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ABSTRACT OF THE DISSERTATION 

CHARGED FUSION PRODUCT PLASMA DIAGNOSTICS IN SPHERICAL 

TOKAMAKS 

by 

Alexander Netepenko 

Florida International University, 2019 

Miami, Florida 

Professor Werner U. Boeglin, Major Professor 

Charged fusion products from the D(d,p)t reaction, protons (p) and tritons (t), can be 

detected to obtain time and position dependent information on the fusion reaction profile 

in plasmas heated with neutral particles beams. We have developed a prototype instrument 

consisting of six charged particle detectors with ion-implanted-silicon surface barrier 

detectors. Each detector is combined with two replaceable collimators in such a way that 

it can accept 3 MeV protons and 1 MeV tritons emitted from a well-defined area inside the 

plasma. The detectors thus provide curved views across the plasma volume.  

Combining the data of all six detectors allows one to study changes in the reaction 

profile with an expected time resolution of about 1 ms. These changes are mainly because 

of slow variations in the neutral beam density profile, as well as rapid changes resulting 

from MHD instabilities. With an envisioned energy resolution of 100 − 150 keV it will be 

also possible to study proton energy spectra containing the information on the plasma fast 

ion distribution function. The anticipated proton energy spectra have been calculated 

analytically as well as modeled using Monte Carlo methods. 
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The effect of the fusion reaction cross-section anisotropy on the observed rates have 

been analyzed as well as the effect of the magnetic field on the detector acceptance has 

been studied. The emissivity profile has been modeled for a specific plasma discharge from 

the MAST 2013 experimental campaign using the PPPL code TRANSP including a recent 

model for fast ion transport. The calculated proton rates have been compared to the 

measured ones to investigate the origin of a large discrepancy between experimental data 

and standard TRANSP results. 

A graphic user interface was developed for optimizing detector orientation and data 

analysis. Furthermore, the new hardware was implemented in the online data acquisition 

system and its general performance and capabilities were improved.
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CHAPTER 1. INTRODUCTION 

Major attempts to solve humanity’s growing energy demands together with the efforts 

to eliminate the ecological impact of energy production, such as carbon dioxide emission 

and radioactive waste, has led the scientific community to the conclusion that controlled 

thermo-nuclear fusion could be one of the main candidates to address those issues. 

 
Figure 1. U.S. energy consumption by source (1 BTU = 0.293 Wh) [1]. 

The source structure of the U.S. energy consumption, shown in Figure 1, is taken from U.S. 

Energy Information Administration July 2019 Monthly Energy Review. It clearly indicates 

that the contribution percentage of clean energy sources remains extremely low.  Total 

energy consumption itself is constantly growing noticeably, showing more than a threefold 

increase in the past 70 years. The growth can be explained by population growth and an 

increase of energy demand per capita due to living standards improvements. 
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Thermonuclear fusion as a prospective energy source possesses several advantages 

compared to existing energy production technologies. Zero 𝐶𝑂2 emission is a main benefit 

in contrast to the fossil fuels burning, practical absence of long-lived nuclear waste and 

intrinsically high reactor safety with respect to potential accidents is a crucial factor in 

comparison to fission nuclear reactors and incredibly high energy capacity compared to 

renewable and other energy sources. 

In nuclear fusion, energy is released when two light nuclei combine into a heavier one 

and additional light reaction products and when the product’s total mass is smaller than the 

sum of the initial nuclei masses. The mass difference ∆𝑚 = (𝑚1 + 𝑚2) − (𝑚3 + 𝑚4), 

where 𝑚1, 𝑚2 are initial and 𝑚3, 𝑚4 are resulting nuclei masses, is converted into kinetic 

energy of the reaction products according to well-known relation 𝑄 = ∆𝑚𝑐2. The 𝑄 value 

in nuclear science denotes the amount of energy released or absorbed during a nuclear 

reaction. 

