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ABSTRACTABSTRACTABSTRACTABSTRACT    

Mutations in the complement regulators factor H, Membrane Cofactor Protein 

(MCP), and factor I are associated with atypical Hemolytic Uremic Syndrome 

(aHUS, MIM 235400), suggesting that the disease develops as a consequence 

of the inefficient protection of the renal endothelium from damage by the 

complement system. Incomplete penetrance of the disease in individuals 

carrying these mutations is, however, relatively frequent. Here, we report the 

identification of a large, multiple affected aHUS pedigree in which there is 

independent segregation of three different aHUS risk factors: a MCP  missense 

mutation (c.598C>T; Pro165Ser) that decreases MCP expression on the cell 

surface, a dinucleotide insertion in the coding sequence of factor I 

(c.1610insAT) that introduces a premature stop codon in the factor I protein, and 

the MCP ggaac  SNP haplotype block that was previously shown to decrease 

the transcription activity from the MCP  promoter. Interestingly, individuals 

affected by aHUS in the pedigree are only those who have inherited the three 

aHUS risk factors. These data show an additive effect for mutations in MCP and 

factor I and provide definitive support to the conclusion that aHUS results from a 

defective protection of cellular surfaces from complement activation. 

Furthermore they help to explain the incomplete penetrance of the disease, 

illustrating that concurrence of multiple hits in complement regulatory proteins 

may be necessary to  significantly impair host tissue protection and to confer 

susceptibility to aHUS. 
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1. Introduction1. Introduction1. Introduction1. Introduction    

Hemolytic Uremic Syndrome (HUS) is clinically defined by thrombocytopenia, 

Coomb’s test negative microangiopathic haemolytic anemia and acute renal 

failure. Most HUS cases occur associated to E.coli  infections leading to 

hemorragic diarrhea (Karmali, 2004). This typical form of HUS usually resolves 

satisfactorly and complete recover of the renal function is achieved. However, 

five to ten percent of HUS cases lack a particular relationship with infection and 

have a poorer prognosis (Moake, 2002). This idiopathic atyp ical form of HUS 

(aHUS) is frequently associated with immunosuppressive drugs, cancer 

therapies, oral contraceptives, pregnancy or postpartum. The molecular 

mechanisms underlying atypical HUS are not completely understood. The 

complement system has been implicated in the pathophysiology of this 

syndrome for many years (Thompson and Winterborn, 1981), but only recently 

mutations in the genes for the complement proteins factor H (CFH) (Warwicker 

et al. 1998, Pérez-Caballero et al. 2001, Caprioli et al. 2001, Richards et al. 

2001, Sánchez-Corral e t al. 2002, Manuelian et al. 2003; reviewed in Rodríguez 

de Córdoba et al. 2004), membrane cofactor protein (MCP) (Noris e t al. 2003, 

Richards et al. 2003) and factor I (IF) (Fremeaux-Bacchi et al. 2004, Kavanagh 

et al. 2005) have been shown to predispose to aHUS. Functional 

characterization of several of these mutations suggest that the disease likely 

develops as a consequence of a defective protection of cellular surfaces from 

complement activation due to an improper function of complement regulatory 

proteins (Sánchez-Corral et al. 2002,  Manuelian et al. 2003, Richards et al. 

2003, Sánchez-Corral e t al. 2004). 

Despite these advances in our understanding of the molecular basis of aHUS, 
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incomplete penetrance of the disease in individuals carrying factor H, MCP or 

factor I mutations is relatively frequent, suggesting the existence of additional 

genetic factors contributing to aHUS. Recently, different groups have reported 

that relatively frequent CHF  and MCP  SNPs are strongly associated with 

aHUS (Caprioli et al. 2003, Esparza-Gordillo et al. 2005, Fremeaux-Bachi et al. 

2005). Among these SNPs, the MCP  haplotype block MCPggaac  is particularly 

interesting because it includes two SNPs, c.–547G/C and c.–261G/C, that 

influence transcription from the MCP  promoter in transient transfection 

experiments (Esparza-Gordillo et al. 2005). Moreover, the observation that 

MCPggaac  was especially frequent among patients who carry mutations in 

CFH, MCP  or IF suggested that the concurrence of different mutations and 

polymorphisms in the complement regulatory genes increases predisposition to 

aHUS (Esparza-Gordillo et al. 2005). Here we provide further support to this 

conclusion identifying a pedigree in which the affected individuals carry three 

different genetic susceptibility factors in two different complement regulatory 

genes (IF  and MCP). 
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2. Patients and methods2. Patients and methods2. Patients and methods2. Patients and methods 

2.1. Family RCO.2.1. Family RCO.2.1. Family RCO.2.1. Family RCO.    

This study focuses on the characterization of aHUS genetic predisposition 

factors in a large, multiple affected Spanish pedigree, referred to as family RCO. 

