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     Many cancerous cells display abnormalities in the signal transduction pathways 

responsible for responding to extracellular growth factors. Growth factors, such as insulin-

like growth factor I, represent a major class of mitogenic ligands that can initiate the 

mitogen activated protein kinase (MAPK) pathway. The role of the MAPK pathway in 

transducing growth signals to the interior of the cell and subsequently stimulating cell 

growth and proliferation is highlighted by the fact that roughly one quarter of all human 

tumors contain mutant forms of Ras proteins. Ras interference 1 (Rin1) is involved in key 

steps of receptor mediated endocytosis and can potentially moderate signaling through the 

MAPK pathway. The possible connection between Rin1, an effector of the active form of 

Ras, and subsequent telomerase gene expression and activity is of particular interest as 

telomerase is active in roughly 85% of all cancers. In this study, we determine the effect of 

the expression of Rin1 on cellular proliferation as well as on telomerase gene expression 

and activity in several different human cancer cells. MDA-MB 231, MCF7, and MCF-12A 

breast cell lines expressing Rin1 exhibit reduced levels of proliferation of up to 31% 

following exposure to the IGF-1 growth factor. Telomerase activity and gene expression 
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were also reduced by factors of up to 1.5 and 2.55 fold in the three breast cell lines studied 

when compared to control cells. Similarly, overexpression of Rin1 in human Yusik 

melanoma cells leads to reduced telomerase activity.  Telomerase activity was determined 

by the telomeric repeat amplification protocol (TRAP) assay while gene expression was 

measured by RT-qPCR. Furthermore, our observations suggest that overexpression of the 

Rin1 Y561F mutant and Rin1 delta splice variant in MDA-MB 231 cells results in 

increased proliferation and telomerase activity in these cancer cells when compared to 

control cells. The MDA-MB 231 cells expressing wild type Rin1 displayed lowered levels 

of phosphorylation for the p-44/42 (ERK), STAT3, and Ets2 transcription factors. 

Additionally, overexpression of the C-terminus region of Rin1 in these cells greatly 

reduced ERK phosphorylation. In summary, Rin1 may play a novel tumor suppressor role 

in modulating signaling through the Ras/MAPK pathway upon IGF-1 stimulation.  
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CHAPTER 1 

Introduction 

1.1 The Role of Telomerase in Cancer Cells  

     Cancer is a disorder of the cell cycle. The hallmark of any malignant tumor is the 

abnormal and excessive proliferation of cells which begins to impair the normal 

functioning of a tissue or organ (Buseman et al., 2012). In healthy cells, the events and 

timing of the cell cycle are precisely regulated so that cells only divide under appropriate 

circumstances in a controlled manner. The tight regulation of the events of the cell cycle is 

largely accomplished through the use of key checkpoints (G1, G2, M) in which a cell can 

temporarily halt progression through the cycle to assess if crucial events have occurred 

properly to that point (Buseman et al., 2012). Many types of cancer cells have lost the 

ability to arrest the cell cycle at one or more of the important checkpoints. Thus, these cells 

progress atypically through the cell cycle regardless of aberrations which would otherwise 

cause healthy cells to not divide. Any number of abnormal events may occur both internally 

and externally that result in the loss of a checkpoint (Buseman et al., 2012). The most 

common cause of many of the classic abnormalities associated with cancer cells is 

mutation. A change(s) in the DNA sequence of critical cell cycle regulation genes is usually 

the main culprit. For instance, mutations in the DNA of tumor suppressor genes such as 

p53 or the genes which code for proteins involved in cell signaling are quite prevalent in a 

variety of different cancers (Chen & Chen, 2011).  

1.1 A.    Telomere Structure and Function 

     Telomeres are unique regions of DNA located at the very tips of eukaryotic 

chromosomes. These regions of DNA typically consist of a highly repetitive sequence 
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(TTAGGG in vertebrates) and are tasked with a number of important functions related to 

chromosome structure and integrity. Principal among these, is the role of telomeres in 

acting as a sort of molecular clock during cell division. The repetitive DNA at the telomeres 

acts as a buffer which slows the erosion of important regions of DNA during successive 

rounds of cell division. As most somatic cells progress though the cell cycle, a loss of 

approximately 150 bp of DNA occurs at the telomeric regions with each round of division 

(Dwyer et al., 2007; Liu, 1999) This loss is a result of the inability of DNA polymerase 

enzymes to complete DNA synthesis on the lagging daughter DNA strand during 

replication (S phase). As a consequence, the telomeres become progressively shorter with 

each round of cell division and the amount of DNA loss serves to indicate the number of 

divisions (Gomez et al., 2012). The telomeres are eventually eroded to a critical threshold 

length at which time they become unstable and a multitude of cellular DNA damage 

mechanisms are activated to initiate replicative senescence or apoptosis (Dwyer et al., 

2007). Erosion of telomeres has important meaning for aging and tumorigenesis.    

     Structurally, telomeric DNA is observed to exist as large duplex loops known as t-loops 

(Liu, 1999). A t-loop occurs when the single stranded 3’ overhang left behind after DNA 

synthesis is looped back around and inserted into the double stranded telomeric repeat 

region. The formation of t-loops helps to protect the telomeres from further DNA damage, 

fusion, and recombination by various cellular DNA repair enzymes, and may also be 

necessary for proper replication of the telomeric DNA (Liu, 1999). A six subunit protein 

complex known as “shelterin” aids in the formation of t-loops and is also thought to be 

involved in regulating telomerase activity. Telomere repeat factor 2 (TRF2), a protein 

essential to t-loop formation, is part of the shelterin complex along with TRF1, POT1, 
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RAP1, TIN2, and TPP1. Collectively, these telomere binding proteins, among others, are 

shed during repeated rounds of cell division as a consequence of telomere shortening and 

may serve to interact with signaling molecules. Reduction of telomere length may also 

promote the expression of genes which are sensitive to telomere length, a phenomenon 

which has been reported for the p53 tumor suppressor gene in mice (Liu, 1999).  

1.1 B.    Telomerase Structure and Function 

     While most somatic cells will enter senescence or undergo apoptosis after roughly 50 

to 70 rounds of cell division, there are certain populations of cells which can avoid these 

fates. These include embryonic stem cells, adult somatic stem cells, and germ cells. A 

ribonucleoprotein with reverse transcriptase ability known as telomerase is responsible for 

preventing the shortening of telomeres in cells that express it. The enzyme in humans 

consists primarily of a 445 nucleotide RNA template (hTR) which directs the extension 

and addition of the telomeric repeat sequence (TTAGGG), and an accompanying 1132 

amino acid (120 kDa) catalytic subunit with reverse transcriptase activity (hTERT). The 

RNA subunit is encoded by a single gene and is integral to the function of the enzyme (Liu, 

1999).  

     One of the major causes for the rapid rate of cell division observed in multiple types of 

cancer is the overexpression of telomerase. While telomerase expression is suppressed in 

the vast majority of normal somatic cells, its expression and activity can be quite significant 

in many types of cancerous cells (Liu, 1999). In fact, overexpression of telomerase is 

observed in approximately 85% of all human cancers and often confers an immortal 

phenotype to those cells which overexpress it (Liu, 1999). The deregulation of cell 

signaling pathways which results in the abnormal expression of telomerase is a hallmark 
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of most cancers and is therefore of great clinical importance. The idea that cancer cells 

abnormally express telomerase is logical given that cancer cells undergo rapid and aberrant 

cell division, and thus may rely on telomerase expression to prevent the excessive 

shortening of chromosomes which would otherwise induce senescence or apoptosis.  

1.1 C.    Signal Transduction Pathways and the Regulation of Telomerase Activity 

     The unique role that telomerase plays in cancer cells has been widely reported. In fact, 

roughly 80% to 90% of all cancer cells display high levels of telomerase activity (Buseman 

et al., 2012; Chen & Chen, 2011; Gomez et al., 2012). Therefore, telomerase is an ideal 

target for cancer therapies because the enzyme is not expressed in the vast majority of 

normal somatic cells and can be targeted with some specificity only in the cancerous cells. 

Telomerase activity in cancer cells appears to enable these cells to maintain the length of 

their telomeres above the critical threshold for triggering senescence or apoptosis. As a 

consequence, cancer cells tend to escape the normal cellular mechanisms of senescence 

and apoptosis, which are designed to prevent any further cell division in cells that have 

unstable and/or damaged chromosomes (Bernardes de Jesus & Blasco, 2013).   

     Like many proteins, telomerase activity is regulated at both the protein level and the 

gene level (Dwyer et al., 2007). At the protein level, a number of protein kinases and 

phosphatases are involved in controlling telomerase activity (Dwyer et al., 2007). For 

instance, the telomerase catalytic subunit hTERT is phosphorylated and activated by both 

PCKα and Akt in human breast cancer cells (Dwyer et al., 2007). Phosphorylation of an 

associated protein, TEP1, which binds to the RNA template has also been shown to 

increase telomerase activity. On the contrary, telomerase activity can be greatly reduced 

by the action of the protein phosphatase PP2A in breast cancer cells (Liu, 1999). The 
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importance of the reciprocal action of PKCα and PP2A in regulating telomerase activity is 

underscored by the fact that there is usually an imbalance in the action of these enzymes in 

cancer cells. The PKCα activity tends to exceed that of PP2A in breast cancer cells because 

of stimulation by an assortment of tumorigenic compounds and growth factors such as IGF-

1. The PP2A activity is likewise inhibited by the combined action of growth factors such 

as EGF and other tumorigenic antigens and compounds (Liu, 1999). The drug Tamoxifen 

is effective against breast cancer because it inhibits PKCα (Liu, 1999). The regulatory 

imbalance between PKCα and PP2A is significant because it results in elevated telomerase 

activity which in turn promotes tumorigenesis in breast cancer cells. It has even been 

suggested that the p53 protein may interact directly with telomerase to reduce its activity 

and thus may represent one mechanism by which the p53 gene acts as a tumor suppressor 

(Liu, 1999).  

     Besides regulation of telomerase activity at the protein level via the action of protein 

kinases and phosphatases, telomerase activity can also be regulated at the gene level- that 

is, at the level of gene expression or transcription. When discussing transcriptional control 

of telomerase expression, it is necessary to examine the hTERT promoter. It is well 

established that the c-Myc transcription factor is strongly linked to cellular proliferation, 

and it comes as no surprise that telomerase expression is upregulated by c-Myc. The c-Myc 

is able to interact directly with the hTERT promoter and stimulate hTERT expression. 

Transcription factors such as c-Myc stimulate gene expression by binding to specific 

sequences within the promoter region of a gene, and many cancer cells often accumulate 

mutations within the promoters of key cell cycle regulatory genes.  
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     In a large scale study of 799 tumor samples, Huang et al. (2015) identified two specific 

mutations which were present in the hTERT promoter in a high percentage of the tumor 

samples. Specifically, these mutations C228T and C250T occur at 124 and 146 bp upstream 

of the hTERT translation start site and are prevalent in many different types of tumors 

(Huang et al., 2015). The authors conclude that each mutation creates a new binding site 

for the E-twenty six (Ets) group of transcription factors which subsequently results in the 

upregulation of telomerase expression. Upregulation of telomerase activity has also been 

reported as a consequence of the hypoxia commonly found in solid tumors, where the 

enzyme may aid in the stabilization of chromosomal damaged induced by the low oxygen 

environment (Seimiya et al., 1999). Increased telomerase expression has also been 

observed in hepatocytes undergoing cell division in response to partial removal of liver 

tissue, and this telomerase expression is stimulated by both EGF and hepatocyte growth 

factor (HGF) (Inui et al., 2002). In each instance, the upregulation of telomerase expression 

was a direct response to signaling through the MAPK pathway.  

     The central role that the MAPK signaling pathway plays in telomerase activation is 

illustrated in a study by Maida et al. (2002). The effect of EGF stimulation on telomerase 

expression was investigated by exposing A-431, ME180, MCF-7, and NIH3T3 cells to 

EGF for various periods of time, and then assessing hTERT mRNA expression. There was 

a significant increase in hTERT mRNA expression in all of the cell types between 6 to 12 

hours after EGF exposure. The increase in hTERT mRNA expression in response to EGF 

stimulation was confined to these cell types which constitutively express telomerase and 

was not observed in telomerase negative cell types. The authors conclude the MAPK 

pathway is primarily responsible for EGF induced telomerase expression. The A-431 cells 



 

7 

 

stimulated with different concentrations of EGF for either 15 or 30 minutes showed a 

marked increase in ERK activity and hTERT expression. Exposure to the MEK inhibitor 

U0126 abolished this effect but exposure to PI3K or p38 inhibitors did not. Furthermore, 

the authors demonstrate that EGF exerts its influence on telomerase expression through the 

MAPK pathway via activation of the Ets family of transcription factors. The Ets group of 

transcription factors are phosphorylated and activated by ERK, and the hTERT promoter 

contains two Ets binding motifs within it at -23 and -18. A-431 cells co-transfected with a 

wild-type Ets2 expression vector and an hTERT promoter reporter plasmid revealed high 

levels of EGF induced transactivation when compared to cells co-transfected with a 

truncated, dominant negative Ets2 expression plasmid.  

     A similar result was observed in cells transfected with either a normal hTERT promoter 

reporter plasmid or a plasmid containing mutations in the Ets binding motifs (Maida et al., 

2002). The MPAK pathway has also been implicated in the activation of telomerase 

activity and hTERT mRNA expression in estrogen receptor α (ERα) positive endometrial 

cells. Zhou et al. (2013) report that stimulation of Ishikawa ERα positive endometrial cells 

with estradiol (E2) results in increased phosphorylation p44/42 MAPK and increased 

hTERT mRNA expression. The hTERT promoter contains two binding sites for E2-ERα 

complexes, and the stimulatory effect of E2 on hTERT expression and telomerase 

activation was greatly reduced by exposure to the MEK inhibitor U0126 or ERK specific 

siRNA (Zhou et al., 2013). The MAPK pathway therefore appears to play a prominent role 

in the estrogen induced regulation of hTERT expression and telomerase activity.  

     As downstream targets of the MAPK pathway, the Ets family of transcription factors 

have recently been implicated in the regulation of telomerase gene expression and activity. 
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The Ets family of transcription factors consists of more than thirty closely related proteins 

first identified in the E26 avain leukemia retrovirus. The Ets transcription factors display a 

conserved 85 amino acid helix-turn-helix motif capable of binding to a core consensus 

sequence (GGAA/T) located within the promoters of various target genes, which often 

times encode key proteins involved in the regulation of the cell cycle (de Launoit et al., 

2006). The Ets group of transcription factors therefore have figured prominently into 

cellular proliferation and tumorigenesis. For instance, a number of studies have indicated 

that Ets1 and Ets2 are commonly overexpressed in a variety of cancers (de Launoit et al., 

2006). The Ets2 transcription factor in particular is frequently upregulated in breast cancer 

cells. Dweyer et al. (2007) report that siRNA mediated silencing of Ets2 gene expression 

significantly reduced telomerase gene expression and activity in MCF7 breast cancer cells. 

There was also an interesting inhibition of c-Myc expression which suggests a potential 

role of Ets2 as a transcriptional activator of the c-Myc gene, which is a known transcription 

factor in the expression of telomerase. In this model, phosphorylation and activation of 

Ets2 by ERK results in enhanced transcription of c-Myc which in turn stimulates 

telomerase gene expression. 

     Telomerase expression is simultaneously enhanced by the binding of activated Ets2 to 

the telomerase promoter and it is possible that Ets2 may even form a complex with c-Myc 

(Xu et al., 2008). In colon cancer, the formation of the Ets2/c-Myc complex may be 

mediated by Ruv-B like helicase 2 (Ruvbl2) which can interact with Ets2 (Flavin et al., 

2011). Similarly, Hepatitis B virus core protein has also been shown to upregulate 

telomerase expression in conjunction with the Ets2 transcription factor in HepG2 cells (Gai 

et al., 2013). The specificity of Ets2 for its binding sites underlies its ability to regulate 
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telomerase expression. Xiao et al. (2003) investigated whether the binding of Ets2 to 

different Ets binding elements within the telomerase promoter had any influence on 

telomerase promoter activity. Mutagenic experiments revealed that specific Ets binding 

elements were associated with increased promoter activity while others were associated 

with decreased activity. Along the same line, Hsu et al. (2006) report that a single 

nucleotide polymorphism (SNP) located at -245 bp upstream of the telomerase promoter 

may act to increase telomerase activity in non-small cell lung cancer.  

     The importance of the Ets family of transcription factors in the regulation and 

expression of telomerase continues to be supported by a growing body of evidence. Goueli 

and Janknecht (2004) report that the Ets transcription factor ER81 is primarily responsible 

for upregulation of telomerase expression in SKBR3 breast cancer cells which overexpress 

the HER2/Neu receptor tyrosine kinase. The HER2/Neu receptor is overexpressed in the 

majority of breast tumors and its expression is likely enhanced by ER81. The authors also 

report that ER81 is capable of stimulating telomerase expression as it is a downstream 

target of the MAPK pathway. Active HER2/Neu can stimulate Ras which in turn will 

activate RAF1 and result in the downstream phosphorylation of ER81 by ERK.  Once 

activated by ERK, ER81 can then stimulate expression of telomerase. Mutation of the 

ER81 binding sites within the telomerase promoter or inhibition of ER81 phosphorylation 

by ERK resulted in decreased telomerase expression and activity. A similar result was 

obtained by inhibition of HER2/Neu or the expression of a dominant negative form of 

ER81 (Goueli and Janknecht, 2004). The ER81, also known as Etv1, belongs to the PEA3 

group of Ets transcription factors. The PEA3 transcription factors are known to regulate 
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the expression of several matrix metalloproteases and may therefore figure prominently in 

the development of metastasis (de Launoit et al., 2006).  

     As mentioned previously, the overexpression of telomerase in most types of cancer cells 

is usually the result of aberrant cell signaling pathways. Much research has focused on 

identifying the principal molecules involved in controlling the expression of the telomerase 

promoter. The goal of promoter research is to be able to target expression of the enzyme at 

the transcriptional level. For example, in a study of 327 patients with urothelial cell 

carcinoma of the bladder, Rachakonda et al. (2013) described the existence of common 

mutations within the telomerase promoter. Mutations at 124 and 146 bp upstream of the 

transcription start site were present in 65% of the samples. The mutations create new 

binding sites for the Ets/TCF group of transcription factors which increase promoter 

expression between two and four fold (Rachakonda et al., 2013). The presence of an 

additional single nucleotide polymorphism in an existing Ets binding site of the telomerase 

promoter appears to moderate the effect of these two upstream mutations. Patients without 

a variant allele of the SNP but with the two upstream mutations showed reduced survival 

and greater tumor recurrence when compared to patients with a variant allele of the SNP 

(Rachakonda et al., 2013).  

     Zhao et al. (2009) report that chromosomal mutations which translocate the human 

telomerase gene and its promoter (located near the telomere of chromosome 5 arm p) to 

heterologous sites often results in transcriptional activation of the telomerase gene. The 

gene is not normally expressed in most somatic cells due to its location within highly 

condensed chromatin. However, translocation to other chromosomal sites with less 
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restrictive chromatin structure may allow the telomerase promoter to become activated 

(Zhao et al., 2009).  

     The Wnt/beta-catenin signaling pathway has been shown to be involved in the activation 

of telomerase expression in a number of different types of human cancers. The Wnt 

pathway is crucial for normal cell differentiation and proliferation during embryonic 

development and beta-catenin is an effector of this pathway which can help activate the 

expression of Wnt target genes (Zhang et al., 2012). The Wnt/beta-catenin pathway is often 

active and not properly regulated in most cancer cells. When Wnt signaling is inactive, 

beta-catenin is targeted for destruction by phosphorylation. On the other hand, when Wnt 

signaling is active, beta-catenin is not targeted for destruction and travels into the nucleus 

where it binds to LEF/TCF transcription factors. The LEF/TCF transcription factors 

normally bind to DNA and repress the expression of target genes (Zhang et al., 2012).  

     Beta-catenin forms a complex with TCF4 and results in the expression of many genes 

(c-Myc, cyclin D1, and NOS2) which may contribute to cancer formation (Zhang et al., 

2012). Zhang et al. (2012) provide evidence that the Wnt/beta-catenin pathway can also 

result in the activation of telomerase expression in human cancers. Using different cancer 

cell lines, the investigators were able to demonstrate that removal of beta-catenin by RNAi 

significantly reduced telomerase gene expression and activity in Wnt+ cancer cells. FH535, 

a beta-catenin/TCF inhibitor, was also shown to greatly reduce telomerase activity in all of 

the cancer cell lines studied (Zhang et al., 2012). 

     In a similar study of human colorectal carcinoma, Jaitner et al. (2012) were also able to 

demonstrate the ability of beta-catenin to regulate expression of the telomerase gene. The 

researchers determined that telomerase gene expression depends in part on the binding of 
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the oncogene transcription factor c-Myc to the telomerase promoter, and that c-Myc 

expression itself is stimulated by beta-catenin in Wnt signaling cells (Jaitner et al., 2012). 

However, a more interesting discovery was made in that the telomerase enhancer/promoter 

was determined to have four binding sites for beta-catenin/TCF-4 complexes. Thus, it was 

shown that the telomerase gene can also be directly regulated by beta-catenin and in a way 

that is independent of c-Myc.  

     For instance, the data suggest that the expression patterns of telomerase and beta-catenin 

mirror one another but not that of c-Myc. c-Myc, while able to stimulate telomerase 

expression, is present ubiquitously in cancer cells and its expression appears to be 

controlled by various pathways (Jaitner et al., 2012). Zhang et al. (2012) suggest that in 

normal, non-cancerous cells c-Myc induced expression of telomerase is mediated by the 

suppressive effect of the E2F1 transcription factor. c-Myc promotes expression of E2F1 

which then binds to the telomerase promoter and reduces the ability of c-Myc to activate 

expression of telomerase. The c-Myc and E2F1 stimulate each other’s expression and this 

positive feedback mechanism is regulated in normal cells through the use of miRNAs 

(Zhang et al., 2012). Listerman et al. (2014) looked at whether or not telomerase itself can 

bind to and activate expression of Wnt target genes. The HeLa cells and human breast 

cancer cell lines were used in the study and the authors failed to find any evidence for the 

ability of telomerase to interact directly with beta-catenin or the chromatin remodeling 

protein BRG1. Additionally, altering the levels of telomerase in the breast cancer cell lines 

had only a minimal effect on Wnt signaling and target gene expression (Listerman et al., 

2014).  
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     The Hedgehog signaling pathway, which is important in cell specialization and tissue 

formation during embryonic development, is abnormal in a number of different types of 

cancer cells (Mazumdar et al., 2013). The Hedgehog pathway results in the activation of 

the GLI group of transcription factors. Mazumdar et al. (2013) investigated whether 

telomerase is a target of Hedgehog signaling via GLI transcription factors. Inhibition of 

GLI1 and GLI2 through various mechanisms resulted in a significant decrease in 

telomerase expression in prostate cancer, Glioblastoma multiforme, and colon cancer cell 

lines compared to controls. GLI1 and GLI2 were shown to interact directly with the 

telomerase promoter by chromatin immunoprecipitation (Mazumdar et al., 2013). The 

results indicate that telomerase expression can be influenced by abnormal Hedgehog 

signaling.  

     The role that the deacetylase enzyme SIRT1 plays in transcriptional activation of the 

telomerase promoter in hepatocellular carcinoma was investigated by Zhang et al. (2014). 

Epigenetic modifications of the chromatin structure of promoter and enhancer regions of 

DNA is a primary mechanism by which cells regulate activation of transcription and thus 

gene expression. Acetylation of histones promotes transcription by relaxing the association 

of DNA with histone proteins while methylation of histones appears to reduce transcription 

by increasing chromatin condensation. The researchers hypothesized that SIRT1 plays an 

important role in remodeling the chromatin of the telomerase promoter which then results 

in enhanced expression of telomerase in hepatocellular carcinoma. The results indicate that 

SIRT1 does not regulate telomerase expression via CpG island methylation at the 

telomerase promoter (Zhang et al., 2014). Additionally, the data suggest that the inhibition 

of SIRT1 in hepatocellular carcinoma SK-HEP-1 cells results in acetylation of the ninth 
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lysine residue of histone H3 as well as reduced methylation at the same position (Zhang et 

al., 2014). These epigenetic changes to the chromatin structure of the telomerase promoter 

should increase telomerase expression. However, the researchers observed the opposite. 

Telomerase expression was reduced and the authors offer no explanation for the 

mechanism of action.   

     Yamada et al. (2012) studied the ability of Interleukin-2 (IL-2) to stimulate telomerase 

expression in adult T cell leukemia (ATL) cells. The results show that IL-2 binds to its 

receptor in the cell membrane and consequently stimulates a number of signaling pathways 

that ultimately lead to telomerase expression. The binding of IL-2 results in 

phosphorylation of tyrosine residues in Janus activated kinases 1-3. Activated JAK1 and 

JAK2 then phosphorylate the transcription factor STAT5 which travels into the nucleus 

and binds to the telomerase promoter, resulting in the expression of telomerase (Yamada 

et al., 2012). At the same time, activated JAK2 can stimulate the 

PI3K/AKT/mTORC1/S6K pathway in ATL cells as well. The pathway increases 

telomerase expression both transcriptionally and post-translationally. Knockdown of 

STAT5 by RNAi was also shown to reduce telomerase expression (Yamada et al., 2012). 

Human lymphoblastoid cells were used as a positive control for the telomerase activity 

assays and beta actin was used as a positive control for telomerase mRNA assessment by 

RT-PCR.  

     Prostate cancer provides an excellent example of the influence of androgen signaling 

pathways on telomerase expression. Liu et al. (2010) examined LNCaP prostate cancer 

cells with the goal of determining how androgen signaling affects expression of telomerase. 

A dose dependent response in telomerase promoter activity with various concentrations of 
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DHT was observed. Higher concentrations resulted in greater activity. Inhibition of 

androgen receptor expression by RNAi resulted in a significant reduction of telomerase 

mRNA in LNCaP cells. The investigators were also able to demonstrate that the drug 

methylseleninic acid (MSA) can also reduce telomerase mRNA levels by inhibiting the 

synthesis of androgen receptor (AR). The fact that androgen activated AR can bind to the 

telomerase promoter and facilitate transcription was confirmed by chromatin 

immunoprecipitation assay.  

     Holysz et al. (2013) highlight the significant role that telomerase has in the etiology of 

breast cancer. The authors cite numerous studies which indicate that transcriptional 

activation of the telomerase gene promoter by various transcription factors such as c-Myc 

or wnt appears to be a key step in the transformation of normal cells into malignant cancer 

cells (Bernardes de Jesus & Blasco, 2013). The telomerase promoter has several binding 

sites for transcription factors which are involved in a number of cellular pathways. For 

instance, production of transcription factors induced by the binding of human epidermal 

growth factor 2 (Her2) as well as the transcription factor ER81 have both been shown to 

cause increased expression of telomerase in human breast tissue (Holysz et al., 2013). 

Estrogen has been demonstrated to cause a similar effect by binding to and activating a 

cytoplasmic receptor which then travels to the nucleus and can activate control elements 

linked to the telomerase promoter.  

     If the telomerase promoter can be activated by various transcription factors which are 

normally present in cells, why then is telomerase not expressed continuously in most 

somatic cells? The answer seems to lie in the action of proteins encoded by tumor 

suppressor genes. In breast tissue, the protein product of the BRCA1 tumor suppressor gene 
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interacts with c-Myc and prevents it from binding to regulatory regions of the telomerase 

promoter. The BRCA1 gene product has also be shown to interfere with the proteins TRF1 

and TRF2 which are necessary to recruit telomerase to the telomere regions of 

chromosomes (Holysz et al., 2013). The protein product of the p53 tumor suppressor gene 

acts in a similar fashion by interacting with certain transcription factors which could 

potentially activate the telomerase promoter. The result of the interaction is decreased 

expression of the telomerase gene (Bernardes de Jesus & Blasco, 2013).   

     Telomerase is active and overexpressed in a number of other cancers besides breast 

cancer. Small cell lung cancer as well as non-small cell lung cancer both exhibit high levels 

of telomerase activity, with SCLC being telomerase positive in approximately 90% to 

100% of cases (Chen & Chen, 2011). High levels of the enzyme is correlated with poor 

survival in both types of lung cancer. The role that telomerase plays in gastric cancer is 

less certain. A few studies have indicated that a high level of telomerase activity is 

associated with the degree of malignancy of a tumor (differentiation and depth of invasion) 

while other studies have been unable to arrive at such a conclusion (Chen & Chen, 2011). 

However, what has been demonstrated more clearly is that the presence of telomerase in 

the peritoneal fluid of gastric cancer patients is a clinical sign of advanced stages of the 

disease, including metastasis (Chen & Chen, 2011).  

     The exact role that telomerase plays in renal and intestinal cancers is uncertain. The 

tissues of these organs normally express detectable levels of the enzyme, and it is often 

difficult to establish a threshold value of telomerase activity which is associated with 

malignancy. Once an adenomatous polyp forms in the colon, telomerase activity has shown 

some relationship to the grade and size of the polyp. However, in most colon cancers it 
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seems that the presence of high levels of telomerase mRNA is a good indicator of 

metastasis. Telomerase activity in renal cancer has not been shown to be correlated with 

any clinical parameters or survival (Chen & Chen, 2011). Although about 90% of all 

bladder cancers display high levels of telomerase activity, it is not always associated with 

malignancy. Normal bladder tissue can test positive for the enzyme, which again, makes it 

difficult to distinguish the fine line between normal and abnormal (cancerous) levels of 

activity. Most uterine cancers fall under the same umbrella because of the fact that 

endometrial cells express varying levels of telomerase activity normally depending on the 

stage of the menstrual cycle (Chen & Chen, 2011).  

     Finally, telomerase levels and activity appear to mirror well the transition that cervical 

cells undergo as they become cancerous. As cervical cells progress through the three non-

malignant stages prior to becoming malignant, there appears to be an increasing trend in 

telomerase expression and activity. An estimated 90% of cervical cell carcinomas will 

eventually display elevated levels of telomerase mRNA and activity (Chen & Chen, 2011). 

In ovarian cancer, telomerase expression and activity have been shown to vary widely 

depending on the clinical classification of the tumor (Chen & Chen, 2011).  In comparison 

to most carcinomas, sarcomas typically display reduced levels of telomerase activity and 

seem to rely on other non-telomerase mediated mechanisms to lengthen their telomeres 

(alternative lengthening of telomeres or ALT) (Chen & Chen, 2011). For example, Hu et 

al. (2013) demonstrated in transgenic mice that alternative lengthening of telomeres 

mechanisms linked to mitochondrial functions can even be activated in lymphomas as well. 

The transgenic mice contained an inducible telomerase expression system which could be 

manipulated by the researchers. Inhibition of telomerase expression in the lymphoma cells 
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resulted in an initial decrease in the growth of the cancer cells but also resulted in the 

subsequent activation of alternative lengthening of telomeres pathways and the survival of 

the tumors.  

1.1 D.    Telomerase as a Cancer Target  

     Telomerase inhibition in cancer cells has been active area of research because, as 

mentioned earlier, a large percentage of different cancers express telomerase at high levels 

compared to normal, healthy cells. This important difference offers the promise of 

developing therapies that are specific to cancer cells while helping to minimize the adverse 

side effects observed with many conventional therapies. There are three broad strategies 

currently available to target telomerase. The first of which is the use of drugs, or 

medications, which interfere with the biochemical activity of the enzyme. A classic 

example is the drug GRN163L (Imetelstat). Imetelstat works by preventing the binding of 

the RNA template component of telomerase with the protein portion of the enzyme. The 

end result of this interaction is a nonfunctional enzyme. However, there is a lag period of 

time after initial exposure of cancer cells to a telomerase inhibitor and reduced tumor 

growth. This lag period is partially a result of the time it takes for telomeres to become 

shortened enough in the presence of the drug to allow for activation of senescence or 

apoptosis (Buseman et al., 2012). Often times, it is recommended to combine treatment 

with a telomerase inhibitor with traditional therapies such as radiation and chemotherapy. 

