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ABSTRACT OF THE THESIS

A PRIVACY FRAMEWORK FOR DECENTRALIZED APPLICATIONS USING

BLOCKCHAINS AND ZERO KNOWLEDGE PROOFS

by

David Gabay

Florida International University, 2019

Miami, Florida

Professor Kemal Akkaya, Major Professor

With the increasing interest in connected vehicles along with electrification opportu-

nities, there is an ongoing effort to automate the charging process of electric vehicles

(EVs) through their capabilities to communicate with the infrastructure and each

other. However, charging EVs takes time and thus in-advance scheduling is needed.

As this process is done frequently due to limited mileage of EVs, it may expose the

locations and charging pattern of the EV to the service providers, raising privacy

concerns for their users. Nevertheless, the EV still needs to be authenticated to

charging providers, which means some information will need to be provided anyway.

While there have been many studies to address the problem of privacy-preserving au-

thentication for vehicular networks, such solutions will be void if charging payments

are made through traditional means. In this thesis, we tackle this problem by utiliz-

ing distributed applications enabled by Blockchain and smart contracts. We adapt

zero-knowledge proofs to Blockchain for enabling privacy-preserving authentication

while removing the need for a central authority. We introduce two approaches, one

using a token based mechanism and another utilizing the Pederson Commitment

scheme to realize anonymous authentication. We also describe a protocol for the

whole process which includes scheduling and charging operations. The evaluation
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of the proposed approaches indicates that the overhead of this process is affordable

to enable real-time charging operations for connected EVs.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

New generation vehicles are becoming much smarter at various levels including but

not limited to infotainment, brake assistance, adaptive cruise control, parking as-

sistance, driver fatigue detection, and more [Mil15]. This is in particular due to

recent developments on Vehicle to Infrastructure communication (V2I), which en-

ables a smart car to communicate with its environment (i.e., determine traffic details,

communicate with service providers, etc.) as well as Vehicle-to-Vehicle (V2V) com-

munication that enables safety and social applications. Ultimately, there is a lot of

potential applications due to such developments in vehicular networks [RKX+18].

One subclass of smart vehicles is Electric Vehicles (EVs) which operate via elec-

tricity as opposed to gasoline vehicles. With a single charge, EVs can operate

anywhere from 50-200 miles [BKA19] which means they will need frequent charg-

ing. They can rely on V2I and V2V to communicate with other EVs and EV

Charging Service providers (EVSP) to schedule charging. With the advancements

in autonomous vehicle technologies, they are expected to conduct charge schedul-

ing and even charging automatically. Even charging through another EV would be

possible this manner which will enable social communication among EVs [BKA19].

However, frequent charging would bring privacy issues as studied in the litera-

ture. Specifically, in the case of charge scheduling, the service providers would have

access to all of the EVs information since this is similar to a client-sever model. For

instance, over time the service providers can learn a lot about their clients including

their personal data, location patterns, and habits. This data can be shared with

other third parties such as marketers, insurance companies, etc. Also, if any pay-
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ment is made for the service, that can also raise privacy concerns as the payment

information will still be collected. These issues with a centralized system lead to

the implementation of various privacy laws as in [IH18] but this does not address

the problem as full enforcement of these policies is not easy.

An alternative to address the privacy issue that is being considered is moving to a

decentralized architecture that will also prevent issues due to single point of failure.

In particular, Blockchain technologies that utilize distributed ledger architecture

can be a viable option since it enables a truly distributed trust [Swa15] as well as

enabling payments through cryptocurrencies that will not expose any payment info

to third parties.

Applications that are run on such a distributed ledger are now commonly re-

ferred to as Decentralized Applications (DApps). There are several examples such as

supply chain management [NMNB18], decentralized voting [DKM+18], Internet of

Things [Che18], social media [CR17], digital rights management (DRM) [MJGW18]

which aim to mitigate the risks accompanied by centralized systems. EV Charg-

ing can also be moved to a distributed architecture by using smart contracts on a

distributed ledger. In the case of EV Charging applications, the EV communicates

with a smart contract, and with the EVSP before it can be allowed to charge at a

charging station. Even though the distributed architecture can support these oper-

ations, developing an architecture through a smart contract will still be a challenge.

This is because there should be a mechanism to allow only registered EVs to ac-

cess to the service through authentication. Second, this authentication mechanism

should also ensure privacy.

To address these issues, this thesis proposes an efficient and feasible framework

that allows an EV user to request charging scheduling from an EVSP in an Ethereum

blockchain [W+14] application while ensuring the privacy of the EV user. To this

2



end, this work utilizes the concept of zkSNARKs [BSCTV14] which aims to provide

an efficient variant of a zero-knowledge proof [GMR89]. zkSNARKs allows a person

to prove to another person the correctness of a statement without revealing the

contents of the proof in one message.

In the proposed framework, it uses zkSNARKs efficiently by having a single

contract verify every EV using the decentralized application, as opposed to having a

smart contract generated for each EV. Once verified by the smart contract without

being identified, it uses an Ethereum token system to issue tokens to that EV, which

will be used for scheduling and charging service requested through a pseudonym.

The token approach will ensure the authentication and charging operations are kept

separate and thus EVs remain anonymous to both the EVSP and the public using

the blockchain.

However, since this approach still requires writing to blockchain for scheduling

and charging services which brings some overhead, an improvement to the scheme to

eliminate this overhead is proposed. Specifically, this new scheme entails using Ped-

erson Commitment scheme [Ped91] for authentication as well as charge scheduling

purposes. In the Pederson approach the commitment is both binding and hiding,

meaning nobody can infer who submitted the commitment and only the committer

can prove s/he submitted the commitment. This new approach still follows the same

protocol but the steps for token-based operations are eliminated with the help of

Pederson scheme. In this way, it is able to eliminate access to blockchain for charge

scheduling and charging and hence improve efficiency and cost.

This work implements both approaches of the proposed framework and assesses

their feasibility and performance. The analysis shows that our proposed model pro-

vides anonymity for the EV (user) during communication with the EVSP and charg-

ing stations. Additionally the framework’s underlying protocol Zokrates [ET18] pro-
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vides strong proofs that enable that only legitimate users can generate valid proofs.

Finally, the results show that the cost and computation time for the framework

on the Ethereum Blockchain are acceptable ranging from $0.23 to deploy a smart

contract and $0.13 to verify the proof. In addition, scheduling a charging slot for

the EV can be done in less than 38 secs when using the Pederson approach.

The rest of this thesis is organized as follows: a summary of the related liter-

ature next. In Section 3, any background information related to DApps, Zero-

knowledge proofs, Pederson commitment scheme, and the current vehicle communi-

cation model. In Section 4, we present our token based approach using zkSNARKs

and Blockchain, followed by our improved Pederson approach in Section 5. In Sec-

tion 6, we discuss the security and privacy analysis of our framework. In Section 7,

we evaluate our proposed framework, comparing both approaches, and conclude in

Section 8.
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CHAPTER 2

RELATED WORK

EV charging stations, at the time of writing, do not offer scheduling services for EVs.

In this chapter, we look into the different applications of EV charging scheduling,

zero knowledge proofs and Blockchain (Decentralized Applications – DApps). We

also consider the use of Blind Signatures for use in EV charging scheduling which,

unlike ours, is a centralized approach.

2.1 Traditional Privacy Approaches in EV Charging

There have been many works for privacy-preserving of EVs in the past [HX16]. These

focused on several approaches including homomorphic encryption, blind signatures,

and pseudonyms to preserve either the location or identity privacy for the EVs.

Pseudonyms are widely used for privacy purposes. Basically anonymous identi-

ties are assigned to EVs as also suggested in the IEEE 1609.2 standard [LDN14].

However, these pseudonyms are assigned to EVs by a set of trusted authorities.

Also, the mechanism, by design, allows the trusted authorities to track the EVs ac-

tions if desired. The suggested pseudonym mechanism in IEEE 1609.2 only protects

the privacy of EV from untrusted parties. Thus, the pseudonym mechanism does

not provide the desired privacy of the EV against all parties. In our case, we rely

on the pseudonyms too but we ensure the privacy even against authorities/EVSP

by utilizing zero-knowledge proofs.