The total number of nucleons is conserved during the nuclear reaction, but the mass 

difference comes from the binding energy per nucleon, which varies with the number of 

nucleons in a nucleus (Figure 2). The binding energy combines the contribution of a long-

range Coulomb repulsion force and a short-range nuclear attraction force acting on the 

nucleons. For lighter nuclei the binding energy per nucleon is higher, since when the 

nucleus is small and each nucleon is mostly within the strong interaction range of the rest 

of nucleons, the Coulomb repulsion is then well compensated by the strong attraction.  In 

larger nuclei there are more nucleons that are out of range of strong interaction of each 

other, but they still repel through electro-magnetic interaction, which makes it less bound. 
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Figure 2. Nuclear binding energy per nucleon [2]. 

The isotope Fe 
56  has the highest binding energy per nucleon, or equivalently the 

smallest mass per nucleon, meaning that all the fusion reactions with the products up to the 

Fe 
56  isotope can occur with release of energy. Of course, since Coulomb repulsion is 

proportional to the reacting nuclei charges, a higher kinetic energy of the colliding nuclei 

would be necessary to overcome the potential barrier, thus the lighter isotopes are much 

more favorable. In practice, fusion reactions between hydrogen isotopes are of the most 

interest for energy production. 
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By comparison, the energy released in burning one CH4 molecule is of the order of  10 eV, 

six orders of magnitude less than the energy released in a fusion reaction. 
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The abundance of deuterium D( H 
2 ) in sea water makes it a perfect hydrogen isotope 

for the fusion research in facilities such as tokamaks or stellarators. Deuterium by itself is 

not the best option for the future energy generating fusion reactors since the D-D ( H 
2 + H) 

2  

reaction cross-section is much lower than the D-T ( H 
2 + H) 

3  cross-section by several orders 

of magnitude as can be seen in Figure 3 below. The plot was produced with the cross-

section parametrization published by H.-S. Bosch and G.M. Hale [3]. 

 
Figure 3. Hydrogen isotopes fusion reaction cross-section 𝜎𝑡𝑜𝑡 [3]. 

Both D-D reaction branches given in Equation 1 and Equation 2 have similar cross-

section values, which makes them practically equally probable when deuterons fuse, but 

for the accurate fusion rate calculations the branching ratio should be considered since 

cross-sections for  𝑝 and 𝑛 branches can differ by up to 15%.  As can be seen from Figure 

3, the D-T reaction cross-section has a maximum around 70 keV, which corresponds to the 

temperature of roughly 0. 81 × 109 K. It is much higher than the sun’s core temperature, 
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which is around 15 × 106 K. The huge pressure and density of the sun’s core maintained 

by the gravitational pull compensates for the smaller cross-section at that temperature, 

keeping the reactivity high enough to maintain the burning process. In magnetically 

confined plasmas that value of pressure is not achievable since it would require unfeasible 

magnetic field magnitudes, hence operating at increased temperatures is the only option. 

1.1 Plasma Reactivity and Ignition Condition 

The reactivity of a plasma is defined by the following expression: 

〈𝜎𝑣〉 = ∬ 𝑓1(𝑣⃗1)𝑓2(𝑣⃗2)|𝑣⃗1 − 𝑣⃗2|𝜎( |𝑣⃗1 − 𝑣⃗2|)𝑑𝑣⃗1𝑑𝑣⃗2, (4) 

where 𝑣⃗1, 𝑣⃗2 are the plasma ion species velocity vectors,  𝜎 is a reaction differential cross-

section (which can be angle dependent in a general case) and 𝑓(𝑣⃗) is a normalized velocity 

distribution function of a given species at a given location. The reaction rate per unit 

volume per unit time, often called emissivity, then can be found as: 

𝜉 =
𝑛1𝑛2

1 + 𝛿1,2

〈𝜎𝑣〉, (5) 

where 𝑛1, 𝑛2 are the species densities at a given location, and 𝛿 is a Kronecker’s delta to 

prevent double counting for particles of the same species reactions. 

For plasmas with a Maxwellian distribution function of the ion velocities, the reactivity 

has the temperature dependence shown in Figure 4. The reactivity has a maximum at a 

temperature of about 70 keV, which is much higher than typical ion temperatures in future 

tokamaks, such as ITER (International Thermonuclear Experimental Reactor). 

