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Downstream Regulatory Element Antagonist Modulator (DREAM) belongs to the family 

of neuronal calcium sensor proteins and it is involved in several processes in the brain.

Zinc has been shown to bind to recoverin, with submillimolar affinity. Based on the high 

sequence homology between the NCS family, it is proposed that DREAM can also serve 

as an intracellular target for Zn2+. Fluorescence and CD studies confirm that zinc binds to 

DREAM with a of K d= 4 µM, triggering changes in the proteins’ tertiary structure.

The calcium association to DREAM leads to the formation of a Ca bound dimer, while 

in the apo state, a monomer-tetramer equilibrium was observed. A chimeric version of 

DREAM was prepared by mutating the residues involved in dimerization. DREAM-NCS1 

properties were investigated using spectroscopic techniques. These results point towards 

the role of hydrophobic interactions and salt bridges in stabilizing the dimer and 

propagating allosteric signals.
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1.  INTRODUCTION  

 

1.1 Ca2+ storage and functions.  

Calcium is an intracellular messenger, which is involved in several processes such as 

neurotransmitter release, muscle contraction, and gene expression modulation. All these 

processes are regulated by the spatial and temporal location of Ca2+ (Lock, Smith, & 

Parker, 2019) (Fig.ure 1.1). The intracellular Ca2+ concentration is around 10-8 M and it is 

maintained by Ca2+-ATPase pumps  and Na+/Ca2+ exchange, as well as sequestering in 

organelles such as the endosome, the Golgi apparatus, and the endoplasmic reticulum 

(Permyakov, E. A. & Kretsinger, 2011). Intracellularly, the concentration of Ca2+ ions is 

regulated by ligand-gated Ca2+ channels.  Calcium is released in the ER by inositol 

triphosphate (IP3) receptor linked channels and ryanodine receptors. In IP3 signaling, 

phospholipase c, activated through the GPCR pathway, cleaves phosphatidylinositol 

bisphosphate into IP3, which binds to IP3 receptors resulting in the release of Ca2+ from 

the ER. It is worth mentioning that IP3 signaling requires the co-stimulation of Ca2+ 

resulting in Ca2+ induced-Ca2+ release mechanism (Lock et al., 2019) . Secondly, ryanodine 

receptors can also be activated by molecules such as caffeine and stimulate Ca2+ release 

(Permyakov, E. A. & Kretsinger, 2011). In excitable cells such as neurons, the 

concentration of Ca2+ is mainly regulated by voltage gated Ca2+ channels. When the 

membrane potential of the neurons is between -60 to -70 mV, the voltage gated Ca2+ 

channels are closed and the cell is in a resting state. On the other hand, when specific 

channels are activated Ca2+ enters the cell resulting in neuronal excitation (Ramirez, 

Gonzalez, Fissore, & Carvacho, 2017). 
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Fig. 1.1: Processes that control Ca2+ storage and release in the eukaryotic cell (Dong, 

Saikumar, Weinberg, & Venkatachalam, 2006) 

 

1.2 Calcium binding proteins  

Calcium binding proteins (CBP) are traditionally divided into two groups, Ca2+ buffers and 

Ca2+ sensors (Permyakov & Kretsinger, 2011). Calcium buffer proteins such as 

parvalbumin and calbildin are able to regulate intracellular Ca2+ concentration by binding 

to the metal and participating in signal transduction (Permyakov & Kretsinger, 2011) . On 

the other hand, Ca2+ sensors undergo conformational changes upon Ca2+ binding, which 

ultimately modulate their affinity for intracellular partners. (Permyakov & Kretsinger, 

2011) 
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1.2 Calmodulin as a model protein for EF-hands calcium sensors 

The study of calmodulin has provided a model for the members of the EF-hands calcium 

sensors. Calmodulin is present in all eukaryotic cells (Permyakov & Kretsinger, 2011) and 

it has been conserved during evolution because of its interactions with several partners in 

Ca2+ signal transduction pathways (Permyakov & Kretsinger, 2011). The protein possesses 

4 EF-hands and it is involved in several signal transduction pathways (Chazin, 2011; 

Permyakov & Kretsinger, 2011). Calmodulin transduces the calcium signal by binding to 

Ca2+, which triggers a conformational change resulting in a less compact structure than the 

one in the apo form with exposed hydrophobic patches on the protein surface as shown in 

Fig. 1.2 , allowing Ca2+ bound calmodulin to bind to the final target of the signaling 

pathway (Permyakov, E. A. & Kretsinger, 2011).  

 

Fig. 1.2: Structure of Apo Calmodulin (PDB entry 1CFD)   .  Structure of Ca2+-

Calmodulin (PDB entry 1CLL)  
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The most significant Ca2+ induced change in calmodulin is the change in the orientation of 

the helixes for each EF hand (Permyakov, E. A. & Kretsinger, 2011). In the apo form, the 

first and last helixes are parallel to the central helix linker shown in Fig. 1.2, forming a 

compact hydrophobic core (Permyakov, E. A. & Kretsinger, 2011). In the Ca2+ bound 

calmodulin, these helixes move away from the central helix linker, resulting in a change in 

the orientation with respect to the central helix linker, from 121-144 ° in the apo form to 

86-116° in the Ca2+ bound calmodulin (Permyakov & Kretsinger, 2011). This observed 

reorientation upon Ca2+ binding produces a solvent exposure of methionine residues and 

concomitant formation of two hydrophobic concave patches that serve as binding sites for 

the intracellular partners (Permyakov & Kretsinger, 2011). 

1.3 Calcium coordination and  binding site in EF –hand proteins  

The calcium-binding site in EF-hand proteins is formed by a helix-loop-helix structure 

where Ca2+ is coordinated to the protein in a pentagonal bipyramidal geometry as shown 

in Fig. 1.3 (Gifford, Walsh, & Vogel, 2007). The helix-loop-helix is formed by an -helix, 

a Ca2+ binding loop composed of nine residues, and an additional -helix composed of 

eleven residues.(Gifford et al., 2007). The nine residues in the Ca2+ binding loop provide 

five ligands for Ca2+ coordination and two extra ligands are provided by the side chain of 

a Glu residue, resulting in the seven ligands that coordinate Ca2+ in the EF-loop (Gifford 

et al., 2007). In addition, a water molecule forming hydrogen bonds with one of the side 

chains of the loop completes the coordination sphere of Ca2+(Gifford et al., 2007). These 

EF-loops are mostly composed of negatively charged amino acids Asp and Glu (Gifford et 

al., 2007), reflecting the preference of the EF-loop for less bulky carboxy side chains as 
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shown in Table 1.1  (Gifford et al., 2007). The coordination of Ca2+ bound to EF-hand 3 

and EF-hand 4 is shown in Fig. 1.4.  

 

 

EF-loop 

position  

1 2 3 4 5 6 7 8 9 10 11 12 

coordinati

ng ligand  

X 
 

 Y 
 

 Z 
 

 -Y 
 

 -X 
 

  -Z 
 

Most 

common  

Asp 

100

%  

Lys 

29

%  

Asp 

76

%  

 

Gly 

56

% 

Asp 

76

%  

 

Gly 

96

%  

Thr 

23

% 

Ile 

68

% 

Asp 

32

% 

Phe 

23

% 

Glu 

29

% 

Glu 

92

% 

Also 

frequently 

observed  

 Ala 

Gln 

Thr 

Val 

Ile 

Ser 

Glu 

Arg  

Asn Lys 

Arg 

Asn  

Asn  Phe 

Lys 

Gln 

Tyr 

Glu 

Arg 

Val 

Leu 

Ser 

Thr 

Glu 

Asn 

Gly 

Gln 

Tyr 

Ala 

Thr 

Leu 

Glu 

Lys 

Asp  

Lys 

Ala 

Pro 

Asn 

Asp 

 

Table 1.1: Sequence of amino acid residues in canonical calcium binding loop. Adapted 

from (Gifford et al., 2007) 



 

6 

 

 
Fig. 1.3: Ca2+ coordination by the canonical EF-hand illustrating the pentagonal 

bipyramidal coordination of the Ca2+ ion (continuous thin lines) and the hydrogen bonding 

pattern in the loop (dashed lines) . The backbone NH groups are shown in black, the side-

chain oxygen atoms in red, the Ca2+ ion in yellow  and the coordinating water molecule in 

blue (Gifford et al., 2007). 

 

 

Fig. 1.4: Calcium coordination in EF-hand 3 (A) and EF-hand 4 (B) of neuronal calcium 

sensor DREAM, (PDB entry 2JUL).  

 

1.4 Ca2+ and neuronal calcium sensors in the brain 

The concentration of Ca2+ ions plays a crucial role in neuronal activity (Burgoyne & Weiss, 

2001), since it modulates several processes such as neurotransmitter release, short term 
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rapid modulations of channel function, long-term switches in gene expression (Burgoyne 

& Weiss, 2001), regulation of Kv4.3 and Kv1.5 potassium channels, and  regulation of 

presenilin processing (Pongs et al., 1993). The ability of Ca2+ to regulate such a variety of 

processes is due to its interactions with numerous CPBs, which associate with other target 

proteins involved in the process mentioned before. (Burgoyne, R. D. & Weiss, 2001) 

 

 

 

 

1.5 Neuronal Calcium Sensors.  

 

Neuronal calcium sensors (NCS) are expressed in retinal photoreceptors (Burgoyne & 

Weiss, 2001) and in the brain (Burgoyne & Weiss, 2001; Permyakov & Kretsinger, 2011). 