The combination therapy could prevent any further growth of the tumor during this lag 

phase of time before the drug starts to have an effect. Telomerase inhibitors have also been 

proposed as maintenance drugs following conventional treatment as a way of possibly 
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inhibiting any residual cancer cells from causing a relapse of the disease (Buseman et al., 

2012).   

     The second category of telomerase inhibition is immunotherapy, or vaccination. Many 

telomerase positive cancer cells express telomerase specific antigens, or peptides, on their 

cell membranes. Vaccines can be developed from protein fragments of the telomerase 

enzyme or from actual AP (antigen presenting) cells which display telomerase peptides on 

their surfaces. A few vaccines of these types are currently in clinical trials and most show 

promising results (Buseman et al., 2012).  

     The third type of telomerase inhibitor makes use of gene therapy. The telomerase gene 

promoter has been linked to apoptotic genes such as TRAIL or a caspase. Through a viral 

mechanism or some other gene delivery format, these apoptosis inducing genes under the 

control of the telomerase promoter can be introduced into cancer cells. The cells will then 

express these genes whenever the telomerase promoter is transcribed.  Alternatively, 

adenoviruses have been engineered in which two viral genes necessary for replication only 

are under the control of the telomerase promoter. Viral infection of cancer cells results in 

the expression of the telomerase promoter and virus genes, resulting in the lysis of the 

cancer cells. A clinical trial with Telomelysin, an engineered adenovirus, is currently 

underway and the preliminary results appear encouraging despite notable failures of this 

approach in the past (Buseman et al., 2012).   

     The important role that telomerase plays in the life of most cancer cells is illustrated by 

the number of research articles which have been published within the past five to six years 

investigating various aspects of this enzyme with respect to cancer cell survival or 

mortality. These articles can be broadly grouped according to their design as investigating 
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the effects of drug inhibitors, immunotherapy/gene therapy, and RNAi on the structure 

and/or function of telomerase.  

     Liu et al. (2012) investigated the effect of the synthetic compound CDDO-Me, an 

oleanane triterpenoid, on telomerase activity in mice prostate cancer cells. The researchers 

discovered that this drug exerts its anti-tumorigenic effects in two main ways. First, it 

interferes with the synthesis of transcription factors such as c-Myc, SP1, and NF-kB which 

are necessary to initiate transcription of the telomerase promoter. The phosphorylation 

status of another necessary transcription factor, STAT3, is interfered with by the drug as 

well (Liu et al., 2012). Secondly, the telomerase enzyme must be phosphorylated on serine 

residues 227 and 826 to become activated. The CDDO-Me drug prevents the enzyme Akt 

from performing this function (Liu et al., 2012). The Sp family of transcription factors, 

which are typically found at high levels in many cancer cells, are an ideal target of the drug. 

The SP1 transcription factor interacts with c-Myc to stimulate the production of telomerase 

(Liu et al., 2012). The inhibition of telomerase by CDDO-Me via transcriptional and post-

translational mechanisms more than likely allows for the induction of apoptosis in prostate 

cancer cells. Moreover, there appears to be a dose-dependent response with levels of the 

drug in the 1.25 to 5 uM range producing a significant reduction in tumor growth (Liu et 

al., 2012). Deeb et al. (2012) investigated the potential use of CDDO-Me in pancreatic 

cancer cells and reported similar results to those of Liu et al. Proliferation of cells was 

arrested and apoptosis was induced. Interestingly, overexpression of telomerase by 

MiaPaCa-2 and Panc-1 cancer cells transfected with a telomerase expression plasmid 

resulted in these cells being significantly less sensitive to concentrations of the drug than 

dosages that would otherwise kill other cancer cells (Deeb et al., 2012). 
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     The structure of telomeric DNA is complex, with a DNA loop that gives rise to guanine 

rich tetra-stranded structures called G-quadruplexes. The G-quadruplex structures found at 

telomeres tend to inhibit telomerase function by preventing the attachment of the RNA 

template of the enzyme to DNA in these regions (Huang et al., 2012). The ability to 

stabilize these regions of telomeric DNA could therefore be very useful in reducing 

telomerase activity in cancer cells. The compound, BMVC4, has been shown to do just 

this. Huang et al. (2012) treated human lung cancer cells, H1299, with various 

concentrations of BMVC4 and noted the expected onset of senescence. Cells which 

overexpressed telomerase as well as cells which lengthened telomeres by an alternative 

mechanism were tested. The fact that senescence was observed in both cell types indicates 

that telomerase inhibition may not be the sole cause by which BMCV4 operates. The 

investigators worked out that in addition to stabilizing telomeric G-quadruplexes, the drug 

also stabilizes a G-quadruplex structure in the promoter of the c-Myc gene (Huang et al., 

2012). The drug-promoter interaction prevents the production of the c-Myc transcription 

factor that plays a role in telomerase gene expression. Senescence in both cell types may 

also have been triggered by the activation of the ATM kinase DNA damage pathway in 

response to DNA breaks caused by exposure to the drug (Huang et al., 2012).  

     In a very similar fashion, Yu et al. (2012) investigated the ability of ruthenium (II) 

polypyridyl complexes to stabilize G-quadruplex DNA. Two different enantiomers were 

tested, alpha and delta, and it was determined that the alpha form had the greatest ability 

to bind to G-quadruplex DNA and stabilize it in HepG2 cancer cells (Yu et al., 2012). This 

stabilization was confirmed through a series of chemical analyses as well as TRAP 

(telomeric repeat amplification protocol) assay. In HeLa cells however, the delta 
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enantiomer had a greater cytotoxic effect. In fact, the degree of cytotoxicity was shown to 

depend largely on the specific type of cancer cell tested. Although the study employed a 

wide range of chemical tests, the results are mostly qualitative and the authors do not 

identify the precise mechanism of ruthenium complex binding to G-quadruplex DNA (Yu 

et al., 2012).  

     In a 2010 study, Marian et al. evaluated the efficacy of the drug Imetelstat (GRN163L) 

on the ability to inhibit telomerase in glioblastoma tumor initiating cells. Glioblastomas 

are often fatal and patients usually have only a few months to live once diagnosed. The two 

year survival rate is less than five percent (Marian et al., 2010). As discussed earlier, 

Imetelstat targets the RNA component of the telomerase enzyme and prevents the 

formation of functional telomerase. The drug is particularly well suited to permeating 

tissues because of a lipid component in its chemical structure that is able to cross the blood-

brain barrier (Marian et al., 2010). The authors report that the anti-tumorigenic effects of 

Imetelstat begin to occur after about 15 to 20 rounds of cell division after exposure to the 

drug, with IC50 telomerase inhibition occurring at a concentration of 0.45 uM (Marian et 

al., 2010). Unfortunately, normal healthy populations of brain stem cells are also affected 

by the drug. However, as a consequence of a key difference in the actual length of telomeres 

between glioblastoma cells and normal stem cells, the drug has less of a negative effect on 

the normal stem cells. The negative effect is reversed when treatment is stopped. The 

researchers also acknowledge the fact that most of the observed results and data of 

Imetelstat treatment were collected from mice subcutaneous xenografts of glioblastoma 

tumor cells (Marian et al., 2010).  
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     Beisner et al. (2009) report limited success in inhibiting telomerase activity with use of 

antisense 2’-O- methyl-RNA. The RNA molecule was packaged into chitosan coated 

PLGA nanoparticles which were readily absorbed by A549 cancerous lung cells. The RNA 

molecule acts in a similar way to the drug Imetelstat in that it interferes with the RNA 

template of the telomerase enzyme. However, the anti-tumorigenic effects of the molecule 

as measured by a TRAP assay are not observed until after approximately fifteen weeks of 

treatment (Beisner et al., 2009). An appropriate experimental design which includes a 

series of controls for the delivery of the nanoparticles and for the specificity of the RNA 

molecule for the telomerase RNA component is apparent. A549 cells treated with 2’-O-

methyl-RNA saw an average decrease in telomere length of about 2,000 bp when compared 

to control groups (Beisner et al., 2009).  

     Mohammad et al. (2013) looked at the therapeutic effect of a plant compound called 

Diosgenin derived from the herb Trigonellafoenum graceum. The authors mention a 

number of studies which have already demonstrated the telomerase inhibiting ability of 

this compound, and their work seems to be mostly a repeat and confirmation of previous 

studies. A549 lung cancer cells were treated with various concentrations of Diosgenin and 

the ability to inhibit telomerase activity displayed a dose dependent and time dependent 

function. Telomerase activity was determined by qRT-PCR using telomerase mRNA 

extracted from Diosgenin treated cells (Mohammad et al., 2013). The results clearly 

indicated reduced levels of telomerase mRNA in treated cells but no statistical analysis is 

provided nor do the authors discuss any observed reduction in A549 cell growth. The 

authors do not mention an exact mechanism for how Diosgenin could down-regulate 
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telomerase gene expression other than to suggest that the drug most likely down-regulates 

expression of c-Myc (Mohammad et al., 2013).  

     Chen et al. (2013) report that epigallocatechin gallate (ECGC) found in green tea and 

sulphoraphane (SFN) found in vegetables such as broccoli can produce anti-tumorigenic 

effects in ovarian cancer cells when used in combination. The researchers primarily wished 

to test the inhibitory of effects of these compounds, either alone or in combination, on 

cancer cells which were resistant to the chemotherapy drug Paclitaxel. The design of the 

study seems fairly straightforward, but there is no real effort to explain which controls were 

used when treating two cells lines of ovarian cancer with various combinations of ECGC 

and/or SFN. A paclitaxel susceptible cell line (SKOV3-ip1) was compared to a resistant 

cell line (SKOV3TR-ip2). The authors state that the resistant cell line trials were exposed 

to Paclitaxel in their growth media, but no control was made to expose the sensitive cells 

to the drug to indeed show that they are susceptible. Although each cell type was tested 

according to ECGC alone, SFN alone, and ECGC + SFN and for the same periods of time 

(24, 48, and 72 hours), the concentrations of ECGC alone and SFN alone were different in 

each trial (Chen et al., 2013).  

     A possible negative control of either resistant or susceptible cells exposed to DMSO 

only was included as a reference in each trial at each time interval. However, how a 

statistical analysis comparing cell growth in drug conditions as a percent of DMSO control 

cell growth is not clearly indicated. The investigators also assayed each cell line for the 

presence of the anti-apoptotic protein Bcl-2 and for telomerase activity. The results suggest 

that the expression of both proteins as well as DNA methyltransferase-1 (a chromatin 

remodeling enzyme) are significantly reduced in each type of cell line when used in 
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combination (Chen et al., 2013). A beta actin positive protein control was used as a 

comparison for the Western blot analysis. Overall, the authors conclude the SFN alone can 

significantly reduce the growth of cells in both Paclitaxel resistant and sensitive cell lines. 

When used in combination with ECGC, the result is amplified; however, no substantial 

detail on the mechanism of action for how these drugs affect cell growth or protein 

expression is provided (Chen et al., 2013).  

     In an almost identical design to that of Chen et al., Nasiri et al. (2013) treated T47D 

human breast cancer cells with the herbal compounds curcumin and/or silibinin. Not 

surprisingly, the results indicated that a combination of the two plant compounds at high 

concentrations for long periods of time had a detrimental effect on the viability of T47D 

cells as measured by MTT assay (Nasiri et al., 2013).  Quantitative real time PCR was 

employed to assess telomerase expression as a function of treatment with curcumin and/or 

silibinin. Again, the controls were not clearly defined for either part of the experiment with 

only the mention that beta actin served as an endogenous control for the comparison of 

telomerase expression (Nasiri et al., 2013).  

     While not an actual drug, the glycolytic enzyme glyceraldehyde 3-phosphate 

dehydrogenase has been shown to be able to induce apoptosis in cells subjected to oxidative 

stress. The enzyme is involved in limiting the formation of reactive oxygen species in 

addition to its central role in glycolysis. Nicholls et al. (2012) provide evidence that 

GAPDH can travel into the nucleus in response to oxidative stress and can interact with 

telomeric DNA. This interaction normally stabilizes the telomeres and promotes cell 

survival. The enzyme has also been shown to interact with the RNA template of telomerase 
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and thus inhibits the action of telomerase. Nicholls et al. (2012) observed increased 

senescence in MCF7 breast cancer cells stably expressing a recombinant GAPDH.  

     Another intriguing approach to investigate the role of telomerase in cancer cells is 

through the use of immunotherapy/gene therapy. These techniques make use of the fact 

that many cancer cells begin to express altered peptides on their cell membranes as a result 

of accumulated genetic and chromosomal abnormalities. The cells of the immune system, 

cytotoxic T cells in particular, are able to identify cancer cells as foreign because of their 

surface molecules and can then target them for destruction. Miyazaki et al. (2013) were 

able to kill adult T cell leukemia (ATL) cells using modified CD8+ T cells. The CD8+ T 

cells were transfected with a retroviral expression vector containing genes which would 

enable these modified CD8+ T cells to identify a very specific protein complex found on 

the surface of ATL cells over-expressing telomerase. That complex is HLA-

A*24:02/hTERT461-469.  Mice were injected with ATL cells containing this complex. The 

mice were then injected with either modified CD8+ T cells, unmodified CD8+ T cells, or 

no cells at all. Compared to the control groups, the mice which received the modified CD8+ 

T cells showed minimal levels of ATL cell growth over a six month period (Miyazaki et 

al., 2013).  

     The ability to produce a sustained response by CD8+ T cells against telomerase 

expressing tumor cells requires the assistance of CD4+ helper T cells. The helper cells play 

a role in maintaining cytotoxic T cell numbers and also play a critical role in generating 

memory immune responses. Liao et al. (2013) examined the effect of dendritic cell 

stimulation with branched diepitope multiple antigen peptides (MAPS) on the ability to 

lyse various different tumor cell lines expressing telomerase. The particular MAP used 
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contained two epitopes of human telomase, one which would stimulate CD8+ cytotoxic T 

lymphocytes and another which would stimulate CD4+ helper T cells. The diepitope MAP 

resulted in a slight increase (8.56%) in the ability of cytotoxic T lymphocytes to lyse target 

tumor cells than when cytotoxic T lymphocytes were exposed to just the CD8+ epitope of 

human telomerase alone (Liao et al., 2013). A positive control of dendritic cells exposed 

to a recombinant adenovirus human telomerase vector and a negative control of dendritic 

cells exposed to an HIV peptides were used when comparing the ability of  branched 

monoepitope MAPs to cause CTL induced lysis of target cells versus their linear forms. As 

already mentioned, a diepitope MAP produced the greatest immune response (Liao et al., 

2013). 

     Adotevi et al. (2010) researched a lentivector model for inducing the proliferation of 

endogenous anti-telomerase CD8+ T cells in mice. The HLA-A*0201 transgenic HHD 

mice were injected with a lentiviral expression system containing the human telomerase 

gene. Mouse cells expressing an epitope of human telomerase on their surfaces then 

induced the development of CD8+ T cells capable of detecting the human epitope. 

Surprisingly, these cells also displayed a strong ability to target self (mouse) cells which 

expressed epitopes derived from mouse telomerase (Adotevi et al., 2010). When inoculated 

with B16/A2 mouse melanoma cells, mice which were immunized with the lentiviral vector 

resulted in tumor regression in three out of ten mice. Seven out of ten mice were cured of 

their tumors when a specific telomerase peptide epitope was injected along with the 

lentiviral vector. All mice in a control group not exposed to the lentiviral vector died forty 

days after tumor cell inoculation (Adotevi et al., 2010).  
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     Using a different lentivirus model, Yu et al. (2011) demonstrated the ability of a 

lentiviral vector consisting of the cytosine deaminase (CD) suicide gene and the green 

fluorescent protein (GFP) gene under the control of an optimized human telomerase gene 

promoter. It was hypothesized that infection of various cancer cell lines with the vector 

would result in transcription of the telomerase promoter and the expression of the CD gene, 

which could be visually confirmed by the simultaneous expression of GFP. Upon 

administration of the drug 5-FC, the cancer cells would convert it into 5-fluorouracil using 

the cytosine deaminase enzyme. This conversion in turn would result in the death of the 

cancer cells. Appropriate controls with telomerase negative cancer cells along with the use 

of a vector lacking the CD gene were utilized as part of the experiment. The results indicate 

that intra-tumor injection of the CD/GFP lentiviral vector results in a significant difference 

in tumor volume when compared to controls (Yu et al., 2011).  

     In recent years, the use of RNA interference (RNAi) pathways in cells has led to a 

number of important discoveries about gene expression and protein function. RNA 

interference makes it possible to study the silencing of specific genes and how cellular 

pathways may be affected by the reduced expression of a particular protein. The potential 

therapeutic benefits of RNAi to interfere with cancer cell proliferation have become the 

basis for a number of innovative cancer treatments. Cerone et al. (2011) exposed HeLa 

cells to an siRNA library which contained siRNAs directed against a number of different 

kinase enzymes involved in regulating telomerase activity. The authors found that RNAi 

of the protein kinases MAPKAPK5 and ERK8 resulted in a significant decrease in 

telomerase mRNA levels in HeLa cells when compared to cells transfected with siRNA 

controls not directed against protein kinases (Cerone et al., 2011). Silencing of the enzyme 
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SRC through the siRNA screen resulted in a significant increase in telomerase mRNA, 

which suggests that the kinase normally has an inhibitory effect on telomerase expression. 

The RNA interference inhibition of kinases such as ERK8 resulted in telomere length 

reduction and DNA damage, which was detected by the presence of DNA damage proteins 

TRF1 and 53BP1 at the telomeres (Cerone et al., 2011). Telomerase activity was measured 

by RT-PCR using cells transfected with non-kinase directed siRNAs as a negative control. 

A positive control of cells transfected with siRNA directed against telomerase was also 

present.  

     The key role of tumor suppressor gene products such as p53 and p21 were discussed in 

an earlier section of the paper. One of the hallmarks of many different types of cancer cells 

is the mutational loss of these critical cell cycle control proteins. Yoon et al. (2011) 

investigated whether or not the microRNA miR-296 is able to regulate expression of p53 

and/or p21. Using luciferase reporter plasmids which contained either the 3’ UTR of p53 

or p21, the researchers were able to demonstrate that miR-296 only weakly associates with 

p53 mRNA. However, there is a very strong binding of miR-296 to the 3’ UTR of p21 

(Yoon et al., 2011). As a consequence, this binding would result in a large downregulation 

of p21 protein levels and thus a loss of the important tumor suppressor role of this protein. 

The stability of p21 mRNA is enhanced by the binding of HU proteins to the 3’ UTR. The 

miR-296 can bind to these HU sites instead and cause increased instability of the p21 

mRNA (Yoon et al., 2011). The result was observed in a variety of different cancer cell 

lines.  

     The success of RNAi modalities to limit cancer cell growth depends largely on an 

appropriate delivery system of the RNAi agent. In a 2012 study, Xia et al. tested the ability 
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of a modified polyethylenimine (PEI) delivery system to effectively deliver a siRNA 

directed against telomerase mRNA into hepatocelluar carcinoma HepG2 cells. The use of 

a cationic compound such as polyethylenimine does not elicit an immune response the way 

a viral delivery vector could, and has the ability of forming nanoscale particles with siRNA 

allowing for ease of transfection of target cells (Xia et al., 2012). The disadvantage of PEI 

is that it is highly cytotoxic as a result of low degradability. Xia et al. modified PEI by 

introducing a disulfide bond which would make it more easily degradable in cells and thus 

reduce its cytotoxicity. The researchers injected HepG2 tumor cells into four different 

groups of isogenic mice to induce tumor growth, with five mice in each group. Once a 

tumor had formed, one group of mice received injections of disulfide PEI/siRNA, one 

group received normal low molecular weight PEI/siRNA, another group received disulfide 

PEI/non-telomerase siRNA, and the fourth group remained untreated. A significant 

decrease in tumor volume over a seven day period was observed for the disulfide 

PEI/siRNA treated group compared to the untreated group. However, the reduction was 

fairly minimal and appeared to only slightly delay tumor growth (Xia et al., 2012). In a 

separate experiment, the authors were able to show that rats administered low doses of 

disulfide PEI (5 or 50 ug/kg) displayed no adverse effects on liver or kidney function 

compared to rats administered PBS as a control (Xia et al., 2012).  

     Gandellini et al. (2007) report success of siRNA treatment of prostate cancer cells. Two 

androgen independent prostate cancer cell lines, PC-3 and DU145, were transfected with 

fourteen different siRNAs. Two siRNAs were shown to produce a large decrease in 

telomerase activity in these cell lines when compared to the same cell lines transfected with 

non-telomerase directed siRNA. Exposure to just the transfection agent alone also did not 
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affect telomerase activity (Gandellini et al., 2007). To test whether the significant decrease 

in telomerase activity seen with the two particular siRNAs was actually a result of 

inhibition of telomerase mRNA translation and not some other mechanism, telomerase 

negative osteosarcoma cells were transfected with the siRNAs of interest. Osteosarcoma 

cell growth was not affected. The researchers were also able to demonstrate that the 

observed reduction in prostate cancer cell telomerase activity was not caused by activation 

of an interferon pathway as no increase in expression of an interferon response gene was 

observed in siRNA treated and control cells (Gandellini et al., 2007). Lund et al. (2008) 

investigated the effectiveness of a lentiviral vector system expressing a small hairpin RNA 

directed against a portion of the canine telomerase RNA template molecule. The authors 

state that, on the basis of their previous work, canine telomerase function and activity is 

more similar to human telomerase than is murine telomerase, and is thus a better model to 

study possible therapeutic effects in humans (Lund et al., 2008). Mice injected with canine 

hemangiosarcoma tumor cells were used in the study. The results suggest that RNAi 

directed against the canine telomerase RNA component is able to cause a rapid decrease in 

tumor volume and enhance apoptosis, but a population of tumor cells became resistant and 

began to grow through an alternative lengthening of telomeres mechanism (Lund et al., 

2008). The side effect has been documented in other studies and underscores the ability of 

anti-telomerase therapies to possibly induce alternative lengthening of telomeres in certain 

types of cancer cells.  

     Lastly, Uziel et al. (2010) report that miRNA expression can change as a function of 

telomere length. The researchers screened for approximately 900 different miRNAs in SK-

N-MC cells which had normal length telomeres, shortened telomeres due to telomerase 
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inhibition, and telomeres restored back to normal length with restoration of telomerase 

activity. The profile of miRNA expression changed in cells with shortened telomeres 

compared to the other two cell types. Most of the differentially expressed miRNAs were 

related to cell growth inhibition and/or apoptosis (Uziel et al., 2010). Micro RNAs could 

even be useful in interfering with the regulation of alternative splicing of the telomerase 

mRNA. Wong et al. (2013) have shown that the telomerase mRNA can be spliced in 

various ways, some of which result in nonfunctional enzyme. Indeed, the use of RNAi to 

prevent normal splicing of telomerase mRNA could represent a novel form of 

chemotherapy.  

1.2 The Role of Endocytosis in Cancer Cell Migration 

      One of the defining hallmarks of most cancers, besides unregulated cell proliferation 

and telomerase activity, is cell migration. A growing body of research is beginning to shed 

light on the central role that defective endocytosis plays in promoting cancer cell migration.  

Endocytosis is instrumental in a number of different tumorigenic processes ranging from 

receptor tyrosine kinase internalization to regulating cell membrane dynamics. Recently, 

the Rab family of small GTPases have been implicated in cancer cells as an important cause 

of the altered endocytosis that may lead to enhanced cell migration. Rab5 is of particular 

interest given its primary function in regulating the early endosome fusion and trafficking 

events that are necessary for cancer cell migration.  

     A significant body of evidence suggests that Rab5 mediated endocytosis plays a crucial 

role in the cellular processes that govern cancer cell migration. Endocytosis is a normal 

cellular process that involves the uptake or internalization of extracellular material and cell 

membrane components through the formation of endosomes. There are four primary 
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mechanisms by which endocytosis occurs: clathrin-mediated endocytosis, caveolae-

mediated endocytosis, clathrin and caveolin independent endocytosis, and 

macropinocytosis (Mosesson et al., 2008).  

1.2 A.    Modes of Endocytosis 

     Clathrin-mediated endocytosis is characterized by the uptake of activated plasma 

membrane receptors via the formation of clathrin coated pits- invaginations of the cell 

membrane covered in clathrin protein. The scission of clathrin coated vesicles (endosomes) 

from the membrane and subsequent endosome trafficking requires the action of numerous 

proteins such as the dynamin GTPases, AP2, and the Rab family of GTPases. Once 

internalized, these vesicles shed their clathrin coats and fuse with other tubule-vesicular 

compartments to form structures known as early endosomes that later give rise to a cargo 

sorting structure known as the multi-vesicular body (Mellman and Yarden, 2013). Rab 

proteins, in particular Rab5, are instrumental in the coordination of early endosome 

formation and fusion events as well as the sorting of internalized cellular cargo. The 

slightly acidic pH of early endosomes promotes the dissociation of ligands from their 

receptors (Mellman and Yarden, 2013). Internalized membrane receptors from the surface 

of the cell will be either routed to lysosomes for destruction or recycled back to the plasma 

membrane through the coordinated action of the endocytic machinery involving Rab 

proteins (Mosesson et al., 2008). Receptors destined for degradation in lysosomes are 

typically ubiquitinated (Mellman and Yarden, 2013).  

     Caveolin-mediated endocytosis occurs through a similar mechanism to that of clathrin-

mediated endocytosis with the exception of the formation caveolin protein containing, 

cholesterol rich lipid rafts from the cell membrane. These vesicles are then targeted to other 
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caveolin containing organelles termed caveosomes (Mosesson et al., 2008). Clathrin and 

caveolin independent endocytosis is poorly understood and may involve the uptake of 

glycosylphosphatidylinositol- anchored proteins from the plasma membrane. Finally, 

macropinocytosis is characterized by the bulk internalization of receptor tyrosine kinases 

through the Rab5 dependent formation of circular dorsal ruffles (Mosesson et al., 2008).  

1.2 B.    Rab5 and Endocytosis in Cancer Cell Migration 

     The role that endocytosis plays in tumorigenesis is becoming clearer. Multiple studies 

have shed light on the ability of the endocytic machinery to regulate a wide variety of 

cellular processes including signal transduction from activated receptors, cell morphology, 

cell junctions, and cell migration/invasion. Indeed, many cancers often display 

abnormalities in one or more of these endocytosis mediated events, and the essential role 

of Rab proteins in determining endosome identity as well as facilitating endosome fusion 

and transport has been an intense area of cancer biology research (Mendoza et al., 2014).  

     The Rab (Ras associated in brain) family of proteins belong to the Ras superfamily of 

small GTPases and more than 60 different Rab proteins have currently been identified. 

Like the Ras GTPases, the Rab GTPases are monomeric cytosolic proteins that act as 

molecular switches by alternating between an inactive GDP bound state and an active GTP 

bound state. The dissociation of GDP and binding of GTP is regulated by guanine 

nucleotide exchange factor (GEF) proteins while the hydrolysis of GTP to GDP is regulated 

by GTPase activating (GAP) proteins (Mendoza et al., 2014). Rab5 is particularly 

important for the fusion of early endosomes and the routing of internalized cellular cargo 

from these endosomes. Rab5 has also been implicated in cell migration through the 

regulation of actin remodeling of the cytoskeleton following receptor tyrosine kinase 



 

35 

 

activation by means of a mechanism involving integrin internalization and recycling 

(Subramani and Alahari, 2010).  

     Integrins are transmembrane glycoproteins that are comprised of heterodimers of α and 

β subunits and are major components of specialized plasma membrane regions known as 

focal adhesions. Focal adhesions are characterized by collections of various integrins and 

adaptor proteins that serve to link the cell to the surrounding extracellular matrix (ECM) 

(Subramani and Alahari, 2010). Integrins such as α5β1 bind to fibronectin in the ECM and 

the β1 integrin subunit is known to associate with activated Rab5 (Tang and Ng, 2009; 

Mendoza et al., 2014). The endocytosis mediated turnover of focal adhesions through the 

recycling of integrin complexes is a major driver of cancer cell migration (Mendoza et al., 

2014). In this focal adhesion model, growth factor induced cell migration consists of four 

key steps: formation of circular dorsal ruffles and lamellipodia, dissolution of focal 

adhesions at the rear of the cell, formation of new focal adhesions at the leading edge of 

the cell, and the 3D movement of the cell to a different location (Lanzanetti et al., 2004; 

Subramani and Alahari, 2010).  

     Growth factor stimulation of receptor tyrosine kinases promotes the activation of Rab5 

through GEFS such as Rin1 or Rabex5 and promotes the formation of invasive cell 

membrane protrusions known lamellipodia as well as the formation of circular dorsal 

ruffles in a Rab5 dependent manner. Internalized early endosomes containing activated 

receptors and integrin complexes are associated with active Rab5 which subsequently 

recruits other Rab and adaptor/effector proteins to facilitate the trafficking of endosomal 

cargo. The small GTPase Rac is one such protein recruited to Rab5 positive early 

endosomes. Rab5 activates the Rac GEF Tiam1 which in turn activates Rac and promotes 
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the remodeling of the actin cytoskeleton to form lamellipodia and circular dorsal ruffles 

(Zech and Machesky, 2008). Rabs 4 and 11 are also recruited to Rab5 positive early 

endosomes and facilitate the recycling of integrin complexes back to the plasma membrane 

as new focal adhesions are formed (Mendoza et al., 2014).   

     One of the early steps in the acquisition of a motile phenotype in epithelial cells is the 

loss of cell junctions that are responsible for maintaining epithelial cells in a polarized, 

growth arrested state. The cells of epithelial tissues are highly polarized meaning that they 

have distinct basal, lateral, and apical surfaces characterized by the specialized location of 

specific membrane proteins in these regions (Mosesson et al., 2008). The loss of junctional 

complexes such as tight junctions or adherens junctions along the basolateral surfaces of 

epithelial cells is often a precursor to cancer cell migration. Disruption of the endocytic 

machinery required to maintain tight junctions, for instance, typically involves mutations 

in the Par family of polarity genes as well as mutations in an atypical protein kinase C 

(aPKC) (Mosesson et al., 2008). As a consequence, tight junctional proteins are then 

abnormally targeted to lysosomes for degradation. The loss of E-cadherin from adherens 

junctions occurs through a similar mechanism involving mutation of the p120-Catenin 

protein that prevents E-cadherin endocytosis and degradation. Inactivation of p120-Catenin 

permits tyrosine phosphorylation of E-cadherin by Src which in turn promotes 

ubiquitination of E-cadherin by the Cbl-like ubiquitin ligase known as Hakai. The E-

cadherin is subsequently targeted to lysosomes for degradation as a result of these 

modifications (Mellman and Yarden, 2013).  

     The connection of Rab5 with cancer cell invasion and migration has been documented 

for a variety of different cancers. Igarashi et al. (2017) report that Rab5 overexpression in 
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pancreatic cancer samples correlated with increased lymphatic invasion and reduced 

expression of E-cadherin. A reversal of these oncogenic properties was observed with Rab5 

inactivation. Similarly, Zhao et al. (2010) observed that Rab5A was significantly 

overexpressed in ovarian cancer samples when compared to benign cysts; and breast cancer 

samples that overexpress Rab5A also display a strong tendency to metastasize to axillary 

lymph nodes (Yang et al., 2011). Additionally, hypoxia has been shown to cause the 

activation and translocation of Rab5 to focal adhesions as well as significantly enhance the 

migratory behavior of B16-F0 murine melanoma cells (Silva et al., 2016).  