Nevertheless, at a temperature of about 15 keV the reactivity is high enough to be able to 
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reach the break even, 𝑄 = 1, condition and even higher values of 𝑄. The 𝑄 factor is a ratio 

between the power generated by fusion reactions inside the plasma and the input power 

supplied for plasma heating from external sources such as ohmic heating, neutral beam 

injection, and radio frequency (RF) heating. 

 
Figure 4. Plasma reactivity based on parametrization by H.-S. Bosch and 

G.M. Hale [3]. 

Another critical plasma property is the ignition condition that depends on the energy 

confinement time 𝜏𝐸, which characterizes how quickly the plasma loses all energy stored 

in it. When the fusion product alpha particles can fully compensate the energy loss rate: 

𝑃𝑙𝑜𝑠𝑠 = 𝐸𝑠𝑡𝑜𝑟𝑒𝑑 / 𝜏𝑒 and sustain the plasma burning process without the external energy 

input then ignition happens. Stored energy per unit volume for the Maxwellian plasma can 

be found as: 
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𝐸𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =
3𝑛𝑘𝑇

2
, (6) 

where 𝑛 is a total plasma density (𝑛 = 2𝑛𝑒  for electrically neutral plasma, where 𝑛𝑒 is 

electron density), 𝑘 is a Boltzmann constant, 𝑇 is a plasma temperature. 

The ignition criterion, also referred to as a Lawson criterion, for a deuterium tritium 

plasma with equal isotopes densities (𝑛𝑑 = 𝑛𝑡 = 𝑛𝑒/2 ) can then be written as 

3𝑛𝑒𝑘𝑇

𝜏𝐸
≤

𝑛𝑒
2

4
〈𝜎𝑣〉𝐸𝛼, (7) 

where 𝐸𝛼 is the single alpha particle energy produced in a fusion reaction. The right side 

of the inequality in Equation 7 is the energy deposited by the alpha particles in the plasma, 

which should be greater or equal to the stored energy loss rate. The ignition criterium can 

be rewritten as follows: 

𝑛𝑒𝜏𝐸 ≥
12𝑘𝑇

〈𝜎𝑣〉𝐸𝛼
. (8) 

For the ITER planned scenario of the steady state 𝐷-𝑇 plasma at 25 keV temperature this 

leads to 𝑛𝜏𝐸 estimate of 1.5 × 1020 m−3s being necessary for plasma ignition. 

Although the tritium being a rare isotope with a half-life of only about 12 years, it can 

be produced using the lithium neutron activation reaction since most of the released energy 

is carried by neutrons and fusion reactors produce a significant neutron flux. For the ITER 

reactor a special breeder blanket is being developed containing lithium bearing ceramics 

such as Li2TiO3 and Li4SiO4. 
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1.2 Fusion Devices 

There are two main approaches to achieve controlled nuclear fusion, one depends on 

inertial plasma confinement and the other is magnetic confinement fusion. Both methods 

are being studied experimentally and theoretically, and facilities are being developed and 

operated with preference given to the magnetic confinement devices. 

Currently the most promising magnetic plasma confinement concepts can be divided 

into two main categories: tokamaks and stellarators, both having toroidal geometry but 

different magnetic field configurations. Compared to the inertial confinement method, 

which conceptually remains a tiny hydrogen bomb where the role of the outer nuclear 

fission shell is played by the intense laser pulses that hit the fuel pellet and squeeze and 

heat it up to ignite the reaction which then lasts until the plasma ball quickly disintegrates 

after a few nanoseconds,  plasma pulses in magnetic confinement machines can last from 

few seconds up to several minutes as proposed for ITER. 

The tokamak, which is currently the prevailing magnetic confinement device, was 

proposed by Soviet scientists in the mid 50s and gained a large recognition by the fusion 

community in the late 60s. The acronym TOKAMAK – a special kind of abbreviation for 

the Russian TOroidalnaya KAmera s MAgnitnimy Katushkami, which means Toroidal 

Chamber with Magnetic Coils. As the name implies, a tokamak uses a toroidally shaped 

magnetic field configuration to confine a plasma in the shape of a doughnut.  