The family of proteins is in charge of regulating a variety of physiological processes 

summarized in Fig. 1.5 and are linked to several pathological conditions such as Parkinson, 

Huntington and Alzheimer’s disease (López-Hurtado et al., 2018). The family is composed 

of five different classes: A,B,C,D, and E referring to frequenin, visinin-like protein 

(VILIP), recoverins, guanylate cyclase (GC)-activating proteins (GCAPs), and Kv-

channel-interacting proteins (KChIPs) (Burgoyne, R. D. & Weiss, 2001). The main 

characteristics of the protein family are a tandem-like structural orientation of the N- and 

C- terminal domain and posttranslational myristoylation of the N- terminal residue. In 

addition, the sequence of the N- terminal domain shows a low sequence similarity, whereas 
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the C- terminal domain sequence is homologous among the members of this family. 

(Permyakov. & Kretsinger, 2011). 

 

 

Fig. 1.5: Neuronal Calcium Sensor subfamilies classifications and main function Adapted 

from (Permyakov, E. A. & Kretsinger, 2011) 

 

Class A , frequenin (NCS-1), first appeared in yeast (Burgoyne & Weiss, 2001) and it  can 

bind up to three Ca2+ ions (Ames & Lim, 2012)  and a myristoyl group can be found at the 

N terminal allowing the protein to associate with lipid layers (Braunewell, Karl-Heinz & 

Gundelfinger, 1999; Dason, Romero-Pozuelo, Atwood, & Ferrús, 2012) . Class B, VILIPs, 

is formed by three members VILIP 1, 2 and 3. Visinin like proteins  play a role in the 

regulation of the desensitization of signal cascades in retinal photoreceptors in a Ca2+ 

depended manner (Braunewell, Spilker, Behnisch, & Gundelfinger, 1997). Class C is 

formed by one protein, recoverin, which has one human gene (Burgoyne & Weiss, 2001). 
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Recoverin is present in photoreceptor cells and its main function is to control light 

sensitivity by regulating the phosphorylation of rhodopsin kinase (Calvert, Klenchin, & 

Bownds, 1995). Furthermore, as in the case of NCS-1, recoverin interacts with a myristoil 

group, which is responsible for inducing rhodopsin kinase inhibition in Ca2+ dependent 

manner (Calvert et al., 1995).  Class D is formed by GCAPs 1, 2 and 3 (Burgoyne & Weiss, 

2001) and is expressed in the photoreceptors cells in the retina (Braunewell, Karl-Heinz & 

Gundelfinger, 1999). The main function of GCAPs is to activate or inhibit guanylyl  

cyclase in the retina (Burgoyne, Robert D. & Haynes, 2012). Class E is formed by KChIP 

1, 2 and 3 (Burgoyne, R. D. & Weiss, 2001). They interact with the Kv4 family of A-type 

potassium channels (Burgoyne & Haynes, 2012) and may participate in regulating voltage-

gated Ca2+ channel signaling (Burgoyne & Haynes, 2012) . The KChIP 1-4 family  bind 

with the cytosolic α-subunit of potassium channels, so called T1 domain (Ling et al., 2000), 

forming a cross-shaped octamer (Findeisen, Hura, Minor, & Pioletti, 2006), Pioletti et al.  

determined an X-ray structure of KChIP1 in complex with potassium channel showing that  

each KChIP1 monomer interacts with two Kv4.3 T1 domains, forming an octamer which 

is composed by four KChIP1s and four Kv4.3 subunits. (Findeisen et al., 2006), The first 

KCHIP1- Kv4.3 binding site is formed by hydrophobic interactions among the 

hydrophobic residues in the N terminal of Kv4.3 and a hydrophobic cavity on the surface 

of KChIP1, so called Site 1 is composed of amino acids 2-22 from Kv4.3. The second 

binding site is between the N terminal of KChIP1 and a T1 domain loop, so called Site 2, 

and corresponds to amino acids 70-90 from the T1 domain (Findeisen et al., 2006). The 

class E member KChIP 2 is present in cardiomyocytes and it has been proposed to interact 

with presenilin and have a role in the ryanodine receptor-mediated Ca2+-induced 
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Ca2+ release (Bähring, 2018). The third class E member, KChIP3 also known as DREAM 

or calsenilin interacts with DNA and regulates gene expression of genes involved in pain 

sensing such prodynorphin gene; it activates presenilin, and modulates kinetics of Kv 

channels through interactions with the T1 domain. (Burgoyne, Robert D. & Haynes, 2012).  

1.6  Downstream Regulatory Element Antagonist Modulator.  

 Downstream Regulatory Element Antagonist Modulator (DREAM) is a member of the 

NCS family, which belongs to the potassium voltage channel subfamily (Carrión, Link, 

Ledo, Mellström, & Naranjo, 1999). The DREAM protein is composed of 256 amino acids 

and contains 4 EF hands as shown in Fig. 1.6. and 1.7. The  EF hand 1 does not bind any 

metal due to the presence of a proline residue within the metal binding loop, EF hand 2 

binds to Mg2+ with an equilibrium dissociation constant of around 13 µM (Masanori Osawa 

et al., 2005), and EF hand 3 and 4 bind to Ca2+ with an affinity of around 1 µM (Masanori 

Osawa et al., 2005). DREAM also interacts with small hydrophobic molecules such as 1,8 

ANS and arachidonic acid with an affinity modulated by Ca2+ binding to the protein.  

(Gonzalez & Miksovska, 2014). The NMR structure of the truncated form (residue 76 to 

256) of Ca2+ bound DREAM is shown in Fig. 1.6. Ten -helix were identified in the 

truncated form with helices 2-5 forming EF-hand 1 and EF-hand 2 and helices 6-9 forming 

EF-hand 3 and EF-hand 4. (Lusin, Vanarotti, Li, Valiveti, & Ames, 2008). 

Previous studies have shown that DREAM is involved in several biological processes. Ooi 

et al.(2008) have shown that DREAM is able to regulate learning and memory by inhibiting 

the activity of cAMP Response Element Binding Protein (CREB). In the absence of Ca2+, 

DREAM binds to DRE sequence, inhibiting the expression of genes regulated by 

CREB/CREM complex. In the presence of Ca2+, DREAM dissociates from DNA allowing 



 

11 

 

the expression of CREB/CREM genes (Ooi & Wood, 2008) . Furthermore, in the absence 

of Ca2+, DREAM interacts with CREB and CREM (cAMP Response Element Modulator) 

inhibiting cAMP-mediated transcriptional activation (Ooi & Wood, 2008).  

 

Fig. 1.6: DREAM structure determined by NMR. -helices are shown as ribbons with 

the N-terminal domain shown in blue and the C-terminal domain in red, Ca2+ ions are 

represented as green spheres. (PDB entry 2JUL) 
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Fig. 1.7: Amino acid sequence of DREAM. The sequence corresponding to the individual 

EF-hands is shown in green, red, blue and yellow.  
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Furthermore, the binding of DREAM to DRE sequence is also involved in the 

transcriptional repression of prodynorphin genes related to pain sensitivity and c-fos, c-

junk, and hrk genes related to cell proliferation. This ability of DREAM to bind to DNA 

makes it the only known CBP to regulate gene expression in a calcium dependent manner 

(Carrión et al., 1999; Cheng & Penninger, 2004). 

The DREAM protein like all members of KChIP proteins, modulates A-type potassium 

currents by interacting with Kv4.3 potassium channels (Ling et al., 2000). Even though the 

structure for KChIP1 in complex with potassium voltage channel is the only that has been 

determined (Findeisen et al., 2006), the KChIP family has a high sequence similarity and 

the amino acids involved in the stabilization of the KCHIP1-Kv4.3 interactions are 

conserved throughout the KChIP family (Ling et al., 2000). Therefore, analogous 

interactions are expected between all KChIPs and potassium voltage channels.  

The importance of DREAM in neurological and neuropathological processes is clearly 

demonstrated by the fact that DREAM is implicated in several neurological diseases such 

as Alzheimer’s disease, Huntington and Parkinson disease (López-Hurtado et al., 2018).  

Lilliehook et al. (1998) reported that DREAM interacts with the presenilin unit of the γ-

secretase complex and enhances the cleavage of amyloid precursor proteins into aβ42 

plaques. The plaques are commonly found post-mortem as a diagnostic feature of patients 

with Alzheimer’s disease (Lilliehook et al., 1998).  