Homomorphic encryption is used in various contexts but mainly to enable lo-

cation privacy and data aggregation, if any [YAB18]. The idea is to hide the in-

formation in the distance and other computations. In EV charging, this can apply

to make schedules on the encrypted data but this would require fully homomor-
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phic encryption which is very slow and limited in capability to deal with all search

functions.

2.1.1 Blind Signatures

Blind signatures are another option to provide privacy in authentication. This is a

cryptographic protocol [Cha83] which allows the user to send a message which has

been blinded to be signed by a third party. Therefore, the content of the message

is not known to third parties. The signature on the blinded message can then be

unblinded by the source and be attached to its future messages.

While blind signatures were not directly used for EV charging, they have been

employed for smart meter privacy protection from the utility in [CYHL12]. Basically,

the idea is to do in-advance power allocation for the smart meter through the concept

of credentials. These are sent to the control center which signs the requests without

any knowledge of the message originator. The smart meter then uses these signatures

to make actual power demand through anonymous IDs. Finally, at the end of the

month during reconciliation, the smart meter identifies itself to the Power provider

and sends the number of credentials used by the smart meter by subtracting the

total credentials by the unused credentials and pays for the extra power usage.

In this particular work, privacy will be exposed at the end of the period, when

the smart meter identifies itself to the power provider. This work is successful in

preserving location privacy for the specific use-case of smart meter power scheduling

and assignment.

The use of blind signature cryptography could be used as an alternative approach

to our proposed scheduling scheme for a centralized architecture. Take for example

our EV charging model, the EVSP would be the central authority (also the signer),

6



and the EV would be the client looking to schedule charging times with the EVSP

meanwhile preserving his location privacy and anonymity. First, both the EV and

the EVSP will register each obtaining a private/ public key pair, by providing their

identities. Next EV would request a number of credentials to be used for scheduling

charging time at the EV charging station. Next, whenever the EV wishes to schedule

a charging period he encrypts a message with a random session key, the credentials

required for charging, as well as the time he wishes to use the charging station.

Following this, the EV would encrypt the session key with the EVSP public key and

send this message to the EVSP. Once the EVSP decrypts the session key he would,

in turn, be able to decrypt the message containing an authorized anonymous EV

requesting to charge. Finally, at the end of a period of time, the EV would report

back to the EVSP with its used number of credentials to verify their EV charging

usage. While these signatures are useful when used with anonymous IDs, the issue

of payments for charging is still there which can expose privacy. Therefore, blind

signatures need to be combined with a privacy-preserving payment system as well.

Our proposed approach in this paper address both issues by combining the DApps

and zero-knowledge proofs.

2.2 Blockchain

Other work has been done in the realm of authentication using Blockchain, but

most have been geared towards the mutual authentication of IoT devices in either fog

scenarios or wireless sensor networks. Blockchain is is a decentralized framework and

inherently works well for decentralized applications like fog computing and Wireless

sensor networks. However, in these authentication mechanisms it either focuses on

mutual authentication or does not take into affect payment.

7



2.2.1 EV Location Privacy in DApps

Location privacy is important when considering Decentralized applications since

users interact on a public ledger where everyone can see the transactions. In

[ABB+19] Amiri et al. use the Blockchain and a Private Information Retrieval tech-

nique to design a smart parking system that preserves the users’ privacy. In this

way, a user could anonymously request a parking offer from another peer directly,

and authenticate using short randomizable signatures.

In [KUE18] Knirsch et al. designs a transparent EV charging framework with

consideration of smart grid supply and demand. Knirsch uses blockchain to offer

transparency and dynamic pricing to EVs. The EV can choose a charging slot

based on it’s distance to the station and the offered price. Knirsch uses a SHA256

hash of the requested charging period to hide the details of the charging period and

commit to the schedule. EVs in this approach remain anonymous, and can only

be identified by some randomly generated blockchain ID. This approach bypasses

EV authentication and instead considers every EV an authorized customer of the

EVSP. In our approach, we implement a method of authentication for the EV to

prove they are authorized customers’ of the EVSP.

Similarly, in [PKS16] Pustiek et al. provides an excellent model for autonomous

charging station selection using blockchain smart contracts. However, in [PKS16],

the authors do not consider the privacy of the EV, but rather focus on the protocol

used to optimally select a charging station for that EV.

2.3 Zero-knowledge proofs and Blockchain

Zero-knowledge proofs have started to be used in various DApps. Some of these

approaches followed zkSNARKs but to date, none of these studies targeted the EV
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charging problem. For instance, Zerocash [SCG+14] is the core of the cryptocurrency

Zcash which utilizes zkSNARKs to preserve the privacy of transactions that occur

on the Blockchain. [NT16] used zkSNARKs to develop a novel image authentication

approach used to determine if a photograph taken represents the original and has

not been modified. Other studies using zkSNARKs include [WZC+18] and [ZNP15]

which are geared for ensuring the integrity of machine learning approaches and data

sharing privacy, respectively.

In [WZC+18], Wu developed a distributed framework for zero-knowledge proofs

for the authenticity of photographs and the integrity of machine learning models. Wu

from the University of California, Berkeley in DIZK: Distributed Zero-Knowledge

Proof System aims to improve the time and memory overhead of the off-chain pro-

cesses such as the setup phase conducted by the trusted third party and the proof

generation phase performed by the prover. Wu introduces compute clusters to im-

prove the performance and scalability of zero-knowledge proofs, which he hopes to

test the feasibility of integration into the Blockchain.

In [ZNP15], the authors use the Blockchain as an access control moderator

combined with an off-chain storage system to allow users to share information with

others including service providers based on their privacy needs. The work features

Compound Identities which involve at least two users one of which is the owner and

the others are guest with limited access to the data, included are key signing pairs for

the owner and guests as well as a symmetric key to encrypt/decrypt the data. The

application presented in the work is a mobile phone user downloads a third party

application and creates a compound Identity with the service provider and restricts

access to the service provider using the access transaction on the Blockchain, and

data retrieval using the data transaction.
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In [BLM+19] Baza et al. use Blockchain smart contracts along with Zero Knowl-

edge Set Membership (ZKSM) Proofs to provide a decentralized ride-sharing service

called ”B-Ride”. B-Ride preserves the users’ privacy including personal identity and

preserves users’ location privacy all the while using the Blockchain to provide de-

centralization. Since B-Ride does not rely on a third party or service provider they

implement a reputation model to track drivers based on ride completion.

2.4 Pederson Commitment Scheme for Authentication

The only relevant work in the literature on Pederson is reported in [GB18]. The

authors used the Pederson Commitment scheme to hide the Biometric IDentity

(BID) of a user. Then, during authentication the user can use a zero knowledge

proof of knowledge protocol to prove to the SP that they are the correct user without

revealing the hidden BID. This allows the SP to authenticate the user without

inferring who the user is. While the objective is similar, our context is very different

in this paper.
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CHAPTER 3

PRELIMINARIES

Before we explain the framework we provide some background on EV charging

and zero-knowledge proofs.

3.1 EV Charging Procedure

Unlike traditional gas service, EV charging can take more time (from 30 minutes

to 2 hours) and thus in-advance scheduling is needed. We assume that the EVs

can communicate with EVSP and EV charging stations using some of the existing

communication solutions such as LTE or IEEE 802.11p which can connect with

Roadside Units (RSU) to access the Internet infrastructure. Through these com-

munications, we follow the following protocol [RABK17]: the EVs send charging

scheduling requests that will include the EV’s location, area of interest for charging,

EV’s state of charge (SoC), the available time slots and other related constraints.

The EVSP will first need to verify that this is a genuine request and then respond

with a reserved time slot and location for the EV charging station. Once the EV

arrives at the charging station, it can verify that the EV is there. Note that in the

current protocols the EVSP needs to collect EV information. Also, the EV user

needs to make a payment via a certain method such as a credit card.