This pedigree was initially selected because we found that two patients in the 

Spanish HUS registry, HUS 68 and HUS 84, were first cousins and the only 

affected members in their family. HUS 68 has been reported earlier (Esparza-

Gordillo et al. 2005). All protocols included in these studies have been approved 

by national and/or local institutional review boards, and all subjects gave their 

informed consent. 

2.2. Case reports.2.2. Case reports.2.2. Case reports.2.2. Case reports.    

HUS 68 (Figure 1, III-5) presented with acute renal failure, thrombocytopenia 

and Coomb’s test negative microangiopathic haemolytic anemia at the age of 

57. Plasma creatinine was 405 µmol/L. Renal biopsy was not performed due to 

the small size of her kidneys. Because of the rapid and progressive loss of renal 

function, hemodialysis was commenced and plasma exchange was undertaken 

which controlled the microangiopathic anemia and stabilized the creatinine 

levels around 300 µmol/L. Fifteen months later she presented again with 

microangiopathic anemia and thrombocytopenia, showing alternative pathway 

complement activation. Despite repeated plasma exchanges and fresh plasma 

infusions, she rapidly lost renal function and since 1994 she is being treated 

with hemodialysis. She is currently 68 years old. 

HUS 84 (Figure 1, III-8) presented with HUS at the age of 41 after an acute 

catarrh episode. She was under periodic hemodialysis for six months and 

recovered a limited renal function that allowed her to abandon the hemodialysis 
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program. However, progressive loss of renal function took her back to 

hemodialysis in 2004, 17 years later. HUS 84 is currently 59 years old.  

2.3. The relatives of HUS 68 2.3. The relatives of HUS 68 2.3. The relatives of HUS 68 2.3. The relatives of HUS 68 and HUS 84.and HUS 84.and HUS 84.and HUS 84.  

Individuals II-5, III-1, III-3, III-4, III-6, III-7, III-9, III-10, III-11, IV-1, IV-2 and IV-3 

(Figure 1) are all alive and healthy with no history o f renal disease. Current age 

for each of these indivuduals is depicted in Figure 1. All o ther members of the 

pedigree RCO are deceased. Relatives I-1, I-2, II-2, II-3, II-4 and II-7 died at 

advanced age, most of them over 80 years old, with no record of renal disease. 

II-1 and II-8 died in their 50s from heart disease. II-6 is the only member of the 

RCO pedigree who died in her 30s and the only one who may have had an 

hemolytic anemia related disorder. No samples were, however, available for 

analyses from this individual or from any of the deceased relatives of HUS 68 

and HUS 84. 

2.4. Complement an2.4. Complement an2.4. Complement an2.4. Complement analysesalysesalysesalyses 

C3, C4, factor H and factor I levels were measured in serum or plasma samples 

as previously described (Pérez-Caballero et al. 2001, Esparza-Gordillo et al. 

2004, Gonzalez-Rubio et al. 2001). The standard hemolytic assays CH50 and 

AP50, and a recently described hemolytic assay to test factor H function 

(Sánchez-Corral et al. 2004) were performed to assess complement function 

and regulation. Expression levels of the membrane regulators MCP (CD46) and 

Decay Accelerating Factor (DAF or CD55) in peripheral blood lymphocytes 

(PBLs) were analyzed by flow cytometry in whole blood samples drawn in the 

presence of EDTA. Cells were assessed using three-colour acquisition on a 

FACSCalibur (Becton Dickinson, CA, USA). The monoclonal antibodies PE-anti-

CD45, FITC-anti-CD46 and PerCP-anti-CD55, and the appropiate isotypic 
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controls were purchased from BD Biosciences (Pharmingen, San Diego, CA, 

USA). PBLs were examined using side-scatter versus CD45 gating, and data 

analysed using CELLQUEST software (Becton Dickinson).  