Currently there are two main types of tokamaks called the conventional tokamaks and 

the spherical tokamaks. The main difference of these two types is the aspect ratio of the 

plasma shape. The aspect ratio, 𝐴, is defined as a ratio between the major radius, 𝑅0, of the 
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plasma torus and the minor radius, 𝑎, of the plasma poloidal cross-section (Figure 5). 

Tokamaks with an aspect ratio larger than 3 are normally called conventional, and with 

𝐴 ≤ 2 considered as spherical.   The elongation parameter 𝑘 is a measure of the vertical 

stretch of the plasma poloidal cross-section profile (𝑘 = 𝑏/𝑎). 

Spherical tokamaks have some advantages over conventional ones. One is reduced cost 

because of the economical magnetic coils, since it is easier to achieve the desired level of 

magnetic field with a smaller size of the plasma major radius. Another advantage is 

improved plasma stability because of the plasma cross-section geometry and magnetic field 

line shape which allows particles to stay longer on the inner side of the torus where it is 

inherently more stable because of the good curvature of magnetic field lines (explained 

elsewhere in the chapter). 

 
Figure 5. Tokamak types (conventional and spherical). 

The charged fusion product diagnostic described in the thesis is especially well suited 

for spherical tokamaks such as the NSTX-U (National Spherical Torus Experiment 

Upgrade) at the PPPL (Princeton Plasma Physics Laboratory) and the MAST-U (Mega 

Amp Spherical Tokamak Upgrade) at the CCFE (Culham Centre for Fusion Energy), as 

shown in Figure 6. 

𝑅0 

𝑎 𝑎 

𝑏 

Standard tokamak, 𝐴 ≥ 3  Spherical tokamak, 𝐴 ≤ 2 
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Figure 6. NSTX-U and MAST-U tokamaks schematic view [6], [7]. 

A plasma is created by ionization the deuterium gas inside the chamber by the induced  

toroidal electric field. The field is the result of a time varying vertical magnetic field flux 

created by the varying (ramping) current in a central column solenoid of the tokamak 

(Figure 7). Thus, the central solenoid is serving as a primary coil and a plasma/gas being a 

secondary coil as per transformer principle. 

Ohmic heating can be efficient up to the point when the plasma becomes highly 

conductive. The plasma resistivity according to Spitzer [9] has a temperature dependence 

as 𝜂 ~𝑇−
3

2, and the ohmic heating power density deposition in plasma is 𝑃Ω = 𝜂𝑗2, where 

𝑗 is a current density. The current density has its limitation; to avoid plasma disruption the 

average current density should be such that the safety factor 𝑞 (which is defined in the next 

chapter) at the edge of the plasma be more the 2, and the current density should not be too 

high in general to prevent the MHD (Magneto Hydro Dynamic) instabilities in the central 

region of the plasma, in particular the sawtooth instability [10]. Another constraint the 



11 

ohmic heating has is the maximum current that can be driven through the center stack 

solenoid coils, meaning that the current ramping should be stopped at some point and the 

induced electric potential in the plasma will vanish.  

 
Figure 7. Schematic drawing of tokamak [8]. 

 

 
Figure 8. NSTX-U neutral beam injectors (NBI), top view [11]. 
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Additional to the ohmic heating, there are other methods to deliver the energy to the 

plasma such as RF waves and neutral beam injection (Figure 8). The last one plays a key 

role in our research and will be described in more detail. 

1.3 MAST-U Tokamak 

The main parameters of the MAST-U are listed in the Table 1. The major radius 𝑅𝑚 is 

the radius of the torus measured from the center of the doughnut hole to the center of the 

plasma, the aspect ratio 𝐴 is the ratio between the major radius and the effective radius of 

the confined plasma poloidal cross-sectional area, 𝐴 = 𝑅𝑚/𝑟𝑒𝑓𝑓, where 𝑟𝑒𝑓𝑓 can be defined 

as 𝑟𝑒𝑓𝑓 = 2𝑉/𝑆, 𝑉 being a volume enclosed by the last closed flux surface with surface 

area 𝑆. The aspect ratio of a standard tokamak is about 3, and the closer this ratio gets to 1 

the plasma shape becomes more spherical. 𝐼𝑝 is the electric current flowing in the plasma 

in the toroidal direction (plasma current). 𝐵𝑡 is the toroidal component of the magnetic field 

at the magnetic axis (the point of maximum or minimum of magnetic flux). The pulse 

length 𝑡𝑝𝑢𝑙𝑠𝑒 is the duration of the plasma pulse. 𝑃𝑁𝐵𝐼 is the power injected into the plasma 

by a beam of neutral particles with an energy 𝐸𝑖𝑛𝑗, and 𝑛𝑒 is the electron density in the 

plasma. 