3.2 DApps, Blockchain and Smart Contracts

Today most of our data is hosted in a centralized client-server architecture where

the application user is the client and the server holds all the data. The problem with

this architecture is that there exists a single point of failure for the servers. DApps

aim to mitigate this risk by distributing data storage across all nodes. Blockchain
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and smart contracts are building blocks of DApps. Blockchain is a decentralized

ledger where each user, or node, has a ledger or list of all past blocks, where each

block contains transaction(s), a timestamp, and a hash of the previous block on the

chain of blocks. Since each block contains a hash of the previous block, changing

the contents of one block would require changing the hash of each of the preceding

blocks. Inherently blocks on the Blockchains are immutable, cannot be changed,

deleted, or added.

Ethereum is a Blockchain platform that uses smart contracts to dictate the

correctness of transactions. A smart contract is a block of code that allows a trans-

action to occur if and only if the parameters are correct. Using smart contracts

on the Ethereum blockchain allows us to make DApps, where the code is executed

correctly in a decentralized manner.

Here are a few applications of Decentralized Applications (DApps):

• Decentralized Voting : In [DKM+18] the authors’ design a DApp framework

used for decentralized voting, based on a Proof of Authority (PoA) algo-

rithm, where voters prove to an authority that they submitted their ballot

to a Blockchain without revealing the contents of the ballot. In this case, the

authority is selected based on his vested interest in the network, where an

authority with a lot of funds in that network is less likely to approve false

transactions.

• Supply Chain: Current supply chain management systems are centralized,

hosted on the company’s server, this makes access to data available in one

location, leaving it vulnerable as it has a Single Point Of Failure (SPOF).

In [NMNB18] they provide a framework for developing a Decentralized supply

chain using Ethereum smart contracts. In their work, they use IoT devices

to minimize the amount of human interaction. They use a tree-like structure
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where each node on the tree is an entity of the supply chain and thus they

can update the supply chain and nodes can view the update only if they have

authority, representing a parent node of that entity.

• Digital Rights Management : Digital Rights Management (DRM) is the pro-

cess of protecting digital content from being illegally used or accessed thus

protecting the content owners interest and rights. [MJGW18] create DRM-

Chain a Blockchain empowered method of preserving lawful use of content

and tracking illegal use or content violations.

3.3 Zero-knowledge Proofs

Zero-knowledge proofs [GMR89] allow a person to verify the correctness of a state-

ment from another person without revealing the data used in the statement to

himself or anybody else. In this way, the privacy of the person submitting the infor-

mation is protected. zkSNARKs [BSCTV14] is an efficient variant of zero-knowledge

proofs that allows the prover to prove his knowledge in a single message. In this

subsection, we provide an overview zero-knowledge proof scheme, then we describe

zkSNARKs and SE-SNARKs[GM17] that we used in our work. First, we describe

the different roles involved in a zero-knowledge proof:

• Trusted Third Party (TTP): The TTP is in charge of registration of the

user or Prover. The TTP creates a secret function which the Prover will solve

to authenticate himself to the TTP. The TTP will also generate a contract

with a verification key embedded in it. The contract is used by the Verifier

to verify the generated proofs.

• Prover : The Prover is the client registered with the TTP. The Prover will be

in charge of solving the secret function to create a witness. Using the witness,
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it will generate a zero-knowledge proof attesting to its knowledge of the secret

function, thus, authenticating itself.

• Verifier : The verifier is the party that could verify the Prover’s proof without

learning the details of the proof or the Prover. The Verifier uses the contract

from the TTP to check the correctness of a proof.

3.3.1 Zero-knowledge proof scheme

In the zero-knowledge proof scheme, there exists a setup and verification phase.

Let U denote the user and Prover, t a trusted third party, V the verifier, and π

an honestly generated proof. In order for a zero-knowledge proof to exist it must

contain three properties [May16]: 1) Completeness: V always accepts an honestly

generated proof π from U ; 2) Knowledge: A Prover U who does not know a secret

will unlikely be able to generate a valid π therefore unable to convince V ; and 3) Zero

Knowledge: A valid π does not reveal any information about the secret. Protocol 1

provides the details for a zero-knowledge proof of knowledge.

Protocol 1 Zero-knowledge Commitment Scheme

1. Setup

(a) t generates some secret function using some knowledge U possess

(b) U inputs values satisfying the condition of the function, returning the

witness to U

(c) U uses the witness to generate πU

2. Verification

(a) U sends πU to V , who verifies the validity of πU
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(b) V grants or denies access to U , without learning the contents of πU

One weakness in the above scheme is the setup phase, because if the details of

the secret function are known to anybody but authorized users, then somebody can

perform one of two attacks: 1) An adversary can impersonate a prover by generating

a fake verifying function; 2) Anyone can generate valid proofs if they know the secret

function. Existing zero knowledge proof protocols mitigate this vulnerability by

using a trusted setup phase as in Zcash in which they use an extensive Multiparty

Computation (MPC)[BSCG+15] mechanism to generate the setup parameters. This

trusted setup is secure in that unless all the parties are compromised the setup will

hold. Other work removes the trusted setup phase as in [WTS+18]. They show

that their protocol is comparably efficient to existing zero knowledge proof systems.

Additionally, you can avoid a trusted setup phase by using a zero-knowledge proof

scheme which is interactive, as opposed to non-interactive.

Zero-knowledge proofs can be broadly categorized into two types: 1) Interactive;

2) non-interactive. In an interactive scheme, lets assume user U , wishes to prove

some knowledge to verifier V . In this case, V can generate some challenge and send

it to U for an n number of rounds. As n increases the probability of U guessing what

the secret is decreases exponentially. So, n is chosen by V based on his desired level

of confidence that U knows the secret. On the other hand, in an non-interactive

scheme, U can prove to V their knowledge of the secret with one message, this

is done with the help of the trusted setup phase mentioned above. Non-interactive

schemes are more efficient but come at a security vulnerability, the need for a trusted

setup. Nonetheless, it would be very costly to have a interactive verifying scheme on

a distributed ledger, as their would need to be several transactions for a single ver-

ification. Thus, we use a non-interactive and succinct zero-knowledge proof scheme

in our work, namely zkSNARKs, which we discuss in detail, in the following section.
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3.3.2 zkSNARKs

Zero-Knowledge Succinct Non-interactive ARguments of Knowledge (zkSNARKs)

[BSCTV14] are a form of zero-knowledge proofs which are distinguished by the

following properties:

1. Non-interactive: a prover can prove awareness of a piece of knowledge to a

verifier with a single message.

2. Succinct : verification time of the proofs is small

3. Constant size: proofs generated by zkSNARKs are the same size regardless of

the complexity of the program being proven.

4. Private fields/inputs : ability to prove using private inputs that are not revealed

to the verifier.

The properties mentioned above make using zkSNARKs a perfect candidate

for a verification scheme using Blockchain. That is, since they are non-interactive

then the prover needs to perform only one blockchain transaction to be verified.

Verification time is both short and constant, regardless of the complexity of the

underlying program. Additionally, since the verifier cannot infer any details from a

proof, this guarantees privacy, even in the public blockchain ledger. Finally, since

the proof size is small (around 288 bytes in the case of [Gro16]) it is feasible for

proofs to be sent over most networks, in our case it is an EV transmitting the proof

over a VANET.

3.3.3 SE-SNARKs

For our use case it is important to have a proving scheme which is non-malleable.

A malleable proving scheme means that using an existing proof, somebody can gen-
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erate another valid proof for the same program. For our use case which is a one

verifying function for all, one must not be able to derive a valid proof from an ex-

isting proof. Simulation-Extractable Succinct Non-interactive ARgument of Knowl-

edge (SE-SNARKs)[GM17] come with the same security benefits as zkSNARKs.

Additionally, SE-SNARKs provide two key enhancements:

1. Smaller proof sizes : around 127 bytes, compared to [Gro16] which have proofs

that are about 288 bytes.

2. Non-Malleable: a new proof cannot be generated using a previously submitted

proof.

SE-SNARKs, [GM17] utilize Signatures of Knowledge (SoK) [CS97, CL06] to

make their proving scheme simulation-extractable. Basically, this works by allowing

the prover to create a signature based on the witness, where the signature doesn’t

reveal details of the witness, and somebody cannot look at previous signatures to

make a new signature. In short, this means a prover must know a valid witness to

a program in order to sign it, thus this proving scheme provides non-malleability.

3.4 Pederson Commitment

Pederson commitment [Ped91] is a non-interactive verifiable secret sharing scheme.