     Recent evidence also suggests that Rab5A in breast cancer promotes the invasive 

remodeling of the extracellular matrix by stimulating a Rab4 dependent fast recycling of 

membrane type 1 matrix metalloproteinase (MT1-MMP) and β3 integrin (Frittoli et al., 

2014). The MT1-MMP has been shown to coimmunoprecipitate and colocalize with β1 

integrins at regions of intercellular contact such as focal adhesions (Tang and Ng, 2009). 

A similar study by Torres et al. (2009) reveals that caspase-8 expression increases cell 

migration in A549 lung cancer cells through the Rab5 dependent internalization and 

recycling of β1 integrins. Knockout of Rab5 inhibited the caspase-8 induced activation of 

Rac and decreased cell migration. Interestingly, in a study on non-small cell lung cancer, 

Liu et al. (2015) report that knockdown of the CMTM7 tumor suppressor gene results in 

reduced Rab5 activation and prolonged EGFR signaling- presumably as a consequence of 

reduced EGFR internalization.  

     The tumorigenic properties of Rab5 are intrinsically linked to its ability to influence 

signaling pathways through its association with specific effector proteins. Principal among 

these effectors are the lipid modifying enzymes known as phosphatidylinositol-3 kinases 
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(PI3Ks) (Chistoforidis et al., 1999). The PI3Ks are well known for their roles in signal 

transduction following receptor tyrosine kinase activation as well as membrane transport 

and cytoskeletal remodeling. Christoforidis et al. (1999) demonstrate that PI3Ks are 

recruited to Rab5 positive early endosomes and that their activity is required for Rab5 

mediated docking and fusion of early endosomes. The PI3Ks are recruited to early 

endosomes by active Rab5 and then modify endosomal membrane lipids in a manner 

specified by Rab5 to permit the recruitment of other Rab5 effector proteins. One such Rab5 

effector protein, EEA1, binds to the phosphatidylinositol lipids generated by PI3Ks and is 

necessary for endosome docking and fusion.  

     The signaling role of Rab5 in oncogenesis is further exemplified by the Rab5 mediated 

transport of APPL1 and APPL2 into the nucleus following growth factor stimulation. Both 

proteins are located on a specific population of Rab5 positive endosomes and APPL1 

interacts with chromatin remodeling proteins in the nucleus to promote cell proliferation 

(Miaczynska et al., 2004). Similar Rab5 mediated endosomal trafficking of the MUC1 

transmembrane glycoprotein has also been reported. MUC1 is frequently overexpressed in 

adenocarcinomas and its cytoplasmic tail has been implicated in tumor cell proliferation. 

Liu et al. (2008) report that overexpression of Rab5 in Chinese hamster ovary (CHO) cells 

results in the accumulation of MUC1 containing endosomes in the perinuclear region and 

that expression of the inactive Rab5 mutant (S34N) results in a more cytoplasmic 

distribution of MUC1.  

     Clearly, aberrant endocytosis has emerged as an important cause of tumorigenesis. Rab5 

mediated cancer cell migration as a function of altered endocytosis has been identified as 

a major contributor to tumor progression. Defective growth factor receptor internalization 
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and recycling, focal adhesion turnover, cell junction loss, and abnormal endosomal 

signaling have all been associated with the oncogenic capacity of Rab5. The significance 

of Rab5 mediated endocytosis to cancer cell development is clear, and future research into 

the key role that endocytosis plays in cancer biology will undoubtedly reveal novel 

therapeutic targets.   

1.3 The Mitogen Activated Protein Kinase Pathway and Cancer 

     Many cancerous cells display abnormalities in the signal transduction pathways 

responsible for responding to extracellular growth factors, or mitogens. As reviewed above, 

mutations that alter proteins involved in these types of pathways can lead to inappropriate 

or unregulated cell growth and therefore predispose the cell to becoming cancerous. 

Hanahan and Weinberg (2000) in a comprehensive review of the molecular hallmarks of 

cancer cells list growth factor self-sufficiency as one of the six necessary physiological 

changes needed to convert a normal cell into a malignant cell. The authors also suggest that 

malignancy is acquired through a series of successive mutations which fall under two broad 

categories- dominant gain of function oncogenic mutations and recessive loss of function 

tumor suppressor mutations.  

     Unlike normal cells which will only grow and divide in response to external growth 

signals, many cancer cells have acquired the ability to proliferate in the absence of 

extracellular mitogenic signals. The apparent autonomy is caused by three key factors: self-

production and stimulation by growth factors in an autocrine fashion, mutant growth factor 

cell surface receptors, and mutant intracellular signaling proteins (Hanahan and Weinberg, 

2000). It is this third category of deregulation that appears to be found ubiquitously in most 

tumors and to which mutants of the Ras/MAPK pathway fall under. The critical role of the 
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Ras/MAPK pathway in transducing growth signals to the interior of the cell and 

subsequently stimulating cell growth and proliferation is underscored by the fact that 

roughly one quarter of all human tumors contain mutant forms of Ras proteins (Hanahan 

and Weinberg, 2000). Therefore, more detailed discussion of the significance of the MAPK 

pathway to cancer development is warranted in an effort to convey a more comprehensive 

understanding of the tumorigenic process.  

1.3 A.    Signal Transduction through the MAPK Pathway    

     At this point it would be helpful to review the major steps of the RAS/MAPK pathway 

before proceeding to a more detailed consideration of the roles that downstream mediators 

of this widespread and critical cell signaling pathway play in cancer cell biology. The 

Ras/MAPK pathway is one of the principal means by which extracellular, mitogenic 

signals are transduced from the surface of the cell to the cell’s interior (Fang and 

Richardson, 2005). The response often culminates in the nucleus with the transcription and 

expression of target genes which regulate cellular proliferation, differentiation, and 

development (Seger and Krebs, 1995; Wang et al., 2002). Growth factors, such as 

epidermal growth factor or insulin-like growth factor I, represent a major class of mitogenic 

ligands which can initiate the Ras/MAPK pathway.  

     The binding of a particular growth factor to its transmembrane receptor (tyrosine kinase 

receptor) sets into motion a series of events which results in the activation of several 

different cytoplasmic protein kinases. Receptor activation by binding of a growth factor 

ligand induces dimerization followed by auto-transphosphorylation of specific tyrosine 

residues within the receptor. These phospho-tyrosine residues are then recognized and 

bound by an adapter protein such as Grb2 through its SH2 domains (Seger and Krebs, 
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1995). The small monomeric GTPase Ras is then activated through a guanine nucleotide 

exchange factor (GEF) protein known as Sos. Sos, in turn, is activated by the Grb2 adaptor 

protein. Activation of Ras through exchange of GDP for GTP then initiates the activation 

of a cascade of cytoplasmic serine-threonine protein kinases which include RAF1, MEK, 

and ultimately ERK (extracellular-signal regulated kinase). Each of these kinases is 

activated in sequential order by the protein kinase immediately preceding it in the pathway. 

Once phosphorylated and activated by MEK, ERK then proceeds to activate a number of 

cytoplasmic and nuclear proteins involved in regulating cell growth and proliferation. The 

regulation often occurs at the level of transcription. 

     One of the primary targets of activation by ERK are various types of transcription 

factors, including the E-twenty six (Ets) family of transcription factors as well as cMyc and 

cFos (Fang and Richardson, 2005). These transcription factors are potent stimulators of 

cellular proliferation (Seger and Krebs, 1995). Mut et al. (2011) provide evidence of the 

importance of the Ras/MAPK pathway in the activation of the E-twenty six like 

transcription factor 1 (Elk 1) in U138 glioblastoma multiforme cells. The researchers 

demonstrate that these cells have a high basal proliferative rate which can be reduced in 

the presence of specific MEK or ERK inhibitors. The authors hypothesize that inhibition 

of the Ras/MAPK pathway with these types of enzymatic inhibitors prevents the ultimate 

phosphorylation and activation of Elk 1, which in turn prevents the transcription of specific 

early cellular proliferation genes such as cFos. Activated Elk 1 exerts its effect in the 

nucleus by binding to the promoters of genes containing a serum response element (SRE) 

motif. The expression of a number of important cell cycle stimulatory genes, such as Egr1 

and cFos, can be stimulated by Elk 1. The results also indicate that stimulation with EGF 
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results in a corresponding increase in the proliferative rate, which is most likely mediated 

by Elk 1 (Mut et al., 2011). For example, knockdown of Elk 1 through the use of siRNA 

does not result in an increase in proliferation even after EGF stimulation in U138 cells. The 

results also suggest that the PI3K/Akt pathway plays an important role in the regulation of 

Elk 1 activity. Inhibitors of this pathway do not prevent the phosphorylation of either ERK 

or Elk 1 in the cytoplasm following EGF stimulation, but rather prevent the movement of 

these phosphorylated proteins from the cytoplasm into the nucleus (Mut et al., 2011). The 

step is obviously necessary to produce the full mitogenic response to EGF stimulation.  

     In an intriguing study examining the role of protein kinase D1 (PKD1) in MCF-7 

adenocarcinoma breast cancer cells, Karam et al. (2012) report that overexpression of 

PKD1 is associated with proliferation and various other aspects of tumorigenesis. When 

exposed to pharmacological inhibitors of PKD1, proliferation was reduced to levels 

measured in untreated control cells which do not overexpress PKD1. The result was further 

confirmed through the use of siRNA directed against PKD1, which produced a similar 

reduction in proliferation as measured by an MTT assay. A major finding of the study was 

that the level of phosphorylated ERK 1/2 was significantly higher in cells overexpressing 

PKD1 as compared to control cells not overexpressing the enzyme. The result was 

attributed to PKD1 overexpression since selective inhibition of the enzyme completely 

reversed the observed increase in ERK phosphorylation. Overexpression of PKD1, 

however, does not appear to affect levels of phosphorylated Akt. The amount of 

phosphorylated Akt was identical in both control cells and cells overexpressing PKD1, 

with or without exposure to PKD1 inhibitors (Karam et al., 2012). The investigators also 

report that inhibition of either MEK or ERK slowed the proliferation rate of MCF-7 cells 
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overexpressing PKD1 as well as inhibited anchorage independent growth. These effects 

were observed to be dose dependent, with increasing amounts of MEK/ERK inhibitors 

slowing both the growth and proliferative capacity of the MCF-7 cells to the point where 

they began to resemble the non-overexpression control cells with respect to growth and 

proliferation. The authors also conclude that cells overexpressing PKD1 entered into S 

phase more rapidly and had a reduced dependence on serum for stimulation of proliferation 

when compared to control cells (Karam et al., 2012).  

1.3 B.    Cancer and the MAPK Pathway 

     Given the central role of the Ras/MAPK pathway in the proliferative response of cells 

to growth signals, it is logical that abnormalities in any one of its molecular components 

could lead to the uncontrolled cellular division characteristic of so many different cancers. 

In a review article detailing the molecular mechanisms underlying colorectal cancer, Fang 

and Richardson (2005) discuss the significance of the Ras/MAPK pathway in promoting 

growth, proliferation, and tumorigenesis in intestinal epithelial cells. Indeed, the 

importance of abnormalities in the MAPK pathway in promoting tumorigenesis is 

highlighted by the fact that this pathway is deregulated in about 30% of all cancers (Fang 

and Richardson, 2005). Abnormal MAPK signaling in colorectal cancer typically begins 

at the surface of the cell with overexpression and activation of EGF receptors. Additionally, 

protein kinase C (PKC), when activated, can also facilitate the binding of GTP to Ras which 

ultimately leads to activation of the MAPK pathway.  

     Like many other types of cancers, the development of colorectal cancer is a multi-step 

process involving mutations in specific cell cycle regulatory or signaling genes. Mutations 

in Ras, specifically K-Ras, are known to be an early step in colorectal carcinogenesis along 
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with mutations in certain protein kinases such as BRAF (Fang and Richardson, 2005). 

Hyperactive MAPK signaling through EGFR overexpression or mutant protein kinases in 

turn leads to the activation of various transcription factors, as mentioned earlier, which 

promote cell growth and proliferation. Additionally, unusual MPAK signaling can also 

induce the expression of VEGF which aids in tumor invasiveness and metastasis by 

promoting angiogenesis. Invasiveness of colorectal cancer might also be linked to 

increased synthesis of matrix metalloproteinases such as MMP7, which has been associated 

with abnormal MAPK signaling (Fang and Richardson, 2005). Given the key oncogenic 

role of the Ras/MAPK pathway in a variety of cancers, it is no surprise that a number of 

MEK and ERK inhibitors are currently being tested as possible chemotherapeutic agents.  

1.3 C.    Rin1 as a MAPK Effector 

     Besides anomalous cell signaling through the Ras/MAPK pathway, there is a growing 

body of evidence which suggests that specific Ras interactor proteins such as Rin1 (Ras 

and Rab Interactor protein 1) might be critical in modulating the cell’s response to 

mitogenic signals (Wang et al., 2002). The ability of Rin1 to have a moderating effect on 

signal transduction through the Ras/MAPK pathway lies in its ability to be activated by 

Ras. In fact, Rin1 has been shown to compete directly with RAF1 for activation by Ras 

(Wang et al., 2002) and this competition has important implications for cancer biology 

research. For instance, could Rin1 be a useful target to help dampen or modify excessive 

signaling through the Ras/MAPK pathway in certain cancer cell lines? If so, could one then 

reduce the downstream proliferative response induced by the Ras/MAPK pathway as a 

result of growth factor stimulation? Before addressing these possibilities, it is necessary to 

first review the biochemical role of Rin1 in cells.  



 

45 

 

     Han et al. (1997) and Wang et al. (2002) studied the biochemical properties of Rin1 and 

report that Rin1 is an important downstream effector of activated Ras. Rin1 is able to bind 

to Ras through its Ras binding domain (RBD) which associates with an effector domain 

within Ras. Furthermore, biochemical analysis reveals that Rin1 has a high binding affinity 

for activated Ras and that it competes strongly with RAF1 for access to Ras. Molecular 

studies also indicate that Rin1 binds to 14-3-3 proteins in the cytoplasm and is able to 

interact with and be phosphorylated by the tyrosine kinase c-ABL.  

     The ability of Rin1 to bind to Ras lies in its carboxyl-terminal domain which contains a 

433 amino acid sequence (between residues 294 to 727) necessary for Ras binding (Han et 

al., 1997). Different Ras effector proteins, such as Rin1 and RAF1, can vary significantly 

in terms of their overall primary structure but often display a high degree of similarity in 

the regions required for Ras binding (Ras binding domains). The Ras binding domains of 

effector proteins typically interact with a short amino acid effector sequence within Ras 

itself, and this interaction is heavily dependent on Ras being in its activated GTP-bound 

state. For Rin1, the carboxyl-terminal domain (Rin1C) mediates binding to both GTP-Ras 

and to 14-3-3 proteins (Wang et al., 2002).  

     The affinity of Rin1 for Ras can be seen in experiments utilizing antibodies against Ras. 

For example, Rin1 is co-immunoprecipitated with an overly active mutant allele of H-Ras 

in NIH 3T3 cells when treated with a particular Ras antibody. When the same antibody is 

pre-attached to Ras, Rin1 is not co-immunoprecipitated. The use of antibodies which bind 

to the switch II region of Ras also prevent the binding of Rin1. Additionally, the effector 

binding domain within Ras itself is equally important in mediating the proper attachment 

of certain effector proteins to Ras (Han et al., 1997). The point is illustrated by the fact that 
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mutations in the Ras effector binding domain can selectively inhibit the binding of certain 

Ras effector proteins without affecting the binding of others. Rin1, for instance, can interact 

with a constitutively active mutant form of H-Ras (H-RasV12). However, when the mutant 

form of H-Ras acquires additional mutations at amino acid positions 35 or 40, Rin1 binding 

is completely inhibited. The position 35 mutation on the other hand does not interfere with 

RAF1 binding, while a mutation at position 37 permits Rin1 association but prevents RAF1 

binding (Han et al., 1997). The ability of full length Rin1 to interact with Ras is further 

highlighted by a variant form of Rin1 in which there is a 62 amino acid deletion. The 

naturally occurring truncated form of Rin1, known as Rin1 delta, is the result of alternative 

splicing of the Rin1 mRNA. Rin1 delta exhibits a much weaker binding affinity for Ras 

when compared to full length Rin1 (Han et al., 1997).  

     Besides interaction with Ras, the carboxyl-terminal domain of Rin1 also mediates 

binding to 14-3-3 proteins (Han et al., 1997; Wang et al., 2002). These small acidic proteins 

exist as multiple isoforms in the cytoplasm (epsilon, beta, and zeta) and have been shown 

to be involved in mitogenesis and malignant transformation of cells through their 

interactions with signaling proteins. Both RAF1 and Rin1 share the ability to bind to 14-3-

3 proteins via their Ras binding domains, and this binding typically results in the activation 

of RAF1 through a Ras-dependent mechanism that seems to enhance signal transduction 

functions (Wang et al., 2002). Since Rin1 competes directly with RAF1 for access to Ras, 

the binding of Rin1 to 14-3-3 proteins would reduce its potential to bind to Ras and thus 

allow for heightened signaling through the Ras/MPAK pathway. The binding of Rin1 to 

cytoplasmic 14-3-3 proteins would promote the oncogenic properties of cell growth and 

proliferation as a result of the increased access of RAF1 over Rin1 for activation by Ras. 
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Interestingly, deletion of the Ras binding domain within the carboxyl-terminal of Rin1 

prevents Rin1 from binding to all isoforms of 14-3-3 proteins, as does the 62 amino acid 

deletion in the naturally occurring Rin1delta (Wang et al., 2002).  

     The interaction of Rin1 with 14-3-3 proteins appears to be largely controlled by a serine 

residue at position 351 within the Ras binding domain. The serine residue is 

phosphorylated predominantly by protein kinase D and its phosphorylation is required for 

proper binding to 14-3-3 proteins (Wang et al., 2002). A mutation which substitutes alanine 

at this position blocks interaction with 14-3-3 proteins and results in an increased ability to 

suppress signaling through the Ras/MAPK pathway, presumably caused by an increased 

capacity to compete with RAF1 for access to Ras. The phosphorylation of serine 351 of 

Rin1 and subsequent attachment to 14-3-3 proteins may act as a suppression control 

mechanism in cells to unlink Rin1 from activated Ras by sequestering it in the cytoplasm 

(Wang et al., 2002).  

     An important point is raised here: in order for Rin1 to effectively compete with RAF1 

for access to Ras it must be in the proper subcellular location. Wild type Rin1 in its non-

phosphorylated state is weakly associated with the cell membrane and is in close proximity 

to interact with Ras, which is tightly associated with the plasma membrane. Also, the 

alanine substitution at position 351 in the mutant form of Rin1 allows for a significant shift 

to the plasma membrane which may help to explain its suppressive effect on Ras signaling 

(Wang et al., 2002). However, when phosphorylated by PKD, wild type Rin1 is confined 

to the cytoplasm bound to 14-3-3 proteins. The phosphorylation of Rin1 by PKD therefore 

reduces its capacity to compete with RAF1 for binding to Ras.  



 

48 

 

     The amino-terminal of Rin1, like the carboxyl-terminal, plays an important role in 

mediating cell signaling through its ability to bind to the tyrosine kinase c-ABL (ABL1). 

ABL tyrosine kinases are known to be involved in various cellular functions including 

differentiation, division, migration, and adhesion (Hu et al., 2005). Additionally, the 

amino-terminal of Rin1 contains an SH2 domain capable of interacting with 

phosphotyrosine residues on an activated receptor tyrosine kinase such as the EGFR 

(Barbieri et al., 2004). Rin1 interacts with c-ABL most likely through a proline rich 

sequence in its amino terminal and an SH3 domain in c-ABL (Han et al., 1997). Upon 

binding to c-ABL in vitro, Rin1 becomes tyrosine phosphorylated and can then 

subsequently bind to an SH2 domain within c-ABL. The interaction does not seem to affect 

the catalytic activity of the enzyme however, and studies have shown that Rin1 has very 

little interaction with c-ABL in vivo. This reduced interaction is caused in part by the 

different cellular locations of the two proteins; with c-ABL being confined mostly to the 

nucleus and Rin1 to the cytoplasm (Han et al., 1997).  

     One interesting exception to this is the oncogenic BCR/ABL fusion protein produced 

as a result of a translocation between chromosomes 9 and 22. The BCR/ABL is an 

unregulated tyrosine kinase which is localized primarily to the cytoplasm where it 

stimulates cellular proliferation. The BCR/ABL is therefore in the correct location to 

interact with Rin1 and, indeed, Rin1 is able to bind to BCR/ABL. Rin1 appears to 

accentuate the tumorigenic, transforming properties of BCR/ABL (Wang et al., 2002; Hu 

et al., 2005; Afar et al., 1997). Additionally, Hu et al. (2005) report that Rin1 is an activator 

of the ABL2 tyrosine kinase which is involved in the regulation of epithelial cell adhesion 

and migration. Specifically, Rin1 activation of ABL2 promotes phosphorylation of the 



 

49 

 

adaptor proteins CRK and CRKL. This phosphorylation in turn produces conformational 

changes in CRK and CRKL which influence cytoskeletal elements to inhibit cell motility. 

Cells deficient in Rin1 display reduced levels of phosphorylated CRKL and increased cell 

motility (Hu et al., 2005).  

     Clearly, the biochemical profile of Rin1 suggests that it potentially plays a key role in 

modulating signaling through the Ras/MAPK pathway given its ability to interact with 

multiple different effector proteins. The greatest capacity for Rin1 to moderate abnormal 

signaling, as detailed above, appears to lie in its ability to directly compete with RAF1 for 

access to Ras. The competition, in turn, could be a useful mechanism for dampening or 

attenuating signaling through the Ras/MAPK pathway by diverting the signal away from 

effector proteins downstream of Ras. On the contrary, elevated levels of Rin1 may be 

associated with increased tumorigenesis and lower survival as is reported by Wang et al. 

(2012) for non-small cell lung cancer. It should be noted that although Rin1 is thought to 

be expressed in most tissues, its expression is highest in brain tissues (Han et al., 1997). 

The differential level of Rin1 expression could have important implications for research 

when investigating Rin1 function in various tissues and/or cell lines.  

1.3 D.    Rin1 and Rab5 in the Context of the MAPK Pathway 

     Before delving any further into the important role that Rin1 plays in specific cancers, it 

will be useful to briefly review another significant function of Rin1 in most cells. Rin1, in 

addition to its ability to moderate mitogenic signaling through the Ras/MAPK pathway, 

also acts as a guanine nucleotide exchange factor (GEF) for the small monomeric GTPase 

known as Rab5 (Tall et al., 2001). The Rab proteins are a diverse group of proteins which 

belong to the Ras superfamily of small GTPases and play critical roles in regulating the 
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steps of endocytic vesicular transport. Specifically, Rab proteins regulate vesicular traffic 

from the plasma membrane by controlling cargo selection, vesicle formation, transport 

along the cytoskeleton, and fusion with intracellular target membranes (Stein et al., 2003; 

Hutagalung and Novick, 2011; Stenmark and Olkonnen, 2001). Certain Rab proteins also 

control the sorting of molecules for return to the plasma membrane or for degradation in 

lysosomes. The ability of Rab proteins to regulate the many complex steps of vesicular 

transport lies in their selective activation. There are approximately 60 different Rab 

proteins encoded in the human genome, each of which is selectively activated by binding 

GTP.  Once activated, a particular Rab protein serves as a scaffold for the attachment of 

various effector proteins which then subsequently direct the completion of a specific step 

in the endocytic pathway.  

     Rab5, which is activated by Rin1, has been shown to regulate vesicle budding and cargo 

selection from clathrin coated pits as well as early endosome fusion (Stein et al., 2003; 

Hutagalung and Novick, 2011; Stenmark and Olkonnen, 2001). Tall et al. (2001) report 

that Rin1 and Rab5 also play a crucial role in the receptor mediated endocytosis of 

epidermal growth factor receptor (EGFR) following stimulation by EGF. The receptor 

mediated endocytosis of EGFR occurs through a Ras mediated mechanism involving 

upstream activation of Rin1 by GTP-Ras and then subsequent activation of Rab5 by 

activated Rin1.  

     The pivotal integrative role of Rab proteins in signal transduction is further illustrated 

in a study by Barbieri et al. (2004) examining the role of Rab5 in EGFR mediated MAPK 

signal transduction. Rin1 interacts with Rab5 via its Vps9 domain which also contains the 

GEF activation function for Rab5. Galvis et al. (2009) have previously reported the key 
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function of the Vps9 domain of Rin1 in activating Rab5 through a series of mutational 

studies. Barbieri et al. (2004) demonstrate that a dominant negative mutant form of Rab5 

(Rab5:S34N) is capable of inhibiting activation of the MAPK pathway in mouse NR6 cells 

by preventing both the endocytosis and internalization of the EGFR. The inhibition is 

particular to the MAPK pathway and does not interfere with other EGF induced kinase 

pathways.  

     A similar inhibitory effect is observed with the overexpression of wild type full-length 

Rin1. On the other hand, however, expression of wild type Rab5 or the Rin1 delta splice 

variant leads to increased MAPK activity and increased cyclin D1 expression after EGF 

stimulation- resulting in heightened cellular proliferation. The authors suggest that Rab5 

activation is a key step in linking EGF stimulated endocytosis to signal transduction 

through the MAPK pathway (Barbieri et al., 2004). Although the exact biochemical link 

between Ras association and the Rab5 GEF activity of Rin1 is not entirely clear, the binding 

of Ras by Rin1 appears to strongly influence EGFR endocytosis.  

     In a manner similar to EGFR endocytosis, the internalization of insulin receptor 

following the binding of insulin may involve other steps including Rab5 activation by Rin1 

(Hunker et al., 2005). It is interesting to note that Rin1 sits at the intersection between cell 

signaling and receptor mediated endocytosis for mitogens such as EGF and insulin. The 

increased rate of receptor mediated endocytosis potentiated by Ras stimulation of the Rab5 

GEF activity of Rin1 may be an important negative feedback mechanism by which Ras can 

divert signaling away from downstream effectors through Rin1. In this model, an increased 

rate of receptor mediated endocytosis would favor quick removal of receptors from the 

plasma membrane followed by internalization and degradation (Hunker et al., 2005). The 
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end result would be an attenuation of mitogenic signal transduction much in the same way 

as can be achieved by the direct competition of Rin1 with RAF1 for access to Ras.  

     Having examined the biochemical properties of Rin1 and how it fits into the larger 

signal transduction machinery of the Ras/MAPK pathway, it would be useful to elaborate 

on the possible connection between Rin1 and specific downstream effectors of the 

Ras/MAPK pathway known to induce cellular proliferation. These downstream targets, 

while varied, include the Ets family of transcription factors mentioned earlier as well as the 

telomerase reverse transcriptase enzyme. It is intriguing to wonder if Rin1, given its ability 

to compete directly with RAF1 for access to Ras, could have any influence on the cellular 

proliferation associated with classical MAPK targets such as the Ets transcription factors 

and/or telomerase.  

     The signaling pathways that have been implicated in the stimulation of telomerase 

expression and activity usually involve the response to a mitogen such as EGF or IGF-1, 

and subsequent activation of a number of protein kinases belonging to the Ras/MAPK and 

PI3K/Akt pathways (Inui et al., 2002; Seimiya et al., 1999; Zhou et al., 2013). It is feasible 

then that Rin1 could potentially have an effect on telomerase expression given its role as a 

Ras effector molecule. If so, this raises the exciting idea of Rin1 as a potential therapeutic 

target in specific cancers. To appreciate the role of Rin1 in a therapeutic context, it is 

necessary to review what effect the regulation of the telomerase reverse transcriptase 

enzyme and the Ets family of transcription factors have on cellular proliferation.  

     In both normal and cancerous cells, Ras effector proteins such as Rin1 may be useful 

targets for modulation of signaling through the MAPK pathway. The detrimental effects of 

abnormalities in the Ras/MAPK pathway are well documented for a variety of different 
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cancers. Cancer, in the simplest sense, is a disease of the cell cycle and dissection of the 

complex molecular interactions which govern cancer cell growth and reproduction will 

ultimately shed light on instances where moderation of aberrant cell signaling may be 

possible. Rin1, a known Ras effector molecule, may provide an avenue for attenuation of 

signaling through the Ras/MAPK pathway. If so, it is intriguing to contemplate what effect 

molecules such as Rin1 could have on downstream targets of the MAPK pathway known 

to influence cellular proliferation. Telomerase, for example, is widely expressed in many 

cancers and has been heavily implicated in tumorigenesis. As a target of the Ras/MAPK 

pathway, it is interesting to speculate on a possible connection between telomerase 

expression and the modifying ability of a Ras effector such as Rin1.  

1.4 Specific Aims 

Aim I 

     Does the expression of Rin1 affect telomerase gene expression and enzymatic 

activity in breast cancer cells in response to growth factor stimulation, and is there a 

correlation with cellular proliferation? The first specific aim of the research focuses on 

examining the effect of Rin1 expression on telomerase gene expression and activity in 

normal breast epithelial cells as well as in tumorigenic, non-metastatic and metastatic 

breast cancer cells. The effect of Rin1 expression on cellular proliferation will also be 

examined. 

Aim II 

     Does the expression of different Rin1 constructs affect telomerase protein 

expression and enzymatic activity in breast cancer cells? The second specific aim of 

the research seeks to determine the effect of various Rin1 constructs on telomerase protein 
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expression and activity in a tumorigenic, metastatic breast cancer cell line. The cellular 

mechanism underlying the influence of Rin1 on telomerase protein expression and activity 

will also be examined. 

Aim III 

     Does the expression of Rin1 affect telomerase activity in other cancer cell lines? 

The third specific aim of the research evaluates the role of Rin1 on telomerase activity in 

different cancer cell lines, including human glioblastoma and melanoma cell lines upon 

growth factor stimulation. 
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Akt 

 

  

Protein kinase B; enzyme activated by PI3K and involved in a 

signal transduction pathway responsible for promoting cell 

growth, proliferation and survival.  

c-Abl 

  

Tyrosine kinase involved in various aspects of cell cycle 

regulation. 

c-Myc 

  

Transcription factor involved in promoting cell growth and 

proliferation. 

E2 Estradiol; hormone important in promoting cell proliferation. 

EGF 

  

Epidermal growth factor; growth factor that stimulates cell 

proliferation. 

EGFR 

  

Epidermal growth factor receptor; binds EGF and can activate the 

Ras/MAPK pathway. 

ER Estrogen receptor; binds estradiol. 

ERK 

 

  

Protein kinase of the MAPK pathway that is directly activated by 

MEK and translocates into the nucleus to activate various 

transcription factors. 

ETS2 

  

Transcription factor important in promoting telomerase gene 

expression. 

GAP 

  

GTPase activating protein; protein that promotes the hydrolysis 

of GTP on small, monomeric G-proteins 

GEF 

  

Guanine nucleotide exchange factor; protein that promotes the 

exchange of GDP for GTP on small, monomeric G-proteins. 

hTERT 

  

Human telomerase reverse transcriptase; enzyme responsible for 

extending telomeres in certain cell types during cell division. 

hTR 

  

Human telomerase RNA; RNA template that binds to hTERT and 

is necessary for its function. 

IGF-1 

  

Insulin-like growth factor I; growth factor that stimulates cell 

proliferation. 

IGF-1R 

  

Insulin-like growth factor I receptor; binds IGF-1 and can activate 

the Ras/MAPK pathway. 
MAPK 

  

Mitogen activated protein kinase pathway; signaling pathway activated 

by Ras in response to growth factor stimulation. 

MCF-12A Normal breast epithelial cell line.  