The precise mechanism of how Ca2+ modulates DREAM interaction with DNA and other 

intracellular partner remains unknown. This protein has been shown to undergo an 

oligomerization transition upon binding of Ca2+ (Masanori Osawa et al., 2005; Yu et al., 

2007). In the absence of Ca2+, DREAM presents a monomer-tetramer equilibrium whereas 
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upon Ca2+ binding to the C- terminal domain, the protein forms a stable dimer (Carrión et 

al., 1999; Gonzalez & Miksovska, 2014; Lusin et al., 2008). Previous studies have shown 

that DREAM interacts with potassium channels as a monomer (Ping Liang et al., 2009; Yu 

et al., 2007) in both the Ca2+ bound and Ca2+ free form, with presenilin and calmodulin as 

a dimer, and with DNA as a monomer or  tetramer (Carrión et al., 1999)  suggesting that 

changes in the protein oligomerization are important for Ca2+ signaling mechanism. 

 

1.7 Objectives 

Objective 1:  

Zinc is a divalent cation, which possesses a filled d orbital, which means that it does not 

participate in redox reaction. Because of this Zn2+ can be used as a cofactor in biological 

reaction which do not required the presence of a metal, which can be involved in redox 

reactions [JM1] 

Previous studies have shown that Zn2+ is able to bind to Ca2+ buffer proteins such as 

parvalbumin with a Kd of 5x10-5 M. (Permyakov, E. A. & Kretsinger, 2011) Furthermore, 

Zn2+ is also able to bind to calmodulin albeit weakly with a dissociation constant od 10-3 

M (Warren, Guo, & Tang, 2007). The metal binding site in proteins, which bind to Zn2+ 

usually, involve His Glu Asp and Cys.  Some of the biological functions of Zn2+ involve 

neuronal growth and plasticity indicating a similar role as that of Ca2+. Recently[JM2] 

published study by Permyakov et al. have shown that Zn2+ binds to a member of neuronal 

calcium sensor family, recoverin with an affinity of 7.0 μM (Permyakov, S. E. et al., 2003). 

Considering a high sequence and structural homology between members of NCS family, it 

is proposed that DREAM can also serve as an intracellular target for Zn2+. With this in 
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mind, we conducted fluorescence studies and circular dichroism studies to elucidate zinc 

binding to DREAM and its impact on protein stability.  

 

 

Objective 2:  

Even though results from several research groups have addressed structural and functional 

properties of DREAM, the molecular mechanism of calcium triggered signaling and 

allosteric regulation with intracellular partners remains unknown for DREAM and other 

members of the neuronal calcium sensor family. The goal of my thesis was to provide 

insight into the Ca2+ triggered dimerization process of DREAM. Considering the high 

sequence homology of the C- terminal domain among neuronal calcium sensors, the results 

obtained in my study can be applied to other potassium channel interacting proteins and 

other members of the neuronal calcium sensor family.  

Previous studies by the Ames group suggested that hydrophobic interactions between Leu 

residues (Leu155, Leu159 and Leu251) stabilize the dimeric form of the Ca2+ bound 

DREAM dimer. However, the unpublished computational and polarization data from our 

group indicate that two salt bridges between individual monomers (Arg 200, Arg 207, and 

Glu 103) also contribute to the protein stability. To study the DREAM dimerization 

mechanism, we designed a chimeric DREAM-NCS 1 protein. Taking into account that the  

NCS1 protein does not form a dimer in the Ca2+ bound form, we have replaced residues in 

the loop connecting EF-hand 3 and EF-hand 4 with the sequence found in NCS1. In 

addition, hydrophobic residues Leu 157 and Leu 158 have been  replaced by alanine residue 

corresponding to the analogues residues in neuronal calcium sensor 1 (Thr 157 and Ser 
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158) which does not form dimers. The alignment of the sequence of DREAM WT and 

DREAM-NCS1 chimeric protein is shown in Figure 1.8.  The structural properties of the 

chimeric protein were investigated using steady state and time resolved fluorescence and 

circular dichroism spectroscopy. In addition, interaction of the chimeric protein with the 

peptides mimicking the DREAM binding sites in T1 domain of Kv channel were 

characterized.  
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2.  MATERIALS AND METHODS 

 

2.1 Chemicals and reagents  

 

Reagents and solvents CaCl2, ZnCl2, MgCl2, EDTA and EGTA, as well as the reagents 

required for the protein expression and purification were purchased from Sigma-Aldrich 

or Fischer Scientific and were of analytical grade. The hydrophobic fluorescent probe 1,8-

ANS, was purchased from Invitrogen. 1,8-ANS, stock was prepared in ultrapure water 

(18.2 MΩ) and stored at -20°C and the concentration was determined spectrophometrically 

using the extinctions coefficients listed in Table 2.1. 

Fluorescently labeled peptides Site 1 and Site 2 were purchased from Thinkpeptides, the 

stocks were prepared in 20 mM Tris buffer pH 7.4 and the concentration was determined 

spectrophotometrically using the extinction coefficients listed in Table 2.1.  

 

2.2 Protein purification and isolation. 

 

Recombinant mouse DREAM (65-256) protein with a His tag at the N-terminus was 

expressed in E. coli (DE 21) (Invitrogen). Cells were grown in Terrific Broth (TB) media 

at 37⁰C and 250 rpm speed for 12 h. Isopropyl β-D-1-thiogalactopyranoside (IPTG) was 

added when optical density at 600 nm (OD) reached 0.75 and cells were grown for 

additional 12 h. Subsequently, cells were harvested by centrifugation at 4 °C and 5000 rpm 

for 20 min (ST 16R centrifuge, Thermal Scientific) and treated with lysis buffer overnight. 

The composition of the lysis buffer is  20 mM Tris-HCl, pH 8.0, 300 mM NaCl, 1 mM -

mercaptoethanol, 20% glycerol, 1mM phenylmethyl sulfonyl fluoride (PMSF), 0.2% 
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Tween 20, 20 g/mL DNase I, 5 g/mL lysozyme, and 5 mM MgCl2 and pH 8.0  . Cells 

were broken through sonication using a sonic dismembrator (model 100, Fisher Scientific) 

for 40 intervals of 20 seconds with 2 min of resting on ice between each interval. Disrupted 

cells were centrifuged for 4 hours at 5000 rpm and supernatant was collected. Supernatant 

was then passed through a Ni-NTA affinity column (Quiagen) equilibrated with buffer A 

containing 20 mM Tris-HCl, pH 8.0, 300 mM NaCl, 1 mM -mercaptoethanol, and 10% 

glycerol. The column was washed with an increasing concentration of imidazole in buffer 

A  (10 mM , 20 mM and 40 mM) until the OD of the eluate at 280 was less than 0.02. 

Finally, and the protein was eluted with buffer A containing 250 mM imidazole. Protein 

was then  dialyzed against a 20 mM Tris buffer pH 8.0  to remove residual imidazole and 

passed through an anion exchanged  di-ethyl-amino-ethyl (DEAE) column, which was  

consecutively washed with 20 mM Tris buffer pH 8.0 containing an increasing NaCl 

concentration (20 mM ,40 mM , and  80 mM  NaCl). The protein was eluted with 200 mM 

NaCl in 20 mM Tris buffer pH 8.0 and dialyzed against 20 mM TRIS pH 7.4 overnight. 

The purity of the protein was determined using SDS-PAGE electrophoresis and the Ca2+ 

binding properties were characterized using emission spectroscopy and circular dichroism 

spectroscopy as described below.  

 

2.3 UV-VIS absorption  

 

The presence of aromatic amino acid residues with conjugated electrons, Trp, Phe and Tyr, 

peptides and proteins the ability to absorb light in the UV range from 250 nm to 300 nm. 



 

18 

 

These conjugated systems allow to observe  ->* electronic transitions upon excitation 

as shown in the Jablonski diagram (Figure 2.1) 

 

Fig. 2.1: Representation of the Perrin-Jablonski diagram. The arrows indicate the transition 

between the different electronic states. Radiative processes are shown ,  absorption  is 

represented by the blue arrow , emission is  represented by the bright green arrow  and 

phosphorescence is represented by the orange arrow. The non-radiative processes, such as 

internal conversion, intersystem crossing and vibrational relaxation are shown in red, flat 

green and maroon respectively.  

  

The absorbance (A) is determined as a ratio of the intensity of light before (Io) and after 

(I) it passes through an optical cell according to (Eq 1).  

𝐴 = log
𝐼𝑜

𝐼
      (1) 

based on the absorbance value, the concentration of the protein sample can be determined 

using Beers Lambert Law (Eq. 2).   

𝐴 = 𝜀𝑏𝑐       (2)  
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where  is the extinction coefficient in cm-1M-1, b is the pathway in cm and c is the 

concentration in mol L-1. The values of extinction coefficients used in this study are 

summarized in Table 2.1. 