The Pederson commitment scheme allows the committer to commit to a message

and send it to some verifier without disclosing any of the commitment details to the

verifier or any middleman. The committer can at a later time reveal the secret to

the verifier, and the verifier can reconstruct a new commitment using the secret. If

the reconstructed commitment equals the initial commitment, then the verifier is

sure of the committed value. Pederson commitment is based on difficulty of solving

discrete logarithms and can be shown using the following three steps:
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Setup: Let p and q denote large primes such that q divides p - 1, Gq is the

unique subgroup of Zp of order q, and g is a generator of Gq. Let h ∈ Gq be chosen

such that nobody knows loggh. All p, q, g, h are chosen by a verifier or trusted third

party and made public.

Commit: Let m denote a secret message, or commitment, and r ∈ Zq be a

random value, and compute:

c1 = C(m, r) = gmhr mod q (3.1)

We will denote the result of this computation as commitment, c1. The committer

sends c1 to the verifier at time τ1.

Open: To verify the commitment the verifier receives m and r from the commit-

ter, at some time τ2, where τ2 > τ1 and computes a second commitment c2 using

the same method:

c2 = C(m, r) = gmhr mod q (3.2)

It then proceeds to verify the authenticity of the commitment:

c1 == c2 (3.3)

The work in [Ped91] shows that the commitment c1 reveals no information about the

secret message m and nobody can open a commitment made with m using m′ 6= m

unless they know loggh. This is called the hiding and binding property respectively.

3.5 Threat/Network Model

In this section we describe our Network and Threat models considered.

3.5.1 Network Model

Our network model is depicted in Figure 3.1, and each step is described below:
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Figure 3.1: Network Model: the steps indicated represent the communication
between Electric Vehicles (EVs), Electric Vehicle Service Provider (EVSP), and
Blockchain When scheduling charge slots.

1. The first step is where EVs register with the EVSP. To do so, EVSP first

authenticates the EV and prepares required parameters for zero-knowledge

commitment.

2. EVSP returns common proof generation parameters to authenticated EVs.

3. EVSP deploys the verification smart contract to the blockchain.

4. In this step phases a-c represent the token approach meanwhile phase d rep-

resents the Pederson approach.
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(a) EV submits the zero knowledge proof for authentication to the Blockchain

verification smart contract. If verified the contract issues a scheduling-

token to the EVs pseudorandom address.

(b) EV submits his/her charging scheduling request to the verification smart

contract passing it’s scheduling-token in the process. In return the con-

tract returns a charge-token to be used at the charging station.

(c) EV arrives to the charging station and authenticates itself with a charge-

token.

(d) EV submits a zero knowledge proof, encrypted schedule, and Pederson

Commitment to the verification smart contract. If verified successfully

the EVSP will store the commitment for charging station verification.

5. EVSP retrieves scheduled EV from Blockchain emitted event and reserves the

charging station for that period.

6. EVSP approves charging for EV. For Pederson approach this is done by ver-

ifying the Pederson Commitment. For Token approach the EV passes the

charge-token and is verified.

3.5.2 Threat Model

The adversary in our model can see all blockchain transactions, and can also be a

nefarious EVSP. Threats pose risks to the EV that include but are not limited to

location privacy leakage, physical security, loss of PII, service availability, etc. We

consider the following threats in the decentralized setup as shown in Figure. 3.2.

• EVSP Attack: We assume the EVSP is not trustful and curious about the

EV’s information when EVs would like to request a scheduling service. A
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nefarious EVSP can use the Ev’s personal information or charging habits for

unauthorized purposes, or distribute the data either unwillingly or with intent.

• Public Ledger Attack: Since the ledger is public, anyone can have access to it

and analyze the transaction details of an EV with EVSP or charging stations.

Thus, if an EV authenticates on the public ledger his/her credentials will be

exposed.

• Man in the Middle Attack: A malicious adversary can capture EV’s schedul-

ing requests and analyze the packets to obtain private information.

• Replay Attack: A malicious adversary can use the submitted proofs to

Blockchain and re-submit them to authenticate itself.

• Charging Station Attack: The charging station can analyze EV’s request and

proofs to find out private information.

• Denial of Service Attack: A EV can produce excessive amounts of charging

periods, causing a shortage of available charging periods for other EVs.
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Figure 3.2: Attack Model for our Application: Eve the adversary can see all
blockchain transactions, she can also be part of the EVSPs organization.
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CHAPTER 4

PROPOSED TOKEN-BASED APPROACH

In this chapter, we describe our proposed token-based framework in detail. This

approach is one of two approaches we deploy and we first start this chapter with an

overview and then move onto its components.

4.1 Overview

To protect the EVs’ privacy, we propose a novel framework that combines the zk-

SNARKs and the Ethereum distributed ledger. The idea is to integrate the zero-

knowledge proof process in Protocol 1 to the blockchain environment. Specifically,

the elements of Protocol 1 are mapped to EV charging setting as follows: The Prover

is the EV, the TTP is the EVSP, and the Verifier is the Blockchain which holds

smart contracts. In our case, we assume Ethereum-based smart contracts for our

approach.

Briefly, the process works as follows: The EVSP creates a secret function and

passes it along with a proving key to the EVs. An EV solves the secret function to

create a witness, then uses the proving key and witness to generate a proof to show

that it knows the secret function EVSP created. The EV then contacts a Blockchain

authentication contract and presents the proof. Once the contract verifies the proof,

it generates a Service-token for the EV to be used for scheduling charging. This

service-token is spent in scheduling and the EV uses a returned charging token at

any charging station. In this way, the EV does not need to authenticate itself to

the EVSP.
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4.2 Registration of EVs

We assume that the EVs will register with the EVSP in advance. Basically, the EV

identifies itself to the EVSP where it is looking to use the services of the EVSP. This

registration is much like the registration of any web services where the EV would

provide information such as name, address, EV model, etc. Registration information

is not used during scheduling or charging as the EVs will remain anonymous to the

EVSP. Basically, it assures the user is a legitimate EV, and once registered the EV

will obtain the necessary information for charge scheduling, outlined in the next

section.

4.3 Setup Phase

Once the EVs are registered, the rest of the process starts with the Setup phase

where the EVSP generates two elements to be given to the registered EV users and

one element for writing to the blockchain as summarized in Figure. 4.1.

First, the EVSP generates a secret function, f(x), to be shared with the regis-

tered users so that they can generate a witness and a proof to authenticate them-

selves and schedule EV charging later. f(x) might employ a series of conditions

for its input variables including arithmetic operators and flow control statements.

Algorithm 1 provides an example of such a secret function where X is a list of 3

inputs. In this function, the 3 inputs are accumulated into a variable sum which

is eventually compared to another variable tot. If sum is greater or equal than tot,

the function returns sum, else it terminates. Note that finding the variables that

satisfy the conditions of the secret function is called witness which happens in the

Attestation generation phase as will be detailed next.
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Figure 4.1: Setup Phase: EVSP distributes proving keys, and the secret function
to authorized users. EVSP also creates an Authentication smart contract with the
verifying key embedded.

In the Setup phase, the EVSP also creates Proving and Verifying keys from

a Common Reference String (CRS) which will be used to create and verify proofs.

While the Proving key is sent to EV users, the Verifying key is sent to a Blockchain

smart contract which is created for EV Authentication. This smart contract, which

is shown as Authentication Contract in Figure. 4.1 is public on the Ethereum net-

work and is used for authenticating the EV.

During the Setup phase, the EVSP deploys two tokens, service-token and charge-

token from a pool of tokens maintained by it. These tokens will be used in the next

phases.
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Algorithm 1 Secret Function 1

Require: X.length() = 3
1: procedure main(X)
2: sum = 0
3: tot = 10
4: for each integer i in X do
5: sum = sum+ i

6: if sum ≥ tot then return sum
7: else
8: terminate

4.4 Attestation Generation

Once an EV user is registered and receives the authentication elements, it starts the

Attestation generation phase where the EV generates a proof which attests its

knowledge of the secret function, f(x).