As can be noted from Table 1, MAST-U has the aspect ratio 𝐴 = 1.4, consequently it 

belongs to the spherical tokamaks category. The magnetic field for plasma confinement in 

spherical tokamaks has a complex structure that must conform to the equilibrium 

conditions, which will be discussed in more details in the next chapter. In stellarators it is 

achieved with a set of intricately shaped coils, while in tokamaks it is created by 

combination of the external toroidal field coils, external poloidal field coils, and an 
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additional poloidal component produced by the plasma current. A typical shape of the 

magnetic field line for a spherical tokamak depicting its intricacy is shown in Figure 9. 

Parameter MAST-U 1st Campaign Design Value 

𝑅𝑚[𝑚] 0.7 0.7 

𝐴 1.4 1.4 

𝐼𝑝[𝑀𝐴] 1.0 2.0 

𝐵𝑡[𝑇] 0.65 0.8 

𝑡𝑝𝑢𝑙𝑠𝑒[𝑠] 2 5 

𝑃𝑁𝐵𝐼[𝑀𝑊] 3.5 5.0 

𝐸𝑖𝑛𝑗[𝑘𝑒𝑉] 75 75 

𝑛𝑒[𝑚−3] ~1 × 10−20 ~1 × 10−20 

Table 1. MAST-U main parameters. 

Plasma stability in tokamaks requires very high plasma currents (in the range of mega 

ampere) in order to create the appropriate magnetic field for plasma equilibrium. Since the 

inductive current drive through the ohmic heating has its limitations, neutral beam injection 

is used to achieve high plasma temperatures and to increase and drive the plasma current 

for better confinement stability. 

 

Figure 9. NSTX-U magnetic field lines shape [12]. 
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The neutral beam is produced in the following steps: first deuterium gas is ionized in 

the ion source and the ions are then accelerated by the electrostatic field toward the 

accelerating grid. After passing through the neutralizing gas where a charge-exchange 

reaction happens between beam ions and gas due to collisional electron detachment, the 

accelerated particles pass through the deflection magnet to remove remaining charged 

particles, resulting in a neutral beam of energetic particles (Figure 10). 

 

Figure 10. Neutral Beam Injection scheme [13]. 

It is interesting to note that while particle energy is relatively low compared to high 

energy accelerator beams, the power carried by the beam is high, meaning that the beam 

current (before neutralization, or the neutral atoms flow) has to be large. For 3.5 MW of 

beam power and a 75 keV beam energy, the current is 𝐼𝑖𝑛𝑗 = 𝑃𝑖𝑛𝑗/𝐸𝑖𝑛𝑗 ≈ 46 A, compared 

to typical accelerator currents in the μA to mA range. Because of the high energy of the 

beam particles (~75 keV), compared to the thermal energy of the plasma ions, which is 

typically a few keV, the cross-section for a nuclear reaction between beam-plasma particles 

and beam-beam particles is orders of magnitude higher than for thermal-thermal plasma 
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particle interaction. As a consequence, the dominant portion of the fusion reactions in 

NSTX-U or MAST-U occur when neutral beam injection is on. 

1.4 Single Particle Motion and Drift Velocities 

The advantage of spherical tokamaks mentioned earlier – an improved plasma stability 

because of the shape of the plasma – can be understood from the concept of the good and 

the bad magnetic field curvature shown in Figure 9. On the basis of single particle motion 

in a magnetic field it can be explained why the good curvature field-line surfaces are more 

stable for plasma confinement. In a uniform magnetic field charged particles move on a 

helical trajectory following a field line, with a radius of gyration defined by 

𝑅𝑔𝑦𝑟𝑜 =
𝑚𝑣⊥

𝑞𝐵
, (9)  

where 𝑚 is the particle mass, 𝑣⊥ is the velocity component perpendicular to magnetic field, 

𝑞 is the particle charge, 𝐵 is the magnetic field magnitude (Figure 11). 