MCF7 Tumorigenic, non-invasive breast cancer cell line. 

MDA-MB 231 Tumorigenic, invasive breast cancer cell line. 

MEK 

  

Protein kinase of the MAPK pathway that is directly activated by 

RAF. 

miRNA 

  

microRNA; small RNA molecule involved in post-transcriptional 

downregulation of gene expression. 

PI3K 

 

  

Phosphoinositide 3-kinase; enzyme involved a signal transduction 

pathway responsible for promoting cell growth, proliferation and 

survival.  

Rab5 

  

Small, monomeric GTPase activated by Rin1 and involved in 

early endosome formation and vesicle trafficking. 



 

65 

 

 

RAF 

  

Protein kinase of the MAPK pathway that is directly activated by 

Ras. 

Ras 

  

Small, monomeric GTPase involved in signal transduction; 

activator of MAPK and PI3K pathways. 

Rin1 

 

  

  

Ras and Rab Interactor 1 protein or Ras Interference 1 protein; 

full length protein containing 783 amino acids and all functional 

domains (84 kDa). Involved in the formation and routing of early 

endosomes. 

Rin1 delta  

  

Natural splice variant of Rin1 containing a 62 amino acid deletion 

(residues 429-490, 77 kDa); reduced Ras binding. 

Rin1 Y561F 

  

Point mutation in Rin1 codon 561 converting tyrosine to 

phenylalanine (84 kDa); reduced Ras binding. 

RPTK 

 

Receptor protein tyrosine kinase; class of plasma membrane 

receptors that are activated by the binding of growth factors. 

Shelterin 

 

  

A complex of telomere binding proteins consisting of TRF1, 

TRF2, POT1, RAP1, TIN2, and TPP1; protects telomeres and can 

regulate telomerase activity. 

siRNA 

  

small interfering RNA; small RNA molecule involved in post-

transcriptional downregulation of gene expression. 

SP1 

  

Transcription factor important in promoting telomerase gene 

expression. 

STAT3 

  

Transcription factor important in promoting telomerase gene 

expression. 

Wnt/beta-catenin 

  

Proteins involved in regulating cell differentiation and 

proliferation. 

 

 

 

 

 

  

Table 1.1: Descriptions of key terms. 
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Figure 1.1: Diagram of the proposed model for the moderating influence of Rin1 on 

signaling through the Ras/MAPK pathway. The binding of a growth factor such as IGF-

1 to its receptor on the plasma membrane activates Ras and subsequently the MAPK 

pathway. Activation of the MAPK pathway in turn activates various nuclear 

transcription factors involved in telomerase expression. Rin1 competes with Raf for 

binding to activated Ras.  

 

Figure 1.2: Rin1 domains. SH2 binds phospho-tyrosine residues. Vps9 acts as a guanine 

nucleotide exchange factor for Rab5. RA binds to activated Ras. Proline rich binds to 

SH3 domains. 
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CHAPTER 2 

The Effect of Rin1 on Cellular Proliferation as well as on Telomerase Gene 

Expression and Activity in Breast Cancer Cells 

2.1 Introduction 

     Breast cancer is the most common cause of cancer in women and is the second most 

common cause of cancer-related mortality among women. Roughly 20% of all breast 

cancer cases are caused by triple negative breast cancers that are characterized by a loss of 

the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 

2 (HER-2 or ERBB2) (Ayub et al., 2015).  The significant tumorigenic role that growth 

factor receptors play in the development of many types of cancers has been widely 

reported, and it is especially true for breast cancer carcinogenesis. A large body of evidence 

supports the involvement of receptor protein tyrosine kinases (RPTKs), such as the insulin-

like growth factor 1 receptor (IGF-1R) and the epidermal growth factor receptor (EGFR), 

in the development of many forms of breast cancer. Of equal importance, is the 

involvement of the steroid hormone estrogen receptor (ER) in tumorigenesis. The role of 

the estrogen receptor in the formation of breast cancer is also widely documented. In fact, 

there is a growing body of research that indicates that cooperativity between RPTKs and 

the estrogen receptor may exist and is essential for the development of the malignant 

phenotype.  

     One of the molecular hallmarks associated with invasive breast cancer is overexpression 

of the insulin-like growth factor 1 receptor. Upregulation of the IGF-1R and its ligand 

binding partners is one of the principal mechanisms by which oncogenesis occurs in breast 

epithelial cells. The IGF1-R is a hetero-tetrameric transmembrane protein that is 
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structurally similar to the insulin receptor (IR). It is initially synthesized as a pro-receptor 

that is cleaved into α2β2 subunits before insertion into the cell membrane (Riedemann et 

al., 2007). When bound to the IGF-1 ligand, the receptor will undergo a conformational 

change to form a catalytically active dimer that is cross-phosphorylated on specific tyrosine 

residues located in the cytoplasmic C-terminal domains of the subunits (Verbeek et al., 

1998).  Stimulation of the EGF receptor by epidermal growth factor occurs in an almost 

identical manner.  

     Mitogenic signals are transduced to the interior of the cell via receptor mediated 

phosphorylation of adaptor proteins that bind the receptor phospho-tyrosine residues. The 

insulin receptor substrate 1 (IRS-1) and Src homology collagen (Shc) proteins typically 

associate with the activated IGF-1 receptor to become phosphorylated and then relay the 

growth signal to two primary intracellular signaling cascades: the PI3K/Akt pathway and 

the Ras/MAPK pathway (Mawson et al., 2004). Phosphatidyl inositol 3 kinase (PI3K) 

commonly binds to and is activated by phospho-IRS-1, and in turn will subsequently 

activate protein kinase B (Akt). Phosphorylated Shc will form a complex with the 

Grb2/SOS adaptor proteins to activate p21/Ras and ultimately the MAPK pathway. IGF-1 

induction of the Ras/MAPK pathway leads to transcriptionally enhanced expression of 

genes that promote cellular proliferation while activation of the PI3K/Akt pathway is 

strongly related to cellular survival (Lu et al., 2003). The authors also note that 

overexpression of the human epidermal growth factor 2 receptor in MCF-7 breast cancer 

cells can attenuate IGF-1 induced MAPK signaling by decreasing the levels of 

phosphorylated Shc.  



 

69 

 

     The reliance of most breast cancers on IGF-1 induced signaling for proliferation and 

survival is highlighted by the fact that the epidermal growth factor receptor cannot 

compensate for loss of IGF-1 signaling caused by the IGF-1R knockout. Riedemann et al. 

(2007) demonstrated that IGF-1R knockout in the non-invasive MCF-7 breast cancer cell 

line resulted in increased phosphorylation of EGFR and its effectors (JNK, extracellular-

signal regulated kinases, STAT5), but that these cells were most sensitive to IGF-1R loss. 

Dual knockout of IGF-1R and EGFR resulted in the same level of clonogenic survival as 

IGF-1R knockout alone. Resistance to IGF-1R loss however can be conferred by the action 

of the insulin receptor (IR) given the high degree of homology between the two receptors, 

and the fact that IR levels are often elevated in many cancers. The IGF-1R and IR are 

highly selective in their affinities for their respective ligands, IGF-1 and insulin. However, 

IGF-II can bind to both the IGF-1R as well as a natural splice variant of the IR known as 

IR-A. Therefore, the IR can act as an additional receptor for the proliferative signaling of 

IGF-II even if IGF-1R levels are decreased (Ulanet et al., 2009; Malaguarnera and Belfiore, 

2011). 

     The highly aggressive and invasive nature of most triple negative breast cancers and 

their resistance to traditional hormonal therapies/HER-2 inhibition has driven the need to 

discover selective small inhibitor molecules for IGF-1R. The approach has been difficult 

however given that many of these small inhibitors also interfere with function of the insulin 

receptor in normal tissues. Mukohara et al. (2009) have shown that the small IGF-1R 

inhibitor NVP-AEW541 was able to decrease levels of phosphorylated IGF-1R while also 

decreasing levels of phospho-Akt by disrupting the PI3K/IRS-1 complex. The effect of the 

inhibitor was strongest in an MCF-7 cell line that expressed high levels of IRS-1 but was 
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less pronounced in the triple negative MDA-MB 231 cell line. On the other hand, Ayub et 

al. (2015) were able to demonstrate that dual inhibition of IGF-1R with NVP-AEW541 and 

another small inhibitor of either PI3K, mTORC, or MEK was able to reduce the 

phosphorylation of Akt and arrest the cell cycle at the G1 phase in MDA-MB 231 breast 

cancer cells.  

     The key strategy to finding effective treatments for breast cancers is to understand the 

molecular mechanisms that govern their proliferation, migration, and invasive behavior. 

Badache and Hynes (2001) report that Interleukin-6 may play a pivotal role in the migration 

of T47D breast cancer cells. An IL-6 treatment of T47D cells resulted in the activation of 

both the Ras/MAPK and PI3K/Akt pathways, and a subsequent increase in cell migration. 

The effect was abolished by treatment of cells with inhibitors of these pathways. The 

activation of the IL-6 receptor by IL-6 resulted in the recruitment and phosphorylation of 

the SHP-2 and Gab1 proteins- which in turn enhanced signaling through the MAPK and 

PI3K pathways. Interestingly, SHP-2 and Gab1 are also associated constitutively with the 

active EGFR and this may provide a cooperative link between the actions of these two 

receptors (Badache and Hynes, 2001). A similar study by Park et al. (2013) revealed that 

IL-32β stimulation of MDA-MB 231 breast cancer cells increased vascular endothelial 

growth factor (VEGF) secretion by these cells through activation of STAT3, the outcome 

of which was heightened migration and invasion.  

     Elevated migration and invasiveness of breast cancer cells is required for metastasis. 

Metastasis of breast cancer cells to lymph nodes is common and occurs primarily by 

VEGF-C induced lymph-angiogenesis. Zhu et al. (2011) treated MDA-MB 231 cells with 

varying concentrations of IGF-1 and noticed that VEGF-C secretion by these breast cancer 
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cells increased in a dose dependent manner up to a concentration of 400 ng/mL. The VEGF-

C secretion following IGF-1 stimulation was found to be mediated by both the PI3K/Akt 

and MAPK pathways. Inhibition of Akt abolished the IGF-1 induced expression of VEGF-

C while ERK inhibition reduced it. EGF induced migration and proliferation of MCF-7 

cells has also been linked to sphingosine kinase I activation. Stimulation of these cells with 

EGF resulted in the activation and translocation of the enzyme to the plasma membrane 

where it phosphorylates membrane sphingolipids. Specific G protein-coupled receptors 

associated with the cell membrane then bind the phosphorylated sphingolipids and regulate 

cellular processes such as migration and proliferation (Sarkar et al., 2005). The Src family 

of kinases have also been implicated as important regulators of proliferation, migration, 

and invasiveness in MDA-MB 231 cells in response to growth factor stimulation of various 

RPTKs and cytokine receptors (Sanchez-Bailon et al., 2012). Additionally, exposure to the 

heavy metal cadmium (Cd) has also been shown to stimulate MAPK signaling and 

proliferation in MCF-7 cells (Song et al., 2015).  

     The migratory behavior of metastatic breast cancer cells is often driven by chemotaxis 

towards growth factors and changes in the extracellular matrix (ECM). Price et al. (1999) 

investigated the chemotaxis of MDA-MB 231 cells towards varying concentrations of EGF 

in the environment of the cells. The directional motility of the cells toward EGF was highest 

at an EGF concentration of 10 ng/mL, and the chemotactic response could be inhibited to 

baseline levels through the addition of specific EGFR inhibitors. The attachment of cells 

to the extracellular matrix often occurs within areas known as focal adhesions. These 

regions consist of large protein complexes in which the cytoskeleton of the cell, through 

transmembrane proteins such as integrins, connects to the extracellular matrix. These focal 
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adhesions are critical for the transmission of mechanical forces and regulatory signals 

between the cell and the ECM. A study by Taliaferro-Smith et al. (2015) revealed that the 

invasiveness of MDA-MB 231 breast cancer cells is related to the activity of the 

cytoplasmic focal adhesion kinase (FAK) enzyme. Inhibition of FAK  by siRNA treatment 

resulted in decreased levels of total and active IFG-1R as well as reduced invasiveness.  

     Metastasis of cancer cells is often preceded by a series of alterations to both cellular 

morphology and the ECM known as the epithelial to mesenchymal transition (EMT). The 

epithelial to mesenchymal transition is typically characterized by enhanced cell migration 

and reduced cell adhesion to the ECM. Walsh and Damjanovski (2011) studied the role 

that transforming growth factor-β (TGF-β) plays in mediating the epithelial to 

mesenchymal transition in MCF-7 breast cancer cells. The TGF-β has been implicated in 

tumorigenesis given its ability to regulate cellular proliferation and differentiation. MCF-

7 cells were treated with 100 nM of IGF-1 and then assayed for metalloproteinase activity. 

A 2.9 fold increase in metalloproteinase activity was observed when compared to control 

cells, and treatment with either MAPK or PI3K inhibitors could reduce this activity by as 

much as 29% to 34% respectively. When treated with TGF-β immediately following IGF-

1 stimulation, the cells began to assume a more fibroblast-like morphology usually 

associated with the EMT.  

     The ability of cancer cells to become mobile and invade new tissues is largely dependent 

upon morphological changes mediated by rearrangement of the actin cytoskeleton. Mezi et 

al. (2012) report that cortactin is necessary in the regulation of membrane dynamics and 

for the formation of membrane ruffles and lamellipodia, structures frequently associated 

with cell migration. The MDA-MB 231 and MCF-7 cells exhibited increased membrane 
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ruffling and lamellipodia formation following stimulation with either EGF or IGF-1. 

Phosphorylation of cortactin by Src and its localization to focal adhesion regions of the 

plasma membrane was observed to be time dependent in both breast cancer cell lines. 

     Additionally, Morimura and Takahashi (2011) report that stathmin and the small 

GTPase Rac1 may also help mediate invasiveness in MDA-MB 231 breast cancer cells. 

The metastatic potential of MCF-7 cells appears to be regulated to an extent by a 

transmembrane glycoprotein known as Mucin 1 (MUC1). The MUC1 is frequently 

overexpressed in these cells but with reduced levels of glycosylation, and it is abnormally 

located on the basal side of the cell membrane in close proximity to the ECM. In this 

position, aberrant MUC1 is then able to interact with an ECM protein known as ICAM-1. 

The interaction facilitates the attachment of migratory cancer cells to blood vessel walls 

and stimulates Src activation (Liao et al., 2014). IGF-1, EGF, and estradiol (E2) have also 

been shown to promote MCF-7 breast cancer cell attachment to the EMC glycoprotein 

fibronectin. High levels of fibronectin in the EMC have been correlated with increased 

migration and invasiveness in these cells (Voudouri et al., 2016).  

     The metastasis of breast cancer cells to other sites is commonly driven by chemotaxis 

towards locations that will provide a suitable environment for new tumor formation. A 

study by Helbig et al. (2003) reveals that NF-κB enhances expression of the chemokine 

receptor CXCR4. A ligand for this receptor, stromal derived factor-1α, is abundantly 

expressed at common metastatic sites and is a powerful attractant for migratory MDA-MB 

231 breast cancer cells. Osseous tissue is a typical metastatic site for MDA-MB 231 cells 

as it provides a conducive environment for colonization and cellular proliferation. Once in 

bone tissue, these cells begin to secrete various factors such as parathyroid hormone-related 
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peptide that in turn stimulate osteoclast activity. Increased bone resorption by osteoclasts 

results in an elevated release of growth factors, such as TGF-β and IGFs, from the bone 

matrix. A harmful cycle of cancer cell proliferation and bone destruction then ensues (Son 

et al., 2010) 

     There is a growing body of evidence to support the idea that the development of breast 

cancer may involve the cooperative action of growth factors, such as EGF or IGF-1, and 

estrogen. When dually stimulated by both IGF-1 and estrogen, Mawson et al. (2004) 

observed that MCF-7 breast cancer cells quickly progressed into the S phase of the cell 

cycle. The progression was accompanied by an increase in the levels of c-Myc and cyclin 

D1. Estrogen induced the expression of both c-Myc and cyclin D1 while IGF-1 primarily 

induced the expression of cyclin D1 only. Thus, the differential regulation of c-Myc and 

cyclin D1 expression by estrogen and IGF-1 may represent a point of cooperativity in the 

regulation of breast cancer cell proliferation (Mawson et al., 2004).  

     A 2009 study by Santen et al. sheds further light on the cooperative effect of IGF-1R 

and estrogen stimulation on MAPK activity in MCF-7 cells. Estradiol (E2) stimulation of 

these cells resulted in a rapid phosphorylation of both IGF-1R and EGFR. Activation of 

IGF-1R consequently stimulated matrix metalloproteinase activity, and in turn the release 

of heparin-binding EGF (Hb-EGF) from its attachment to the plasma membrane. The 

subsequent binding of Hb-EGF to EGFR was then observed to increase MAPK activation 

and cell proliferation. Similarly, Fox et al. (2009) report that STAT5 is phosphorylated in 

the cytoplasm in response to E2 or EGF stimulation and then translocates to the nucleus 

where it regulates transcription of multiple proliferative genes. The proliferative response 

to E2 can be abolished by inhibition of either EGFR, Src, or STAT5.  
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     The importance of the estrogen receptor (ER) in the development of breast cancer is 

underscored by the fact the roughly 70% of all breast cancer cases exhibit abnormally high 

levels of ER. Estrogen exerts its proliferative effect by interacting with two predominantly 

nuclear receptors (ERα and ERβ) as well as with a newly discovered G protein-coupled 

receptor known as GPR30. ERα, because of its increased stability and availability, appears 

to play a greater role in the proliferative response of breast cancer cells to estrogen than 

does ERβ (Tecalco-Cruz and Ramirez-Jarquin, 2016). Zhang et al. (2014) for instance 

found that ERα36 is closely associated with the plasma membrane and is capable of 

inducing rapid MAPK signaling in MCF-7 cells through the involvement of several 

proteins including matrix metalloproteinases and Hb-EFG.  

     The expression of ERβ, on the other hand, tends to be lower in breast cancer cells than 

in normal breast tissue. Lazennec et al. (2001) were able to demonstrate that overexpression 

of ERβ in MDA-MB 231 cells could reduce ER stimulated proliferation and migration by 

as much as 40% when compared to control. Besides the estrogen receptor, the G protein-

coupled receptor GPR30 has also recently been shown to mediate estrogen induced 

signaling. Prakash-Pandey et al. (2009) report that connective tissue growth factor (CTGF) 

expression is strongly induced by E2 stimulation of SKBr3 breast cancer cells that contain 

GPR30 but lack both ERα and ERβ. A two-fold increase in migration was subsequently 

observed following E2 stimulation and this effect could be greatly diminished by either 

GPR30 or CTGF inhibition.  

     In summary, the important role that growth factor receptors play in breast cancer 

tumorigenesis is clear. Abnormalities in these receptors, as well as the estrogen receptor, 

are often significant contributors to the acquisition of the cancerous phenotype- as are 
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abnormalities in the signaling pathways that they regulate. The enhanced cell proliferation 

and migration commonly observed in most breast cancers is therefore intimately tied to the 

activity of mitogenic signaling pathways and their associated receptors. 

2.2 Results 

     Lentiviral vectors encoding GFP and Rin1 were designed using the VectorBuilder 

online platform (https://en.vectorbuilder.com/). These lentiviral vectors (Figure 2.1) were 

used in the creation of the Rin1 and GFP expressing MDA-MB 231 and MCF-7 breast 

cancer cell lines as described in 2.4, Creation of Cell Lines. Additionally, MCF-12A 

normal breast epithelial cell lines expressing GFP and Rin1 were also created in the same 

manner. Confirmation of stable Rin1 and GFP expression was accomplished by Western 

blotting and immunofluorescence (IF). Western blotting (Figure 2.3) verified the 

expression of GFP and Rin1 in the respective MDA-MB 231 cell lines. A light micrograph 

image (Figure 2.2, B.) of the MDA-MB 231 Rin1 cell line reveals a rounded, clumped 

morphology and a generally slower growth pattern for these cells. A confocal micrograph 

image (Figure 2.2, A.) indicates the presence of Rin1 in the Rin1 virally transduced MDA-

MB 231 cell line. The spatial distribution of Rin1 throughout the MDA-MB 231 Rin1 cells 

is also evident from the confocal micrograph image (Figure 2.2, A.). Rin1 appears to be 

more concentrated near the plasma membrane.   

     A baseline experiment to assess the proliferative response of MDA-MB 231 cells to 

culture media containing serum (10% FBS) was conducted to establish the normal 

proliferative capacity of unaltered, non-virally transduced MDA-MB 231 breast cancer 

cells (Figure 2.4). Three different concentrations of 5.0 x 104, 1.0 x 105, and 2.0 x 105 

cells/mL were utilized, and each experiment was repeated in triplicate. When exposed to 

https://en.vectorbuilder.com/
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serum, all three cell concentrations resulted in an increase in proliferation as measured by 

the MTT assay. However, only concentrations of 1.0 x 105 and 2.0 x 105 cells/mL displayed 

a statistically significant increase in cellular proliferation when compared to a 

corresponding serum free control group (p <0.05, Student’s t-test). A 22% increase in 

proliferation over the serum free treatment group was observed for a cell concentration of 

5.0 x 104 cells/mL, while concentrations of 1.0 x 105 and 2.0 x 105 cells/mL resulted in 

increases of approximately 40% and 83%. These results demonstrate the effect of cell 

concentration on serum induced cellular proliferation in the MDA-MB 231cell line. 

Regression analysis (Figure 2.5) shows that the linear increase in cellular proliferation as 

a function of cell concentration is statistically significant for the serum treated groups (p 

<0.05). 

     The MDA-MB 231 cells expressing Rin1 displayed reduced levels of cellular 

proliferation across a range of IGF-1 concentrations tested when compared to control cells 

expressing GFP (Figure 2.6). The MDA-MB 231 GFP cells exhibited increases in cellular 

proliferation over unstimulated cells ranging from 47% for treatment with 20 ng/mL of 

IGF-1 to 80% for treatment with 5 ng/mL of IGF-1. Conversely, the range of increase in 

cellular proliferation for the MDA-MB 231 Rin1 cells was much lower- ranging from 6% 

for treatment with 100 ng/mL of IGF-1 to only 29% for treatment with 20 ng/mL of IGF-

1. These data suggest a suppressive role of Rin1 on cellular proliferation following IGF-1 

stimulation.   

     In an effort to validate these findings, additional experimentation to determine the effect 

of Rin1 expression on cellular proliferation in MDA-MB 231, MCF-12A, and MCF7 cells 

was performed by stimulating cells with an IGF-1 concentration of 100 ng/mL for 24 hours. 
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IGF-1 stimulation resulted in a significant increase in proliferation of 56% over serum 

starved cells for the MDA-MB 231 non-virally transduced cell line (Figure 2.7). Similarly, 

a significant increase in cell proliferation of 65% in response to IGF-1 exposure was noted 

for the MDA-MB 231 GFP cell line (Figure 2.8). However, the MDA-MB 231 Rin1 

expressing cell line displayed a significant increase in cellular proliferation of only 18% 

when compared to the corresponding serum free group (Figure 2.9). The serum starved 

condition resulted in roughly equal low levels of proliferation for all three MDA-MB 231 

cell lines examined and was set equal to 1 for analysis purposes. All experiments were 

conducted in triplicate using a concentration of 2.0 x 105 cells/mL.   

     In terms of cell viability, all three MDA-MB 231 cell lines tested showed no significant 

increases in cell viability in response to IGF-1 stimulation when compared to the 

corresponding serum free groups. However, similar to cellular proliferation, the MDA-MB 

231 Rin1 expressing cell line exhibited the lowest level of cell viability (24%) when 

stimulated by IGF-1. All viability experiments were conducted in triplicate using a 

concentration of 2.0 x 105 cells/mL. 

     A serial dilution of a known telomerase positive HeLa cell extract was performed in 

order to demonstrate the ability of the telomeric repeat amplification protocol (TRAP) 

qPCR assay to accurately measure telomerase activity in diluted cell extract samples with 

different concentrations of telomerase (Figure 2.11). As the dilution factor increased by 

factors of 10 from 10X to 100X to 1,000X, the average cycle threshold (Ct) value increased 

from 26.28 for the undiluted sample to 26.78 for the 1,000X diluted sample. The 10X and 

100X dilutions produced Ct values of 26.50 and 26.70. The highest Ct value of 27.02 was 

observed for the buffer only sample containing no cell extract any only the assay reagents 
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(Table 2.1). The PAGE gel analysis for the undiluted telomerase positive sample reveals 

the characteristic ladder of DNA bands consistent with the presence of telomerase activity 

(Figure 2.10). The assay for each dilution factor was performed in duplicate. 

     A reverse transcriptase qPCR (RT-qPCR) assay was performed to assess the effect of 

IGF-1 stimulation (100 ng/mL for 24 hours) on telomerase gene expression in the MDA-

MB 231 Rin1 and GFP cell lines (Figure 2.13). Telomerase gene expression for all cell 

samples was normalized to that of the GAPDH housekeeping gene using the ΔCt method. 

A normalized average telomerase gene expression Ct value of 10.87 in response to IGF-1 

stimulation was found for the MDA-MB 231 cells overexpressing Rin1 (Table 2.3). The 

corresponding IGF-1 stimulated GFP control cells displayed a normalized average 

telomerase gene expression Ct value of 10.74 (Table 2.3). A 1.09 fold decrease in 

telomerase gene expression was observed for the cells overexpressing Rin1 when 

compared to the GFP expressing cells (Table 2.3). The fold change in telomerase gene 

expression was calculated using the ΔΔCt method where fold change is equal to 2-ΔΔCt. The 

ΔCt is the difference between the average sample Ct for a gene of interest and that of a 

reference or housekeeping gene. The ΔΔCt, therefore, is the difference in ΔCt values for a 

sample of interest and that of a particular reference sample. All samples were assayed in 

duplicate. The presence and specific amplification of GAPDH and telomerase qPCR 

products was confirmed through PAGE gel analysis (Figure 2.13) and melt curve analysis. 

     A qPCR telomerase activity assay (as described in 2.4, Telomerase Activity Assay) was 

performed to determine the effect of Rin1 on telomerase activity following IGF-1 

stimulation with 100 ng/mL for 24 hours (Table 2.2). Telomerase activity was assessed in 

both the MDA-MB 231 Rin1 and GFP cell lines as well as in telomerase positive and 
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negative controls. The MDA-MB 231 cell samples expressing Rin1 resulted in an average 

Ct value of 21.14 following IGF-1 stimulation while the average Ct value of the 

corresponding GFP cell samples was 20.49 (Table 2.2). A 1.56 fold decrease in telomerase 

activity was observed for the cells overexpressing Rin1 when compared to the activity of 

the reference GFP cells (Table 2.2). Fold change was calculated according to the ΔΔCt 

method. The lowest average Ct value was observed for the HeLa cell telomerase positive 

control while the heat treated negative control and buffer only samples produced average 

Ct values of 20.16 and 20.23 respectively (Table 2.2). The qPCR amplification of the 

TRAP products was confirmed by PAGE gel analysis (Figure 2.12). All samples were 

assayed in duplicate.  

     Cellular proliferation and viability as well as telomerase activity of normal, non-

tumorigenic MCF-12A breast epithelial cells were also assayed following IGF-1 exposure. 

IGF-1 stimulation of non-transduced MCF-12A cells with 100 ng/mL for 24 hours resulted 

in an insignificant decrease in cellular proliferation of 20% over serum starved cells (Figure 

2.15). On the other hand, an insignificant increase in cell proliferation of 41% in response 

to IGF-1 exposure was noted for the MCF-12A Rin1 cell line (Figure 2.17). The MCF-12A 

GFP expressing cells displayed an insignificant increase in proliferation following IGF-1 

exposure of 28% when compared to the corresponding serum free group (Figure 2.16). The 

serum starved condition resulted in roughly equal low levels of cellular proliferation for all 

three MCF-12A cell lines examined and this value was set equal to 1 for analysis purposes. 

All cellular proliferation experiments were conducted in triplicate using a concentration of 

2.0 x 105 cells/mL.   



 

81 

 

     All three MCF-12A cell lines tested showed no significant increases in cell viability in 

response to IGF-1 stimulation when compared to the corresponding serum free groups. 

However, when compared as a whole, the MCF-12A Rin1 cell line exhibited the lowest 

level of cell viability (11%) when stimulated by IGF-1. All cell viability experiments were 

conducted in triplicate using a concentration of 2.0 x 105 cells/mL. 

     To assess telomerase activity, MCF-12A cells expressing Rin1 or GFP were serum 

starved for 24 hours and then treated with 100 ng/mL of IGF-1 for an additional 24 hours. 

The IGF-1 treated cell samples and corresponding untreated samples were then lysed and 

prepared for the TRAP qPCR telomerase activity assay as described in 2.4, Telomerase 

Activity Assay. The MCF-12A cell samples expressing Rin1 resulted in an average Ct value 

of 25.76 following IGF-1 stimulation while the average Ct value of the corresponding GFP 

cell samples was 25.92 (Table 2.4). A 1.1 fold increase in telomerase activity was observed 

for the cells overexpressing Rin1 when compared to the activity of the control GFP cells 

(Table 2.4). Fold change was calculated according to the ΔΔCt method. The heat treated 

negative control and buffer only samples produced average Ct values of 25.70 and 26.06 

respectively (Table 2.4).  All samples were assayed in duplicate.  

     A reverse transcriptase qPCR (RT-qPCR) assay was performed to assess the effect of 

IGF-1 stimulation (100 ng/mL for 24 hours) on telomerase gene expression in the MCF-

12A Rin1 and GFP cell lines (Table 2.5). Telomerase gene expression for all cell samples 

was normalized to that of the GAPDH housekeeping gene using the ΔCt method. A 

normalized telomerase gene expression Ct value of 5.58 in response to IGF-1 stimulation 

was observed for the MCF-12A cells overexpressing Rin1 (Table 2.5). The corresponding 

IGF-1 stimulated GFP control cells displayed a normalized telomerase gene expression Ct 
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value of 4.23 (Table 2.5). A 2.55 fold decrease in telomerase gene expression was observed 

for the cells overexpressing Rin1 when compared to the GFP expressing cells (Table 2.5). 

     Finally, the effect of Rin1 on cellular proliferation and viability as well as the effect on 

telomerase gene expression and activity was investigated in the tumorigenic, non-invasive 

MCF7 human breast cancer cell line. In the non-virally transduced MCF7 cells, a 

significant increase of 26% in proliferation was observed in response to IGF-1 exposure 

when compared to the corresponding serum starved cells (Figure 2.19). The trend was also 

observed for the MCF7 cells expressing either GFP, 22% increase, or Rin1, 26% increase 

(Figures 2.20 and 2.21). Like the MDA-MB 231 and MCF-12A cells, the MCF7 cells 

expressing Rin1 exhibited the lowest level of viability following serum starvation for all 

three MCF7 cell lines examined.  

    A reverse transcriptase qPCR (RT-qPCR) assay was performed to assess the effect of 

IGF-1 stimulation (100 ng/mL for 24 hours) on telomerase gene expression in the MCF-7 

Rin1 and GFP cell lines (Table 2.7). Telomerase gene expression for all cell samples was 

normalized to that of the GAPDH housekeeping gene using the ΔCt method. A normalized 

telomerase gene expression Ct value of 10.87 in response to IGF-1 stimulation was found 

for the MCF7 cells overexpressing Rin1 (Table 2.7). The corresponding IGF-1 stimulated 

GFP control cells displayed a normalized telomerase gene expression Ct value of 10.54 

(Table 2.7). A 1.26 fold decrease in telomerase gene expression was observed for the cells 

overexpressing Rin1 when compared to the GFP expressing cells (Table 2.7). 