2.5. Genomic analyses of complement regulatory genes 2.5. Genomic analyses of complement regulatory genes 2.5. Genomic analyses of complement regulatory genes 2.5. Genomic analyses of complement regulatory genes     

Patients and their relatives were screened for mutations and polymorphisms in 

CFH, MCP  and IF genes. DNA from these individuals was extracted from PBLs 

or from buccal mucosa cells collected with cheek brushes (MasterAmp buccal 

swab brush, Epicentre Technologies) using standard procedures. Each exon of 

the CFH, MCP and IF  genes was amplified from genomic DNA of patients using 

specific primers derived from the 5 ̍ and 3̍ intronic sequences. The sequence of 

these primers and the PCR conditions used for the amplifications are described 

elsewhere (Pérez-Caballero et al. 2001, Richards et al. 2003, Fremeaux-Bacchi 

et al. 2004). Direct sequencing of PCR products was performed automatically in 

an ABI 3730 sequencer using a dye terminator cycle sequencing kit (Applied 

Biosystems, NJ). MCP  c.2181T>C SNP (NCBI id rs7144) was used to identify 

the presence of the MCPggaac SNP haplotype block. Genotyping of the MCP  

c.2181T>C  and the CFH -257C>T SNPs was performed by allelic 

discrimination on 10 ng of genomic DNA using TaqMan probes (MCP assay id: 

2784726; CFH assay id: 2530387;  Applied Biosystems; Foster city, CA) and 

real time PCR equipment (PE7700; Applied Biosystems; Foster city, CA) 

following the manufacturer specifications. 
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3. Results3. Results3. Results3. Results    

Blood samples obtained from patients HUS 68 and HUS 84 showed normal 

complement activity through the classical (CH50) and the alternative (AP50) 

pathways. Similarly, plasma levels of C3, C4 and factor H also were within the 

normal reference range of variation (Table 1). However, both patients presented 

half-normal plasma levels of factor I, and also showed a 50% reduction in the 

MCP expression levels in PBLs (Table1). These observations prompted us to 

search for mutations in the MCP  and IF  genes in both patients. 

MCP  sequencing revealed a novel heterozygous mutation (c.598C>T; 

Pro165Ser) in exon 5, encoding Short Consensus Repeat 3 (SCR3), in both 

aHUS patients (Figure 2a). This missense mutation shows a perfect segregation 

with the 50% reduction in the MCP expression levels in PBLs that present 

different members of the RCO pedigree (Table 1 and figure 1). Pro165Ser 

results in a partial MCP deficiency because it affects a fully conserved proline 

residue that is characteristic o f the SCR consensus sequence (Law and Reid. 

1995) and likely interferes with the proper folding and transport of MCP to the 

cell membrane (Figure 2b and 2c). The 50% reduction in MCP levels place the 

carriers of the Pro165Ser MCP mutation outside the normal range of MCP 

levels (Table 1). The pathogenic consequences of a 50% reduced MCP 

expression in the context o f aHUS have been demonstrated in earlier work 

(Noris et al. 2003, Richards et al. 2003). 

Sequencing of the IF  gene led to the identification of an heterozygous 

c.1610insAT mutation in both patients and some of their relatives (Figures 1 and 

3b). This dinucleotide insertion, located in IF  exon 13, causes a frameshift that 

generates a truncated factor I protein at position 538 that lacks most of the 
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fuctional serine protease region. In addition, as illustrated in Figure 3b, this 

truncated form of factor I is likely not secreted to  the plasma, as it cannot be 

detected in western blots o f whole plasma from the patients using anti factor I 

polyclonal antibodies. A total of five IF  mutations leading to factor I deficiency 

have been reported thus far in aHUS patients (Fremeaux-Bacchi et al. 2004, 

Kavanagh et al. 2005). The factor I mutation described here is a novel mutation 

located in the C-terminal region of the protein, 8 residues upstream of another 

HUS-associated mutation (c.1637G>A; Trp546Stop) that also leads to partial 

factor I deficiency (Fremeaux-Bacchi et al. 2004).  

Since HUS 68 and HUS 84 are first cousins, the presence of identical MCP  

(1q32) and IF  (4q25) mutations in both patients clearly indicate a germline 

transmission from a common ancestor. Analysis of all available relatives in 

family RCO showed segregation of the MCP  and IF  mutations, supporting this 

conclusion (Figure 1). Furthermore, as expected, we observed that members of 

the RCO pedigree carrying the Pro165Ser MCP mutation have reduced MCP 

levels on their lymphocytes and that carriers of the c.1610insAT IF mutation, 

with the exception of IV-2, also had decreased levels of factor I in plasma (Table 

1). Together, these findings strongly support that the identified IF  and MCP  

mutations lead to partial factor I and MCP deficiencies, respectively. Both, factor 

I and MCP partial deficiencies, have been reported previously to confer 

separately susceptibility to aHUS (Noris et al. 2003, Richards et al.2003, 

Fremeaux-Bacchi et al. 2004, Kavanagh et al. 2005).  