 λ max (nm)  Extinction coefficient (cm-

1M-1) 

Source  

DREAM WT 280 19 000 (Azam & 

Miksovska, 2019) 

DREAM-NCS 1 280 19 000 (Azam & 

Miksovska, 2019) 

1,8-ANS 350 5000 (Stryer, 1965) 

Kv 4.3 Site 1 493 80 000 (Azam & 

Miksovska, 2019) 

Kv 4.3 Site 2 493 75 000 (Azam & 

Miksovska, 2019) 

 

 

2.4 Steady state emission 

 

The emission spectrum is the measure of the light intensity emitted by a sample as a 

function of wavelength, after the sample has been excited at a specific wavelength 

(Jameson, 2014; Lakowicz, 2006). The Trp residue  is a commonly used intrinsic probe in 

proteins as its emission properties can be used to monitor protein tertiary structure changes 

due to its sensibility to the surrounding environment, (Jameson, 2014) 

The DREAM protein has a unique Trp residue in position 169 located in a hydrophobic 

cavity (Lusin et al., 2008) , which was used to monitored changes in the protein tertiary 

structure upon Ca2+ association to the protein. The Trp emission spectra were recorded 

Table 2.1: Extinction coefficient values used in this study  
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using PC1 fluorimeter. The samples were excited with a 280 nm output from the Xe lamp 

and emission was collected in 90-degree orientation from 300 nm to 470 nm. The samples 

for emission measurements contained 10-µM protein solubilized in 20 mM Tris buffer pH 

7.4. The sample was placed in a 0.1x1.0 cm or 0.2 x 1.0 cm quartz cuvette. The apo, Mg2+, 

Ca2+ and Mg2+Ca2+ bound protein was prepared by adding  5 mM EDTA,5 mM EGTA, 1 

mM MgCl2 and/or 1 mM CaCl2 to the protein samples.    

2.5 Fluorescence lifetime  

Fluorescence lifetime of fluorophore (τ)  is the measure of how much time the molecule 

spends in the excited state, corresponding to the time between absorption and emission 

(Jameson, 2014), and is commonly expressed using Eq. 3, where τ is the lifetime in ns , 

krad is the rate constant for radiative processes and knonrad is the rate constant for non-

radiative processes.  

𝜏 =
1

𝑘𝑟𝑎𝑑+𝑘𝑛𝑜𝑛𝑟𝑎𝑑 
       (3) 

The information of the lifetime of intrinsic or extrinsic fluorescence probes in protein 

provide additional information and structural and dynamic properties in protein and are 

important for interpreting other parameters such as lifetime and anisotropy (Jameson, 

2014). Fluorescence lifetime can be measured using the time domain or the frequency 

domain approach (Jameson, 2014). In the time domain approach the sample is excites with 

a short laser pulse and the change in intensity is  measured as a function of time (Jameson, 

2014). On the other hand,  in the frequency domain approach,  the sample is excited using 

a  continuous light source modulated at different high frequencies (20 MHz to 200 MHz)) 
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in a sinusoidal manner, as a result of the excitation the sample, the emitted light shown a 

frequency phase shift and amplitude modulation with respect to the excitation source 

modulated emission light (Jameson, 2014; Lakowicz, 2006). The lifetime can be 

determined  by analyzing the experimental data using several models such as sum of 

multiple exponential decay, Gaussian distribution, Lorents distribution etc. (Jameson, 

2014) . The lifetime data presented in this study were measured in the frequency domain 

using Chrono FM fluorometer (ISS, Chapagain Illinois) 

The samples for Trp fluorescence lifetime measurements contained 20 μM protein in 20 

mM Tris buffer pH 7.4. The apo, Mg2+, Ca2+ and Mg2+Ca2+ bound proteins  were prepared 

by adding  5 mM EDTA, 5 mM EGTA, 1 mM MgCl2 and/or 1 mM CaCl2 into proteins 

samples. The compound 2.5-diphenyl-oxazole (PPO) with the lifetime of 1.4 ns was used 

as a reference. The sample was excited with 280 nm laser diode and the emission intensity 

was collected using a 300 nm long pass filter (Andover). The plots of phase modulation 

and phase shift as a function of modulation frequency were fitted using a three exponential 

decays model. The quality of the fit was judged by a 2 value and residual.  

The samples for measuring emission lifetime of DREAM in the presence of 1,8-ANS 

contained 20 μM protein in 20 mM Tris buffer pH 7.4 and 20 μM 1,8-ANS. The apo, Mg2+, 

Ca2+ and Mg2+Ca2+ bound proteins  were prepared by adding  5 mM EDTA, 5 mM EGTA, 

1 mM MgCl2 and/or 1 mM CaCl2 into proteins samples. The samples were placed in a 

0.1x1.0 cm or 0.2 x 1.0 cm quartz cuvette and the output of 305 nm diode was used for the 

excitation. The emission intensity was collected using a 400 nm long pass filter (Andover 

Corp). The plots of phase modulation and phase shift as a function of modulation frequency 
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were fitted using a three exponential decays model. The quality of the fit was judged by a 

2 value and residual. 

2.6 Anisotropy  

Anisotropy measurements allow to determine rotational mobility of a fluorophore by 

monitoring the ratio of the emitted light using different orientation of polarizers placed in 

the excitation and emission path according to Eq 4. (Jameson, 2014). 

𝐴 =  
𝐼𝐼𝐼−𝐼⊥

𝐼𝐼𝐼+2𝐼⊥
      (4) 

where A represents anisotropy and III and I
┴
 represent the parallel and perpendicular 

orientation of the polarizers.  In general, the excitation light passes through a polarizer 

placed in the excitation path and only fluorophore molecules that have a transition dipole 

excitation

emission

Fig. 2.2: Position of the polarizers for the steady-state anisotropy measurements. The 

Direction of the propagation of the excitation light and  collected emitted light are shown as 

thin black arrows, the orientation of the polarizer placed in the excitation and emission path 

are shown in green. (Adapted from Jameson 2004). 
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moment aligned with the electric field of the excitation light are excited. The polarization 

of the emitted light corresponds to the orientation of the transient dipole moment of the 

excited molecule at the time of light emission (Lakowicz, 2006). For small molecules that 

freely rotate in the solution, the emitted light is depolarized, whereas light emitted by 

molecules or molecules trapped in a membrane or a solid like environment emit  light  

polarized in the orientation analogous to the polarization  of the excitation light. (Jameson, 

2014) A second polarizer placed in the path of the emitted light is in a parallel or 

perpendicular orientation with respect to the polarizer placed in the excitation path and the 

emission intensity is collected. As anisotropy values are usually proportional to the size of 

the fluorescent molecule, anisotropy represent a convenient approach to characterized 

binding of small fluorescent molecules to proteins. By measuring anisotropy as a function 

of an increasing concentration of the protein, the binding isotherm for fluorophore 

association to the protein can be constructed and the equilibrium association or dissociation 

constants can be determined by analyzing the experimental data using an appropriate 

model. 

Here we used the anisotropy approach to measure the dissociation constant for binding of 

fluorescent labeled peptides that mimic DREAM binding sites in the T1 domain of 

potassium voltage channels, so called site 1 and site 2. The site 1 corresponds to the 

residues 2 to 22 of the T1 domain (FITC-AAGVAAWLPFARAAAIGWMPV)) and the 

site 2 corresponds to the residues 70 to 90 of the T1 domain (FITC-

LLGSTEKEFFFNEDTKEYFFD).  The peptides were labeled by a fluorescent probe 

fluorescein isothiocyanate (FITC) (Scheme 2.1) covalently attached the peptide N- 

terminal.  
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Peptides were solubilized in 20 mM Tris buffer pH 7.8 and anisotropy was measured using 

390 nm excitation light. The emission was collected through a long pass 500 nm filter 

placed in the emission light pathway. Subsequently small aliquots of DREAM WT or 

DREAM-NCS1 protein were added and anisotropy values were recorded. Each value of 

anisotropy corresponds to an average value determined for 10 measurements. The values 

of the anisotropy change were plotted as a function of protein concentration and the 

titration curves were analyzed using quadratic equation (Eq. 5) and assuming a single 

binding site for each peptide.  

A = 
(Kd + [Pt] + [Lt])-√(Kd + [Pt] + [Lt])

2
- 4[Pt][Lt]

2𝑐
    (5) 

 

where A is the change in anisotropy, Kd is the equilibrium dissociation constant, Pt is the 

total concentration of protein in the sample, Lt is the total ligand concentration of 0.5 µM, 

and c is the proportionality constant. 

Fig. 2.3: Structure of FITC 
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2.7 Circular Dichroism 

Circular dichroism (CD) is a widely used technique to study protein secondary structure as 

well as protein stability (Greenfield, 2007). In CD measurements, difference in the 

absorbance of the right and left circularly polarized light in the far  ultraviolet (UV) and 

near UV spectrum is determined as chiral chromophore have a different extinction 

coefficient for the left and right circularly polarized light. (Greenfield, 2007). The CD 

spectra of protein in the far UV (190 nm to 250 nm) provides information of the secondary 

structure of proteins major secondary structure elements, -helices, -sheets and random 

coil, have a distinct CD spectrum as shown in Fig. 2.3. 