     To assess telomerase activity, MCF7 cells expressing Rin1 or GFP were serum starved 

for 24 hours and then treated with 100 ng/mL of IGF-1 for an additional 24 hours. The 

IGF-1 treated cell samples and corresponding untreated samples were then lysed and 
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prepared for the TRAP qPCR telomerase activity assay as described in 2.4, Telomerase 

Activity Assay. The MCF7 cell samples expressing Rin1 resulted in an average Ct value of 

24.63 following IGF-1 stimulation, while the average Ct value of the corresponding GFP 

cell samples was 24.50 (Table 2.6). A 1.09 fold decrease in telomerase activity was 

observed for the cells overexpressing Rin1 when compared to the activity of the control 

GFP cells (Table 2.6). Fold change was calculated according to the ΔΔCt method. The heat 

treated negative control and buffer only samples produced average values of 25.49 and 

25.70 respectively (Table 2.6).  All samples for telomerase gene expression and activity 

were assayed in duplicate.  

2.3 Discussion 

     The MDA-MB 231 breast cancer cell line was chosen to study the effect of IGF-1 

induction on cellular proliferation given the strong proliferative and invasive properties of 

this particular cell line. Two MDA-MB 231 control cell lines were used to compare the 

effects of Rin1 overexpression on proliferation and viability. These control cell lines 

consisted of virally unaltered (non-transduced) MDA-MB 231 cells as well as cells virally 

altered to express GFP.  

     As expected, a linear increase in cellular proliferation was observed following the 

exposure of non-transduced MDA-MB 231 cells to serum containing culture media (Figure 

2.5). The increase in proliferation was significantly greater at higher cell concentrations 

(1.0 x 105 and 2.0 x 105 cells/mL) when compared to the corresponding serum free 

treatment cells. Additionally, the linear increase in proliferation as cell concentration 

increased was also statistically significant for the serum treated cells (p<0.05) (Figure 2.5). 

These baseline results indicated that MDA-MB 231 cells were capable of proliferation in 
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response to serum-containing growth factor stimulation. A cell concentration of 2.0 x 105 

cells/mL resulted in an 83% increase in cell proliferation over the serum free treatment and 

was therefore deemed to be an optimal concentration to use for future experimentation on 

cellular proliferation and viability.  

     Western blot analysis of virally transduced MDA-MB 231 cells indicates high levels of 

GFP as well as Rin1 expression (Figure 2.3). Light micrograph imagery of the Rin1 

overexpressing MDA-MB 231 cell line reveals a striking difference in morphology and 

growth pattern. The Rin1 cells typically grow more slowly and in a clumped or island-like 

pattern when compared to the GFP cell line and are more rounded in shape (Figure 2.2, 

B.). The GFP cells, which express endogenous levels of Rin1, tend to grow more evenly 

across the surface of the culture dish and have a more spindle-like appearance. 

     The reduced growth rate observed for the Rin1 overexpression cells could be a 

consequence of the strong ability for Rin1 to compete for access to activated Ras and thus 

attenuate signaling through the MAPK pathway. Confocal micrograph imagery reveals a 

spatial difference in the distribution of Rin1 as well. Rin1 appears to be more concentrated 

around the periphery of the cell in association with the plasma membrane, perhaps on 

endocytic vesicles (Figure 2.2, A.). 

     All three MDA-MB 231 cell lines displayed a significant increase in cell proliferation 

over the corresponding serum free condition (Figures 2.7, 2.8, and 2.9) following exposure 

to IGF-1. As expected, all three MDA-MB 231 cell lines also displayed roughly equal low 

levels of proliferation when serum starved and not exposed to IGF-1. However, in response 

to IGF-1 stimulation alone, the Rin1 expressing cells only exhibited a modest 18% increase 

in proliferation over the corresponding unstimulated cells (Figure 2.9). In fact, these cells 
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displayed lower levels of cellular proliferation over a range of IGF-1 concentrations tested 

in comparison to GFP cells (Figure 2.6). The viability of these cells was also 43% lower in 

comparison to that of the non-transfected cells and 31% lower when compared to the GFP 

cells. Taken together, these results support the idea of Rin1 exerting a modulating effect 

on cellular proliferation and viability in MDA-MB 231 cells.  

     These results are in line with the results of the telomerase gene expression and activity 

studies and suggest that Rin1 may be able to moderate signaling through mitogenic 

pathways given its strong affinity for activated Ras. In order to assess the effect of Rin1 on 

telomerase gene expression following IGF-1 stimulation, MDA-MB 231 cells 

overexpressing Rin1 were compared to GFP expressing cells. RT-qPCR data reveal a 1.09 

fold decrease in telomerase gene expression for the Rin1 cells after normalization to 

expression of the GAPDH housekeeping gene (Table 2.3). Successful amplification of both 

telomerase and GPADH is evident from the tight clustering of curves within the appropriate 

range of Ct values for each gene as well as the presence of specific bands of the correct 

amplicon sizes (Figure 2.13) and melting temperatures. The MDA-MB 231 cell lines 

contain a constitutively active mutant form of Ras, and thus the overexpression of Rin1 

may be modulating signaling from this protein as evidenced in the reduction of telomerase 

gene expression by 1.09 fold (Table 2.3). Telomerase activity follows a similar trend as 

gene expression for the MDA-MB 231 Rin1 cells. Here, a 1.56 fold decrease in telomerase 

activity was observed for the Rin1 cells as compared to the GFP cells (Table 2.2). The 

decrease in telomerase activity is evident upon PAGE gel analysis of the TRAP qPCR 

products (Figure 2.12). The reduction in telomerase activity may be tied to the decrease in 

telomerase gene expression observed in the MDA-MB 231 Rin1 cells.  
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     Telomerase gene expression and activity in the normal, non-tumorigenic MCF-12A 

epithelial breast cell line appears to support a tumor suppressive role for Rin1 similar to 

that observed for the MDA-MB 231 breast cancer cell lines. Here, a 2.55 fold decrease in 

telomerase gene expression was recorded for the cells overexpressing Rin1 when compared 

to control cells expressing GFP (Table 2.5). The decrease in telomerase gene expression is 

much larger than the 1.09 fold decrease observed in the MDA-MB 231 cells expressing 

Rin1. The greater decrease in telomerase gene expression exhibited by the MCF-12A cells 

may be attributed to the ability of Rin1 to modulate MAPK signaling more strongly in a 

normal, non-tumorigenic cell lines than in an invasive, tumorigenic cell line such as MDA-

MB 231 cells where telomerase expression and activity are strongly tied to cellular 

proliferation and survival.  

     The effect of Rin1 on telomerase activity however is not as clear for the MCF-12A cells. 

Generally, a tumor suppressor role is supported when comparing the telomerase activity of 

MCF-12A cells overexpressing Rin1 to non-virally transduced cells. Here, a 1.23 fold 

decrease in telomerase activity is observed for the cells expressing Rin1. The value is 

similar to the 1.56 fold decrease in activity reported for the MDA-MB 231 Rin1 cells. On 

the other hand, a 1.12 fold increase in telomerase activity is reported when comparing the 

MCF-12A Rin1 cells to the corresponding GFP cells (Table 2.4). The increase in 

telomerase activity exhibited by MCF-12A Rin1 cells also mirrors an increased level of 

cellular proliferation for these cells. Higher levels of proliferation were observed for MCF-

12A Rin1 cells following IGF-1 exposure (41%) when compared to GFP cells. The 

downregulation of telomerase gene expression observed in these cells appears to be 
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independent and in contrast to the recorded increased levels of telomerase activity and 

cellular proliferation.  

     The telomerase gene expression and activity data from the tumorigenic, non-invasive 

MCF7 breast cancer cell line lends further support to a potential tumor suppressor role for 

Rin1. Here, the 1.09 fold decrease in telomerase activity (Table 2.6) for cells expressing 

Rin1 over GFP cells is similar to that of the 1.56 fold decrease in telomerase activity 

observed for the MDA-MB 231 cells. A more interesting trend, however, is apparent when 

examining the ability of Rin1 to downregulate telomerase gene expression across the three 

different breast cell lines studied. The 1.26 fold reduction in telomerase gene expression 

observed for the MCF7 cells expressing Rin1 (Table 2.7) is between that of the MDA-MB 

231 and MCF-12A cells, which displayed fold decreases each of 1.09 and 2.55 

respectively. Rin1 therefore has the least ability to attenuate cell signaling following IGF-

1 stimulation, and thus lower telomerase gene expression, in the MDA-MB 231 cells. The 

result could be partially explained by the fact that these cells harbor a constitutively active 

mutant form of Ras and, as a consequence, the MDA-MB 231 cells are highly tumorigenic 

as well as invasive.  

     On the other hand, Rin1 has the greatest suppressive effect on telomerase gene 

expression in the normal, non-tumorigenic/non-invasive MCF-12A breast cells. Here, in 

the absence of a constitutively active form of Ras, Rin1 may have a stronger ability to 

dampen cell signaling subsequent to growth factor stimulation and therefore have a larger 

suppressive effect on telomerase gene expression. Finally, the ability of Rin1 to reduce 

telomerase gene expression in the tumorigenic, non-invasive MCF7 cells is intermediate 

(1.26 fold) between that of the MDA-MB 231 and MCF-12A cells. This result mirrors the 
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26% increase in cellular proliferation observed for these cells that falls between the 18% 

and 41% increases observed for the MDA-MB 231 Rin1 and MCF-12A Rin1 cells 

respectively. Again, as with the MDA-MB 231 cells, background tumorigenic processes in 

the MCF7 Rin1 cells may counteract the modulating influence of Rin1 on MPAK 

signaling.   

     In summary, Rin1 may act to attenuate signaling through the MAPK pathway given its 

strong interaction with activated Ras. This idea is supported by cellular proliferation data 

as well as by telomerase gene expression and activity studies from the MDA-MB 231, 

MCF7, and MCF12-A human breast cell lines. The tumor suppressive role of Rin1 in these 

breast cell lines may be cell type specific, with lower levels of cellular proliferation and a 

stronger reduction in telomerase activity being observed in the two tumorigenic cell lines 

versus the non-tumorigenic cell line (Table 2.8).  

2.4 Materials and Methods 

Characteristics of Cell Lines 

     The MDA-MB 231 breast cancer cell line is a highly invasive and tumorigenic breast 

epithelial (carcinoma) cell line that harbors a constitutively active mutant form of Ras, 

KRAS (G13D) (Kim et al., 2015). These cells are also triple negative meaning that they 

lack expression of the estrogen, progesterone, and HER2/Neu receptors and typically grow 

well in DMEM culture media supplemented with 10% fetal bovine serum. The MCF7 

breast cancer cell line is a tumorigenic, non-invasive breast epithelial cell line that also 

grows well in DMEM culture media supplemented with 10% FBS (Kim et al., 2015). The 

MCF-12A cell line is a normal breast epithelial cell line that grows optimally in a 1:1 
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DMEM/F-12 culture media supplemented with 5% horse serum, insulin, cholera toxin, 

EGF, and hydrocortisone (Kim et al., 2015).  

Creation of Cell Lines 

     The MDA-MB 231 metastatic breast cancer cells were used to create cell lines 

expressing GFP or Rin1. Lentiviral plasmid expression vectors for GFP (pLV[Exp]-Puro-

CMV>eGFP) and Rin1 (pLV[Exp]-Puro-CMV>hRIN1) were designed using the 

VectorBuilder website (https://en.vectorbuilder.com/) powered by Cyagen Biosciences. 

The protein coding open reading frame sequence of each vector was placed under the 

control of a strong CMV promoter. A puromycin drug selection marker was included in 

each vector to allow for selection of stably transduced cells at a concentration of 4 ug/mL. 

The GFP and various Rin1 lentiviral vectors were then synthesized by Cyagen Biosciences 

and each was accompanied with a maxiprep of plasmid vector DNA at a concentration of 

approximately 1 ug/uL (500 uL total volume).  

     A lentiviral expression system (Lenti-X Packaging Single Shots) available from 

Clontech Laboratories (Takara) was utilized to transduce native MDA-MB 231 cells to 

express GFP or Rin1. Transduction was performed according to the manufacturer’s 

instructions. Briefly, 2.0 x 106 Lenti-X 293T viral packaging cells were plated on a 6 cm 

culture dish in 4 mL of complete growth media lacking tetracycline. The cells were plated 

24 hours prior to transfection and allowed to grow at 37⁰C and 5% CO2 until they reached 

approximately 80 to 90% confluency. On the day of transfection, 7 ug of plasmid DNA 

was mixed with sterile water to a final concentration of 600 uL. The entire volume of 

diluted DNA was then added to a single Lenti-X Packaging Single Shot tube and vortexed 

for roughly 20 seconds. The DNA sample was then allowed to incubate for 10 minutes. 

https://en.vectorbuilder.com/
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Following incubation, 300 uL plasmid DNA sample was added to a culture dish containing 

the Lenti-X 293T viral packaging cells. The protocol was followed for each of the four 

lentiviral vector plasmid DNA samples and was performed in duplicate. The viral 

packaging cells were then incubated for 48 hours at 37⁰C and 5% CO2. After 48 hours, the 

viral containing supernatant was collected and filtered through a 0.45 um filter to remove 

any cellular debris. Five hundred microliters of viral supernatant was then added to MDA-

MB 231 cells plated at a density of 3.0 x 105 cells per well on a 6 well plate in 2 mL of 

complete growth media.  

     The native MDA-MB 231 cells were plated one day prior to viral transduction. 

Polybrene was added to each well at a concentration of 6 ug/mL to enhance transduction. 

Transduction was performed in triplicate (3 wells) for each plasmid DNA sample. Any 

unused viral supernatant was aliquoted in 1.5 mL Eppendorf tubes and frozen at -80 ⁰C. 

Viral transduction of the MDA-MB 231 cells occurred for 48 hours after which time the 

viral containing media was aspirated and replaced with 3 mL of fresh complete growth 

media. The cells were allowed to recover for an additional 48 hours prior to selection with 

puromycin. After the recovery period, the complete growth media was changed for 3 mL 

of selection growth media containing the antibiotic puromycin at a concentration of 4 

ug/mL. The transduced MDA-MB 231 cells were selected for 72 hours before being 

trypsinized and moved to a T75 tissue culture flask. The cells were subsequently grown in 

selection media for a period of two weeks with media changes every three days until only 

stably transduced cells survived. The stable cell lines expressing GFP or Rin1 were then 

frozen in cryogenic tubes at -80 ⁰C until further use.  
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     Additionally, MCF-7 non-metastatic breast cancer cell lines and normal breast epithelial 

MCF-12A cell lines were created to stably express Rin1 or GFP following the methodology 

outlined above. Stable expression of Rin and GFP in these cell lines was achieved through 

selection using a puromycin concentration of 2 µg/mL.  

 MTT Cell Proliferation Assay 

     An initial experiment to determine the optimal concentration of cells needed to observe 

a statistically significant difference in proliferation was performed using MDA-MB 231 

breast cancer cells expressing green fluorescent protein (GFP). The cells were obtained 

from a cryopreserved stock culture and were grown in a T75 (75 cm2) tissue culture flask 

containing 15 mL of complete growth media incubated at 37⁰ C with 5% CO2. The cells 

were grown until approximately 80% confluent. The culture media consisted of 1X 

Dulbecco’s Modified Eagle’s Medium (DMEM) containing 4.5 g/L of glucose with L-

glutamine. Complete culture media was prepared by filtering 500 mL of 1X DMEM 

supplemented with 10% fetal bovine serum (FBS), 1% penicillin-streptomycin (10,000 

U/mL penicillin and 10,000 ug/mL streptomycin) , 1% Minimal Essential Medium (MEM) 

nonessential amino acid solution, and 1% sodium-pyruvate (100 mM). After reaching 

approximately 80% confluency, the culture medium was aspirated and the cells were 

washed once with 2 mL of cold 1X PBS-EDTA (1 mM) solution. The cellular monolayer 

was then trypsinized in an incubator (37⁰ C and 5% CO2) to detach cells for 3 minutes with 

2 mL of Trypsin-EDTA (0.25%) solution. Four milliliters of serum free DMEM starvation 

medium was then added to the culture flask to suspend the trypsinized cells. The 4 mL cell 

suspension was then transferred to a 15 mL conical centrifuge tube and spun at 5,000 RPM 

in a centrifuge for three to five minutes until a cell pellet formed at the bottom of the tube. 
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The entire volume of supernatant was then aspirated carefully so as to not disturb the pellet, 

and the pellet was re-suspended in a fresh volume of 2 mL of serum free starvation medium. 

A one hundred microliter sample of the re-suspended cells was then transferred to a 1 mL 

Eppendorf microcentrifuge tube. An equal volume of 100 uL of Trypan blue cell viability 

exclusion stain was added to the tube and gently mixed to permit detection of viable (live) 

cells. A 10 uL sample of the stained cell suspension was then loaded into one chamber 

(side A) of a Bio-Rad dual chamber cell counting slide. A second 10 uL sample was also 

loaded into the second chamber (Side B) and the total number of viable cells per milliliter 

in each chamber was counted using a Bio-Rad TC20 Automated Cell Counter. The average 

number of live cells per milliliter was then calculated and used to perform dilutions of the 

2 mL suspension to specific cell concentrations in order to test the effect of serum versus 

serum free media on the proliferation of MDA-MB 231 eGFP cells. Serum free starvation 

media was used to prepare all dilutions.  

     Concentrations of 5.0 x 104, 1.0 x 105, and 2.0 x 105 cells/mL were tested initially to 

determine the optimal cell concentration needed to observe a meaningful, statistically 

significant difference in cellular proliferation as measured by an MTT assay. Each of the 

three concentrations tested were plated on separate 12 well plates (3 plates total, one for 

each cell concentration) in a volume of 1 mL per well (5.0 x 104 cells/well, 1.0 x 105 

cells/well, 2.0 x 105 cells/well), and incubated under serum free conditions at 37⁰ C with 

5% CO2 for 24 hours to synchronize growth rates. After 24 hours, the culture media in half 

of the wells (6) per plate was aspirated and replaced with 1 mL of complete growth media. 

The other half of the wells (6) retained the serum free starvation media. The plates were 

then incubated at 37⁰ C with 5% CO2 for another 24 hours. A 4 mL MTT (3-(4,5-
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dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) solution at a concentration of 5 

mg/mL was prepared, and 50 uL was added to each well of each plate. The plates were 

gently agitated to ensure thorough mixing of the MTT solution with the liquid in each well. 

The plates were then wrapped in aluminum foil to prevent light exposure and were 

incubated at 37⁰ C with 5% CO2 for 4 hours to allow for reduction of the yellow tetrazolium 

dye. After 4 hours, the culture media in each well was carefully removed so as to not disturb 

the formazan crystals produced by the reduction of the tetrazolium dye. Four hundred 

microliters of dimethyl sulfoxide (DMSO) was then added to each well of each plate to 

dissolve the formazan crystals and the plates were agitated for 5 minutes to promote 

complete solubilization of the formazan product. The 400 uL of the purple fomazan-DMSO 

solution from each well of each plate was then transferred to an individual microcuvette 

and diluted with 1.1 mL of deionized water to a final volume of 1.5 mL. The absorbance 

of each sample at a wavelength of 570 nm was recorded using an Ultrospec 2000 Pro 

spectrophotometer. A Student’s t-Test was used to test for any statistically significant 

difference in cell proliferation between serum exposed cells and those not exposed to serum 

for each cell concentration. The three cell concentrations tested provided six replicates each 

for serum and serum free conditions. Regression analysis was then used to detect any 

statistically significant increase in proliferation as cell concentration increased. A 

concentration of 2.0 x 105 cells/mL was determined to be the optimal concentration to 

observe any possible significant difference between treatment groups. All future cell 

proliferation and viability experiments were performed in triplicate.  

     A CCK8 cell proliferation assay similar to that of the MTT assay was performed on the 

MDA-MB 231, MCF-7, and MCF-12A cells expressing GFP or Rin1 as well as on non-

https://en.wikipedia.org/wiki/Di-
https://en.wikipedia.org/wiki/Methyl
https://en.wikipedia.org/wiki/Thiazole
https://en.wikipedia.org/wiki/Phenyl
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transfected cells for each of these cell lines. In this assay, a WST8 (2-(2-methoxy-4-

nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) 

compound is reduced to an orange, water soluble formazan product that can be detected at 

a wavelength of 450 nm. As with the MTT assay, the intensity of the absorbance of the 

colored solution is directly proportional to the number of cells present. All experiments 

were performed in triplicate for each of the three breast cell lines to determine the effect of 

serum or IGF-1 stimulation on cellular proliferation. Cells were grown for 24 hours in 

starvation media on a 12 well plate (9 wells in total) at a density of 1.0 x 105 cells per mL 

with 1 mL per well. After 24 hours, the starvation media was aspirated from the appropriate 

wells and replaced with serum containing growth media (3 wells) while other wells retained 

the starvation media (3 wells) or were supplemented with 100 ng/mL of IGF-1 (3 wells). 

The cells were grown for another 24 hours at 37°C with 5% CO2 and then treated with 25 

µL per well of CCK8 solution. Following incubation for 4 hours with CCK8 solution, the 

growth media was aspirated and its absorbance at 450 nm was measured. The viability each 

of the cell samples remaining in the wells was then determined using trypan blue staining.  

Trypan Blue Cell Viability Assay 

     Following the removal of the growth media and the measurement of its absorbance for 

cellular proliferation, the cells in each well were washed once with 200 uL of cold 1X PBS-

EDTA (1mM) solution. The cells were subsequently detached with 200 uL of trypsin-

EDTA (0.25%) solution for 5 minutes in an incubator at 37⁰C with 5% CO2. One milliliter 

of serum free media was added to each well to suspend the cells. A 100 uL sample from 

each well was subsequently transferred to individual Eppendorf microcentrifuge tubes and 

mixed with 100 uL of Trypan blue cell viability stain (2X dilution). A 10 uL sample of 
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stained cell suspension from each tube was then loaded onto a Bio-Rad dual chamber cell 

counting slide and the number of cells/mL (total and viable) was counted for each sample. 

A Student’s t-Test was used to test for any statistically significant difference in cell 

viability between serum free, serum exposed, or IGF-1 treated cells. 

Western Blotting 

     Western blot analysis was performed on the various MDA-MB 231, MCF-7, and MCF-

12A cell lines prior to conducting any assays to confirm that each cell line expressed the 

protein(s) of interest. Cells were grown to approximately 80% confluency in a T75 tissue 

culture flask containing 15 mL of 1X DMEM complete culture media as described in the 

MTT Cell Proliferation Assay. Cells were then washed once with 1 mL of cold 1X PBS-

EDTA (1mM) and subsequently trypsinized with 1 mL of Trypsin-EDTA (0.25%) 

solution. One milliliter of 1X DMEM complete culture media was added to the tissue 

culture flask to suspend the detached cells. A 100 uL sample of cell suspension was then 

used to obtain a cell count according to the method outlined above. Following the 

determination of the cell count per milliliter, 1 mL of the cell suspension was transferred 

to a 1.5 mL Eppendorf microcentrifuge tube and spun (1000X g) for 5 minutes at 4⁰C to 

obtain a cell pellet. The culture media was then removed and the pellet was washed three 

times with cold 1X PBS-EDTA (1mM). One hundred microliters of cold RIPA buffer per 

106 cells in the pellet was then added to the pellet to lyse the cells. The RIPA buffer was 

supplemented with Halt Protease and Phosphatase Inhibitor Cocktail (Thermo Scientific, 

1X final concentration). Lysis was achieved by vortexing the pellet in the RIPA buffer for 

approximately 15 seconds. The cell lysate was then kept on ice for 30 minutes with 

vortexing every 10 minutes for approximately 15 seconds. After 30 minutes on ice, the cell 
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lysate was spun at 10,000X g for 25 minutes at 4⁰C in order to pellet the cell debris. The 

supernatant containing the extracted proteins was then transferred to a clean 1.5 mL 

Eppendorf microcentrifuge tube from which it was aliquoted into smaller samples of 50 uL 

each, and the samples were stored at -80⁰C. The cell lysate protocol described above was 

obtained from Proteintech and is available at www.ptglab.com.  

     Prior to Western blotting, the protein concentration of the cell lysate was determined by 

a bicinchoninic (BCA) protein assay using a kit supplied by Thermo Scientific. A 2X 

Laemmli sample buffer was prepared by mixing 950 uL of 2X Laemmli sample buffer 

(Bio-Rad) with 50 uL of β-mercaptoethanol (Bio-Rad). The cell lysate protein sample was 

prepared for Western blotting by diluting 50 uL of the protein sample with 50 uL of the 2X 

Laemmli sample buffer containing β-mercaptoethanol. The protein sample was then heated 

for 5 minutes at 95⁰C and 20 uL of denatured protein sample was subsequently loaded onto 

a 4-20% gradient polyacrylamide pre-cast gel (Bio-Rad) along with 10 uL of Precision Plus 

Protein Dual Color Standards (Bio-Rad). Separation of proteins was achieved by running 

the gel in 1X running buffer at 200V for 30 minutes. 1X running buffer was prepared by 

mixing 100 mL of 10X electrophoresis buffer (25mM Tris, 192 mM glycine, 0.1% SDS) 

with 900 mL of deionized water to a final pH of 8.3. A Bio-Rad Mini Protean Tetra cell 

was used to perform the protein electrophoresis. Following electrophoresis, proteins were 

transferred to a nitrocellulose membrane by running the gel in 1X transfer buffer for 45 

minutes at 100V. A cold pack and stirring bar were added to the tank containing the transfer 

buffer and gel cassette to reduce heat which might interfere with protein transfer to the 

nitrocellulose membrane. Transfer buffer was prepared by mixing 100 mL of 10X 

electrophoresis buffer and 200 mL of methanol with 700 mL of deionized water.  

http://www.ptglab.com/
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     The nitrocellulose membrane containing transferred proteins was then prepared for 

Western blotting using the Pierce Fast Western Blot Kit (Thermo Scientific) according to 

the manufacturer’s instructions. Briefly, the nitrocellulose membrane blot was washed in 

1X Fast Western Wash Buffer to remove any transfer buffer. Ten microliters of primary 

antibody at a concentration of 1 ug/uL was then added to 10 mL of Fast Western Antibody 

Diluent to produce a final primary antibody dilution of 1:1000 or 1 ug/mL. The membrane 

was then incubated in the primary antibody diluent solution overnight at 4⁰C. The 

membrane was then incubated in 10 mL of Fast Western Optimized HRP Reagent working 

dilution for 15 minutes and then subsequently washed four times with 1X Fast Western 

Wash Buffer for 5 minutes each. The membrane was then incubated in 10 mL of Detection 

Reagent working solution for 5 minutes after which it was prepared for imaging by 

exposure to X ray film. The primary antibodies used were a rabbit polyclonal anti-Rin1 

(human) antibody (Proteintech, 16388-1-AP) and a rabbit eGFP tag antibody (Pierce 

Thermo Scientific, CAB4211). A GAPDH antibody (Pierce Thermo Scientific, 

MA516034) was used as a loading control.  

Immunofluorescence  

     MDA-MB 231 breast cancer cells expressing GFP or Rin1 were seeded onto coverslips 

submerged in 1 mL of selection media within the wells of a 12 well plate. The cells were 

incubated overnight at 37⁰C and 5% CO2 in order to attach to the coverslips. The following 

day the growth media was aspirated from each well and replaced with a 4% formaldehyde 

solution. The samples were allowed to fix in the formaldehyde solution for 15 minutes at 

room temperature. The fixative was then removed and the samples were washed three times 

in 1X PBS for 5 minutes each. The cell samples were then blocked for one hour in blocking 
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buffer containing 5% normal goat serum and 0.3% Triton-X 100. Following the blocking 

step, the samples were incubated overnight at 4⁰C in primary antibody diluted in antibody 

buffer containing 1% BSA and 0.3% Triton-X 100. The Rin1 and GFP primary antibodies 

used were the same as those utilized for Western blotting and were diluted at a ratio of 1 

uL IgG/200 uL buffer. The following day the samples were washed three times in 1X PBS 

for 5 minutes each and then incubated in an Alexafluor488 conjugated secondary antibody 

(goat anti-rabbit) for one hour at room temperature in the dark. The secondary antibody 

was diluted at a ratio of 1 uL IgG/300 uL buffer. The coverslips containing the cell samples 

were then mounted to glass microscope slides using Prolong Gold Antifade reagent with 

DAPI. The samples were allowed to cure overnight at room temperature in the dark. The 

samples were then stored at 4⁰C until imaged with an Olympus confocal microscope.  

Telomerase Activity Assay  

     The MDA-MB 231 human breast cancer cells expressing GFP and Rin1 as well as non-

transfected cells were serum starved for 24 hours at 37°C and 5% CO2 on a 12 well plate 

at a density of 1.0 x 105 cells per well in 1 mL of serum free growth media. Each MDA-

MB 231 cell line was plated in duplicate. After 24 hours, 100 ng/mL of IGF-1 was added 

to half of the total samples- one well per cell type. The other half of the samples did not 

receive IGF-1 treatment. The samples were then incubated for another 24 hours, after 

which time the culture media in each well was removed and the cells were subsequently 

prepared for the telomeric repeat amplification protocol (TRAP) assay as per the 

manufacturer’s instructions. The TRAPeze Telomerase Detection Kit (EMD Millipore, 

S7700) was utilized to determine the telomerase activity in each of the IGF-1 treated and 

untreated samples for the three MDA-MB 231 cell types mentioned above.  
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     Briefly, cells were lysed for 30 minutes in cold 1X CHAPS lysis buffer supplemented 

with 10 uL/mL of protease and phosphatase inhibitor to extract the telomerase enzyme. 

The cell lysate was then centrifuged at 10,000 rpm for 15 minutes at 4°C. Protein extract 

from each cell sample was then added to a qPCR master mix containing a telomerase 

substrate (TS) molecule which was subsequently extended by the telomerase enzyme to 

create a ladder of DNA products of various lengths starting at 50 bp. The qPCR master mix 

consisted of the following per reaction: 10X TRAP reaction buffer (5 uL), 50X DNTP mix 

(1 uL), TS primer (1 uL), TRAP primer mix (1 uL), Taq polymerase (2 units, 0.4 uL), 

EvaGreen dye (2.5 μL) and dH2O (40 uL). The telomerase extended DNA products were 

then amplified and quantified by qPCR. The qPCR amplification protocol consisted of the 

following steps: 1) 30°C for 30 minutes, 2) 95°C for 2 minutes, 3) 94°C for 15 seconds, 4) 

59°C for 30 seconds, 5 ) 72°C for 1 minute and 6) plate read. Steps three through six was 

repeated for a total of 40 cycles. The DNA products were visualized by ethidium bromide 

staining (0.5 ug/mL) using a FotoDyne imager with an ethidium bromide filter. The gel 

was stained for 30 minutes in 200 mL of the ethidium bromide solution and then de-stained 

for 30 minutes in deionized H2O prior to imaging. The water was changed every 10 minutes 

during the de-staining process. The telomerase activity of MCF-7 and MCF-12A cell lines 

expressing either GFP or Rin1 as well as non-transfected cells was determined in the same 

manner as described above for the MDA-MB 231 cell lines.  