A total of five individuals in our pedigree carry mutations in both factor I and 

MCP (HUS 68, HUS 84, III-11, IV-1 and IV-2) and four additional ones carry 

mutations in either factor I or MCP (III-3, III-9, III-10 and IV-3), however, only two 
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of them (HUS 68 and HUS 84) have developed aHUS thus far. To identify 

additional aHUS-susceptibility factors in the RCO pedigree that may explain the 

differences between HUS 68, HUS 84, III-11, IV-1 and IV-2, we analyzed the 

levels of expression of decay accelerating factor (DAF; CD55), we functionally 

characterized factor H in the serum from affected and non-affected members 

(Sánchez-Corral et al. 2004), and we genotyped all members of the pedigree for 

the presence of CFH and MCP aHUS-associated SNPs (Caprioli et al. 2003, 

Esparza-Gordillo et al. 2005, Fremeaux-Bacchi et al. 2005). DAF levels and 

factor H activity were normal and all individuals in the pedigree carry the CFH -

257T risk allele (not shown). Therefore differences among carriers of the MCP 

and IF mutations cannot be atributed to these parametres. Interestingly, the 

MCPggaac risk allele was present in family RCO and segregated independently 

of the Pro165Ser MCP mutation, demonstrating that these two genetic traits are 

carried by different MCP alleles. Segregation analyses in family RCO also 

revealed that the patients HUS 68 and HUS 84, but not III-11, IV-1 and IV-2 

carried the MCPggaac risk allele, strongly suggesting that concurrence of the 

three aHUS susceptibility factors greatly influences the disease manifestation in 

this family.  
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4. Discussion4. Discussion4. Discussion4. Discussion    

We report here the identification of three independent aHUS risk factors in a 

large Spanish pedigree with two members affected. These factors are: a MCP 

missense mutation (c.598C>T; Pro165Ser) that decreases MCP expression on 

the cell surface, a dinucleotide insertion in the coding sequence of factor I 

(c.1610insAT) that introduces a premature stop codon in the factor I protein, and 

the MCPggaac  SNP haplotype block that was previously shown to influence the 

transcrip tion activity from the MCP promoter (Esparza-Gordillo et al. 2005). 

Segregation analysis demonstrated that the three aHUS risk factors segregate 

independently and, most important, that individuals, thus far affected from aHUS 

in this pedigree are only those who inherited the three risk factors (Figure 1). 

The HUS pedigree reported here is exceptional because mutations in MCP and 

IF are very rare. Together, our findings provide further support for the concept 

that aHUS results from a defective protection of cellular surfaces from 

complement activation and help to understand the incomplete  penetrance of the 

disease in carriers of mutations in genes encoding complement regulatory 

proteins. 

The efficiency of the complement system as an innate defense mechanism 

against microbial infections depends on a fine control that avoids the wasteful 

consumption of its components and restricts its activation to the surface of 

microorganisms, thus preventing non-specific damage to host tissues. Control 

of the complement system is performed by a set of plasma and membrane-

associated regulatory molecules acting as a protein network (Law and Reid, 

1995). Genetic and functional analyses have shown that this critical control of 

complement activation may be impaired in aHUS patients. Accordingly, it is 
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generally accepted that the mutations in CFH, MCP  or IF  found in many 

patients predispose to aHUS because they generate a situation unable to 

provide efficient protection to the host cellular surfaces in the case of 

complement activation (Warwicker et al. 1998, Pérez-Caballero et al. 2001, 

Caprioli et al. 2001, Richards et al. 2001, Sánchez-Corral et al. 2002, Manuelian 

et al. 2003, Noris et al. 2003, Richards et al. 2003, Fremeaux-Bacchi et al. 

2004, Kavanagh et al. 2005, Sánchez-Corral et al. 2004). 

The incomplete penetrance of aHUS often found in carriers of the CFH, MCP 

and IF  mutations could be explained by the existence of genetic modifiers of 

these mutations. Individual IV-2 (Figure 1) could  be an example of this situation. 