 

Fig. 2.4: Typical CD spectra, showing the three major secondary structures of proteins, 

α-helix, β-sheet and random coil with distinctive peak at specific wavelengths. Adapted 

from Wei et al. (Wei, Thyparambil, & Latour, 2014)  

 

 For instance, α helical structures show a strong positive peak at 192 nm and two negative 

peaks at 208 and 222 nm. In the case of β sheets, a negative peak at 218 nm and a positive 

peak at 196 nm are observed whereas random coils show only a very week CD signal 

(Greenfield, 2007). The monitoring of  CD spectra in the near UV region are less common, 
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however these data can provide information about structural changes in the environment 

of aromatic residues Phe, Tyr and Trp.  

The samples for CD measurement contained 20 µM protein in 20 mM Tris buffer pH 7.4 

placed in a 0.1 mm x1 cm quartz cuvette. The apo, Mg2+, Ca2+ and Mg2+Ca2+ bound 

DREAM was prepared by adding  5 mM EDTA,5 mM EGTA, 1 mM MgCl2 and/or 1 mM 

CaCl2 to the protein samples. The data were collected from 190 to 260 nm using a J-810 

Jasco CD spectrometer. 

 

 

 

2.8 Isothermal Calorimetry 

 

Isothermal calorimetry is a widely used analytical technique, which provides 

thermodynamic parameters such as Keq, G, H and S using Eq (6) and (7) 

   𝐺 = −𝑅𝑇𝑙𝑛𝐾                                             (6) 

   𝐺 = H − TS                                            (7)  

  It determines the heat in a reaction process proportional to the molar enthalpy change 

associated with the process and the amount of complex formed.  
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Fig. 2.5: ITC instrumentation. Adapted from (Martinez et al., 2013) 

 

The ITC experiments were performed employing a VP-ITC MicroCalorimeter (MicroCal 

LLC, Northampton MA). The ITC instrument contains an adiabatic jacket with a reference 

and a sample cell, where the titration occurs.  The sensor measures the amount of heat 

needed to keep the sample and reference cell temperature constant with every addition of 

ligand, providing a heat signal as a function of time. The heat signal is integrated and 

plotted as a function of molar ratios of the ligand and protein. The ITC data are then 

analyzed using fitting models in Origin 7 software to calculate thermodynamic parameters 

including number of binding sites (n), equilibrium association constant (Ka), reaction 

enthanlpy change (ΔH) and reaction entropy change (ΔS) (MicroCal, LLC, Northampton, 

USA). In the experiments presented in Chapter 3, the experimental data were fitted to one 

sequential binding site model.   
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3.  INTERACTIONS OF DREAM WITH Zn2+ ION. 

 

3.1 Introduction 

 

Zinc is a key element in neuronal growth and activity and it is necessary for the normal 

development and functioning of the brain (Plum, Rink, & Haase, 2010; Vallee & Falchuk, 

1993). It has been found to interact with more than 50 different types of protein that require 

Zn2+ to function (Vallee & Falchuk, 1993).  It can be found intracellularly in concentrations 

around the 100 pM and the free Zn2+ varies in nm-pM range (Plum et al., 2010). The 

regulation of the physiological concentration of Zn2+ is crucial for the normal functioning 

of the organism (Plum et al., 2010). 

 Zinc deficiency produces growth retardation and immune system dysfunctions (Plum et 

al., 2010). Furthermore, neurologically there are several effects such as decreased nerve 

conduction, neuropsychiatric disorders and mental lethargy (Plum et al., 2010).Whereas a 

Zn2+ excess also affects the body by altering the lymphocyte function, producing 

gastrointestinal issues and copper deficiency (Plum et al., 2010). In the brain, Zn2+ excess 

causes lethargy and focal neuronal deficits (Plum et al., 2010).  Recently, Permyakov et al. 

have shown that Zn2+ binds to the member of neuronal calcium sensor family, recoverin 

with a Kd of 7.0 µM (Permyakov, S. E. et al., 2003). Therefore, considering the role of Zn2+ 

in neuropathology and the high homology between recoverin and DREAM, as shown in 

Figure 3.1, I suggest that DREAM may serve as a molecular target for Zn2+.  To test Zn2+ 

interactions with DREAM I characterized DREAM emission properties in the presence of 

DREAM as well as circular dichroism and isothermal titration calorimetry studies.  

 



 

29 

 

  

 

Fig. 3.1: Sequence similarity among recoverin (PDB entry 1JSA) and DREAM (PDB entry 

2JUL), identical residues in green, similar residues in pink, sequence mismatch in blue and 

insertion/deletion in brown. Obtained from RCSB PDB Protein Comparison Tool. Smith-

Waterman sequence alignment (Smith & Waterman, 1981) 

 

 

 3.2 Steady state fluorescence emission  

 

The Trp intrinsic fluorescence emission for the DREAM WT exhibits specific transitions 

upon divalent metals addition along with a typical λmax at 330 nm.  For DREAM WT, the 

intensity decreases upon Ca2+ and Ca2+Mg2+ addition, whereas for addition of Mg2+ no 

transition is observed with respect to the apo form. Emission spectra for Trp 169 were 

detected upon Zn2+ addition to DREAM in the presence and absence of divalent metals, to 

monitor Zn2+ binding to DREAM and its impact on Trp 169 surrounding.  For the apo, Ca2+ 

, Mg2+ and Ca2+Mg2+  bound forms  the Zn2+ addition resulted in an  increase in the emission 

at 330 nm, suggesting Zn2+  binds to the protein and triggers changes in the Trp 

environment.   
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Fig. 3.2: Steady-state fluorescence emission of Trp for DREAM-WT upon 500 µM Zn2+ 

addition in the presence and absence of Ca2+ and/or Mg2+. 

 

Furthermore,  titration curves for Zn2+ binding to  DREAM WT were obtained by  adding 

increasing concentration of  Zn2+ to DREAM samples and the Trp emission intensity was 

monitored in the presence and absence of Ca2+ shown in Fig.ure 3.3. 
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Fig. 3.3: Trp fluorescence emission for the Zn2+ association to Ca2+ (right) and apo (left) 

DREAM WT  
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The equilibrium dissociation constants were determined and are shown in Table 3.1. 

Dissociation constant for Zn2+ binding to the apo form of the protein is around 3 times 

lower than the one for  the Ca2+bound form , suggesting a stronger affinity of Zn2+ for 

DREAM WT in the absence of Ca2+.  

  

  Kd (μM) 

Apo DREAMWT 4.30.9 

Ca2+ DREAMWT 14.03.1 

 

 

 

 

 

3.3 CD measurements  

 

The secondary structure changes upon Zn2+ addition to the protein were measured using 

circular dichroism for DREAM WT in the absence and presence of divalent metals shown 

in Fig.ure 3.6   
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Fig. 3.4: Secondary structure characterization of DREAM WT upon Zn 2+ addition in the 

absence and presence of Ca2+, Mg2+ and Ca2+Mg2+. 

 

Table 3.1: Dissociation constant for Zn2+ association to 

DREAMWT in the presence and absence of Ca2+. 
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 A decrease in CD signal was observe upon  Zn2+  in all the cases , for the apo form a more 

pronounced decrease in the CD signal was observed when compared to the  Ca2+ , Mg2+ 

and Ca2+Mg2+ forms. Suggesting the Zn2+ binding to apo DREAM leads to the significant 

increase in the protein secondary structure and possibly to the stabilization of the protein 

structure. In decrease in the CD signal in the presence of Mg2+ and Ca2+ was less 

pronounced, suggesting that the presence of Mg2+ and Ca2+ in the EF-hands modulates 

Zn2+ impact on the protein secondary structure.    

 

3.4 Impact of Zn2+ on DREAM interactions with hydrophobic probe, 1,8-ANS 

 

The fluorescence emission of 1,8 ANS-DREAM complex in the presence and/or absence 

of Ca2+, Mg2+ was monitored in order to determine impact of Zn2+ binding on the 

accessibility of  hydrophobic surfaces on the protein surface . The emission spectra for 

DREAM in the absence/ presence of divalent ions are shown in Figure 3.4 .  
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Fig. 3.5:   Emission spectra of 1,8 ANS-DREAM WT complex in the presence and/or 

absence of Ca2+, Mg2+ and Zn2+. 
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For the 1,8 ANS-DREAMWT  apo, Ca2+ , and Ca2+Mg2+  bound forms  the Zn2+ addition 

resulted in an increase in the 1,8-ANS emission  intensity. The largest increase in intensity 

was observed for the apo form and interestingly for the Mg2+ bound form of DREAM W, 

the Zn2+ triggered changes in  the emission intensity were negligible that is consistent with 

the CD data. Furthermore, the equilibrium dissociation constant for 1,8 ANS binding to 

DREAM in the presence of Zn2+ was determined by  monitoring the increase in the 

emission intensity upon Zn2+ titration into  1,8 ANS-DREAMWT complex in the presence 

and absence of Ca2+ .  The corresponding titration curves areas shown in Figure 3.6.  
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Fig. 3.6: Zn2+ association to Ca2+ and Apo DREAM WT in the presence of 1,8 ANS  

 

The Kd values were obtained by fitting the data using the Hill equation (Eq. 4.1) and are 

shown in Table 3.2. Slightly smaller Kd value was determined for apoDREAM compared 

to the Ca2+ bound protein, in agreement with the Trp emission data.   