 

 
Figure 11. Helical orbit of charged particle in magnetic field. 

𝐵ሬ⃗  

𝑣⃗ 

𝑣∥ 𝑣⊥ 

e 

𝑅𝑔𝑦𝑟𝑜 
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Ions and electrons of a typical MAST plasma have a temperature about 1 keV and 

experience a magnetic field of about 0.65 T resulting in gyro radii of 10 mm and 0.16 mm 

respectively. Fusion products such as 3 MeV protons or 1 MeV tritons have a Larmor radius 

in this magnetic field of around 54 cm, which is comparable with the size of the chamber 

itself. These particles are unconfined and quickly leave the plasma with a very small 

probability of colliding with plasma particles. 

When the magnetic field has a gradient or a curvature, or if an external force is applied 

to a particle by an electric field for example, the particle will experience a so-called drift 

motion [4]. This is where its gyro center will no longer simply follow a field line but will 

drift with a certain velocity perpendicular to the field lines. The curvature drift is defined 

by 

𝑣⃗𝑐 = −
𝑚𝑣∥

𝑅𝑞𝐵2
(𝑘ሬ⃗̂ × 𝐵ሬ⃗ ) , (10) 

where 𝑅 is the field curvature radius, 𝑣∥ is the velocity component parallel to the magnetic 

field, and 𝑘̂ is the curvature direction unit vector, which can be expressed through the 

magnetic field unit vector 𝐵ሬ⃗̂  and a curvature radius as 

𝑘ሬ⃗ = 𝑅 (𝐵ሬ⃗̂ ∙ ∇) 𝐵ሬ⃗̂ . (11) 

Since 𝑘ሬ⃗̂  is a unit vector one can find the curvature radius as 

𝑅−1 = |(𝐵ሬ⃗̂ ∙ ∇) 𝐵ሬ⃗̂ | . (12) 

The drift velocity in a static electric field is given by the expression 
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𝑣⃗𝐸 =
𝐸ሬ⃗ × 𝐵ሬ⃗

𝐵2
, (13) 

where 𝐸ሬ⃗  is the electric field vector [5]. 

1.5 The Good and the Bad Magnetic Field Curvature 

When a plasma particle moves in the tokamak magnetic field on the plasma boundary 

surface, with its gyro center approximately following the field line, it passes the regions of 

the so-called good and the bad magnetic field curvature (Figure 9). 

As can be noted from the Equation 10 the curvature drift velocity is charge dependent, 

which leads to the opposite drift of positive and negative particles. If the plasma surface is 

smooth this will not cause the electric charge density to deviate from neutrality. However, 

when the surface is disturbed with some ripple, which can result from interaction with the 

neutral beam e.g., the curvature drift causes the opposite charge densities to occur either 

side of the ripple humps (Figure 12). These oppositely charged regions produce an electric 

field and leads to the so-called 𝐸ሬ⃗ × 𝐵ሬ⃗  drift, which is charge independent (Equation 13). It 

can cause either dampening or a growth of the disturbance, depending on the relative 

orientation of the magnetic field curvature and the pressure gradient. 

In case shown in  Figure 12 a) the pressure gradient has the same direction as the field 

curvature vector 𝑘ሬ⃗ , and the 𝐸ሬ⃗ × 𝐵ሬ⃗   drift effect strengthens the initial perturbance 

(worsening the ripple) and can cause a ballooning instability. It is said that the magnetic 

field has a bad curvature in this case. In the second case (Figure 12 b) the 𝐸ሬ⃗ × 𝐵ሬ⃗  drift effect 

weakens the perturbance (flattening the ripple) and hence stabilizes the plasma surface. It 
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can be summarized that when the magnetic-field line-curvature center is located inside the 

plasma (or in other words the curvature vector points into the plasma) it is considered as a 

bad curvature field, and vice versa. More aspects of the plasma stability will be discussed 

later. 