The EV begins this process by assigning a set of variables that will satisfy the

parameters of the f(x). It is assumed that the EV knows f(x) and thus can provide

satisfying values. This assignment of variables is called generating a witness. If we

consider the f(x) portrayed in Algorithm 1, a witness for this f(x) will be any 3

variables whose sum is greater than or equal to 10 (e.g., 2, 3, 5). The witness also

includes the return value (i.e., the output) based on the selected parameters, in this

case, 10. Although Algorithm 1 is a simple function, we provide it as an example

for making it easier for the reader to understand the concept.

Next, using the witness along with the proving key, the EV generates a proof,

namely π, attesting to its knowledge of the f(x). We also append a timestamp as

public input to the proof to prevent potential replay attacks. The reason for making

the timestamp a public input is to allow it to act as a plaintext input to the smart

contract.
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Figure 4.2: Proof Generation: EV computes a witness using values that satisfy
the secret function and a public inputs. With the witness and proving key, the EV
generates a proof.

This process is shown in Figure. 4.2. Note that all of the steps except the de-

ployment of the Authentication contract up to now are performed off-chain, meaning

they are not written to the blockchain. The Authentication smart contract is created

on the blockchain for achieving our goal of distributed authentication.
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4.5 Verification for Authentication

Upon possessing the valid proof, π, for f(x), the EV submits his π to the Au-

thentication smart contract on Ethereum for authenticating itself. The EV uses his

pseudonym address, to interact with the contract. Importantly, the EV will generate

a new pseudonym address each time it wishes to schedule a charging service with the

EVSP. Generating new pseudonym addresses is easy (performed almost instantly),

free of cost, and done off-chain. Along with π, an array of public inputs including

the output of f(x) (given the witness values), and optional public parameters to

f(x), are also passed to the Blockchain. Once the authentication is successful, the

smart contract issues a service-token that belongs to the EV. Note that this token

is assigned to the same pseudonymous address that was used to interact with the

smart contract by the EV. The authentication process is shown in Figure. 4.3.

4.6 Charging Scheduling

The service-token received after authentication is later used by the EV for schedul-

ing the charging on another smart contract which is referred to as scheduling smart

contract. Basically, the EV submits the service-token as well as its desired avail-

able time slots to the scheduling smart contract on Ethereum. The address used

to submit this service-token is by default the address which received it from the

authentication smart contract.

The scheduling information is sent encrypted with the public key of the EVSP

to hide the charging details from the public which is depicted as λ in Figure. 4.4.

EVSP also interacts with the scheduling smart contract and hence can receive the

encrypted scheduling information to properly schedule a time slot for the spender of

that service-token. The scheduling smart contract returns a new charging-token to
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the EV, which can be spent during its scheduled charging slot for charging. During

this phase, the EV also sends a deposit fee in the form of Ethereum which serves the

purpose of a security deposit for charging. The deposit fee is the same for everyone,

this way there can be no pattern tracing to identify a specific EV. Without this

fee, scheduling would be almost free and this could be abused by malicious EVs to

schedule a large number of fake charging appointments. This process is shown in

Figure. 4.4.

4.7 EV Charging Station Verification

When the EV arrives at the charging station at it’s allocated charging time slot, the

charging station will receive the charging-token at its own address. Then the EV

charging station verifies with the EVSP that the EV which submitted the charging-

token is the currently scheduled EV. Basically, it contacts the smart contract with

the token and receives the information about the ID and time (encrypted) to make

a comparison.

Note that with the charging-token, the EV also makes a payment (in addition

to deposit fee) in the form of Ether cryptocurrency to the charging station. Using

the proposed blockchain framework allows the EV to pay anonymously in this step

which is important for privacy. Following the verification of the charging-token and

sufficiency of funds, the EV will proceed to charge and send a message to EV. We

assume there will be a communication channel (i.e., cable or wireless) that will run

the protocol between the EV and the charging station to send this approval message.

The charging fee paid by the EV in this phase represents payment for the amount

of charging it needs. Figure. 4.5 demonstrates this charging verification process.
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Figure 4.3: Authentication: EV submits a proof to the Authentication smart con-
tract. If the input is valid, then the smart contract returns a service-token to the
EV’s pseudonym address.
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Figure 4.4: Scheduling: EV spends its service-token on a scheduling contract to
receive a charging-token for EV charging.
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Figure 4.5: Charging: EV uses his charging-token at a charging station during its
allotted period.
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CHAPTER 5

PEDERSON COMMITMENT APPROACH

The aforementioned approach provides zero-knowledge and anonymity when

scheduling charging for EVs. However, there is still some overhead associated with

the use of tokens in performing authentication, scheduling and charging on Ethereum

in terms of efficiency and transactions costs.

Therefore, as an alternative to tokens, we propose adapting Pederson commit-

ment scheme which is a method of sharing a secret that is both binding and hiding.

In our privacy framework, we propose using this commitment scheme to allow an

EV to commit to a scheduled charging slot. This improves the efficiency of the

framework and reduces the cost by reducing the transactions performed on-chain,

including the removal of the scheduling, and charging contract completely. In the

following sections, we describe the changes needed at each step in the proposed

framework.

5.1 Setup Phase

The Pederson Commitment parameters along with f(x), and proving key are given

to registered EVs, as shown in Figure. 5.1. For the this approach, it is necessary for

the EVSP to generate the required parameters for a Pederson Commitment scheme.

That is, the EVSP will perform the setup phase of the Pederson Commitment scheme

which is described in section 3.4. The outcome of this setup step will be the public

Pederson Commitment parameters, namely p, q, g, h. These parameters are sent to

registered EVs to be used in generating a commitment that contains the requested

schedule for charging.

In this approach, we implement a different f(x) which can be proven to be

difficult enough that it is cryptographically secure for our use case. In this case, we

33



Figure 5.1: Improved Setup: EVSP distributes proving keys, the secret function
and the Pederson Commitment parameters p, q, g, and h to authorized users. EVSP
also creates an Auth Contract with the verifying key embedded.

use an f(x) that requires the prover to prove his/her knowledge of the preimage of

a hash function. Thus, the difficulty of providing an invalid input to solve the secret

function lies in the difficulty of generating an X ′ such that:

X ′ 6= X

&

H(X ′) == H(X)

.

The new f(x) is shown in Algorithm 2. It accepts a private input X, and returns

a boolean value, true or false. It is true if the hash of a user’s input, hash image1,

is equal to the hash of a secret value, hash image2, known only to the EVSP and

authorized EVs.
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Algorithm 2 Secret Function 2

1: procedure main(private X) returns (bool result))
2: hash image1 = H(X)
3: hash image2 = b94d27b9934...
4: if hash image1 == hash image2 then return 1
5: else return 0
6: terminate

During the setup phase, the EVSP also deploys a single smart contract, called

Auth contract for brevity. The Auth contract performs the following functions in

order:

1. Performs authentication of zkSNARK π granting access to authorized EVs.

2. Accepts a Pederson Commitment containing a scheduled charging slot chosen

by the EV.

3. Accepts a message encrypted with the public key of the EVSP that states the

desired charging slot.

4. Accepts payment in the form of Ethereum for the associated charging appoint-

ment.

The Auth contract posts an event whenever an EV authenticates and schedules

charging, from which the EVSP uses the private key to decrypt the message and

book the charging slot for the EV who can provide the secrets to open the Pederson

Commitment. The setup phase ends when the EVSP sends the Pederson Commit-

ment parameters along with the f(x), and proving key to registered EVs, as shown

in Figure 5.1.
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5.2 Attestation Generation

Next, the EV must attest his knowledge to f(x) and the parameters of the Pederson

Commitment. In this case attesting knowledge to f(x) means he/she knows the

preimage of hash image using H(.). The EV inputs the preimage to f(x) and if the

H(input) == hash image

then the EV will receive a witness. It is important to note that the input is private

and not made public during the authentication on-chain. In this approach, we again

utilize the notion of a public input that is a timestamp to avoid the reuse of the

same proof. Combining the generated witness and the proving key received from the

EVSP during setup, the EV will generate a proof, π. The proof generation process

is shown in Figure 4.2.