  

  Kd (μM) 

Apo DREAMWT 6.9  0.6 

Ca2+DREAMWT 10.76 1.46 

 

Table 3.2: Dissociation constant for 1,8 ANS - DREAMWT 

association with Zn2+ in the presence and absence of Ca2+. 
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In addition, the impact of Zn2+ on the fluorescence lifetimes of 1,8-ANS: DREAM complex 

in the presence and absence of Ca2+ was probed using frequency modulation approach and 

the date are presented in Fig. 3.7 . The lifetime values were obtained from a fit of 

experimental data using a three exponential decay model and the fitting parameters are 

summarized in Table 3.3. The lifetime for unbound 1,8-ANS was fixed to 0.27 ns 

(Gonzalez & Miksovska, 2014). Upon Zn2+ addition, τ1 decreased from 5.9 ns to 

approximately 3.0 ns for both apo and Ca2+bound protein, while Zn2+ association does not 

impact the longer lifetime, τ2. These results suggest that the 1,8-ANS-binding site with the 

shorter lifetime, τ1, is more sensitive to the structural changes   triggered Zn2+ binding 

whereas the emission properties of  1,8-ANS bound to the second site are only slightly 

affected by the Zn2+ association.  

 

             
 

Fig. 3.7: Frequency domain intensity decay for  Zn2+ addition to  Ca2+ bound 1,8-ANS-

DREAMWT (left) and 1,8 ANS- apo DREAM-WT (right). The solid lines correspond to 

the fit of the experimental data using a sum of three exponential decay model.   
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τ 1 (ns) τ 2 (ns) α1 α2 χ2 

1,8 ANS Apo DREAM WT 5.9± 0.1 16.2 ± 0.7 0.13 0.23 1.16 

1,8 ANS Ca2+DREAM WT 5.9± 0.2 17.6 ± 0.5 0.18 0.42 1.13 

1,8 ANS-Apo DREAMWT+ Zn2+ 2.89 ± 0.2 14.4 ± 0.2 0.07 0.06 9.45 

1,8 ANS-Ca2+DREAMWT+Zn2+ 3.13 ± 0.09 14.1 ± 0.1 0.05 0.05 4.05 

 

 

3.5 ITC studies  

 

Isothermal calorimetry studies were performed  to determine the dissociation constant and 

thermodynamic parameters for Zn2+ binding to apo DREAM. The binding isotherm is 

shown in Fig. 3.8. The data were analyzed using one binding site model.  The Zn2+ binding 

to the protein is exothermic, with the  reaction enthalpy change of -5.1 kcal mol-1 (Table 

3.4) and the equilibrium dissociation constant was determined to be 3±1 µM. This value of 

3±1 µM is similar to the Kd value obtained from monitoring changes in Trp 169  emission 

in apo DREAM, Kd =  4.3±0.9  µM  and 1,8-ANS:apoDREAM emission, Kd = 6.9  0.6 

µM. 

Table 3.3:  1,8 ANS lifetime for apo and Ca-DREAM WT in the presence of 

Zn2+fitted to three exponential decays with a fixed lifetime for 1,8 ANS of 0.27 

ns.  The lifetime values for 1,8 ANS  bound to DREAM in the absence of Zn2+ 

were previously determined by Gonzalez (Gonzalez & Miksovska, 2014) 
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Fig. 3.8: ITC Isotherms for Zn2+ association to DREAM in the absence of Ca2+, the upper 

panel refers to thermal power as function of time, and the lower panel represent the 

integrated reaction heat H in kcal/mol.  

 

 KD (µM) H (kcal/mol) TS (kcal/mol) 

Zn2+apo DREAM WT 2.6± 1.0 - 5.1 23.7 

 

 

 

 

Table 3.4: Equilibrium Dissociation constant of Zn2+ binding to DREAM in the 

absence of Ca2+Using one model sequential binding fitting. 
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3.6 Discussion  

 

The fluorescence and CD results  presented in the chapter for Zn2+ interactions with  

DREAM suggest that Zn2+ binds to DREAM with relatively high affinity, Kd ~ 5 µM. The 

increase in the emission spectra for the Trp residue indicates that Zn2+ association impact 

the tertiary structure of the protein. The dissociation constant obtained for Zn2+ binding to 

apo and  Ca2+ DREAM of 5 µM and 14 µM, respectively,  is similar to the value reported 

for recoverin, Kd = 7 µM (Permyakov, S. E. et al., 2003).  The dissociation constant 

obtained for  Zn2+ binding to DREAM in the absence of Ca2+  through fluoresce emission 

of  4µM,   is very close to the  Kd = 3 µM obtained through isothermal calorimetry 

measurements, suggesting a higher affinity of Zn 2+ to DREAM in the absence of the 

physiological ligand. In addition,  the  decrease in the CD signal suggest a stabilizing effect 

on the protein structure similar to the one occurring upon  Ca2+ addition.  Furthermore, the 

addition of Zn2+  to 1,8 ANS –DREAM complex resulted in an increase in the fluorescence 

intensity, suggesting a higher exposure of the hydrophobic surfaces due to the Zn2+ binding. 

The emission data is  in agreement with the 1,8 ANS lifetime values, which demonstrate a 

lower τ1 upon Zn2+ addition, suggesting that 1,8 ANS binding site 1  is more sensitive to 

the Zn2+ conformational changes. Overall, the data obtained confirm that Zn2+ binds to 

DREAM in apo and Ca2+ bound form, and association of Zn+ to the protein triggers 

changes in protein. Maret et al studied zinc-protein interactions and reported that Zn2+ is 

usually coordinated in proteins by four ligands with the side chain of Cys, His, Glu, or Asp 

being the most common ligands (Maret & Li, 2009). The inspection of the monomeric 
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structure of the calcium bound protein (PDB entry 2JUL, Lusin et al, 2008) did not reveal 

a possible binding site on the DREAM monomer. However, it is likely that the Zn2+ 

association to the protein requires the presence of the apo protein tetramer or Ca2+ bound 

protein dimer and thus additional studies are necessary to identify residues that participate 

in Zn2+ coordination.   
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4.   MOLECULAR MECHANISM OF DREAM DIMERIZATION 

 

4.1 Introduction 

 

Unlike traditional EF hand sensors, such as calmodulin and troponin C that remind in the 

monomeric form in the absence and  presence of Ca2+, Ca2+ association to other CBPs 

triggeres a structural transition that facilittes protein oligomeriztion.  For example, proteins 

belonging to S100 calcium binding protein subfamily are known to undergo dimerization  

upon Ca2+ binding to the EF hands. Some members of the neuronal calcium sensor family 

also  undergo Ca2+ triggered dimerization such as recoverin, GCAP 1-5 and VILIP-

1(Ames, 2018) (James 2018[JM3]). The available structures of dimeric form of individual 

proteins suggest, that each protein adopt a unique dimeric structure, as shown in Fig.ure 

4.1, likely due to a distinc physiological role of each proteins (James, 2018). For example, 

the dimeric structure of Ca2+ bound VILIP-1 shows that the binding interface is formed 

through contacts beween -helices located in EF-hand 4 of the C- terminal domain (Li, 

Pan, Braunewell, & Ames, 2011) (Li et al., 2011[JM4]), whereas in recoverin, the exiting 

-helix from the EF-hand 4 interacts with hydrophobic residues in a cavity located between 

EF-hand 1 and EF-hand 2 (Myers et al., 2013) (Myers et al., 2013[JM5])  
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 Based on the NMR structure of Ca2+ bound DREAM monomer, Lusin et al. suggested that 

DREAM forms a dimeric structure with the head to tail orientation of the C- and N- 

terminal domain (Lusin et al, 2018). The dimeric form was proposed to be stabilized by 

hydrohobic interactions between  Leu residues in the N- terminal domain (Leu 155 and 

Leu 159) of  one monomer and Leu 251 in the C- terminal domain of the second monomer. 

Albeit replacement of Leu residues by Ala did not abolished the formation of the dimers, 

but the equilibrium constant for the protein dimerization decreased (Lusin et al, 2018).  The 

DREAM  dimeric structure  is destabilized at an increased concentration on sodium 

chloride as observed in the homo Förster resonance energy transfer  measurement , 

suggesting that ionic interactions also contribute to the formation of  DREAM dimeric form 

(unpublished results from Dr. Miksovska group).  