 

Figure 12. The bad a) and the good b) magnetic field curvature effect. 

  

∇𝑝 

∇𝑝 

a) b) 
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CHAPTER 2. PLASMA MAGNETO HYDRO DYNAMIC (MHD) EQUILIBRIUM 

Most of the formulas listed in Chapter 2 can be found in various plasma physics books 

that address the MHD description of plasma dynamics. The goal of the work done and 

described hereafter was to implement an analytical solution to plasma equilibrium 

reconstruction and to relate that solution to the existing tokamak parameters. This is 

typically not described in the literature.  

The analytical approach to describe plasma dynamics on a macroscopic scale starts 

with the definition of the probability distribution function for plasma particles of species 𝛼 

which shows the particle probability density in the velocity domain and the particle number 

density at a given coordinate in space and at time 𝑡 such that 

∫ 𝑓𝛼(𝑟, 𝑣⃗, 𝑡)𝑑3𝑣
 

 

= 𝑛𝛼(𝑟, 𝑡). (14) 

The time evolution of the distribution function is governed by the Boltzmann equation: 

𝜕𝑓𝛼

𝜕𝑡
+ 𝑣⃗ ∙ ∇𝑟𝑓𝛼 + 𝑎⃗ ∙ ∇𝑣𝑓𝛼 = (

𝛿𝑓𝛼

𝛿𝑡
)

𝑐𝑜𝑙𝑙
, (15) 

where 𝑎⃗ is a particle acceleration cause by the electromagnetic force acting on it at a given 

location at time 𝑡: 

𝑎⃗(𝑟, 𝑡) =
𝑞𝛼

𝑚𝛼
[𝐸ሬ⃗ (𝑟, 𝑡) + 𝑣⃗ × 𝐵ሬ⃗ (𝑟, 𝑡)], (16) 

where 𝑞𝛼 is the particle charge, and 𝑚𝛼 is the particle mass. 

2.1 Single Fluid Force Balance Equation 

Multiplying Equation 15 by velocity 𝑣⃗ and integrating over the velocity space one can 

arrive at a single-species force balance equation. Considering the plasma consisting of one 
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type of ion and electrons, and combining the force balance equation for these two particle 

species, the force balance equation in a single fluid approach can be obtained [14]: 

ρm [
∂

∂t
 +  uሬ⃗ ⋅ ∇] uሬ⃗  =  −∇ ∙ P̅ + ρEሬሬ⃗ + J⃗ × Bሬሬ⃗ , (17) 

where ρm is the mass density, uሬ⃗  is the local fluid velocity, P̅ is the pressure tensor, ρ is the 

charge density, J⃗ is the current density and Bሬሬ⃗  is the magnetic field vector. 

To simplify Equation 17 one can assume that the plasma is in static equilibrium, hence 

the left side of the equation is equal to zero, the pressure can be taken as a scalar quantity, 

and the charge density is zero assuming that the plasma is quasi-neutral, which leads to: 

∇𝑝 = J⃗ × Bሬሬ⃗ . (18) 

Equation 18 shows that the pressure gradient in plasma should be balanced by the Lorentz 

force acting on the local current density for the plasma to be in equilibrium. 

The so-called stream function can be defined as follows, 

𝜓(𝑟, 𝑧) = 𝑟𝐴𝜙(𝑟, 𝑧), (19) 

where 𝐴 is the vector potential satisfying the relation 

∇ × 𝐵ሬ⃗ = 𝐴. (20) 

The magnetic field is then related to the vector potential 𝐴 in the azimuthally symmetric 

case where there is no dependence on the toroidal coordinate 𝜙 as follows: 

𝐵𝑟 =
𝜕𝐴𝜙

𝜕𝑧
;  𝐵𝜙 =

𝜕𝐴𝑟

𝜕𝑧
−

𝜕𝐴𝑧

𝜕𝑟
;  𝐵𝑧 =

1

𝑟

𝜕(𝑟𝐴𝜙)

𝜕𝑟
. (21) 

