed, but we 
remark that for increasing z, max( I u (t,z) 12) slowly in- 
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FIG. 2. (a) Evolution of the frequency spectrum 1 u (f&z) 1 corresponding 
to Fig. 1 (b) , where II (f&z) is the Fourier transform of a ( f,z) , and (b) the 
frequency spectrum at z = 67.54 (solid line), along with the best fit hy- 
perbolic secant profile (dashed line) which is characteristic of solitons in 
the anomalous GVD regime. 

creases indicating that the oscillations are not perfectly 
periodic. Figure 2 (a) shows the corresponding evolution of 
the frequency spectrum I u (Q,z) 1, where u (Qz) is the Fou- 
rier transform of u (t,z) . After an initial transient the fre- 
quency spectrum settles down into a fixed profile whose 
mean frequency down-shifts at a nearly constant rate. Fig- 
ure 2(b) shows this fixed profile at z = 67.54 (solid line), 
along with the best fit hyperbolic secant profile (dashed 
line) which is characteristic of solitons in the anomalous 
GVD regime. Clearly the frequency spectrum in tending 
towards a sech-like structure whose mean frequency down 
shifts due to the effects of SRS. 

If it were the case that the frequency spectra shown in 
Fig. 2 also had at most a linear phase chirp in the fre- 
quency domain, then a sech-like profile would also arise in 
the temporal domain since the Fourier transform of a hy- 
perbolic secant is itself a hyperbolic secant. However, this 
is only the case for those z values corresponding to the 
global maxima in Fig. 1 (b). Figure 3 (a) shows the tem- 
poral field profile at the point labeled I in Fig. 1 (b). The 
dashed line Fig. 3(a) was obtained by taking the modulus 
of the Fourier transform of the corresponding frequency 
spectrum (dashed line) in Fig. 2(b). Therefore, for these 
propagation distances the initial cw field (plus perturba- 
tion) coheres into a temporal sech-like structure. At prop- 
agation distances corresponding to the other global max- 
ima in Fig. 1 (b) the temporal profile is the same as that in 
Fig. 3 (a) except the pulse center is shifted due to the com- 
bined effects of SRS, which down-shifts the mean fre- 
quency, and GVD which in turn causes the pulse to move. 
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FIG. 3. Temporal field profiles lu(r,z) 1 corresponding to the points la- 
beled (a) I(z= 67.54), (b) II (z= 68.325), and (c) III (z= 68.065) in 
Fig. I(b). 

For general propagation distances the temporal field 
profiles are found to be very complicated. However, sech- 
like structures also appear for z values corresponding to the 
local maxima in Fig. 1 (b) . The temporal field profiles cor- 
responding to the local maxima labeled II and III in Fig. 
1 (b) are shown in Figs. 3 (b) and 3 (c), respectively. Here 
we see the appearance of two and three sech-like struc- 
tures. Inspection shows that for the case of two (three) 
structures the energy in each is one half (third) of that in 
Fig. 3 (a), and that the individual field profiles in each case 
are almost identical. We also note that, in comparison to 
the usual MI, these pulse trains have a relatively small 
pedestal, even in Fig. 3 (c) . 

Finally, an estimate of the generated pulse widths can 
be obtained by considering the dimensional Raman shift 
AR defined by ARTS = flR. Here T, is the dimensional time 
unit which arises in the introduction of soliton units,’ and 
t = T/T, where T is the dimensional time. By setting 
A, = 13 THz, which is the accepted value for fused 
silica,‘O*” and QR = 30, we obtain T,s2 ps. Therefore, 
with reference to Fig. 3, the predicted pulse widths are of 
the order of ps. The required fiber lengths and peak powers 
required will depend on the specific value of the GVD 
parameter k2.2 

In conclusion, we have shown that modulation-type 
instability can occur even in the normal dispersion regime 
of a dielectric medium for the case of a relaxing self-focus- 
ing nonlinearity. Although this instability is not a MI in 
the strict sense it displays many of the characteristics of an 
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MI, namely it causes an initial cw wave to undergo peri- 
odic oscillations and leads to the formation of sech-like 
structures: Furthermore, we have demonstrated the’ gener- 
ation of pulse trains with variable number of pulses, and 
almost no pedestal, when periodic boundary conditions are 
applied. 
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