Additionally, the EV must attest his knowledge of the Pederson Commitment

parameters and thus be able to use these parameters for creating his own commit-

ment. A security benefit of the Pederson Commitment is that even if the parameters,

namely p, q, g, h, were to be released to the public or published on a public site, an

adversary cannot use this information for an attack on the commitment. For our

sake, the EVSP sends the Pederson Commitment parameters along with the prov-

ing key and f(x) as the combined size of the parameters is only 188 bytes and thus

does not introduce heavy overhead. The EV uses equation 3.1 to create a commit-

ment. In this case m, the secret, is a unsigned integer representing the charging

slot chosen. Additional digits are appended to represent the charging station where

the EV wishes to schedule the charging. The other input to a commitment is a

random value, r, which is randomly generated by the EV and stored for opening

the commitment in a later period. Using m, r, p, q, g, and h the EV calculates a

commitment, c1, of order q using Equation 3.1.
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5.3 Authentication and Commitment

At this point, the EV has a π, and a commitment, c1. Additionally, the EV knows

what charging slot it would like to schedule, as this is contained within c1. Knowing

the charging slot, the EV writes a message, λ, and encrypts it using the public key

of the EVSP. This message is designed to allow the EVSP to book the charging

station for that charging period. Now possessing these three parameters, the EV

uses a pseudonym address to send them to the auth contract. The EV also includes

any payment in the form of Ethereum that is required for the charging, as well as

public inputs and the output to f(x).

Assuming the EV has provided a valid π, he/she would have committed to that

charging slot and no longer needs to interact with the blockchain. The process of

authenticating and committing to a EV charging schedule is shown in Figure 5.2.

5.4 Scheduling

The auth contract verifies the π triggering an event, passing λ and c1 to the EVSP.

The EVSP decrypts λ to book the charging station for that period and associates

it with the c1 and the payment. For maintaining the commitments and associated

charging details, we store them off-chain in a database called EVSP commitment

store. The charging station will retrieve the commitments from this storage for use

in authenticating the EV for charging.

5.5 Charging Station Verification

The final step to this approach is verifying the EV when it arrives for charging

during its assigned period. When the EV arrives to the charging station, it uses a
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secure channel to transmit the secrets to open the Pederson Commitment, that is

m and r which will open c1. Using m and r, the EVSP creates a new commitment

c2 using Equation 3.2 and compares it to c1 that is associated with that charging

time using Equation 3.3. If the commitments are equal then the EVSP is sure the

EV that has arrived is the same one that committed to that charging slot when it

authenticated using the auth contract. During this step the EVSP also verifies that

the current c1 represents the scheduled EV. This process is shown in Figure 5.3.
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Figure 5.2: Improved Authentication and Commitment: EV submits a proof π,
a commitment c1, a message λ containing charging schedule encrypted using the
public key of the EVSP, and any charging fees in the form of Ethereum.
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Figure 5.3: Improved Charging: EV sends its original commitment c1, and the
secrets to open it, m and r using a secure channel. Then, the charging station
retrieves the scheduled commitment and compares it to the commitment from the
EV. If the commitments are equal then the EV that has arrived is the scheduled
EV. Next, the EVSP opens c1 using the secrets provided by the EV. If the c1 is
valid and contains the correct time then charging is approved.
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CHAPTER 6

SECURITY AND PRIVACY ANALYSIS

In this chapter, we first provide a security analysis of how our approach addresses

the threats mentioned in our Threat model. Within each analysis, we mention

how it relates to token-based approach or Pederson commitment if needed. Then,

we provide a privacy analysis which demonstrates how the privacy of the EV is

preserved using our framework.

6.1 Security Analysis

EVSP Attack: Our framework mitigates EVSP attack risk by authenticating EVs

to the EVSP through merely a zero-knowledge proof, thereby, hiding the identity

of the EV. In our framework, the EVSP is only aware that an authorized EV is

requesting to schedule a charging slot. EVSP cannot gain any personal informa-

tion from the EVs authentication process including charging habits, location, and

personal information.

Public Ledger Attack: Even if different pseudonyms are used for each transaction,

tracking the flow of funds may expose some privacy. A fund flow contains a variety

of information such as public addresses and transferred amounts (e.g., transferred

amount pattern). Then, a flow-based analysis enables eavesdroppers to identify

and monitor interacting parties. Using a similar analysis, an eavesdropper, for our

token-based approach approach, can try to match different token transfers to a

single EV identity even though the EV uses different pseudonyms. We claim that

this is not possible in our approach, because the token transfer to various pseudonym

addresses is essentially the same (including the deposit fee) for all cases since the

amount for the transaction will be the same (i.e., we use the same token). Thus,
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an adversary cannot differentiate among these and link certain pseudonyms. Here,

another possible passive attack by the adversary could be doing timing analysis

on the public ledger to try to match different pseudonyms to an EV. This is also

not possible due to two reasons: 1) the token transfers are very in-frequent (i.e., in

order of days); and 2) since EV switches to a new pseudonym for every new charging

service regularly, a consistent pattern is not possible to identify. We also note that

a passive adversary can not obtain details of scheduling request either since the

request is encrypted with the public key of the EVSP and therefore malicious actors

can not obtain details of the scheduling event. In case of Pederson, opening and/or

finding a c1 which is equal to the commitment submitted is sufficiently difficult that

an adversary cannot find the secrets to recreate the commitment.

Man in the Middle Attack: Since each EV sends the scheduling information

encrypted with EVSP’s public key to the blockchain, even if an adversary could

capture this packet, s/he will not be able to access its contents. Also, the ID of the

EV is anonymous and changing regularly.

Replay Attack: We prevent proofs from being replayed by adding a timestamp

as input during the attestation generation phase. The timestamp is a public input

and therefore it is submitted to the smart contract when verifying the proof. The

authentication contract then verifies the current time. If the current time is within

the proof validity period, then the proof is valid. Otherwise, it is denied.

Charging Station Attack: For the token-based approach, when the EV arrives for

charging, it submits only a charging-token with a pseudorandom Ethereum address

to get charged. During this transaction, no details that can lead to the ID of the EV

are revealed. In case of Pederson, when the EV arrives, it submits the c1,m, and r.

The EV does not identify itself to the EVSP since it is sufficient that it knows the

scheduled c1 and the secrets to open the c1.
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Denial of Service Attack: In token-based approach, EVs can schedule as many

charging as they want. However, this requires a deposit fee payment in advance,

which will be written on the charging token and thus an adversary will have to limit

its scheduling requests. Therefore, DoS attempts to make bogus scheduling will not

be possible. For Pederson, payment for scheduling charging is sent upfront during

authentication and commitment. Thus, excess scheduling would be a costly attack

which will not be attractive.

Secret Function Attack: If an unauthorized EV gets a hold of the secret function

details, then they can generate proofs and use the EVSP charging service. However,

the secret function sent to authorized EVs doesn’t reveal the details as it is not

human readable and debugging the program will be computationally difficult, even

if an adversary gets a hold of both the secret function and proving keys. Thus, it

is extremely difficult for an adversary to gain knowledge from the secret function

unless they know the input that satisfies the secret function. On this note, we also

use a pay-per-use service as opposed to a subscription based service. That means in

the unlikely event that an adversary does generate false proofs, in order to schedule

and charge his EV, he will need to pay for service when submitting his proof.

6.2 Privacy Analysis

The information regarding an EV’s ID, choices, location, etc. was the main concern

for exposure. Through our security analysis, we have shown that this information

will not be exposed to parties that are not trusted. Briefly: 1) EVSP will not have

access to any of this information while it can still authenticate EVs via zkSNARKs;

2) Charging station will only know the ID but this is anonymous so no other in-

formation will be revealed. for the Pederson approach the charging station only
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knows the commitment secrets, these are changed for every scheduling; and 3) Any

adversary capturing traffic or accessing the public ledger will not be able to obtain

any scheduling or location information and do any matching of IDs. Additionally,

since the EV can provide payment to the EVSP with the same anonymous ID in

a decentralized method, using blockchain, the EVs Privacy holds. Therefore, the

proposed approaches enables the privacy of the EVs in a decentralized manner.

To represent the probability of an adversary predicting the EV when scheduling

charge, we calculate the probability of the following attempts:

1. A third-party adversary predicting the EV by monitoring smart contract

transactions. In this case, adversary’s prediction is lower-bounded with the

number of EVs that interacts with the smart contract. Let’s assume that we

have 10000 different EVs, and since the EV uses a different address in each

charge scheduling, then the prediction of an adversary will be p1 = 1/10000.