Despite carrying the c.1610insAT IF  mutation, IV-2 shows levels of factor I in 

plasma that are comparable to those found in the reference control sample 

(Table 1). Like many other complement components, factor I shows a relatively 

large (two-fold) normal range of variation (Gonzalez-Rubio et al. 2001; 

Fremeaux-Bacchi  et al. 2004; Kavanagh et al. 2005). IV-2 could have inherited 

a paternal IF allele with high expression and, thus, compensate the effect of the 

c.1610insAT IF  mutation. Similar quantitative variations have been observed in 

carriers of CFH mutations in other aHUS pedigrees with incomplete penetrance 

of the disease (Fremeaux-Bacchi et al. 2002). 

The case of HUS68 and HUS84 in family RCO and previous findings describing 

concurrence of different predisposition factors in HUS patients provides an 

explanation for the incomplete penetrance of the disease in carriers of CFH, 

MCP and IF  mutations. They suggest that multiple hits, probably involving 

plasma and membrane-associated complement regulatory proteins, are 

required to impair protection to host tissues significantly. Factor I and MCP are 
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proteins acting in the same complement regulatory pathway (Law and Reid, 

1995). Therefore, it is likely that genetic variants decreasing the levels of MCP 

and factor I have an additive effect in the context of complement regulation and 

aHUS susceptibility. Similarly, concurrence of the Pro165Ser mutation with the 

risk allele MCPggaac may have an additive effect reducing further the 

expression of MCP in carriers of the MCP mutation. Although we have not been 

able to document a further decrease of MCP levels in PBLs in members of the 

RCO pedigree carrying both the Pro165Ser mutation and the risk allele 

MCPggaac (Table 1), our earlier observation that two SNPs, c.–547G/C and c.–

261G/C, included in the MCPggaac  haplotype block decreases transcription 

from the MCP  promoter in transient transfection experiments (Esparza-Gordillo 

et al. 2005) supports this conclusion. MCPggaac  is an important HUS risk 

factor that has been found strongly associated with the disease in three different 

HUS cohorts (Esparza-Gordillo et al. 2005, Fremeaux-Bacchi e t al. 2005). 

Future experiments should address whether carriers of the MCPggaac  allele 

show reduced expression of MCP locally in the kidneys or in conditions of 

infection or inflammation. 

We found remarkable that in family RCO the individuals affected from aHUS are 

only those who inherited the three risk factors segregating in this pedigree 

(Figure 1). We are aware that HUS68 and HUS84 presented with the disease at 

the ages of 57 and 41, relatively late for aHUS, and that there is always the 

possibility that those in the kindred with one or two risk alleles may get disease 

in the future. However, considering that many of the individuals carrying one or 

two risk alleles are at present over the age of onset of HUS 68 and HUS84, we 

suggest that the concurrence of different genetic risk factors influences the 

onset of the disease and the penetrance of aHUS in carriers of MCP and IF 
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mutations (Figure 1). 

We believe that these findings provide clues to understand the incomplete 

penetrance of the disease in other aHUS pedigrees and, therefore, we suggest 

that all genes currently known to be aHUS risk factors should be analyzed 

routinely in aHUS patients. Furthermore, analysis of additional proteins involved 

in complement activation, such as C3, factor B or properdin, may unravel novel 

aHUS risk factors and provide further insights into genetic factors predisposing 

to aHUS in the still high percentage of aHUS patients in whom mutations in 

CFH, MCP or IF  have been excluded. 

In conclusion, our data indicate that concurrence of different susceptibility 

alleles affecting complement regulator expression greatly influences 

predisposition to aHUS and provides an explanation for the incomplete  

penetrance of aHUS in carriers o f mutations in the complement regulatory 

genes. They also consolidate the hypothesis that an inefficient protection of the 

cellular surfaces from complement activation is a general feature of patients 

with aHUS. As a whole our current knowledge of the molecular mechanisms 

underlying aHUS reinforce the concept that complement inhibition therapies to 

prevent or reduce tissue damage by complement activation is indicated for the 

treatment of aHUS patients. 
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Figure 1. Pedigree of family RCO.Figure 1. Pedigree of family RCO.Figure 1. Pedigree of family RCO.Figure 1. Pedigree of family RCO.    

Affected individuals are indicated with an arrow. Deceased individuals are 

crossed. Carriers of the MCP  c.598C>T mutation, the IF c.1610insAT mutation 

and the MCPggaac risk haplotype are indicated by a code described at the 

bottom of the pedigree. Current age of individuals in the pedigree is indicated 

(for deceased members, age at death was indicated in Patients and Methods).    