Telomerase Gene Expression 

     Telomerase gene expression levels in the MDA-MB 231, MCF-7, and MCF-12A breast 

cell lines expressing GFP and Rin1 were measured by reverse transcriptase qPCR (RT-

qPCR). Cells were plated on a 24 well plate at a density of 2.0 x 105 cells per mL in one 
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mL of serum free DMEM culture media. A total of two wells were plated for each breast 

cell line. After 24 hours of incubation at 37 °C with 5% CO2, 100 ng/mL of IGF-1 was 

added to one of the wells while the other well received no IGF-1 treatment. The cells were 

then incubated for another 24 hours and then lysed according to the manufacturer’s 

instructions to extract total RNA using the Invitrogen PureLink RNA Mini Kit (catalog# 

12183018A). The RNA concentration of each cell sample was then determined by 

established spectrophotometric methods using the A260/A280 and A260/A230 ratios. 

cDNA synthesis to measure gene expression levels of telomerase and GAPDH (control) 

was then performed in duplicate according to the manufacturer’s instructions using the 

SuperScript III RT-PCR system from Invitrogen (catalog# 18080093). Briefly, a qPCR 

master mix was prepared consisting of the following per reaction: 2X reaction mix (25 μL), 

forward and reverse primers (1 μL each), SuperScript III RT/Platinum Taq Mix (2μL), 

RNA template (0.1 μg), EvaGreen dye (2.5 μL), and PCR grade water to a final volume of 

50 μL. The RT-qPCR protocol consisted of the following steps: 1) 55°C for 30 minutes, 2) 

94°C for 2 minutes, 3) 94°C for 15 seconds, 4) 53°C for 30 seconds, 5) 68°C for 1 minute, 

and 6) plate read. Steps three through six were repeated for a total of 40 cycles. A final 

extension step of 68°C for 5 minutes was carried out before a melt curve analysis. The 

GAPDH and telomerase qPCR products were then separated on a 12% acrylamide gel run 

at 125V for one hour in 1X TBE buffer and subsequently visualized by ethidium bromide 

staining using a Fotodyne digital imager.  
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Figure 2.1: Lentiviral vector used to create the MDA-MB 231 cell line expressing Rin1. 

The Rin1 gene sequence is inserted directly downstream of the CMV promoter. An 

identical vector with the GFP gene sequence inserted was used to create the MDA-MB 

231 cell line expressing GFP. Also labeled are the various elements necessary for 

lentivirus production and cell selection. 
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Figure 2.2: A) Confocal micrograph image of MDA-MB 231 cells expressing 

Rin1. Rin1 tends to localize near the plasma membrane (red arrows). B) Light 

micrograph image illustrating the clumped growth pattern of MDA-MB 231 cells 

expressing Rin1 (red circle).  

Figure 2.3: Western blot image of the A) MDA-MB 231 GFP cell line expressing GFP 

and endogenous levels of Rin1. B) MDA-MB 231 cell line overexpressing Rin1. 
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Figure 2.4: The effect of cell number on cellular proliferation in serum exposed MDA-

MB 231 cells. Error bars represent the standard error of the mean. 
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Figure 2.5: Regression analysis of the effect of cell number on cellular proliferation in 

serum exposed MDA-MB 231 cells.  
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Figure 2.6: The effect of IGF-1 concentration on cellular proliferation in MDA-MB 231 

cells expressing GFP or Rin1. Values represent the percent increase in cellular 

proliferation over an unstimulated (0 ng/mL) control. All experiments were conducted 

in triplicate. Error bars represent standard error of the mean. 
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Figure 2.7: The effect of IGF-1 stimulation (100 ng/mL) on cellular proliferation of 

non-transduced MDA-MB 231 cells. Values represent the percent increase normalized 

to the serum free/no IGF-1 treatment group. All experiments were conducted in 

triplicate. Error bars represent the standard error of the mean. 

Figure 2.8: The effect of IGF-1 stimulation (100 ng/mL) on cellular proliferation of 

MDA-MB 231 cells expressing GFP. Values represent the percent increase normalized 

to the serum free/no IGF-1 treatment group. All experiments were conducted in 

triplicate. Error bars represent the standard error of the mean. 
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Figure 2.9: The effect of IGF-1 stimulation (100 ng/mL) on cellular proliferation of 

MDA-MB 231 cells expressing Rin1. Values represent the percent increase normalized 

to the serum free/no IGF-1 treatment group. All experiments were conducted in 

triplicate. Error bars represent the standard error of the mean. 

 

 

 

1                2       3 

36 bp internal control 

Figure 2.10: Telomerase activity assay demonstrating the presence of telomeric repeat 

amplification protocol PCR products. 1. 25 bp DNA ladder. 2. HeLa cell telomerase 

positive control. 3. HeLa cell heat treated telomerase negative control. Red box is the 

36 base pair internal control. 
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Serial Dilution of HeLa Cell Telomerase Positive Control 

 
Average Ct Value ± Standard Error 

Undiluted 26.28 ± 0.02 

10X 26.50 ± 0.11 

100X 26.70 ± 0.03 

1,000X 26.78 ± 0.10 

Buffer 27.02 ± 0.37 

Figure 2.11: Amplification curves of the qPCR telomerase activity products for the 

serial dilution of a HeLa cell telomerase positive control sample. Red circle is undiluted 

sample, green triangle is 10X dilution, orange square is 100X dilution, blue cross is 

1,000X dilution, and brown diamond is buffer only.  

 

Table 2.1: Average cycle threshold (Ct) values of the qPCR amplification of telomerase 

activity products for the serial dilution of a HeLa cell telomerase positive control 

sample. All experiments were conducted in duplicate. 

 



 

112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1                  2         3       4        5      6      7    8 

Figure 2.12: PAGE gel analysis of the telomerase activity qPCR TRAP products for the 

MDA-MB 231 cell lines following stimulation with 100 ng/mL of IGF-1 (+) for 24 

hours or no stimulation (-). 1. 25 bp ladder. 2. Telomerase positive control. 3. 

Telomerase heat treated negative control. 4. GFP (+) IGF-1. 5. GFP (-) IGF-1. 6. Rin1 

(+) IGF-1. 7. Rin1 (-) IGF-1. 8. Buffer. Red boxes indicate reduced telomerase activity 

in cells expressing Rin1 when compared to cells expressing GFP following IGF-1 

stimulation. 
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MDA-MB 231 Telomerase Activity 

 
Average Ct Value ± Standard Error 

Telomerase positive control 19.92 ± 0.13 

Telomerase negative control  20.16 ± 0.15 

GFP (+) IGF-1 20.49 ± 0.01 

GFP (-) IGF-1 20.41 ± 0.04 

Rin1 (+) IGF-1 21.14 ± 0.02 

Rin1 (-) IGF-1 20.68 ± 0.01 

Buffer 20.23 ± 0.09 

Table 2.2: Cycle threshold values (Ct) for the qPCR products of telomerase activity in 

MDA-MB 231 cell lines following stimulation with 100 ng/mL of IGF-1 (+) for 24 

hours or no stimulation (-). All experiments were conducted in duplicate. 

 

21.14-20.49= 0.65 

2
-0.65

= 0.64 

1/0.64= 1.56  

1.56 fold decrease in telomerase activity for cells  

expressing Rin1 as compared to cells expressing GFP.  
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MDA-MB 231 Telomerase Gene Expression 

 
GAPDH Telomerase ΔCt 

(Telomerase-

GAPDH)  
Average Ct Value ± 

Standard Error 

Average Ct Value ± 

Standard Error 

GFP (+) 14.94 ± 0.02 25.68 ± 0.11 10.74 

GFP (-) 15.32 ± 0.01 26.54 ± 0.05 11.22 

Rin1 (+) 17.08 ± 0.06 27.95 ± 0.13 10.87 

Rin1 (-) 15.70 ± 0.63 26.19 ± 0.04 10.49 

Buffer 38.55 ± 0.75 39.12 ± 0.58 0.57 

Table 2.3: Cycle threshold values (Ct) for the RT-qPCR of telomerase gene expression 

in MDA-MB 231 cell lines following stimulation with 100 ng/mL of IGF-1 (+) for 24 

hours or no stimulation (-). All experiments were conducted in duplicate. 

Figure 2.13: PAGE gel analysis of the RT-qPCR GAPDH and telomerase gene 

expression products in the MDA-MB 231 cell lines following stimulation with 100 

ng/mL of IGF-1 (+) for 24 hours or no stimulation (-).  

 

10.87-10.74= 0.13 

2-0.13= 0.91 

1/0.91= 1.09  

1.09 fold decrease in telomerase gene expression for cells 

expressing Rin1 as compared to cells expressing GFP.  
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Figure 2.14: Western blot image of the A) MCF-12A GFP cell line expressing GFP 

and endogenous levels of Rin1. B) MCF-12A cell line overexpressing Rin1. 

Rin1 

GFP 

GAPDH 

Figure 2.15: The effect of IGF-1 stimulation (100 ng/mL) on cellular proliferation of 

non-transduced MCF-12A cells. Values represent the percent increase normalized to 

the serum free/no IGF-1 treatment group. All experiments were conducted in triplicate. 

Error bars represent the standard error of the mean. 
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Figure 2.16: The effect of IGF-1 stimulation (100 ng/mL) on cellular proliferation of 

MCF-12A cells expressing GFP. Values represent the percent increase normalized to 

the serum free/no IGF-1 treatment group. All experiments were conducted in triplicate. 

Error bars represent the standard error of the mean. 
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Figure 2.17: The effect of IGF-1 stimulation (100 ng/mL) on cellular proliferation of 

MCF-12A cells expressing Rin1. Values represent the percent increase normalized to 

the serum free/no IGF-1 treatment group. All experiments were conducted in triplicate. 

Error bars represent the standard error of the mean. 
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MCF-12A Telomerase Activity 

 
Average Ct Value ± Standard Error 

Telomerase positive control 25.56 ± 0.11 

Telomerase negative control  25.70 ± 0.15 

GFP (+) IGF-1 25.92 ± 0.22 

GFP (-) IGF-1 25.57 ± 0.02 

Rin1 (+) IGF-1 25.76 ± 0.12 

Rin1 (-) IGF-1 25.74 ± 0.14 

Buffer 26.06 ± 0.18 

Table 2.4: Cycle threshold values (Ct) for the qPCR products of telomerase activity in 

MCF-12A cell lines following stimulation with 100 ng/mL of IGF-1 (+) for 24 hours or 

no stimulation (-). All experiments were conducted in duplicate. 

 

25.76-25.92= -0.16 

2
-(-0.16)

= 1.12 

1.12 fold increase in telomerase activity for cells  

expressing Rin1 as compared to cells expressing GFP.  
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MCF-12A Telomerase Gene Expression 

 
GAPDH Telomerase ΔCt 

(Telomerase-

GAPDH)  
Average Ct Value ± 

Standard Error 

Average Ct Value ± 

Standard Error 

GFP (+) 18.13 ± 0.08 22.36 ± 2.41 4.23 

GFP (-) 18.72 ± 0.37 24.70 ± 0.08 5.98 

Rin1 (+) 18.06 ± 0.05 23.64 ± 1.23 5.58 

Rin1 (-) 18.18 ± 0.35 24.89 ± 0.35 6.71 

Buffer 33.33 ± 0.71 31.90 ± 0.85 -1.43 

Table 2.5: Cycle threshold values (Ct) for the RT-qPCR of telomerase gene expression 

in MCF-12A cell lines following stimulation with 100 ng/mL of IGF-1 (+) for 24 hours 

or no stimulation (-). All experiments were conducted in duplicate. 

5.58-4.23= 1.35 

2-1.35= 0.39 

1/0.39= 2.55  

2.55fold decrease in telomerase gene expression for cells 

expressing Rin1 as compared to cells expressing GFP.  
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Figure 2.18: Western blot image of the A) MCF7 GFP cell line expressing GFP and 

endogenous levels of Rin1. B) MCF7 cell line overexpressing Rin1. 

A.                     B. 

Figure 2.19: The effect of IGF-1 stimulation (100 ng/mL) on cellular proliferation of 

non-transduced MCF7 cells. Values represent the percent increase normalized to the 

serum free/no IGF-1 treatment group. All experiments were conducted in triplicate. 

Error bars represent the standard error of the mean. 



 

121 

 

 

 

 

 

 

  

0

20

40

60

80

100

120

140

(+) IGF-1 Serum Free/No IGF-1

R
el

at
iv

e 
V

al
u
e

MCF7 GFP Proliferation

*

Figure 2.20: The effect of IGF-1 stimulation (100 ng/mL) on cellular proliferation of 

MCF7 cells expressing GFP. Values represent the percent increase normalized to the 

serum free/no IGF-1 treatment group. All experiments were conducted in triplicate. 

Error bars represent the standard error of the mean. 
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Figure 2.21: The effect of IGF-1 stimulation (100 ng/mL) on cellular proliferation of 

MCF7 cells expressing Rin1. Values represent the percent increase normalized to the 

serum free/no IGF-1 treatment group. All experiments were conducted in triplicate. 

Error bars represent the standard error of the mean. 
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MCF7 Telomerase Activity 

 
Average Ct Value ± Standard Error 

Telomerase positive control 24.53 ± 0.29 

Telomerase negative control  25.49 ± 0.08 

GFP (+) IGF-1 24.50 ± 0.26 

GFP (-) IGF-1 24.97 ± 0.15 

Rin1 (+) IGF-1 24.63 ± 0.04 

Rin1 (-) IGF-1 25.46 ± 0.33 

Buffer 25.70 ± 0.16 

Table 2.6: Cycle threshold values (Ct) for the qPCR products of telomerase activity in 

MCF7 cell lines following stimulation with 100 ng/mL of IGF-1 (+) for 24 hours or no 

stimulation (-). All experiments were conducted in duplicate. 

 

24.63-24.50= 0.13 

2
-0.13

= 0.91 

1/0.91=1.09 

1.09 fold decrease in telomerase activity for cells  

expressing Rin1 as compared to cells expressing GFP.  
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MCF7 Telomerase Gene Expression 

 
GAPDH Telomerase ΔCt 

(Telomerase-

GAPDH)  
Average Ct Value ± 

Standard Error 

Average Ct Value ± 

Standard Error 

GFP (+) 16.44 ± 0.44 26.98 ± 0.48 10.54 

GFP (-) 17.04 ± 0.10 27.63 ± 0.03 10.59 

Rin1 (+) 16.53± 0.00 27.40 ± 0.13 10.87 

Rin1 (-) 17.61 ± 0.57 28.92 ± 0.12 11.31 

Buffer 36.68± 1.13 34.40 ± 0.56 -2.28 

Table 2.7: Cycle threshold values (Ct) for the RT-qPCR of telomerase gene expression 

in MCF7 cell lines following stimulation with 100 ng/mL of IGF-1 (+) for 24 hours or 

no stimulation (-). All experiments were conducted in duplicate. 

10.87-10.54= 0.33 

2-0.33= 0.79 

1/0.79= 1.26 

1.26 fold decrease in telomerase gene expression for cells 

expressing Rin1 as compared to cells expressing GFP.  
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Comparison of the Effect of Rin1 Expression in Breast Cell Lines 

 
MDA-MB 231 MCF-12A MCF7 

 

Cellular Proliferation 

(percent change) 
 

+ 

(18%) 

+ 

(41%) 

+ 

(26%) 

Telomerase Gene 

Expression 

(fold change) 

- 

(1.09) 

- 

(2.55) 

- 

(1.26) 

Telomerase Activity 

(fold change) 

- 

(1.56) 

+ 

(1.12) 

- 

(1.09) 

Table 2.8: The effect of Rin1 expression on cellular proliferation, telomerase gene 

expression, and telomerase activity in different breast cell lines. 
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CHAPTER 3 

The Effect of Rin1 Constructs on Telomerase Protein Expression and Activity in 

Breast Cancer Cells 

3.1 Introduction 

     Telomeres are the regions of DNA that exist at the very tips or ends of linear 

chromosomes in eukaryotic cells. Recent evidence suggests that the telomere regions of 

chromosomes play vital roles in regulating normal cellular processes such as proliferation, 

aging, and senescence/apoptosis (Ramlee et al., 2016). However, a large body of research 

also implicates telomeres in the unlimited replicative capacity of many types of cancer 

cells. The telomeric regions of chromosomes set a replicative limit on the number of cell 

divisions a normal cell can undergo before the induction of senescence and/or apoptosis 

occurs (Chung Low and Tergaonkar, 2013). The finite replicative capacity, which is 

approximately 50 to 70 rounds of cell division for most normal somatic cells, is largely due 

to the progressive loss of telomeric DNA with each round of cell division (Zvereva et al., 

2010). The loss of telomeric DNA that accompanies each cycle of cell division is a 

consequence of incomplete DNA replication at the telomeres.  

     There are however certain populations of somatic stem cells as well as germ line stem 

cells that can prevent the gradual loss of DNA from their telomeres through the activity of 

an enzyme known as telomerase. Telomerase is only expressed and active in a relatively 

small population of somatic stem cells where the depletion of telomeric DNA and resulting 

onset of senescence or apoptosis would interfere with the normal functioning of specific 

tissues (Chung Low and Tergaonkar, 2013). On the other hand, the immortal replicative 

phenotype that is characteristic of the vast majority of cancer cells is attributed to high 
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levels of telomerase activity. In fact, roughly 85% of all cancers display telomerase activity 

and the activation of telomerase activity in these cells is a key step in the tumorigenic 

process (Zhu et al., 2010). Consequently, the selective inhibition of telomerase activity in 

cancer cells has emerged as an attractive therapeutic target (Holysz et al., 2013; Buseman 

et al., 2012). A better understanding of telomerase structure, function, and regulation will 

shed light on the importance of this enzyme in cancer biology.  

     The telomere regions of vertebrate chromosomes are defined by a distinct structure that 

distinguishes telomeres from other areas of chromosomal DNA. In humans, a highly 

repetitive sequence of TTAGGG approximately 5 to 15 kb in length is tightly associated 

with a complex of six telomeric DNA binding proteins termed a shelterin complex (Stewart 

et al., 2012). The majority of telomeric DNA is double stranded with the exception of a 

guanine rich 3’ overhang of single stranded DNA roughly 100 nucleotides in length. The 

looping of this single stranded DNA into the double stranded regions produces a structure 

known as a T-loop. The shelterin complex, which assists in the formation of T-loops of 

telomeric DNA, functions as a protective cap that prevents the activation of cellular DNA 

damage responses that would otherwise recognize the telomeres as double stranded DNA 

breaks (Stewart et al., 2012; Buseman et al., 2012). The major role of telomeres is to 

maintain genomic stability by acting as a buffer for the gradual erosion of DNA that 

accompanies each cycle of cell division. Once telomeric DNA has shortened beyond a 

particular threshold, genomic instability as a result of chromosomal fusions and 

translocations will typically induce senescence followed by apoptosis (Buseman et al, 

2012). The mechanism is believed to be a normal part of the aging process.  
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     The shelterin protein complex is critical for maintaining genomic stability at the 

telomeres and consists of the following six proteins: TRF1, TRF2, TIN2, TPP1, POT1, and 

RAP1 (Stewart et al., 2012). TRF1 and TRF2 (telomeric repeat factor-binding protein) 

each form separate homodimers that bind to the double stranded DNA regions of telomeres. 

Both TRF1 and TRF2 act as negative regulators of telomere length and are linked to each 

other by the TIN2 linker protein (Walker et al., 2012). The POT1 (protection of telomeres) 

binds to the 3’ single stranded guanine rich overhang and mainly functions to inhibit the 

activation of DNA damage response pathways at the telomeres. The POT1 is connected to 

the other shelterin complex proteins through the linker protein TPP1 which binds to both 

POT1 and TIN2 (Heidenreich and Kumar, 2017). The RAP1 is a small protein that binds 

to TRF2 and aids TRF2 in preventing non-homologous end joining and chromosomal 

fusions (Stewart et al., 2012). The TIN2 maintains the stability of the shelterin complex 

given its interactions with both TRF1 and TRF2 as well as with TPP1-POT1 (Heidenreich 

and Kumar, 2017). The interaction between POT1 and TPP1 is essential for the regulation 

of telomerase activity by enhancing the processivity of the telomerase enzyme (Zaug et al., 

2010). Besides the recruitment of telomerase to telomeres, TPP1 is also involved in 

monitoring the length of telomeres and provides feedback regulation to telomerase (Sexton 

et al., 2014). Phosphorylation of TPP1 at serine residue 111 is important for the cell cycle 

dependent recruitment and activation of telomerase activity (Zhang et al., 2013). Each 

shelterin complex protein plays a clear role in telomere maintenance and the loss of any 

one protein will result in reduced telomere protection (Bandaria et al., 2016; Erdel et al., 

2017).  
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     Normal somatic cells lose approximately 50 nucleotides of telomeric DNA with each 

cycle of cell division as a result of incomplete DNA replication during the S phase. 

Incomplete replication of the lagging daughter strand occurs because of the inability of 

DNA polymerase to access the very 3’ end of the template DNA strand (Zvereva et al., 

2010). The replication problem is overcome in certain cells by extension of the 3’ end of 

the template DNA strand by the telomerase enzyme. Telomerase is a ribonucleoprotein that 

functions as a reverse transcriptase by adding sequential repeats of the hexameric sequence 

TTAGGG to the 3’ end of the template DNA strand; and once extended by telomerase, 

DNA polymerase α-primase (PαP) can then complete replication of the lagging daughter 

strand (Hockemeyer and Collins, 2015).   

     The functional telomerase holoenzyme consists of two essential parts: an enzymatic 

protein component known as TERT that acts as a reverse transcriptase and an RNA 

template component known as TR (Heidenreich and Kumar, 2017). The assembly of 

functional telomerase holoenzyme proceeds through distinct stages. The TERT mRNA is 

first synthesized and processed in the nucleus and then exported to the cytoplasm for 

translation into protein. Newly synthesized TERT enzyme is then imported back into the 

nucleus where it is localized to the nucleolus (Hockemeyer and Collins, 2015; Podlevsky 

and Chen, 2012). Meanwhile, TR precursor RNA is transcribed by RNA polymerase II in 

the nucleus and is capped on the 5’ end with trimethylguanosine. Two copies of a protein 

complex containing dyskerin, NOP10, NHP2, and GAR1 associate with the TR at the 

H/ACA motif and are required for 3’ end modification. The RHAU RNA helicase binds to 

the 5’ end of TR and resolves the G-quadruplex while the TCAB1 protein binds to the CAB 

box motif and directs the TR to nuclear Cajal bodies (Hockemeyer and Collins, 2015; 
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Podlevsky and Chen, 2012). The TERT is subsequently moved into the Cajal bodies where 

it assembles with TR to form the final functional telomerase holoenzyme. The active 

telomerase enzyme will then be recruited to the telomeres at the appropriate time for 

telomeric DNA synthesis (Hockemeyer and Collins, 2015; Podlevsky and Chen, 2012).  

     The regulation of telomerase activity occurs mainly at the level of TERT transcription 

as TERT mRNA synthesis is highly regulated in most somatic cells. The synthesis of TERT 

mRNA appears to be the rate limiting step in the regulation of telomerase activity as TERT 

gene transcription is highly repressed in most somatic cells (Zhu et al., 2010). The 

telomerase RNA template (TR) however is ubiquitously expressed in many cell types 

(Daniel et al., 2012). The TERT core promoter contains binding sites for several key 

transcription factors known to regulate TERT transcription- these include: c-Myc, SP1, 

ER, Ets, AP1, and NF-κB (Zhu et al., 2010). The c-Myc binds to two E-box consensus 

sequences within the TERT promoter and is strongly linked to activation of TERT 

transcription. Similarly, SP1 plays a critical role in activating TERT transcription as 

mutation of SP1 binding sites in the TERT promoter significantly reduces TERT 

expression (Cifuentes-Rojas and Shippen, 2012). There is evidence that SP1 may in fact 

interact with c-Myc to promote TERT expression and that SP1 may also potentially interact 

with another protein known as MCAF-1 to stimulate TERT expression. Two estrogen 

response elements are located within the TERT promoter upstream of the transcription start 

site and enhance TERT expression when bound by ERα (Daniel et al., 2012).  

     On the other hand, TERT expression is negatively regulated by the binding of tumor 

suppressor proteins such as the Wilm’s tumor-1 (WT1) protein. Additionally, p53 

expression acts to inhibit TERT transcription. The p53 tumor suppressor protein has been 
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shown to interact with both human telomerase associated protein 1 (hTEP1) and SP1 to 

inhibit TERT promoter activity (Lu et al., 2013). The overexpression of TERT 

transcriptional activators such as c-Myc and the loss of tumor suppressor proteins such as 

p53 or Rb are common mechanisms in the malignant transformation of cells (Zhu et al., 

2010).  

     Telomerase activity can also be regulated to a lesser extent by post-translational 

modifications of the catalytic TERT subunit such as phosphorylation and ubiquitination. 

Multiple protein kinases like c-Abl, protein kinase B, and protein kinase C are able to 

influence telomerase activity (Wojtyla et al., 2010). Tyrosine phosphorylation of TERT by 

c-Abl tends to reduce TERT activity while phosphorylation of serine/threonine residues by 

PKB (Akt) tends to stimulate TERT activity. Protein phosphatase 2A has been shown to 

reduce telomerase activity in specific cell types as TERT phosphorylation is necessary for 

its import into the nucleus. The TERT stability and half-life in the cytoplasm is controlled 

by E3 ubiquitin ligases that can target TERT for proteolytic degradation and thus prevent 

its entry into the nucleus (Cifuentes-Rojas and Shippen, 2012). Several splice variants of 

human TERT are known to exist each with differing levels of activity. The hTERTα splice 

variant contains a 183 base pair deletion that results in reduced telomerase activity and thus 

functions as a dominant negative inhibitor of telomerase activity (Cifuentes-Rojas and 

Shippen, 2012).  

     Epigenetic regulation of the TERT promoter figures prominently for TERT expression 

as the TERT promoter is located within a region of highly condensed chromatin (Cifuentes-

Rojas and Shippen, 2012). Core histones within the TERT promoter are usually 

hypoacetylated and this contributes to the repression of TERT expression observed in most 
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somatic cells. CpG island methylation is also commonly associated with the silencing of 

TERT expression. Conversely, methylation of lysine 9 of histone 3 (H3K9) increases 

TERT expression as does the hyperacetylation of other core histones through the inhibition 

of histone deacetylase complexes (HDACs) (Zhu et al., 2010). Several transcription factors 

are known epigenetically regulate TERT expression through the recruitment of histone 

acetyltransferases (HATs) or HDACs to the TERT promoter (Lu et al., 2013).  

     Telomerase expression and activity can be modulated by various signal transduction 

pathways. The Wnt/β-catenin pathway is widely known for its important role during 

embryonic development, however it has also been implicated in tumor formation. A 

positive feedback mechanism exists in which β-catenin can upregulate TERT expression 

through its interaction with the TERT promoter. The TERT subsequently forms a complex 

with the BRG1 Wnt transcription factor to stimulate expression of both cyclin D and c-

Myc (Wu et al., 2013). The c-Myc is a well documented activator of TERT expression. 

Inflammation is commonly associated with many different cancers and NF-κB is a primary 

regulator of chronic inflammation linked with tumorigenesis and cancer progression. 

Recent evidence suggests that a reciprocal relationship may exist between NF-κB activity 

and TERT expression. NF-κB can bind upstream of the TERT transcription start site to 

stimulate TERT expression. The TERT, on the other hand, can reinforce NF-κB activity 

by binding to the p65 subunit of NF-κB to enhance transcription of inflammatory genes 

such as IL-6 and TNF-α (Ghosh et al., 2012). Additionally, the RAP1 shelterin complex 

protein is a key regulator of NF-κB activity (Martinez and Blasco, 2011).  

     Other signal transduction pathways such as the PI3K/Akt and MAPK pathways also 

contribute significantly to the regulation of TERT expression and activity. The Akt-
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mediated phosphorylation of specific effector proteins promotes the proteolytic 

degradation of p53 and the c-Myc competitor protein MAD1 (Peek and Tollesfbol, 2016). 

Additionally, the PI3K/Akt pathway has been tied to NF-κB activation as well as the 

inhibition of TGF-β signaling through Jab1 activation and SMAD4 degradation (Daniel et 

al., 2012). The TGF-β signaling pathway is an important inhibitory pathway that mediates 

cell growth, differentiation, and proliferation. TGF-β signaling can suppress c-Myc 

expression but is susceptible to inhibition by estrogen (Peek and Tollefsbol, 2016). Heeg 

et al. (2010) report that EGFR overexpression in OKF6 oral-esophageal cells enhances 

TERT transcription via the Hif1-α transcription factor and directly stimulates telomerase 

activity through an Akt-dependent phosphorylation of TERT. Similarly, estradiol (E2) is 

reported to increase telomerase activity in endometrial cancer cells through MAPK 

induction of TERT transcription. Inhibition of either MEK or ERK resulted in decreased 

luciferase activity from a reporter plasmid containing the TERT promoter following 

treatment with E2 (Zhou et al., 2013).   

     In summary, abnormal telomerase expression and activity is a defining hallmark 

observed in many different cancers. The immortal replicative phenotype conferred by the 

enzyme is critical to the survival and proliferation of malignant cancer cells. The regulation 

of telomerase activity occurs primarily at the level of transcription and typically becomes 

disordered during the tumorigenic process. The fact that the enzyme is not expressed in 

most normal somatic cells makes selective telomerase inhibition an attractive 

chemotherapeutic target. Further research into the oncogenic properties of telomerase is 

needed to reveal novel therapeutic approaches.  
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3.2 Results 

     Lentiviral vectors encoding Rin1 Y561F and Rin1 delta were designed using the 

VectorBuilder online platform (https://en.vectorbuilder.com/). These lentiviral vectors 

(Figure 3.1) were used in the creation of the Rin1 Y561F and Rin1 delta MDA-MB 231 

breast cancer cell lines as described in 3.4, Creation of Cell Lines. Light micrograph images 

of the MDA-MB 231 cell lines overexpressing the Rin1 Y561F or Rin1 delta constructs 

reveal similarities in morphology and growth rate (Figures 3.2 and 3.3, B.) The cells of 

each cell line displayed a flattened, spindle type shape and grew fairly evenly across the 

surface of the culture dish. The growth rate of each was similar to that of MDA-MB 231 

cells expressing GFP. Additionally, confocal imagery indicates a roughly uniform 

distribution of Rin1 Y561F and Rin1 delta throughout the cytoplasm of these cells (Figures 

3.2 and 3.3, A.) while Western blotting analysis reveals strong expression of the different 

Rin1 constructs (Figures 3.4 and 3.5).  

     An experiment to determine the effect of different IGF-1 concentrations on the cellular 

proliferation of MDA-MB 231 cells was performed using IGF-1 concentrations of 20, 60, 

and 100 ng/mL. The MDA-MB 231 cell lines overexpressing Rin1 Y561F and Rin1 delta 

each displayed an increase in cellular proliferation for every IGF-1 concentration tested 

when compared to the corresponding untreated (0 ng/mL) control cells (Figure 3.11). The 

same result was observed for the GFP control cell line (Figure 3.11). The effect of IGF-1 

concentration on proliferation was statistically significant for all cell lines tested (p <0.05, 

ANOVA), and stimulation with as little as 20 ng/mL of IGF-1 resulted in an increase in 

cellular proliferation as compared to untreated cells (Figure 3.11). The MDA-MB 231 Rin1 

Y561F and Rin1 delta cell lines displayed an optimal increase in cellular proliferation when 

https://en.vectorbuilder.com/
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stimulated with 100 ng/mL of IGF-1. All proliferation experiments were conducted in 

triplicate using a concentration of 2.0 x 105 cells/mL.  