A prediction plot of an adversary for consecutive correctness would be drawn

as:

p1n or
1

10000n

for n consecutive predictions of the EV when scheduling charge. This means

the adversary would have a 0.01% chance of predicting the EV on it’s first

charging schedule, and 0.000001% of predicting the same EV on it’s next

charging schedule.

2. A malicious EVSP has more information then a third-party since it is aware

of the requested charge scheduling (i.e. time and location). Thus, the EVSP

has a higher ability of predicting the EV that is scheduling charge. Since the

EVSP knows the schedule location it can predicts the EVs identity from the

registered user for that area. Let’s assume that registered number of user in
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a specific area is 100. Then, the prediction of EVSP will be p2 = 1/100.

Consecutive correct prediction will be similar to the previous case and can be

drawn as:

p2n or
1

100n

In this case the EVSP has about a 1% chance of predicting the EV on its first

charge scheduling, and 0.01% of predicting the same EV during it’s second

charge scheduling.

3. The third case is related to matching EV and related payment transaction.

While considering the payment and scheduling process is decoupled (the used

pseudonym IDs will be different), EVSP must guess the matching payment and

EV ID. In this case, EVSP will know the time frame of the transaction due to

the fact that the EV makes a payment when it shows up. So if we assume that

there are 1000 transaction in that time frame, the 1 out of 1000 transaction

will belong to the EV itself. Let’s make this probability p3=1/1000, then the

EVSP can correctly match in p2 * p3 probability. The probability of this will

be drawn as:

p2n ∗ p3 or
1

(100n ∗ 1000)

For an EVSP to match the EV and corresponding payment transaction on

the first charge scheduling the probability is about 0.001% and predicting the

same payment transaction for a second charging schedule is about 0.00001%.
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CHAPTER 7

EVALUATION

In this chapter, we describe and evaluate our implementation of the framework.

First, we describe the tools used and consider the overhead on the EV when cre-

ating the proof and Pederson commitment. Next, we evaluate the performance of

on-chain transactions, including contract deployment and for the token approach

the 3 transactions including authentication, scheduling, and charging. For the Ped-

erson approach we evaluate the one and only on-chain transaction used for both

authentication and scheduling. The results are shown and the two approaches are

compared in the final section of this chapter.

7.1 Experimental Setup

Our framework for evaluation is built primarily over Zokrates [ET18] which is an

all-in-one tool used to implement zkSNARKs into a distributed ledger. Zokrates was

used for generating the witness and proofs, using two commands, compute-witness

and generate-proof respectively. We evaluate the performance of these two phases

on an EV by using a Raspberry PI 3 model B V1.2 (Quad Cortex A53 @ 1.2GHz,

1GB SDRAM, 4000Hz Videocore IV). We evaluate the performance of the protocol

based on time and the size of the proof.

Additionally, we used Zokrates for implementation onto the Ropsten Test net-

work which was used for on-chain transactions through the smart contracts. Ropsten

is a Ethereum network simulator and is meant to mirror the Ethereum main network.

It uses a Proof of Work (PoW) consensus algorithm, like Ethereum main net, which

means miners solve some complex puzzle to verify a transaction and add a block to

the blockchain. To create a smart contract on Ethereum, we used the export-verifier
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command of Zokrates which generates our smart contract written in Solidity which

is the native language for writing smart contracts on the Ethereum. The verifying

key is embedded into the Ethereum smart contract used for authenticating the EVs.

To construct our tokens, we used the guidelines in [Net13] to construct an ERC20

standard token. For the Pederson commitment approach we use a similar smart

contract that verifies the π, stores c1, accepts payment, and triggers an alert to the

EVSP. It does not rely on ERC20 token contracts.

For the Pederson commitment, we reduced the computation time by using the

multiplicative property of the modulo function. Basically, Equation 3.1 and 3.2 are

expanded to the following equation:

c = C(m, r) = (gm mod q)(hr mod q) mod q (7.1)

Using Equation 7.1, we were able to compute a commitment that is 256 bits in under

10ms and 1048 bits in less than 45ms. Since verifying the commitment is done so

quickly if a charging station already has the scheduled commitment, we omitted it

from the total overhead of the EV in the experiments.

7.2 Performance Metrics and Bechmarking

The following metrics are considered when evaluating the overhead of our approach:

• Gas: Ethereum runs on the notion of gas, which is the fee paid by the user

when interacting with a smart contract. The amount of gas required by a

smart contract transaction is determined by the complexity of the transaction.

However, there is a gas limit per transaction block on the Ethereum. This gas

limit determines how many transactions will fit on each block.
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• Cost: This is the cost of gas in terms of Ethereum money which is ether.

The user has the option to choose his/her transaction verification speed by

specifying how much ether s/he will pay per each gas unit to the verifier.

We used three verification speeds: slow: 0.000000001 Ether/gas or 1 Gwei;

medium: 0.000000003 Ether/gas or 3 Gwei; fast: 0.00000002 Ether/gas or

20 Gwei. We also converted this ether cost to dollars using its approximate

exchange rate at the time of writing ($144/Ethereum). This exchange rate can

vary depending on the value of Ethereum. On the Ethereum main net, there

is a recommended minimum gas price for each transaction, which is around

10 Gwei and 13 Gwei for a slow and fast confirmation time, respectively. It is

also shown that about 50% of the transaction confirmed used between 4 and

20 Gwei. We use 1, 3, and 20 Gwei on the Ropsten test network to provide

the extreme low verification times and the extreme fast.

• Time: This is the time required to verify a transaction on the Blockchain.

While it may vary, we show average time over 30 trials for different verification

speeds which can be chosen by the blockchain user (i.e., slow, medium, fastest).

For the token based approach implementing our framework on Ethereum has

four primary transactions: the contract deployment, and the verification of proofs,

authentication, scheduling, and charging. We benchmarked these costs in terms of

gas, time and money.

To implement the Pederson commitment approach we only need to deploy the

auth contract and measure its proof verification costs. The cost of deployment and

verification are also benchmarked in terms of gas, time and money.
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7.3 Evaluation Results

In this section, we first discuss the computational overhead inhibited by the EV

when generating a proof and creating the Pederson Commitment. Then, we evaluate

the on-chain verification times and cost for the smart contract deployment, this is

done only once for each of the approaches. Next, we present the evaluation of

on-chain transactions including proof verification, scheduling, and charging station

verification. Finally, we summarize the evaluations to reveal the total overhead and

cost of the framework.

7.3.1 Computation Overhead on EVs

We first evaluated the feasibility of generating a witness and proof on an EV using

f(x) with different numbers of inputs. We used SHA3 hash function for Pederson

commitment. Our experiments for the token-based approach were done using a f(x)

with 16 private inputs and another f(x) with 2 private inputs. Each of these f(x)

also have 1 public input, the timestamp. For the Pederson Commitment approach,

we used a f(x) with 4 private inputs which represent the preimage of a sha26 hash,

and 1 public input, the timestamp. In the experiments, we repeated each of the

steps 30 times and at random times of the day.

The results of the experiments are shown in Table 7.1. It is shown that generating

a proof for the SHA256 f(x) can take up to 15 seconds. Since the EV can compute

and generate a proof at anytime, it is still feasible for an EV to generate a proof(s)

for a future charge scheduling. Additionally, the size of the proof is sufficiently small

(i.e., 1019 bits) that sending the proof over a V2I communication will not cause any

delay for the EV.
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Table 7.1: Witness and proof generation time in seconds with functions that have
4, 8 and 16 inputs, number of constraints, and the size of proof in bits.

# of Inputs
# of

Constraints
Compute-witness

(seconds)
Proof generation

(seconds)
Proof size

(bits)
4 4 0.007 0.069 1019
8 4 0.008 0.071 1019
16 4 0.015 0.082 1019
16 16 0.010 0.079 1019

16 - sudoku 695 0.081 0.140 1019
4 - sha256 56,985 0.606 14.38 1019

7.3.2 Overhead of Contract Deployment

Next, we assessed the overhead of contract deployment on blockchain. Table 7.2

and 7.3 show the cost of the token based approach contract deployment for 2 and 16

inputs f(x) respectively. Table 7.4 shows the cost of deploying the Pederson based

approach auth contract. The results indicate that if slow and medium options are

chosen, the costs are almost negligible. Given that this deployment is done only

once by the EVSP, time is not an issue here and thus slow mode would be a viable

option. Note that both approaches do not require a contract for each EV and thus

saves a lot of time and cost.