In order to better understand the mechanism of Ca2+ triggered protein dimerization and the 

mechanism of signal transduction in DREAM, we prepared a DREAM construct with the 

aim to abolish protein dimerization. Based on the previously published model structure of 

DREAM (Lusin et al, 2018), a protein docking and molecular dynamic simulation of the 

Fig. 4.1: The structure of the dimeric form of recovering (left) and VILIP-1 (right)  in Ca2+ 

bound form. Individual monomers are colored in yellow and blue and side chains of 

residues in the binding interfaces are shown in red. Adapted from Ames 2018 (Ames, 2018) 
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DREAM dimer structure, Fig. 4.3, (Miksovska laboratory, unpublished results) and the fact 

that other member of neuronal calcium sensor family, NCS1,  does not form a dimer[JM6]  

(Pandalaneni et al., 2015), I proposed to construct a chimeric variant  of a protein with Leu 

residues in position 155 and 158 replaced by residues Thr and Leu,  that are found in NCS-

1 respectively.  In addition, since the simulated structure of DREAM dimer shows an 

interactions between Arg  residues(Arg 200 and Arg 208)  in the long loop conecting EF-

hand 3 and EF-hand 4, the residues in the loop were replaced by residues found in the loop 

in NCS-1.  I label this chimeric form of the protein DREAM-NCS-1. The alignment of the 

sequence of DREAM-NCS-1 and the sequence of DREAM WT in Fig. 4.2. The properties 

of DREAM-NCS-1 variant were characterized using fluorescence and CD spectroscopy 

and the interactions with the peptides mimicking the DREAM binding sites in T1 domain 

of potassium voltage channels were determined.  

 

 

Fig. 4.2: Sequence of mouse DREAM WT (red) with a start methionine residue (green)  

and a C-terminus His-tag (blue) connected by tripeptide linker (green). The DREAM-

NCS (black) has   identical sequence to the DREAM WT except residues L158, Leu159  

replaced by Thr and Ser and the loop between EF-hand 3 and 4 (shown in yellow ) 

replaced by the amino acid sequence found in human NCS-1 (shown in bold red). 

 

MELELSTVRHQPEGLDQLQAQTKFTKKELQSLYRGFKNECPTGLVDEDTFKLIYSQFFPQGDATTYAHFLFNAFDAD 

MELELSTVRHQPEGLDQLQAQTKFTKKELQSLYRGFKNECPTGLVDEDTFKLIYSQFFPQGDATTYAHFLFNAFDAD 

 

GNGAIHFEDFVVGLSILLRGTVHEKLKWAFNLYDINKDGCITKEEMLAIMKSIYDMMGRHTYPILREDAPLEHVERF 

GNGAIHFEDFVVGLSITSRGTVHEKLKWAFNLYDINKDGCITKEEMLAIMKSIYDMMGNTVELPEEEDAPLEHVERF 

 

FQKMDRNQDGVVTIDEFLETCQKDENIMNSMQLFENVIYLEHHHHHH 

FQKMDRNQDGVVTIDEFLETCQKDENIMNSMQLFENVIYLEHHHHHH 
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Fig. 4.3: Model structure of DREAM dimer based on the NMR structure of DREAM 

monomer (PDB entry 2JUL). Left panel shows hydrophobic interactions between Leu 155, 

159 and 251 and right panel show a salt bridge between Arg 200, Arg 207 (in blue) and 

Glu 103 (in red).  

 

 

4.2 Steady state fluorescence emission  

 

Trp 169 fluorescence emission spectrum of DREAM WT presents a characteristic λmax at 

330 nm, Fig. 4.4. The emission intensity decreases upon Ca2+ and Ca2+Mg2+ addition to the 

apo protein sample, whereas upon addition of Mg2+, no changes are observed with respect 

to apoDREAM WT. Interestingly, when analyzing the Trp steady state emission of the 

DREAM-NCS1 variant, the spectrum of the apoform exhibits a red shift with respect to 

DREAM WT, with a λmax at 337 nm. Furthermore, , the emission intensity increases upon 

Ca2+ and Ca2+Mg2+ addition , while Mg2+  binding to the apoprotein does not modulate the 

emission intensity as shown in Fig. 4.4. The increase in the Trp 169 emission observed for 

Ca2+DREAM-NCS-1 is distinct from the DREAM WT, which exhibits an opposite trend, 

decrease in the emission internist in the presence of Ca2+. 
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Fig. 4.4:  Steady-state fluorescence emission of Trp for DREAM-WT (left) and 

DREAM-NCS1 (right) in the presence and absence of Ca2+ and/or Mg2+. 
 

 

4.3 CD spectra  

 

The changes in the secondary structure were monitored by performing CD measurements 

for both DREAM WT and DREAM-NCS 1 in the presence and absence of divalent metals. 

For DREAM WT and DREAM-NCS 1 a decrease in the CD signal is observed upon 

addition of divalent metals, similar to other NCS where Ca2+ binding leads to the increase 

in the α-helical contain of the protein Azam at al, 2019 (Azam & Miksovska, 2019)[JM7]. 

These results together with the emission data indicate that Ca2+ binds to the chimeric 

version of the protein. In addition, the substitution of Leu residues and the modification of 

the loop connecting the EF-hand 3 and EF-hand 4 does not destabilizes the protein 

secondary structure and protein fold.  
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Fig. 4.5:  Circular dichroism spectra for DREAM WT (left) , and DREAM-NCS1 (right)  

in the presence and absence of Ca2+ and/or Mg2+. 
 

4.4 Ca2+ triggered exposure of hydrophobic cavities 

 

1,8-ANS is a small hydrophobic molecule that is very weakly fluorescent in aqueous 

solution but its fluorescent quantum yield increases significantly upon binding to 

hydrophobic cavities on a protein surface  (Gasymov & Glasgow, 2007) . Two binding 

sites with a high affinity for 1,8-ANS were identified for DREAM WT in the C-terminal 

domain and the analysis of the emission data indicates that 1,8-ANS binds to DREAM WT 

in Ca2+ dependent manner. (Gonzalez & Miksovska, 2014)  The emission spectra of 1,8-

ANS  bound to DREAM-NCS 1 in the apo form and in the presence of Ca2+ and/or Mg2+ 

are shown in Fig. 4.6. The results show a transition towards increase emission intensity of 

1,8-ANS  upon binding of Ca2+as well as in the presence of Mg2+. The λmax for apo DREAM 

is around the 471 nm, while the metal bound protein exhibits a red to a λmax of 491 nm 

shift with respect to apo DREAM.  
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Fig. 4.6:  1,8 ANS-DREAM-NCS 1 emission spectra upon Ca2+ , Mg2+  and Ca2+Mg2+  

addition.  

 

 In order to gain more information about 1,8-ANS interactions with DREAM-NCS-1, the 

equilibrium dissociation constant for  1,8- ANS  binding to DREAM were determined by 

titrating apo DREAM-NCS 1 and Ca2+ DREAM-NCS-1 with 1,8-ANS. The titration curves 

were constructed by plotting the increase in the emission intensity for 1,8-ANS additions 

to  DREAM-NCS-1 as shown in Fig. 4.7. 
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Fig. 4.7: Titration curves for 1,8-ANS binding to  apoDREAM-NCS 1 (left) and 

Ca2+DREAM-NCS 1 (right).  
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Affinity constants for 1,8-ANS binding to apoDREAM-NCS-1 and Ca2+ bound DREAM 

were determined by analyzing the titration curves using Hill equation (Eq. 4.1): 

𝐹 = 𝐵𝑚𝑎𝑥
[1,8−𝐴𝑁𝑆]𝑛

[1,8−𝐴𝑁𝑆]𝑛+𝐾𝐷
    (4.1) 

where F is the observed emission intensity, n is the Hill coefficient, KD is the equilibrium 

dissociation constant and Bmax is the proportionality constant. The fitting parameters are 

summarized in Table 4.1 together with the data obtained for 1,8-ANS binding to DREAM 

WT. Interestingly, the affinity of 1,8-ANS for DREAM-NCS-1  increased in the apo form 

and Ca2+ bound form, compared to the DREAM WT, pointing towards increased 

accessibility of the hydrophobic sites in the chimeric variant. 

 KD (μM) n 

Apo DREAM-WT 195 ±20 1.1±0.1 

Apo DREAM-NCS 1 32±2 1.9±0.1 

Ca2+ DREAM-WT 62 ± 4 1.1±0.1 

Ca2+ DREAM-NCS 1 22 ±4 1.3±0.2 

 

 

 

 

Table 4.1:  Dissociation constants and Hill coefficients for 1,8 ANS  binding to 

DREAM-NCS1 and DREAM WT. 
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4.5 Fluorescence lifetime of Trp169 

 

Lifetime decay parameters for the Trp 169 residue were determined using a frequency 

domain approach and the plot of the phase shift and modulation ratio as a function of  

         

Fig. 4.8: Frequency domain Trp  intensity decay for apo DREAM-NCS 1(left) and Ca2+ 

bound  DREAM-NCs 1  (right). The solid lines correspond to the fit of the experimental 

data using a sum of three exponential decay model 

 

 modulation frequency is shown in Fig. 4.8. The curves were analyzed using sum of three 

exponential decay model and the decay parameters are  summarized in Table 4.2 for  

 

Table 4.2: : Emission decay parameters for DREAM WT and DREAM-NCS 1 in the 

presence and absence of Ca2+ and Mg2+.   