     An experiment to determine the effect of IGF-1 concentration on telomerase protein 

expression in MDA-MB 231 GFP cells was conducted using IGF-1 concentrations of 0, 

10, and 50 ng/mL. Telomerase protein expression increased as the IGF-1 concentration 

increased and peaked in response to stimulation with an IGF-1 concentration of 50 ng/mL 

for 12 hours (Figure 3.6). An ImageJ analysis of the intensity of telomerase protein 

expression at 50 ng/mL of IGF-1 indicates an approximately 13 fold increase over 

unstimulated cells and a roughly 2 fold increase over cells stimulated with 10 ng/mL 

(Figure 3.6). The effect of IGF-1 stimulation on telomerase protein expression was 

subsequently evaluated in MDA-MB 231 cells expressing Rin1, Rin1 Y561F, and Rin1 

delta. The cells were induced with 50 ng/mL of IGF-1 for 24 hours and the intensity of 

telomerase protein expression was normalized to that of GFP cells using ImageJ analysis 

(Figure 3.7). Increases in telomerase protein expression of 3 fold and 2 fold respectively 

were observed for the MDA-MB 231 Rin1 Y561F and Rin1 delta cell lines, while the Rin1 

cell line exhibited a 0.7 fold decrease in telomerase protein expression (Figure 3.7).  

     In order to study the effects of the amino (R2N) and carboxyl (R3C) terminal regions 

of  Rin1 on signaling through the MAPK pathway, MDA-MB 231 cells expressing these 

Rin1 constructs were stimulated with 100 ng/mL of IGF-1 for 24 hours. Levels of total 

p44/42 and phospho-p44/42 protein expression were then determined through Western 

blotting (Figure 3.8) and the ratio of phospho-p44/42 to total p44/42 was calculated by 

ImageJ analysis (Figure 3.8). A 16 fold increase in the ratio of phospho-p44/42 to total 
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p44/42 was observed for the cells expressing the amino terminus of Rin1 when compared 

to the cells expressing the carboxyl terminus (Figure 3.8). 

     A time course experiment to investigate the effect of Rin1 on signaling through the 

MAPK pathway was performed on the MDA-MB 231 cells expressing GFP, Rin1, the 

amino (R2N), and the carboxyl (R3C) terminal regions of Rin1. The expression of various 

MAPK pathway proteins and other associated proteins as well as their phosphorylation 

status was determined by Western blotting following IGF-1 stimulation with 25 ng/mL for 

either 0, 5, or 10 minutes (Figures 3.9 and 3.10). The R3C cell line exhibited reduced levels 

of p44/42 phosphorylation over the 10 minute time period when compared to the GFP and 

R2N cell lines (Figures 3.9, A. and 3.10, A.). The Rin1 cells also display delayed p-44/42 

phosphorylation as well as delayed phosphorylation of the Ets2 transcription factor (Figure 

3.9, B.). Additionally, low levels of phosphorylated STAT3 and Ets2 transcription factors 

were observed for the R3C cell line (Figure 3.10, B.).  

     Telomerase activity was also examined in various MDA-MB 231 breast cancer cell lines 

expressing different constructs of the Rin1 protein following treatment with IGF-1. These 

cell lines include the MDA-MB 231 human breast cancer cell lines expressing Rin1 Y561F 

and Rin1 delta as well as the amino (R2N) and carboxyl (R3C) terminal regions of Rin1. 

Each cell line was virally transduced and selected for stable Rin1 construct expression as 

described previously (2.4, Creation of Cell Lines). Telomerase activity following exposure 

to 100 ng/mL of IGF-1 for 24 hours was determined by the telomeric repeat amplification 

protocol (TRAP) assay for each of the MDA-MB 231 cell lines expressing the various Rin1 

constructs (Table 3.1).  
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     The MDA-MB 231 breast cancer cell lines overexpressing Rin1 Y561F and Rin1 delta 

displayed elevated telomerase activities of approximately 1 fold each over GFP cells when 

treated with 100 ng/mL of IGF-1 for 24 hours (Table 3.1). The MDA-MB 231 GFP cells, 

which express endogenous levels of Rin1, resulted in an average Ct value of 25.94 while 

the Rin1 Y561F and delta cell lines produced average Ct values of 25.88 and 25.92 

respectively (Table 3.1). The corresponding IGF-1 untreated samples for each cell line 

were also run for comparison (Table 3.1). A known telomerase positive HeLa cell control 

sample was run as a positive control and telomerase negative controls consisted of a heat 

inactivated HeLa cell sample as well as a buffer only sample (Table 3.1).  In contrast to the 

Rin1 Y561F and delta cell lines, the MDA-MB 231 cell lines expressing the amino (R2N) 

and carboxyl (R3C) regions of Rin1 exhibited 1.06 and 1.11 fold reductions in telomerase 

activity when compared to GFP cells. The MDA-MB 231 cell lines expressing the R2N 

and R3C regions of Rin1 resulted in average Ct values of 26.03 and 26.09 respectively 

(Table 3.1).  

3.3 Discussion 

     Abnormal telomerase protein expression and activity are commonplace for a number of 

different cancers. The fact that telomerase activity is virtually absent in most normal 

somatic cells but present in roughly 85% of all cancers highlights the importance of the 

enzyme for cancer cell survival and replication. Strategies to inhibit telomerase activity are 

therefore attractive chemotherapeutic targets. One such strategy is the potential use of the 

Rin1 protein to modulate signaling through the MAPK pathway and thus suppress 

telomerase activity. To this end, several Rin1 constructs were expressed in MDA-MB 231 

breast cancer cells to investigate the ability of Rin1 to moderate telomerase activity.  
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     Cells virally transduced to express GFP were used as a control to compare the effect of 

overexpression of particular Rin1 constructs (Y561F, delta, amino terminus, carboxyl 

terminus) on telomerase activity for the MDA-MB 231 breast cancer cell line. The GFP 

cells express endogenous levels of Rin1 and therefore would be most similar to non-

transduced cells in terms of Rin1 expression. However, the GFP cells are virally transduced 

which permits meaningful comparisons with the cell lines that are virally transduced to 

express the various Rin1 constructs. The expression of GFP has no influence on telomerase 

activity.  

     As discussed previously (1.3, The MAPK Pathway and Cancer), Rin1 is able to compete 

strongly with RAF1 for access to activated Ras. Thus, is it possible that Rin1 may act to 

dampen mitogenic signaling through the MPAK pathway and consequently affect the 

activity of a downstream MAPK effector such as telomerase. If so, the potential tumor 

suppressive role of Rin1 would be evidenced in reduced telomerase activity. Conversely, 

overexpression of the Rin1 Y561F and Rin1 delta constructs should not impede telomerase 

activity as these Rin1 isoforms do not bind as strongly to activated Ras (1.3, The MAPK 

Pathway and Cancer). Similarly, it is hypothesized that overexpression of the Rin1 amino 

terminal region (R2N) should allow for enhanced MAPK signaling given that the R2N 

region of Rin1 lacks the Ras association (RA) domain. Conversely, the carboxyl terminal 

region (R3C) of Rin1 contains the Ras association domain and its overexpression should 

therefore dampen signaling through the MAPK pathway.  

     The effect of the Rin1 Y561F and Rin1 delta constructs on cellular proliferation in 

MDA-MB 231 cells underscores the tumorigenic properties of these particular forms of 

Rin1 when compared to cells that overexpress Rin1 (Figures 3.11 and 2.6). For instance, 
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fold increases in proliferation of 1.2, 1.7, and 9.3 were observed respectively for MDA-

MB 231 cells expressing Rin1 Y561F across the range of IGF-1 concentrations (20, 60, 

and 100 ng/mL) tested when compared to cells expressing Rin1 (Figure 2.6). Similarly, 

fold increases in proliferation of 1.5, 2.0, and 9.2 were observed respectively for the cells 

expressing Rin1 delta over the Rin1 cells when stimulated with the same range of IGF-1 

concentrations (Figures 3.11 and 2.6). These data, in conjunction with the observable 

differences in growth patterns and rates as well as increased telomerase activity, point to 

heightened MAPK signaling in MDA-MB 231 cells expressing the Rin1 Y561F and delta 

constructs following IGF-1 stimulation- most likely as a consequence of reduced binding 

to activated Ras. The Rin1 cells consistently displayed the least amount of increase in 

proliferation over the corresponding unstimulated cells for each of the IGF-1 

concentrations examined, probably owing to increased competition with RAF1 for access 

to activated Ras (Figure 2.6).  

     The enhanced MAPK signaling in MDA-MB 231 cells expressing the Rin1 Y561F and 

Rin1 delta constructs is also evident in telomerase protein expression and correlates well 

with telomerase activity for these cell lines. Stimulation of GFP cells, which express low 

endogenous levels of Rin1, results in a steady increase in telomerase protein expression 

over a range (0, 10, and 50 ng/mL) of IGF-1 concentrations (Figure 3.6). When normalized 

to telomerase protein expression in GFP cells, there is a clear reduction in telomerase 

protein expression of 0.7 fold for the MDA-MB 231 cells overexpressing Rin1 versus 

either Rin1 Y561F or Rin1 delta, that display fold increases of 3 and 2 respectively (Figure 

3.7). As a downstream MAPK effector, changes in telomerase protein expression mirror 

the ability of Rin1 or its constructs to moderate signaling through the pathway. 
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     When examining the expression and phosphorylation status of key MAPK proteins over 

time subsequent to IGF-1 stimulation, the ability of Rin1 to attenuate signaling is evident 

for p-44/42 (ERK). There is suppressed phosphorylation of p-44/42 over a 10 minute time 

period for the MDA-MB 231 cells overexpressing Rin1 as compared to the cells expressing 

the Rin1 amino (R2N) terminus (Figures 3.9, B. and 3.10, A.). Additionally, appreciable 

phosphorylation of p-44/42 is not evident for the cells expressing the Rin1 carboxyl (R3C) 

terminus (Figure 3.10, B.). In a separate experiment, a 16 fold increase in the ratio of 

phosphorylated p-44/42 to total p-44/42 was observed for the Rin1 R2N cells as compared 

to the R3C cells (Figure 3.8).  Again, the prevalence of the Ras association (RA) domain 

in the Rin1 and R3C cells could explain the differences and correlates well with the reduced 

telomerase activity observed in both the Rin1 and R3C cell lines.  

     The MDA-MB 231 Rin1 cells exhibit suppressed phosphorylation of the Ets2 

transcription factor, which is a key activator of telomerase protein expression (Figure 3.9, 

B.). A similar reduction in STAT3 phosphorylation is also apparent in these cells as well 

as in the R3C cells (Figure 3.10, B.). Taken together, the data highlight a potential tumor 

suppressor role for Rin1 in MDA-MB 231 breast cancer cells. The decrease in telomerase 

activity observed for the Rin1 and R3C cells (Tables 2.2 and 3.1) is particularly interesting 

given that the MDA-MB 231 cell line contains a constitutively active mutant form of Ras; 

therefore, overexpression of Rin1 in these cells appears to effectively counter the 

heightened signaling through the MAPK pathway. 

     In summary, telomerase activity in MDA-MB 231 breast cancer cells is modulated by 

the form of Rin1 that is expressed. While Rin1 Y561F and Rin1 delta do not bind as 

strongly to activated Ras when compared to Rin1, the deletion of 62 amino acids from Rin1 
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delta and the Y561F point mutation appear to affect their ability to bind with activated Ras 

and thus permit enhanced signaling through the MAPK pathway. The inhibitory effect of 

Rin1 on telomerase activity may be partially explained by the interaction of its Ras 

Association (RA) domain with Ras. The RA domain of Rin1 is located in the carboxy 

terminus of Rin1 and overexpression of the Rin1 carboxy terminal region (R3C) in MDA-

MB 231 cells reduces telomerase activity by 1.11 fold. Although Rin1 Y561F and Rin1 

delta each contain the RA domain, the altered structures of these Rin1 constructs due to 

point mutation and deletion prevents efficient binding to active Ras and may therefore 

allow for enhanced MAPK signaling over that of Rin1 as evidenced by increased 

telomerase activity.  

3.4 Materials and Methods 

Creation of Cell Lines 

     The MDA-MB 231 cell lines stably expressing the Rin1 Y561F and Rin1 delta 

constructs were created using the same protocol as described previously in 2.4, Creation 

of Cell Lines. Lentiviral plasmid expression vectors for Rin1 Y561F (pLV[Exp]-Puro-

CMV>hRIN1Y561F) and Rin1delta (pLV[Exp]-Puro-CMV>hRIN1 delta) were designed 

using the VectorBuilder website (https://en.vectorbuilder.com/) powered by Cyagen 

Biosciences. The Rin1 gene sequence was mutated to produce the open reading frame 

sequences for Rin1 Y561F and Rin1 delta. MDA-MB 231 cell lines expressing the amino 

(R2N) or carboxyl (R3C) terminal regions of Rin1 were generously provided by Wei 

Zhang, a fellow graduate student from the Barbieri lab at Florida International University. 

 

 

https://en.vectorbuilder.com/
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Western Blotting 

     Western blotting analysis of the MDA-MB 231 R2N and R3C cell lines to confirm the 

expression of the Rin1 amino and carboxyl terminal regions, as well as the Rin1 Y561F 

and Rin1 delta constructs, was performed in the same manner as described previously in 

2.4, Western Blotting. Additionally, Western blotting analysis was utilized to determine the 

effect of the various MDA-MB 231 Rin1 constructs (Rin1, Rin1 Y561F, Rin1 delta, and 

GFP) on telomerase protein expression following IGF-1 stimulation (50 ng/mL) for 24 

hours. The effect of stimulation with different IGF-1 concentrations (0, 10,  or 50 ng/mL) 

for 12 hours on telomerase protein expression was performed using MDA-MB 231 GFP 

cells.  

     Determination of the cellular mechanism underlying the regulation of telomerase 

activity by Rin1 was performed in MDA-MB 231 cell lines expressing either GFP, Rin1, 

the amino terminal (R2N), or the carboxyl terminal (R3C) of Rin1. Briefly, 2.0 x 105 cells 

for each MDA-MB 231 construct were grown in 1 mL starvation media for 24 hours. The 

starvation media for each cell sample was then replaced with 1mL of chilled Krebs-Ringer 

buffer supplemented with 25 ng/mL of IGF-1. The cell samples were immediately chilled 

at 4°C with rocking for 30 minutes to allow for IGF-1 receptor binding. The IGF-1 

induction (25 ng/mL) was then performed by incubating the cell samples at 37°C for either 

0, 5, or 10 minutes. The samples were lysed at these respective times and prepared for 

Western blotting analysis according to the protocol discussed previously in 2.4, Western 

blotting. Cell samples were assessed for changes in the levels of protein expression over 

time for key signaling proteins such as p44/42, phospho-p44/42, STAT3, phospho-STAT3, 

Ets2, and phospho-Ets2. The effect of the Rin1 amino (R2N) and carboxyl (R3C) regions 
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on the ratio of phopho-ERK/ERK was also determined by Western blotting. Cells were 

stimulated with IGF-1 (100 ng/mL) for 24 hours and then prepared for Western blotting 

analysis as described previously in 2.4, Western Blotting.  

IGF-1 Assay 

     In order to assess the effect of insulin-like growth factor 1 (IGF-1) concentration on the 

proliferation of MDA-MB 231 cells, cells expressing GFP, Rin1, Rin1 Y561F, and Rin1 

delta were exposed to various concentrations of IGF-1. The cells were initially grown under 

the same conditions as described in 2.4, MTT Cell Proliferation Assay. The cells were 

plated on a 12 well plate at a concentration of 2.0 x 105 cells per mL with one mL per well 

and cultured for 24 hours under serum free conditions. After 24 hours, the cells were 

exposed in triplicate to four different concentrations of IGF-1: 20 ng/mL, 60 ng/mL, and 

100 ng/mL. A control group of cells was not exposed to IGF-1 (0 ng/mL). Human IGF-1 

(20 ug) was purchased from Shenandoah Biotechnology and diluted in sterile, deionized 

water to a concentration of 1 ng/uL. After 24 hours of exposure to the various IGF-1 

concentrations, the effect of the growth factor on cell proliferation was determined by an 

MTT assay in the same manner as described under the 2.4, MTT Cell Proliferation Assay. 

An ANOVA was utilized to detect any statistically significant difference in cell 

proliferation as a function of IGF-1 concentration.       

Telomerase Activity Assay  

     The MDA-MB 231 human breast cancer cells expressing Rin1 Y561F and Rin1delta as 

well as the amino (R2N) and carboxyl (R3C) terminal regions of Rin1 were serum starved 

for 24 hours at 37°C and 5% CO2 on a 12 well plate at a density of 1.0 x 105 cells per well 

in 1 mL of serum free growth media. Each of the four MDA-MB 231 cell types were plated 
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in duplicate. After 24 hours, 100 ng/mL of IGF-1 was added to half of the total samples- 

one well per cell type. The other half of the samples did not receive IGF-1 treatment. The 

samples were then incubated for another 24 hours, after which time the culture media in 

each well was removed and the cells were subsequently prepared for the telomeric repeat 

amplification protocol (TRAP) assay as per the manufacturer’s instructions and as 

previously described in 2.4, Telomerase Activity Assay.  
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Figure 3.1: Lentiviral vector used to create the MDA-MB 231 cell line expressing Rin1 

Y561F. The Rin1 Y561F gene sequence is inserted directly downstream of the CMV 

promoter. An identical vector with the Rin1 delta gene sequence inserted was used to 

create the MDA-MB 231 cell line expressing Rin1 delta. Also labeled are the various 

elements necessary for lentivirus production and cell selection. 

          A.        B. 

40 40

X 
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Figure 3.2: A) Confocal micrograph image of MDA-MB 231 cells expressing Rin1 

Y561F. Rin1 Y561F tends to localize throughout the cytoplasm. B) Light micrograph 

image illustrating the even growth pattern of MDA-MB 231 cells expressing Rin1 

Y561F.  
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Figure 3.5: Expression of the carboxyl terminal region of Rin1 in the MDA-MB 231 

R3C cell line. 

A.                      B. 

40X 

Figure 3.3: A) Confocal micrograph image of MDA-MB 231 cells expressing Rin1 

delta. Rin1 delta tends to localize throughout the cytoplasm. B) Light micrograph image 

illustrating the even growth pattern of MDA-MB 231 cells expressing Rin1 delta.  

Figure 3.4: Western blot image of the A) MDA-MB 231 Rin1 Y561F cell line 

expressing Rin1 Y561F. B) MDA-MB 231 Rin delta cell line overexpressing Rin1 

delta. 
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Figure 3.6: Effect of IGF-1 concentration on telomerase protein expression in MDA-

MB 231 GFP cells. Cells were stimulated with 0, 10, or 50 ng/mL of IGF-1 for 12 

hours. 

Figure 3.7: Effect of Rin1 constructs on telomerase protein expression in MDA-MB 

231 cells. Cells were stimulated with 50 ng/mL of IGF-1 for 24 hours. Values 

represent the percent increase normalized to GFP cells.  
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Figure 3.8: Effect of Rin1 amino (R2N) and carboxyl (R3C) terminal regions on the 

ratio of p-ERK/ERK in MDA-MB 231 GFP cells following IGF-1 stimulation (100 

ng/mL) for 24 hours. 
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Figure 3.9: Western blot image of the effect of Rin1 on the expression and 

phosphorylation status of various proteins in the MDA-MB 231 GFP and Rin1 cell lines 

following IGF-1 induction (25 ng/mL) for the times indicated (minutes). 
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Figure 3.10: Western blot image of the effect of Rin1 on the expression and 

phosphorylation status of various proteins in the MDA-MB 231 amino (R2N) and 

carboxyl (R3C) cell lines following IGF-1 induction (25 ng/mL) for the times indicated 

(minutes). 
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MDA-MB 231 Telomerase Activity of Rin1 Constructs 

 
Average Ct Value ± Standard Error 

Telomerase positive control 25.03 ± 0.20 

Telomerase negative control  25.40 ± 0.10 

GFP (+) IGF-1 25.94 ± 0.10 

GFP (-) IGF-1 25.82 ± 0.21 

Rin1 Y561F (+) IGF-1 25.88 ± 0.16 

Rin1 Y561F (-) IGF-1 25.82 ± 0.23 

Rin1 delta (+) IGF-1 25.92 ± 0.13 

Rin1 delta (-) IGF-1 25.82 ± 0.43 

Rin1 R2N (+) IGF-1 26.03 ± 0.13 

Rin1 R2N (-) IGF-1 25.74 ± 0.27 

Rin1 R3C (+) IGF-1 26.09 ± 0.24 

Rin1 R3C (-) IGF-1 27.48 ± 1.73 

Buffer 25.80 ± 0.15 

 

 

 

Table 3.1: Cycle threshold values (Ct) for the qPCR of telomerase activity in MDA-

MB 231 Rin1 construct cell lines following stimulation with 100 ng/mL of IGF-1 (+) 

for 24 hours or no stimulation (-). Rin1 Y561F and Rin1 delta cells display 1.04 and 

1.01 fold increases in telomerase activity compared to GFP cells. Rin1 R2N and Rin1 

R3C cells display 1.06 and 1.11 fold decreases in telomerase activity compared to GFP 

cells. 
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Figure 3.11: The effect of IGF-1 concentration on cellular proliferation in MDA-MB 

231 cells expressing Rin1 Y561F or Rin1 delta. Values represent the percent increase 

in cellular proliferation over an unstimulated (0 ng/mL) control. All experiments were 

conducted in triplicate. Error bars represent standard error of the mean. 
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CHAPTER 4 

The Effect of Rin1 on Telomerase Activity in Human Glioblastoma and Melanoma 

Cells  

4.1  Introduction 

     Small GTPases have recently come to the forefront of cell biology as important 

regulators of numerous cellular processes. Key cellular events such as extracellular signal 

transduction, proliferation, cell motility, and cytoskeletal rearrangements are all regulated 

to some extent by the action of small GTPases (Carvalho et al., 2015). Cellular small 

GTPases encompass a large and diverse group of proteins ranging from the heterotrimeric 

G-proteins associated with plasma membrane G-protein coupled receptors to the small and 

mostly cytosolic monomeric G-proteins (Csepanyi-Komi et al., 2012). The latter category 

of small GTPases has garnered much attention lately for their ability to function as 

molecular switches in the control of a variety of cellular processes, particularly those 

related to signal transduction, cell survival/proliferation, and cell motility.  

     The Ras superfamily of small monomeric GTPases are perhaps the best understood and 

most extensively studied in terms of their structure and function. The discovery of the Ras 

(rat sarcoma) small GTPase almost twenty years ago has since led to the identification of 

a multitude of other small GTPases with similar structure and function to that of Ras. The 

Ras superfamily of small GTPases can be broadly divided into five distinct groups: Ras, 

Rho, Rab, Arf, and Ran (Carvalho et al., 2015). Each group within the Ras superfamily of 

small GTPases share a similar protein structure but can regulate separate and distinct 

cellular processes via their subcellular locations and interactions with downstream 

effectors (Bos et al., 2007). Additionally, the activity of each member of the Ras GTPase 
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superfamily is controlled by a specific set of regulators known as guanine nucleotide 

exchange factors (GEFs) and GTPase activating proteins (GAPs).  

     In terms of their cellular roles, members of the Ras small GTPases are principally 

involved in extracellular signal transduction as well as in regulating cell differentiation and 

proliferation (Simanshu et al., 2017). The Arf and Rab family members are known to 

coordinate vesicle formation and intracellular vesicle trafficking as well as exocytosis, 

while Rho GTPases are known regulate cell motility and migration through control of 

cytoskeletal dynamics (Bos et al., 2007). The import and export of nuclear cargo as well as 

nuclear envelope and mitotic spindle formation are regulated by the Ran GTPases (Bos et 

al., 2007). Regardless of their individual roles, all Ras superfamily small GTPases have in 

common a highly conserved guanine nucleotide binding domain that consists of a six 

stranded β sheet surrounded by five α helices (Cherfils and Zeghouf, 2013). Also contained 

within this domain are two switch regions referred to as Switch 1 (residues 30-38) and 

Switch 2 (residues 59-76) that change conformation when GTP is hydrolyzed as well as a 

phosphate binding loop (P-loop) (Carvalho et al., 2015). The two switch regions and the 

P-loop are involved in interactions with the phosphates of the bound guanine nucleotide 

and an essential magnesium ion that is necessary for strong binding of the nucleotide to the 

GTPase. Additionally, the carboxy terminus of most small GTPases is often modified by 

the attachment of prenyl groups such as farnesyl or geranylgeranyl that help to localize the 

G-protein to specific membranes. (Bos et al., 2007).  

     Most small GTPases are approximately 20-25 kDa in size and all are capable of GTP 

hydrolysis (Csepanyi-Komi et al., 2012). Small GTPases function as molecular switches 

by alternating between an active and an inactive state. The binding of GDP to the protein 
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favors the inactive state while the binding of GTP results in activation of the G-protein 

(Bos et al., 2007; Carvalho et al., 2015; Csepanyi-Komi et al., 2012). The exchange of GDP 

for GTP, and thus protein activation, is facilitated by multidomain proteins known as 

guanine nucleotide exchange factors (GEFs). Each member of the Ras superfamily of small 

GTPases is regulated by a specific group of GEFs with distinct structures (domains) and 

subcellular locations. For example, all GEFs for the Ras small GTPases contain a CDC25 

homology domain along with a Ras exchange motif (REM) while most Arf family GEFs 

contain a Sec7 domain. The GEFs for Rho family GTPases typically contain a DH-PH 

domain while Vps9, Sec2, and Mss4 domains are characteristic of Rab family GEFs. The 

Ran GTPases are activated by the RCC1 GEFs (Bos et al., 2007; Cherfils and Zeghouf, 

2013). Other domains involved in protein interaction such as SH2, SH3, PH, and C1 are 

commonly found in GEFs besides the necessary GEF domains listed above (Csepanyi-

Komi et al., 2012). Upon activation by their respective GEFs, small GTPases then interact 

with unique sets of downstream effector proteins to perform the specific cellular functions 

associated with that particular family of small GTPases.  

     While GEFs are responsible for the activation of small GTPases by helping to exchange 

GDP for GTP, GTPase activating proteins (GAPs) promote the hydrolysis of GTP to GDP 

and thus result in G-protein inactivation. All small GTPases display intrinsic GTPase 

activity, however this activity is often very slow and not useful on a biological timescale. 

The GAPs therefore increase the rate of GTP hydrolysis by several orders of magnitude 

(Cherfils and Zeghouf, 2013). Like GEFs, most GAPs are multidomain proteins that 

interact with high specificity towards a particular family of small GTPases.  
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     The mechanisms of GEF activation and GAP inactivation are best understood for the 

Ras small GTPases. The activation of Ras typically occurs upon binding of growth factors 

such as epidermal growth factor (EGF) or insulin-like growth factor 1 (IGF-1) to their 

respective plasma membrane receptors. Growth factor activation of these receptor tyrosine 

kinases (RTKs) promotes the binding of adaptor proteins such as Grb2 to phospho-tyrosine 

residues on the activated RTK (Erijman and Shifman, 2016). A Ras GEF known as SOS 

binds to Grb2 and then activates Ras by stimulating the exchange of GDP for GTP. The 

GEF activity of SOS involves conformational changes in the two switch regions of Ras as 

well as in the P-loop. Specifically, the CDC25 GEF domain of SOS interacts with the 

switch 2 region and opens up the nucleotide binding site of Ras through the insertion of an 

α helix (Erijman and Shifman, 2016; Kiel et al., 2004). The interaction ultimately disturbs 

the magnesium ion within the nucleotide binding site of Ras and results in a decreased 

affinity of the G-protein for the phosphate groups of the bound GDP nucleotide. The GDP 

nucleotide is therefore displaced from Ras beginning with the release of the phosphate 

groups first while the incoming GTP nucleotide binds first through its base. High 

intracellular levels of GTP favor binding of GTP over re-binding of GDP once GDP is 

released from the G-protein (Erijman and Shifman, 2016; Kiel et al., 2004).  

     The inactivation of the Ras small GTPase occurs through the hydrolysis of the terminal 

(γ) phosphate group of GTP through a mechanism involving stimulation by a Ras-GAP. 

The Ras-GAP promotes GTP hydrolysis through the insertion of a specific arginine residue 

(arginine finger) of the Ras-GAP that stabilizes the transition state by reducing the negative 

charge on the terminal phosphate group of GTP (Erijman and Shifman, 2016; Kiel et al., 

2004). The actual hydrolysis of GTP is then accomplished by the coordination of a water 
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molecule by a glutamine residue within Ras. The Ras-GAP helps to orient this glutamine 

residue for optimal GTP hydrolysis (Erijman and Shifman, 2016; Kiel et al., 2004).  

     While the general mechanisms of GEF and GAP activity are similar across the Ras 

superfamily of small GTPases, there do exist subtle differences in function depending on 

the particular G-protein family. For instance, the Vps9 domain of the Rab5 GEF known as 

Rin1 activates Rab5 through the insertion of a group of α helices into the nucleotide binding 

site of Rab5. Here, an aspartate residue rather than an arginine residue, interacts with the 

P-loop of Rab5 to promote the exchange of GDP for GTP (Cherfils and Zeghouf, 2013; 

Barr and Lambright, 2010). Similarly, the Rabex5 GEF activates Rab21 by using its Vps9 

domain to pry open the switch 1 region and then inserts an aspartate residue to interfere 

with the magnesium and phosphate binding sites (Barr and Lambright, 2010). Second 

messenger molecules such as cAMP are also known to activate the Rap small GTPases 

involved in cell adhesion. cAMP directly activates the Rap GEF Epac1 as well as protein 

kinase A (PKA), which in turn can phosphorylate Rap1 on its C-terminus and affect its 

subcellular localization. In another point of divergence with Ras, the RapGAP itself 

provides an asparagine residue to coordinate the attacking water molecule rather than the 

glutamine residue provided by Ras (Gloerich and Bos, 2011).  

     A growing body of evidence also implicates small GTPases in certain aspects of 

tumorigenesis (McFarlin et al., 2003). One of the defining hallmarks of most malignant 

cancers is the ability to spread or metastasize to new locations within the body and establish 

new tumors at sites distant from the primary tumor. In order for metastasis to occur, cancer 

cells must acquire an increasingly mobile phenotype that can lead to cell migration. The 

series of changes in cell morphology that accompany increased cell motility are often 
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referred to as the epithelial to mesenchymal transition (EMT). The EMT is characterized 

by changes in epithelial cell polarity and loss of contact with neighboring cells. The Rho 

small GTPases figure prominently in the EMT given their normal roles of regulating 

cytoskeletal dynamics (Jansen et al., 2018).  

     The Rho family of small GTPases is quite large and can be broadly divided into three 

main subfamilies (Rho, Rac, and Cdc42) with each consisting of various related members. 

The most extensively studied and best understood Rho G-proteins are RhoA, Rac1, and 

Cdc42 (Wertheimer et al., 2012). Like other small, monomeric GTPases, Rho protein 

activity is regulated by GEFs and GAPs. Most Rho GEFs contain a Dbl homology (DH) 

domain where the GEF activity resides and a pleckstrin homology (PH) domain that is 

capable of binding the membrane phospho-inositol lipid PI(3,4,5)P3. The binding of 

RhoGEF to PI(3,4,5)P3 following RTK or GPCR activation releases the autoinhibition of 

the DH domain. The RhoGEF is then free to activate a specific Rho G-protein and thus a 

specific group of downstream effectors that control rearrangement of the actin cytoskeleton 

(Hanna and El-Sibai, 2013). Unlike most RhoGAPs that stimulate GTP hydrolysis, the 

Rac1 GAP known as IQGAP1 is unusual in that it binds to GTP-Rac1 but does not exhibit 

GAP activity. Instead, IQGAP1 appears to interfere with the stability of adherens junctions 

by possibly interacting with β-catenin (Jansen et al., 2018).  