Table 7.2: Smart Contract Deployment Overhead - 2 inputs - Token Approach

Time (s) Gas Used Cost (Ether) Cost ($)
slow 15.79 5,479,043 0.00548 0.79
medium 11.95 5,479,043 0.0164 2.36
fast 11.54 5,479,043 0.110 15.78

Table 7.3: Smart Contract Deployment Overhead - 16 inputs - Token Approach

Time (s) Gas Used Cost (Ether) Cost ($)
slow 22.86 5,479,183 0.00548 0.79

medium 15.64 5,479,183 0.0164 2.36
fast 5.29 5,479,183 0.110 15.78
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Table 7.4: Smart Contract Deployment - Pederson Approach

Time (s) Gas Used Cost (Ether) Cost ($)
slow 41.41 1,616,521 0.00162 0.23
medium 24.32 1,616,521 0.00485 0.70
fast 14.12 1,616,521 0.0323 4.65

7.3.3 Authentication, Scheduling and Charging Overhead

Next, we assessed the overhead for each EV through different contracts using token-

based approach. First, we looked at the authentication overhead to see if a different

number of inputs would make a difference. Table 7.5 and 7.6 shows the cost of veri-

fication of a f(x) with 2 and 16 private inputs respectively, using the authentication

smart contract. The results indicate that the gas cost associated to do the authen-

tication transaction is the same for both cases and thus the number of inputs does

not have an impact on the overhead. This mainly due to the nature zkSNARKs

which does not differentiate between varying computations. The verification times,

however, differ due to two reasons: 1) when there is more gas used for a transaction,

the miners’ process it more quickly since the fee they get will be higher; 2) there

is volatility in Ethereum network transactions depending on the specific time they

performed. Therefore, we see that with 16 inputs, the verification times are slightly

reduced. However, overall we can see that on average the authentication time does

not take more than 24 secs in any case.

Table 7.5: Average authentication overhead- 2 inputs

Time (s) Gas Used Cost (Ether) Cost ($)
slow 24.28 1,693,250 0.00169 0.24
medium 24.08 1,693,250 0.00508 0.73
fast 19.11 1,693,250 0.0339 4.88
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Table 7.6: Average authentication overhead- 16 inputs

Time (s) Gas Used Cost (Ether) Cost ($)
slow 15.97 1,693,058 0.00169 0.24
medium 15.72 1,693,058 0.00508 0.73
fast 14.45 1,693,058 0.0339 4.88

After authentication, we looked at the overhead for scheduling and charging

using the token-based approach. However, since these processes do not depend on

any varying input, we conducted a single experiment. Tables 7.7 and 7.8 show the

scheduling and charging smart contract overheads per EV. We can see from these

tables that the costs are very small and almost negligible. The transaction times

also do not change much compared to authentication.

Table 7.7: Average scheduling overhead (Token Approach only)

Time (s) Gas Used Cost (Ether) Cost ($)
slow 18.03 59,061 0.0000591 0.015
medium 11.52 59,061 0.000354 0.0510
fast 7.24 52,439 0.00105 0.151

Table 7.8: Average charge verification overhead (Token Approach only)

Time (s) Gas Used Cost (Ether) Cost ($)
slow 19.77 19,374 0.0000194 0.0049
medium 10.95 19,374 0.000116 0.0167
fast 10.51 34,374 0.000687 0.0990

To sum up the results for the Token approach, Table 7.9 shows the average of

the total cost and time for an EV to authenticate, schedule and charge using the

slowest option. Among the operations, authentication can be performed at any time

but scheduling could be urgent depending on the remaining charge. We see that

scheduling would only take 18secs which is almost real-time. Charging time, on
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the other hand, is experienced when the EV is at the EV charging station. This

time is 19.77 secs which means before starting to charge an EV driver will need to

wait only 19.77 secs which is very reasonable. Looking at cost, we see that total

cost is $0.44 which is again reasonable given the services the EV gets in terms of

privacy-preservation, a scheduled time for charging, etc.

Table 7.9: Total scheduling overhead - Token Approach

Contract Time (s) Gas Used Cost (Ether) Cost ($)
Authentication 23.23 1,659,308 0.00166 0.42
Scheduling 18.03 59,061 0.0000591 0.015
Charging 19.77 19,374 0.0000194 0.0049
Total 61.03 1,737,743 0.0017385 0.44

For our Pederson Commitment approach, the EV only needs to authenticate and

commit his scheduled charging time to the auth contract. Table 7.10 shows the cost

of authenticating and committing to a charge schedule. Besides proof generation

and schedule commitment this is the only overhead for the EV when scheduling

the charging using the Pederson approach. We can see that the total time for

authentication and scheduling commitment is about 37secs and the total cost is

only $0.13 which is very reasonable.

Table 7.10: Total scheduling overhead - Pederson Approach

Time (s) Gas Used Cost (Ether) Cost ($)
slow 37.60 875,287 0.000875 0.13
medium 35.83 875,287 0.00263 0.38
fast 20.26 875,287 0.0175 2.52
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7.3.4 Putting it Altogether

To put it into a better perspective, in Figures 7.1 and 7.2 we compare both of our

approaches in terms of all our benchmarks.

These results indicate that overall Pederson approach performs nearly twice as

good as the token-based approach when considering the cheapest option. The total

time overhead is 37.60sec while it is 61.03 for the token-based approach. Also, the

total monetary cost is $0.13 in Pederson approach compared to $0.44 in token-based

approach. Additionally, since the EV only needs to submit one on-chain transaction

this reduces overall interaction between EV and the Blockchain.
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CHAPTER 8

CONCLUSION

In this thesis, we introduced a framework to preserve the privacy of EVs dur-

ing their charging process by combining the concept of zero-knowledge proofs and

Blockchain smart contracts. This framework allows an EV to authenticate, schedule,

charge and provide payment for services while preserving it’s privacy. Other frame-

works using a centralized model can provide anonymous authentication, scheduling,

charging but privacy is broken when payment is required.

We first introduced a token-based method where we used different smart con-

tracts and tokens to conduct authentication, scheduling, and charging without

relying on any other third parties. This approach consisted of 3 separate on-

chaintransactions, including authentication, scheduling, and charging verification.

The overall performance of this approach was reasonable with proof sizes at about

127 bytes and total time being about 61secs. Additionally the cost of using this

approach was about $0.44 for all 3 on-chain transactions.

Then, we presented an improved version of our approach through the use of

a Pederson Commitment rather than the token mechanism. In this approach we

reduced the number of on-chain transactions from 3 to 1, by combining authentica-

tion and scheduling in one transaction. Since, Pederson commitments can be public

and still not reveal details of the commitment, we could submit the commitment

on-chain. From here the commitment was sent to an EVSP commitment storage for

use in charging station verification. An advantage to this reasoning was that even if

a charging station was only partially connected, it could still verify the EV offline.

The overall performance of the Pederson approach was nearly twice as good as the

token approach. The total time required was about 37secs and costs about $0.13

for authentication and scheduling, nearly 1/3 the cost of the token-based approach.
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For efficiency, in both cases, we were able to use a single smart contract that will

serve all the EVs. This means that contract deployment is only performed once and

the EVSP needn’t worry about deploying contracts for each EV, as this would be a

costly overhead on the EVSP. This reasoning is twofold in that it provides efficiency

and it is required for maintaining EV privacy. If a contract was deployed for every

EV then the EV would be identified and linked with the corresponding scheduling.

Through security analysis, we showed that our approach will not expose any

information to the involved parties such as EVSP, public and EV Charging station.

We also implemented this framework using Zokrates. The results indicated that the

overhead of the overall process in terms of time and Ethereum cost is affordable

to be used in real-life applications. Nevertheless, Pederson approach outperforms

token-based approach both in terms of time and cost overhead.
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