  

Average 

lifetime 

(ns)  

τ 1 (ns) τ 2 (ns) τ3(ns) α1 α2 α3 χ2 

Apo DREAM WT  3.69 
0.39± 

0.03 

2.28 ± 

0.1 
6.6 ± 0.3 

0.2

9 

0.2

9 

0.2

9 
4.38 

Ca2+DREAM WT  4.07 
0.47± 

0.02 

2.57 ± 

0.01 
7.3 ± 0.3 

0.2

9 

0.1

9 

0.0

5 
2.93 

Mg 2+DREAMWT   4.95 
0.13 ± 

0.01 

1.22 ± 

0.08 

10.1 ± 

0.3 

1.8

5 

0.1

5 

0.0

4 
3.105 

Apo DREAMNCS 1  4.42 
0.42± 

0.05 

2.15± 

0.2 

6.36± 

0.3 

0.2

9 

0.1

4 

0.0

9 
0.91 

Ca2+DREAMNCS 1  4.81 
0.58± 

0.03 

2.78± 

0.2 

8.11± 

0.7 

0.2

7 

0.1

6 

0.0

5 
0.75 

Mg2+DREAMNCS1  3.87 
0.48±0

.04 

2.14± 

0.3 

5.87± 

0.3 

0.3

4 

0.1

4 

0.0

9 
0.98 
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DREAM-NCS-1 and DREAM-WT in the presence and absence of divalent metal.  

 To provide additional information about the changes in the hydrophobic cavities on the 

protein surface, I have determined the lifetime of 1,8-ANS bound to DREAM-NCS 1 in 

the presence and the absence of Ca2+ using frequency domain approach. The data were  

 

analyzed using a sum of three discreet exponential decays and the decay parameters are 

provided in Table 4.3.. The lifetime of 1,8-ANS unbound to protein was fixed to 0.27 

(Gonzalez & Miksovska, 2014). The decay parameters for 1,8 ANS- DREAM WT were 

previously determined (Gonzalez & Miksovska, 2014)  and are listed for the comparison. 

Interestingly, the lifetimes τ 1  and τ 2  are similar for both the WT and the mutant, 

suggesting that the binding sites for 1,8-ANS are identical in DREAM WT and DREAM-

NCS-1.  

  

Table 4.3:  Decay parameters for 1,8 ANS –DREAM WT and 1,8 ANS- DREAM-NCS 

1 complex in the presence and absence of Ca2+.The data were analyzed using a three 

exponential decay model. The data for DREAM WT are from Ref. Gonzalez and 

Miksovska, 2014. 
  τ 1 (ns) τ 2 (ns) α1 α2 χ2 

1,8 ANS Apo DREAM WT 5.9± 0.1 16.2 ± 0.7 0.13 0.23 1.16 

1,8 ANS Ca2+DREAM WT 5.9± 0.2 17.6 ± 0.5 0.18 0.42 1.13 

1,8 ANS Apo DREAM-NCS1 4.72± 0.2 16.5± 0.3 0.05 0.04 2.31 

1,8 ANS Ca2+DREAM-NCS 1 4.40± 0.2 16.4± 0.3 0.04 0.04 1.98 
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Site 1 and site 2 interactions with DREAM-NCS 1  

Previous data shown that binding of peptides mimicking the DREAM binding site 1 and 

site 2 in the T1 domain of Kv channel DREAM is regulated by Ca2+ and the affinity of 

DREAM for site 1 and site 2 increases approximately 25 and 50 times, respectively 

(Gonzalez and Miksovska, 2014).  

Site 1 and site 2 interactions with DREAM-NCS were monitored by measuring the change 

in anisotropy upon DREAM-NCS 1 addition to peptides with a FITC fluorescent probe 

covalently attached to the N- terminus in the presence and absence of Ca2+. Increase in the  

 

size of the FITC-labeled peptide upon complexation with DREAM protein (see Scheme 

4.1) results in the increase in the anisotropy. Thus monitoring an increase in anisotropy as 

a function of the increased concentration of DREAM provides a convenient way determine 

the affinity of DREAM for individual peptides.  

The titration curves for site 2 and site 1 binding to DREAM-NCS-1 in the absence and 

presence of Ca2+ are shown in Fig. 4.10 and Fig. 4.11, respectively. For both sites, the 

Fig. 4.9: Cartoon presentation of the interactions between FITC labeled site 1 (shown in 

purple) and DREAM (shown in light blue). Ca2+ ions are shown in yellow.  
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anisotropy increases upon  protein addition, suggesting that the chimeric protein binds both 

peptide. Analysis of titration curves using a quadratic equation as described in Material 

and Method section, provided equilibrium dissociation constants that are listed in Table 

4.4. 
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Fig. 4.10: Increase in anisotropy for Site 2 titration with DREAM –NCS 1 in the 

presence (left) and absence (right) of Ca2+. The solid line corresponds to the fit of the 

experimental data using quadratic equation (Eq. 2.5) 
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Fig. 4.11: Increase in anisotropy for Site 1 titration with DREAM –NCS 1 in the 

presence (left) and absence (right) of Ca2+. The solid line corresponds to the fit of the 

experimental data using quadratic equation (Eq. 2.5) 
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  KD (μM) 

Apo DREAM-NCS 1- Site 1 13.7 ±0.8 

Apo DREAM-NCS 1 – Site 2  3.9±0.60 

Ca2+ DREAM-NCS 1 Site 1 7.9 ± 0.8 

Ca2+ DREAM-NCS 1 Site 2 9.0 ± 1.9 

 

The equilibrium dissociation constants determined for site 1 and site 2 binding to DREAM-

NCS-1 chimeric variant show an increased affinity compared to DREAM WT data and 

more importantly, the affinity for site 1 and site 2 is only weakly influenced by the presence 

of Ca2+ as the affinity for site 1 increases only two times in the presence of Ca2+ whereas 

affinity of Ca2+ bound DREAM-NCS-1 is approximately 2.5 weaker in the presence of 

Ca2+ compared to the metal free protein.  

4.6 Discussion  

 

Here we present the characterization of structural and functional properties of the chimeric 

DREAM-NCS-1. The Trp 169 emission spectra indicate that the replacement of Leu 

residues by Ser and Thr as well as modification of the loop between EF-hand 3 and EF-

hand 4 strongly impact the Trp 169 surrounding as the emission spectra are red shifted, 

likely due to the more polar environment of the intrinsic probe. The different transition 

Table 4.4: Dissociation constant for  DREAM-NCS 1 interactions 

with Site 1 and Site 2 peptides ,  in the presence and absence of Ca2+. 
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upon Ca2+ binding to apoDREAM-NCS-1 compared to DREAM WT was observed, i.e. 

increase in the emission intensity, indicating distinct changes in the tertiary structure of the 

chimeric protein in the presence of Ca2+. Interestingly, similar  increase in the emission 

intensity upon Ca2+ association was observed previously for Ca2+ binding to NCS-1 

(Aravind et al., 2008)  (Aravid et al, 2008)[JM8],suggesting that photo-physical properties 

of Trp 169 in the chimeric protein resemble to those observed for NCS-1, at least in the 

presence of Ca2+. However, the Trp 169 lifetime data determined for the chimeric 

DREAM-NCS-1 f or DREAM-WT suggest similar dynamic properties of Trp 169 and its 

surrounding in both proteins. The CD data clearly demonstrate that despite the red shift in 

the Trp emission spectrum, the chimeric protein has  similar secondary structure DREAM 

WT and thus the absence of Leu 158 and Leu 159 residues as well as substitution of 

residues in the loop connecting EF-hand 3 and EF-hand 4 did not perturbed the proteins 

structure. The emission spectra of 1,8-ANS probe bound to apo DREAM-NCS-1 and Ca2+ 

bound DREAM-NCS-1 ( λmax = 471 nm and 491 nm, respectively) are red shifted with 

respect to the maxima of 1,8-ANS bound apoDREAM WT and 1,8-ANS bound 

Ca2+DREAM (λmax = 461 for both adducts, Gonzalez and Miksovska, 2014 ), suggesting 

that hydrophobic cavities are somewhat more polar in the chimeric protein. In addition, the 

affinity of the dimeric protein for 1,8-ANS increases 6 times and 3 times in the absence 

and presence of Ca2+, respectively. We associate the increase in the affinity for a,8-ANS 

with the absence of the tetrameric and dimeric state in the apo and Ca2+ bound form of 

DREAM-NCS-1 due to the increased accessibility of the hydrophobic cavities.  

The chimeric version of the protein interacts more closely with the peptides mimicking the 

site 1 and site 2 binding sites in the Kv channel T1 domain. Analogously with the increased 
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affinity for 1,8-ANS, these data indicates increased accessibility of the site1 and site2 

binding sites on the protein surface due to the lack of the apoDREAM-NCS-1 tetramer and 

Ca2+DREAM-NCS-1 dimer. Interestingly, Ca2+ regulated increase affinity of DREAM WT 

for site 1 and site 2 is not observed in this construct, suggesting, that the presence of the 

dimeric form is necessary for Ca2+ regulation of DREAM affinity for site 1 and site 2 

binding sites.  

Although these data points towards a distinct oligomerization form of chimeric DREAM-

NCS-1 protein, additional experiments, that directly monitor the changes in protein 

oligomerization, such as dynamic light scattering, are necessary to confirm the above 

results. Also, molecular dynamic studies will provide insight into the distinct structural 

properties of DREAM-NCS-1.  
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