Figure 2. Mutation in Membrane Cofactor Protein.Figure 2. Mutation in Membrane Cofactor Protein.Figure 2. Mutation in Membrane Cofactor Protein.Figure 2. Mutation in Membrane Cofactor Protein.    

a)a)a)a) Identification of MCP mutations in patients HUS 68 and HUS 84. The 

chromatogram corresponding to the DNA sequence surrounding the mutated 

nucleotide in MCP exon 5 is shown for the HUS68/HUS84 patients and for a 

control sample. The corresponding aminoacid sequences for the wild type and 

the mutated alleles are shown at the right. The amino acid numbering is referred 

to the translation start site (Met +1) and the nucleotide nomenclature is refered 

to the transcription start site described by Cui et al. (1993). b)b)b)b)  Diagram of the 

MCP molecule with four extracellular SCR domains, a transmembrane region 

and an intracytoplasmic tail. The location of the Pro165Ser mutation in the 

consensus sequence of a prototypic SCR domain (circled amino acids) (Law 

and Reid, 1995) is indicated by an arrow. c)c)c)c) Flow cytometry analysis of 

peripheral blood lymphocytes from the HUS 68/HUS 84 patients (red) and from 

normal control samples (blue). Isotypic control is shown in black. 

Figure 3. Mutation in factor I.Figure 3. Mutation in factor I.Figure 3. Mutation in factor I.Figure 3. Mutation in factor I.    

a)a)a)a) Identification of factor I mutations in patients HUS 68 and HUS 84. The 

chromatogram corresponding to the DNA sequence surrounding the mutated 
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nucleotide in IF exon 13 is shown for the HUS 68/HUS 84 patients and for a 

control sample. The corresponding aminoacid sequences for the wild type and 

the mutated alleles are shown at the right. The amino acid and nucleotide 

numbering is referred to the translation start site (Met +1). Nucleotide 1 is the 

adenine of the start (ATG) codon. b)b)b)b) Diagram of the factor I molecule with the 

protein domains that organize the heavy and light chains indicated. I/C67, Factor 

I/membrane attack complex C6/7 module; SCAr, Scavenger receptor; LDRr, 

Low density lipoprotein receptor; SP, serine protease domain. The location of 

the stop codon generated by the c.1610insAT mutation is indicated by an arrow. 

c)c)c)c) Western blot of unreduced IF in human serum. Arrrow indicate the position of 

the factor I protein as detected by a goat anti human factor I polyclonal antibody 

(Quidel. San Diego. CA) 

  



TABLE 1. TABLE 1. TABLE 1. TABLE 1. Complement profiles in members of family RCO.  
 

    

        

C3C3C3C31, 2 1, 2 1, 2 1, 2     
(77– 210mg/dl) 

    

C4C4C4C42222    
(14-47mg/dl) 

    

Factor HFactor HFactor HFactor H3333    
(12-56mg/dl) 

    

Factor IFactor IFactor IFactor I4444     
(75-115 %) 

    

MCPMCPMCPMCP5555    
MFI (38-55) 

(% of control) 

Factor HFactor HFactor HFactor H    
Hemolytic assayHemolytic assayHemolytic assayHemolytic assay5555    
(2-25% of total lysis) 

IIIIIIII----5555    102 21 34 106 44.5 (99) 17 

IIIIIIIIIIII----5 5 5 5 (HUS68)    96 42 30 53 28 (62) 5 

IIIIIIIIIIII----8 8 8 8 (HUS84)    84 27 30 46 25.4 (56) 2 

IIIIIIIIIIII----9999    128 32 39 53 42.9 (95) 3 

IIIIIIIIIIII----10101010    112 25 24 101 27.6 (61) 4 

IVIVIVIV----1111    102 24 30 50 24.9 (55) 1 

IVIVIVIV----2222    128 16 31 95  25.1 (56) 3 

IVIVIVIV----3333    124 26 32 100 24.2 (54) 3 

 
1) Normal range of variation in controls is shown between brackets for each variable. 

2) C3 and C4 were determined by nephelometry. 

3) Factor H and Factor I plasma levels were determined by ELISA. Factor I levels are referred to a re ference serum; each value 
corresponds to the mean of three independent determinations.  

4) Levels of MCP in PBLs (MFI, mean fluorescence intensity) were determined by flow cytometry and referred to a control sample 
drawn and analysed the same day as indicated in Patients and Methods.  
5) Lysis observed in samples from control individuals varies from 2 to 25% of total lysis (Sánchez-Corral et al. 2004). 

Table1
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