     The Rho dependent control of cell migration is illustrated in the regulation of focal 

adhesion formation by focal adhesion kinase (FAK). Focal adhesions are defined by 

interactions of integrins with ECM proteins and are typically found at the leading edge of 

migrating cells.  In a proposed model of focal adhesion regulation, FAK binds to and 

phosphorylates the p190RhoGAP. This phosphorylation step activates the p190RhoGAP 
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and results in the inhibition of RhoA (Tomar and Schlaepfer, 2009). A push/pull 

mechanism of cell movement occurs at the leading edge of the cell in which a reciprocal 

relationship between RhoA and Rac1 is the driving force. Elevated RhoA activity 

(pull/increased contractility) can inhibit Rac1 activity whereas decreased RhoA activity 

(push/decreased contractility) permits increased Rac1 activity. FAK mediated 

phosphorylation of the p190RhoGEF known as Rgnef activates RhoA and thus balances 

the p190RhoGAP activity as well as the migratory push/pull dynamic (Tomar and 

Schlaepfer, 2009).  

     The antagonistic relationship between RhoA and Rac1 is further illustrated in the type 

of cell movement governed by each protein. The RhoA activity tends to promote a 

cytoskeletal organization that results in a more generalized, amoeboid type of movement 

needed for cells to move through the ECM. In contrast, Rac1 activity is associated with a 

more directed type of movement such as lamellipodia formation (Kutys and Yamada, 2014; 

Parri and Chiarugi, 2010). In this example, increased Rac1 activity leads to the generation 

of reactive oxygen species (ROS) that oxidize and inactivate the low molecular weight 

protein tyrosine phosphatase (LMW-PTP) responsible for p190RhoGAP regulation. As a 

consequence, the p190RhoGAP remains phosphorylated and in an active state capable of 

downregulating RhoA activity through enhanced GTP hydrolysis (Parri and Chiarugi, 

2010). The Rac1 activity also negatively influences RhoA activity through the downstream 

WAVE-2 effector complex. Conversely, low ROS levels activate LMW-PTP and therefore 

inactivate p190RhoGAP through its dephosphorylation. As a result, RhoA activity 

increases and begins to inhibit Rac1 through activation of the Rac1GAP known as 

ARHGAP2 (Parri and Chiarugi, 2010).   
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     The Rac1 activity is often very high in breast cancer cells and further underscores the 

importance of Rac GTPases in the malignant transformation of cells. The RacGEF P-Rex1 

has been identified as an important activator of Rac1 and its expression is frequently 

upregulated in many breast cancers. The R-Rex1 is activated by signal inputs received from 

both the ErbB family of tyrosine kinase receptors as well as from GPCRs such as CXCR4 

(Sosa et al., 2010). In the case of ErbB transactivation of CXCR4, the βγ subunit of CXCR4 

activates PI3Kγ which in turn produces PI(3,4,5)P3 at the plasma membrane. The P-Rex1 

is then activated upon binding of its PH domain to PI(3,4,5)P3 and consequently promotes 

Rac1 activation (Wertheimer et al., 2012). Additionally, Dillon et al. (2015) report that P-

Rex1 may be able to create a positive feedback loop where P-Rex1 can activate the IGF-1 

receptor as well as PI3K/AKT and MAPK signaling.  

     Inhibition of PI3K has also been shown to reduce MAPK signaling in breast cancer cells 

overexpressing HER2 (ErbB2) or expressing a constitutively active mutant form of PI3K. 

Here, PI3K inhibition suppresses Rac1 activation and thus limits the Rac1 mediated 

activation of its p21 protein activated kinase (PAK) effector. As a consequence, this 

subsequently reduces c-RAF1 activity and ultimately leads to lowered MAPK activity (Ebi 

et al., 2013). Hyperactive Rac3, like Rac1, is also associated with persistent p21 PAK and 

c-Jun N-terminal kinase (JNK) activation in certain breast cancer cell lines (Mira et al., 

2000). In breast cancer cells overexpressing the IGF-1 receptor, knockdown of Rac1 

greatly reduced resistance to the Trastuzumab anti-HER2 monoclonal antibody (Zhao et 

al., 2011).  

     Inappropriate regulation of small GTPases by GEFs and/or GAPs is a common 

mechanism in tumorigenesis. This is true for most members of the Ras superfamily of small 
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G-proteins, but especially true for the Rho family of G-proteins where gain-of-function or 

loss-of-function mutations in GEFs or GAPs can lead to increased cell motility. There are 

however examples of where the Rho protein itself may be mutated and thus contribute to 

cancer development, such as the Rac1 P29L mutation observed in certain cases of 

melanoma. The activating mutation affects the switch 1 region and may help to stabilize 

the binding of GTP (Alan and Lundquist, 2013).  

     Unlike other members of the Ras superfamily, Ras proteins themselves are typically 

mutated with high frequency in a majority of cancers. The three major isoforms of Ras (K-

Ras, N-Ras, and H-Ras) contain activating mutations in 15% to 30% of all cancers (Alan 

and Lundquist, 2013). Most of these mutations occur at positions 12, 13, and 61 and 

interfere with the ability of a RasGAP to stimulate GTP hydrolysis. Mutations at positions 

12 and 13 specifically block the insertion of the RasGAP arginine finger while a mutation 

at position 61 interferes with the coordination of the water molecule needed for GTP 

hydrolysis (Simanshu et al., 2017).  

     In addition to the common mutations directly affecting Ras itself, mutational loss of 

RasGAP function can also contribute significantly to tumor development. For instance, 

loss of the RasGAP known as neurofibrimin is common in glioblastomas and contributes 

to the development of neurofibromatosis type 1 disease (Vigil et al., 2010). Mutational loss 

of another RasGAP called RHEB (Ras homology enriched in brain) is associated with a 

disorder known as tuberous sclerosis complex. Functional Rheb consists of a complex of 

two proteins known as tuberin and harmartin that are encoded by the TSC1 and TSC2 genes 

respectively (Vigil et al., 2010). Mutation of either gene can result in constitutive activation 

of the Rheb small GTPase and its effector mTORC1, with mTORC1 activity being strongly 
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linked to increased cell growth and proliferation. The Rheb GAP activity is normally 

regulated by inactivation of tuberin through an Akt mediated phosphorylation. Therefore, 

mutations that activate PI3K or inactivate PTEN are also associated with oncogenic Rheb 

activation (Vigil et al., 2010). Similarly, the Rag small GTPases can also regulate mTORC1 

activity through the sensing of cellular amino acid concentrations. Loss of the GATOR1 

RagGAP results in hyperactive mTORC1 activity that is insensitive to amino acid depletion 

(Bar-Peled et al., 2013).  

     Epigenetic regulation of RasGAPs has recently been identified as an important 

mechanism in tumor formation. As an example, overexpression of the histone 

methyltransferase EZH2 subunit of the polycomb repressor complex 2 (PRC2) in prostate 

cancer cells results in transcriptional silencing of the DAB2IP RasGAP gene. The loss of 

DAB2IP RasGAP may represent a critical step in prostate cancer development and 

subsequent metastasis (Maertens and Cichowski, 2014). Epigenetic silencing of the 

RASAL2 RasGAP promoter via methylation has also been observed in certain metastatic 

breast cancer cell lines exhibiting reduced RASAL2 expression (Maertens and Cichowski, 

2014; McLaughlin et al., 2013). The importance of RasGAPs in the regulation of Ras 

activity and tumor formation is highlighted in hepatocellular carcinoma cells. Here, 

transcriptional silencing via promoter methylation of either NF1, DAB2IP, or RASAL2 

results in hyperactivity of wild type Ras and increased tumor aggressiveness (Calvisi et al., 

2011).  

     In summary, the Ras superfamily of small GTPases mediate a number of important 

cellular processes related to cell survival and proliferation. Events such as signal 

transduction, cytoskeletal dynamics, and cell motility are all regulated by small G-proteins. 
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Direct mutation of small GTPases or mutations in the GEFs/GAPs that regulate their 

activity are commonplace in many cancers. Further research specifically into the 

mechanisms of small GTPase regulation will undoubtedly reveal novel therapeutic 

approaches for cancer treatment.  

4.2 Results 

     The U87 and U118 MG human glioblastoma cell lines overexpressing GFP and Rin1 

were virally transduced (Figure 4.1) and selected for stable GFP and Rin1 expression 

(Figure 4.2) as described in 4.4, Creation of Cell Lines. The Yusik melanoma cell lines 

overexpressing GFP and Rin1 were also created and selected for stable GFP and Rin1 

expression as described in 4.4, Creation of Cell Lines. Light micrograph images of the U87 

MG human glioblastoma cell lines expressing GFP or Rin1 reveal stark differences in 

cellular morphology and growth patterns. The U87 MG cells that overexpress GFP 

(endogenous Rin1 levels) appear to grow more quickly and form distinct, irregularly 

clumped tumors (Figure 4.3, A.) when compared to cells expressing Rin1 (Figure 4.3, B.). 

The cells that express Rin1 tend to have a steady growth rate and are more evenly dispersed 

across the surface of the culture dish (Figure 4.3, B.).  

     Both the U87 and U118 MG cell lines displayed appreciable telomerase activity 

following IGF-1 stimulation (100 ng/mL) for 24 hours. With respect to the GFP cells, the 

U87 MG Rin1 cells displayed an increase in telomerase activity of 1.3 fold (Table 4.1). 

Similarly, a 1.1 fold increase in telomerase activity was observed for the U118 MG Rin1 

cells when compared to the GFP cells (Table 4.2). Although a similar trend in telomerase 

activity following IGF-1 induction was observed for the U87 and U118 MG human 
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glioblastoma cell lines, the average Ct values for the respective Rin1 cells differed by 

approximately 2 cycles, 26.13 versus 28.03 (Tables 4.1 and 4.2).  

     The Yusik human melanoma cell line was also utilized to investigate the effect of Rin1 

expression on telomerase activity. Here, the Rin1 cells displayed a 1.49 fold decrease in 

telomerase activity when compared to the GFP cells (Table 4.3). The decrease in 

telomerase activity for Yusik melanoma cells overexpressing Rin1 closely mirrors that 

observed in the MDA-MB 231 Rin1 breast cancer cells (Table 2.2).  

4.3 Discussion 

     The effect of Rin1 on telomerase activity was examined in two human glioblastoma cell 

lines, U87 and U118 MG, and one human melanoma cell line, Yusik, in order to clarify if 

the influence of Rin1 on telomerase activity is cell type specific. The telomerase activity 

profiles for the MDA-MB 231 Rin1 breast cancer and Yusik Rin1 melanoma cell lines 

were remarkably similar. Overexpression of Rin1 reduced telomerase activity in each of 

these cell lines in comparison to the corresponding GFP expressing cells. Overexpression 

of Rin1 resulted in an approximate 1.50 fold reduction in telomerase activity for both cell 

lines following IGF-1 induction (Tables 2.2 and 4.3). The competition of Rin1 with RAF1 

for binding to activated Ras may partially explain this result. The decrease in telomerase 

activity observed for the MDA-MB 231 Rin1 cells is particularly interesting given that the 

cell line contains a constitutively active mutant form of Ras; therefore, overexpression of 

Rin1 in these cells appears to effectively counter the heightened signaling through the 

MAPK pathway. Similarly, a mutation in the BRAF gene (V600E) is present in the Yusik 

melanoma cell line and contributes significantly to malignancy in these cells through a 

constitutively active form of BRAF. Surprisingly, the ability of Rin1 to attenuate MAPK 
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signaling, and thus telomerase activity, in these cells was unexpected given that BRAF is 

constitutively active and not dependent upon competition with Rin1 to be activated by Ras.  

     The ability of Rin1 modulate telomerase activity through MAPK signaling is largely 

dependent on the particular isoform of Rin1 expressed and the cell type it is expressed in. 

A potential tumor suppressive role for Rin1 is supported by its effect on telomerase activity 

in the human MDA-MB 231 breast cancer and human Yusik melanoma cell lines, while an 

oncogenic effect is apparent in the U87 and U118 MG human glioblastoma cell lines. A 

comparison of light micrograph images of U87 MG cells expressing either GFP or Rin1 

reveals a more even, steady growth pattern for cells overexpressing Rin1 versus the more 

clumped, tumorigenic appearance of the control (endogenous Rin1) GFP expressing cells 

(Figure 4.3, A. and B.). The observed differences in growth pattern and rate may be partly 

attributed to increased telomerase activity in the cells overexpressing Rin1.  In fact, 

telomerase activity in the U87 MG Rin1 cells was 1.3 fold greater than in the corresponding 

GFP cells (Table 4.1). Additionally, a 1.1 fold increase in telomerase activity over the GFP 

cells was observed for the U118 MG Rin1 cells (Table 4.2). The heightened tumorigenicity 

of the U87 MG Rin1 cells is further evidenced by an average Ct value that is roughly 2 

cycles lower than that of the corresponding U118 MG Rin1 cells.  

     In contrast to the MDA-MB 231 breast cancer and Yusik melanoma cell lines, Rin1 

appears to promote telomerase activity in both the U87 and U118 MG glioblastoma cell 

lines. The exact mechanisms underlying cell specific differences in the effect of Rin1 on 

telomerase activity are unclear and remain an area for future research.  
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4.4 Materials and Methods 

Creation of Cell Lines 

     The U87 MG and U118 MG human glioblastoma cell lines as well as the Yusik human 

melanoma cell line stably expressing GFP and Rin1, were created using the same protocol 

as described previously in 2.4, Creation of Cell Lines. However, these cell lines were 

selected using a puromycin concentration of 1µg/mL to account for the increased 

sensitivity of these cells to puromycin. 

Telomerase Activity Assay 

     The human U87 MG and U118 MG glioblastoma cell lines as well as the human Yusik 

melanoma cell line expressing GFP  and Rin1 were serum starved for 24 hours at 37°C and 

5% CO2 on a 12 well plate at a density of 1.0 x 105 cells per well in 1 mL of serum free 

growth media. All samples for each of the cell types were plated in duplicate. After 24 

hours, 100 ng/mL of IGF-1 was added to half of the total samples- one well per cell type. 

The other half of the samples did not receive IGF-1 treatment. The samples were then 

incubated for another 24 hours, after which time the culture media in each well was 

removed and the cells were subsequently prepared for the telomeric repeat amplification 

protocol (TRAP) assay as per the manufacturer’s instructions and as previously described 

in 2.4, Telomerase Activity Assay.  

Western Blotting 

     Western blotting analysis of the U87 MG, U118 MG, and Yusik cell lines to confirm 

the expression of GFP and Rin1 was performed in the same manner as described previously 

in 2.4, Western Blotting. 

 



 

170 

 

4.5 References 

Alan, J. K., & Lundquist, E. A. (2013). Mutationally activated rho GTPases in 

cancer. Small GTPases, 4(3), 159-163.  

Barr, F., & Lambright, D. (2010). Rab GEFs and GAPs. Current Opinion in Cell 

Biology, 22(4), 461-470.  

Bar-Peled, L., Chantranupong, L., Cherniack, A., Chen, W., Ottina, K., Grabiner, C., & 

Sabatini, D. (2013). A tumor suppressor complex with GAP activity for the rag 

GTPases that signal amino acid sufficiency to mTORC1. Science, 340(6136), 1100-

1106.  

Bos, J. L., Rehmann, H., & Wittinghofer, A. (2007). GEFs and GAPs: Critical elements 

in the control of small G proteins. Cell, 129(5), 865-877.  

Calvisi, D., Ladu, S., Conner, E., Seo, D., Jer-Tsong, H., Factor, V., & Thorgeirsson, S. 

(2011). Inactivation of ras GTPase-activating proteins promotes unrestrained activity 

of wild-type ras in human liver cancer. Journal of Hepatology, 54(2), 311-319.  

Carvalho, A. T. P., Szeler, K., Vavitsas, K., Åqvist, J., & Kamerlin, S. C. L. (2015). 

Modeling the mechanisms of biological GTP hydrolysis. Archives of Biochemistry 

and Biophysics, 582(SI), 80-90.  

Cherfils, J. & Zeghouf, M. (2013). Regulation of small GTPases by GEFs, GAPs, and 

GDIs. Physiological Reviews, 93(1), 269-309.  

Csépányi-Kömi, R., Lévay, M., & Ligeti, E. (2012). Small G proteins and their regulators 

in cellular signalling. Molecular and Cellular Endocrinology, 353(1-2), 10-20.  

Dillon, L., Bean, J., Yang, W., Shee, K., Symonds, L., Balko, J., & Miller, T. (2015). P-

REX1 creates a positive feedback loop to activate growth factor receptor, PI3K/AKT 

and MEK/ERK signaling in breast cancer. Oncogene, 34(30), 3968-3976.  

Ebi, H., Costa, C., Faber, A., Nishtala, M., Kotani, H., Juric, D., &  Engelman, J. (2013). 

PI3K regulates MEK/ERK signaling in breast cancer via the rac-GEF, P-

Rex1. Proceedings of the National Academy of Sciences of the United States of 

America, 110(52), 21124-21129.  

Erijman, A. and Shifman, J. (2016). RAS/Effector interactions from structural and 

biophysical perspective. Mini-reviews in Medicinal Chemistry, 16, 370-375.  

Gloerich, M., Johannes L. (2011). Regulating rap small G-proteins in time and 

space. Trends in Cell Biology, 21(10), 615-623.  

Hanna, S., & El-Sibai, M. (2013). Signaling networks of rho GTPases in cell 

motility. Cellular Signalling, 25(10), 1955-1961.  

Jansen, S., Gosens, R., Wieland, T., & Schmidt., M. (2018). Pharmacology and 

therapeutics (1. ed. ed.). Philadelphia, Pa: Saunders Elsevier.  



 

171 

 

Kiel, C., Serrano, L., & Herrmann, C. (2004). A detailed thermodynamic analysis of 

Ras/Effector complex interfaces. Journal of Molecular Biology, 340, 1039-1058. 

Kutys, M. & Yamada, M. (2014). An extracellular-matrix-specific GEF–GAP interaction 

regulates rho GTPase crosstalk for 3D collagen migration. Nature Cell 

Biology, 16(9), 909-917.  

Maertens, O., & Cichowski, K. (2014). An expanding role for RAS GTPase activating 

proteins (RAS GAPs) in cancer. Advances in Biological Regulation, 55, 1-14.  

McFarlin, D., Lindstrom, M., & Gould, M. (2003). Affinity with Raf is sufficient for Ras 

to efficiently induce rat mammary carcinomas. Carcinogenesis, 24(1), 99-105. 

McLaughlin, S., Olsen, S., Dake, B., De Raedt, T., Lim, E., Bronson, R., & Cichowski, 

K. (2013). The RasGAP gene, RASAL2, is a tumor and metastasis 

suppressor. Cancer Cell, 24(3), 365-378.  

Mira, J., Benard, V., Groffen, J., Sanders, L., & Knaus, U. (2000). Endogenous, 

hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated 

kinase-dependent pathway. Proceedings of the National Academy of Sciences of the 

United States of America, 97(1), 185-189.  

Parri, M., & Chiarugi, P. (2010). Rac and rho GTPases in cancer cell motility 

control. Cell Communication and Signaling : CCS, 8(1), 23.  

Simanshu, D. K., Nissley, D. V., & McCormick, F. (2017). RAS proteins and their 

regulators in human disease. Cell, 170(1), 17-33.  

Sosa, M. S., Lopez-Haber, C., Yang, C., Wang, H., Lemmon, M. A., Busillo, J. M., & 

Kazanietz, M. G. (2010). Identification of the rac-GEF P-Rex1 as an essential 

mediator of ErbB signaling in breast cancer. Molecular Cell, 40(6), 877-892. 

doi:10.1016/j.molcel.2010.11.029 

Tomar, A., & Schlaepfer. (2009). Focal adhesion kinase: Switching between GAPs and 

GEFs in the regulation of cell motility. Current Opinion in Cell Biology, 21(5), 676-

683.  

Vigil, D., Rossman, K. L., Der, C. J., & Cherfils, J. (2010). Ras superfamily GEFs and 

GAPs: Validated and tractable targets for cancer therapy? Nature Reviews 

Cancer, 10(12), 842-857.  

Wertheimer, E., Gutierrez-Uzquiza, A., Rosemblit, C., Lopez-Haber, C., Sosa, M. S., & 

Kazanietz, M. G. (2012). Rac signaling in breast cancer: A tale of GEFs and 

GAPs. Cellular Signalling, 24(2), 353-362.  

Zhao, Y., Wang, Z., Jiang, Y., & Yang, C. (2011). Inactivation of Rac1 reduces 

Trastuzumab resistance in PTEN deficient and insulin-like growth factor I receptor 

overexpressing human breast cancer SKBR3 cells. Cancer Letters, 313, 54-63.  

 



 

172 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Lentiviral vector used to create the U87 MG, U118 MG, and Yusik cell lines 

expressing Rin1. The Rin1 gene sequence is inserted directly downstream of the CMV 

promoter. An identical vector with the GFP gene sequence inserted was used to create 

the U87 MG, U118 MG, and Yusik cell lines expressing GFP. Also labeled are the 

various elements necessary for lentivirus production and cell selection. 
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A.                         B. 

Figure 4.3: Light micrograph images of the A) U87 MG GFP cells growing in a 

clumped, irregular pattern and B) U87 MG Rin1 cells growing in an even, uniform 

pattern.  

A.                                                                       B. 

Figure 4.2: Western blot image of the A) U87 MG glioblastoma cell line expressing 

GFP and endogenous levels of Rin1. B) U87 MG glioblastoma cell line overexpressing 

Rin1. 
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U87 MG Telomerase Activity 

 
Average Ct Value ± Standard Error 

Telomerase positive control 25.16 ± 0.27 

Telomerase negative control  25.69 ± 0.33 

GFP (+) IGF-1 26.47 ± 0.44 

GFP (-) IGF-1 25.80 ± 0.15 

Rin1 (+) IGF-1 26.13 ± 0.04 

Rin1 (-) IGF-1 26.18 ± 0.01 

Buffer 26.19 ± 0.49 

Table 4.1: Cycle threshold values (Ct) for the qPCR products of telomerase activity in 

U87 MG cell lines following stimulation with 100 ng/mL of IGF-1 (+) for 24 hours or 

no stimulation (-). All experiments were conducted in duplicate. 

 

26.13-26.47= -0.34 

2
-(-0.34)

= 1.3 

1.3 fold increase in telomerase activity compared to GFP cells.  
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Figure 4.4: Western blot image of the A) U118 MG glioblastoma cell line expressing 

GFP and endogenous levels of Rin1. B) U118 MG glioblastoma cell line overexpressing 

Rin1. 

 A.                         B. 
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U118 MG Telomerase Activity 

 
 

Average Ct Value ± Standard Error 

Telomerase positive control 27.34 ± 0.14 

Telomerase negative control  28.38 ± 0.09 

GFP (+) IGF-1 28.20 ± 0.16 

GFP (-) IGF-1 28.07 ± 0.12 

Rin1 (+) IGF-1 28.03 ± 0.02 

Rin1 (-) IGF-1 27.88 ± 0.10 

Buffer 28.20 ± 0.18 

Table 4.2: Cycle threshold values (Ct) for the qPCR products of telomerase activity in 

U118 MG cell lines following stimulation with 100 ng/mL of IGF-1 (+) for 24 hours or 

no stimulation (-). All experiments were conducted in duplicate. 

 

28.03-28.20= -0.17 

2
-(-0.17)

= 1.1 

1.1 fold increase in telomerase activity compared to GFP cells. 
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 A.                   B. 

Figure 4.5: Western blot image of the A) Yusik melanoma cell line expressing GFP and 

endogenous levels of Rin1. B) Yusik melanoma cell line overexpressing Rin1. 
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Yusik Telomerase Activity 

 
Average Ct Value ± Standard Error 

Telomerase positive control 25.37 ± 0.06 

Telomerase negative control  25.99 ± 0.26 

GFP (+) IGF-1 26.41 ± 0.11 

GFP (-) IGF-1 26.35 ± 0.13 

Rin1 (+) IGF-1 26.99 ± 0.18 

Rin1 (-) IGF-1 26.73 ± 0.24 

Buffer 25.85 ± 0.20 

Table 4.3: Cycle threshold values (Ct) for the qPCR products of telomerase activity in 

Yusik cell lines following stimulation with 100 ng/mL of IGF-1 (+) for 24 hours or no 

stimulation (-). All experiments were conducted in duplicate. 

 

26.99-26.41= 0.58 

2
-0.58

= 0.67  

1/0.67=1.49 

1.49 fold decrease in telomerase activity compared to GFP cells. 
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CHAPTER 5 

Conclusions and Future Work 

     The telomere regions of eukaryotic chromosomes are vital to the maintenance of 

genome stability. The gradual loss of telomeric DNA that occurs with each round of cell 

division acts like a molecular clock to set a finite limit on the number of times a population 

of cells can undergo cell division. The replicative limit is often reached when the telomeric 

DNA has become eroded to the point that genomic instability begins to occur as a 

consequence of chromosomal translocations and fusions. The replicative limit is bypassed 

in certain populations of cells that express the telomerase enzyme. In fact, activation of 

telomerase activity is a common mechanism by which many cancer cells acquire the 

immortal replicative phenotype that is frequently associated with malignant 

transformation.  

     The Ras and Rab interactor 1 protein (Rin1) may be able to regulate telomerase activity 

in cancer cells given its ability to modulate signaling through the MAPK pathway. 

Attenuation of MAPK is believed to occur as a result of the direct competition between 

Rin1 and RAF1 for binding to activated Ras. The hypothesis was examined in different 

cancer cell lines engineered to overexpress Rin1 or other Rin1 constructs such as Rin1 

Y561F and Rin1 delta. Three specific aims were developed in order to determine if Rin1 

can indeed function as a tumor suppressor in various cancer cell lines. The first aim of the 

research investigated the effect of Rin1 expression on cellular proliferation and viability as 

well as on telomerase gene expression and activity in three different human breast cell 

lines. The cell lines consisted of the tumorigenic and highly invasive MDA-MB 231 breast 
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cancer cells, the tumorigenic but non-invasive MCF7 breast cancer cells, and the normal, 

non-tumorigenic/non-invasive MCF12A breast epithelial cells. 

     The Rin1 protein appears to function as a potential tumor suppressor in MDA-MB 231 

breast cancer cells by downregulating telomerase activity. Reduced telomerase activity was 

also observed in the MCF7 cells. Downregulation of telomerase gene expression, a 

downstream target of the MAPK pathway, was observed in the MDA-MB 231 cells 

overexpressing Rin1. Similarly, the MCF-7 and MCF12A cells also exhibited reductions 

in telomerase gene expression as a consequence of Rin1 expression. Interestingly, Rin1 

had the least suppressive effect on telomerase gene expression in the MDA-MB 231 cells 

while the strongest effect was observed in the MCF-12A cells. The result may be partially 

explained by the fact that the MDA-MB 231 cells harbor a constitutively active mutant 

form of Ras that may counteract the tumor suppressive effect of Rin1. The ability of Rin1 

to suppress telomerase gene expression in the MCF7 cells is intermediate between that of 

the MDA-MB 231 and MCF-12A cells. The finding may be attributed to the tumorigenic 

but non-invasive nature of these cells.  

          In line with reduced telomerase gene expression and activity, MDA-MB 231 breast 

cancer cells overexpressing Rin1 generally display lower levels of cell proliferation and 

viability following IGF-1 stimulation when compared to non-transfected or GFP 

expressing cells. The result was also observed for the MCF-12A cells and to a lesser extent 

for the MCF7 cells. The MDA-MB 231 Rin1 cells grew more slowly and in a distinct 

clumped pattern in comparison to the GFP cells.   

     Growth factor receptors such as the insulin-like growth factor 1 receptor (IGF-1R) and 

the epidermal growth factor receptor (EGFR) play a prominent role in the development of 
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breast cancer. The stimulatory effect of mitogens like IGF-1 or EGF on cellular 

proliferation and migration is well documented, as are the abnormalities in these receptors 

that often contribute to the unrestrained cell growth that is characteristic of so many 

different types of cancers. Besides growth factor receptors, the estrogen receptor (ER) also 

figures predominantly in breast cancer tumorigenesis. The signaling pathways activated by 

both types of receptors are an intense area of research and have shed light on the 

mechanisms of action by which various mitogens exert their oncogenic effects.  

     Therefore, in line with the importance of cell signaling to cancer cell growth and 

survival, the second aim of the research examined the effect of Rin1 expression on MAPK 

signaling and telomerase protein expression in MDA-MB 231 cells. Western blotting 

analysis of key MAPK pathway proteins following IGF-1 stimulation reveals reduced 

phosphorylation of the p-44/42 and Ets2 transcription factors. A strong inhibition of p-

44/42 phosphorylation as well as reduced telomerase activity were also observed in the 

MDA-MB 231 cells overexpressing the carboxyl terminal region of Rin1 containing the 

Ras association domain. Similarly, overexpression of Rin1 in MDA-MB 231 breast cancer 

cells reduces telomerase protein expression in comparison to cells expressing either the 

Rin1 Y561F and Rin1 delta constructs. The Y561F and delta forms of Rin1 do not bind as 

strongly to activated Ras when compared to the wild type form of Rin1. As such, they have 

a lesser ability to modulate MPAK signaling and thus display increased levels of 

telomerase activity following IGF-1 stimulation. Additionally, the Y561F and delta forms 

of Rin1 display increased levels of cellular proliferation across a range of IGF-1 

concentrations when compared to cells expressing Rin1.  Taken together, the data support 

a possible tumor suppressive role for Rin1 in MDA-MB 231 breast cancer cells.  
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     The third aim of the research sought to investigate the effect of Rin1 expression on 

telomerase activity in cell lines other than breast cells. The cell lines utilized were the 

human Yusik melanoma cells as well as the U87 MG and U118 MG human glioblastoma 

cells. The effect of Rin1 on telomerase activity and thus its potential role as a tumor 

suppressor is not as clear in those cell lines as it is for the breast cell lines studied. In the 

Yusik melanoma cells that express a constitutively active mutant form of BRAF (V600E), 

Rin1 appears to function as a tumor suppressor by lowering telomerase activity in a manner 

very similar to that of the MDA-MB 231 breast cancer cells. However, its role in the U87 

MG and U118 MG glioblastoma cells appears to be that of a possible oncogene through 

upregulation of telomerase activity. The results suggest that Rin1 is able to moderate 

telomerase activity in cancer cells in a manner that is largely dependent upon cell type.  

     A clearer picture of the potential tumor suppressor role of Rin1 will be obtained through 

future experimentation in a few key areas. Firstly, while the current research focused on 

the full length Rin1 protein as well as the amino and carboxyl terminal regions of Rin1, it 

would be beneficial to investigate what effect, if any, other domains of Rin1 might have 

on cellular proliferation/viability, telomerase gene and protein expression, and telomerase 

activity. For instance, the Vps9 domain of Rin1 is a known GEF for the Rab5 protein 

involved in the sorting of early endocytic vesicles. Could overexpression of the Vps9 

domain or mutants of this specific domain affect signaling in other cancer cells besides 

MDA-MB 231 cells?  

     Another critical area for future research would be to determine if Rin1 or specific 

domains of Rin1 can influence the expression and/or phosphorylation status of MAPK 

signaling proteins in cell lines other than the MDA-MB 231 cells. Specifically, the carboxyl 
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terminal region of Rin1 is a potent inhibitor of the phosphorylation of certain MAPK 

signaling proteins and can reduce telomerase activity. Would the same effects be observed 

in different cancer cell lines as well as normal cell lines? Also, what effect might the Rin1 

Y561F and delta constructs have on telomerase gene expression and activity in cell lines 

other than the MDA-MB 231 cells? Lastly, the effect of Rin1 expression on telomerase 

gene expression and activity in response to stimulation by other growth factors such as 

EGF should also be examined.  

     In summary, the research findings indicate a novel molecular mechanism of action for 

Rin1 in specific cancer cell lines. Future experimentation to further elucidate the potential 

tumor suppressive role for Rin1 is needed and will expand upon the findings reported here.  
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