Then 𝐵ሬ⃗  can be expressed through the stream function as 

𝐵𝑟 = −
1

𝑟

𝜕𝜓 

𝜕𝑧
;  𝐵𝑧 =

1

𝑟

𝜕𝜓

𝜕𝑟
. (22) 

Since the pressure gradient is perpendicular to the magnetic field, then 
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𝜕𝑝

𝜕𝑟

𝜕𝜓

𝜕𝑧
−

𝜕𝑝

𝜕𝑧

𝜕𝜓

𝜕𝑟
= 0 (23) 

Equation 23 implies that ∇𝑝 × ∇𝜓 = 0, thus the pressure can be treated as a function of 

the stream function, i.e. 𝑝 = 𝑝(𝜓). 

From the fact that the pressure gradient is perpendicular to the current density, it is possible 

to show that the product of the poloidal field and the radius 𝑟 can be treated as a function 

of 𝜓 

𝑟𝐵ϕ = 𝐹(ψ). (24)  

More details can be found in Jeffrey Friedberg Plasma Physics and Fusion Energy [16]. 

2.2 Grad-Shafranov Equation and Solov’ev Profiles  

Using the above assertions, the force balance Equation 18, and Maxwell’s equations: 

∇ ∙ 𝐵ሬ⃗ = 0;   ∇ × 𝐵ሬ⃗ = 𝜇0𝐽, (25) 

one can arrive at the Grad-Shafranov equation. This is a nonlinear partial differential 

equation of elliptical form: 

μ0𝑟2
𝑑𝑝

𝑑ψ
+ 𝐹

𝑑𝐹

𝑑ψ
+ (Δ∗ψ) = 0, (26) 

where Δ∗ is the Stokes operator defined as 

Δ∗ψ = 𝑟2∇ ⋅ (
1

𝑟2
∇ψ) . (27) 

𝜓(𝑟, 𝑧) is commonly referred to as a flux function since it can be shown that the stream 

function is proportional to the poloidal magnetic field flux through the toroidal circular 

contour passing through the (𝑟, 𝑧) coordinate. 
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Indeed 

𝐹𝑐𝑡𝑜𝑟(𝑟, 𝑧) = ∫ 𝐵𝑧 2𝜋 𝑟 𝑑𝑟

𝑟

0

= ∫
1

𝑟
 
𝜕𝜓

𝜕𝑟
 2𝜋 𝑟 𝑑𝑟

𝑟

0

= 2𝜋𝜓(𝑟, 𝑧), (28) 

where 𝐹𝑐𝑡𝑜𝑟 is the poloidal field flux through the circular toroidal contour that passes 

thorough the point (𝑟, 𝑧) in the poloidal cross section. 

The Grad-Shafranov equation can be solved analytically or numerically only if one 

explicitly specifies the pressure and poloidal field dependence on the flux function ψ. One 

relatively simple example of the equilibrium solution can be obtained using the Solov'ev 

proposed profiles for 𝑝 and 𝐹 [15], which are defined by the following equations, 

μ0

𝑑𝑝

𝑑ψ
= −𝐶;  𝐹

𝑑𝐹

𝑑ψ
= −𝐴 (29) 

𝑝 = −
𝐶

μ0
ψ;  𝐹 = √2(𝐾𝐹 − 𝐴ψ), (30) 

where 𝐴, 𝐶 and 𝐾𝐹 are some constants that need to be determined. 

If one scales the coordinate variables by the major radius 𝑅, and rearrange the constants, 

𝑟 = 𝑅𝑥;  𝑧 = 𝑅𝑦;  ψ = ψ0χ;  ψ0 = 𝑅2(𝐴 + 𝐶𝑅2), (31) 

one can rewrite the Grad-Shafranov equation in a simpler form: 

𝑥
∂

∂𝑥
(

1

𝑥

∂χ

∂𝑥
) +

∂2χ

∂𝑦2
= γ + (1 − γ)𝑥2;  γ =

𝐴

𝐴 + 𝐶𝑅2
. (32) 

To implement the solution of the Grad-Shafranov equation for the specific tokamak 

one should clearly understand what free parameters are present in Equation 32 and how 

they can be found from the real machine geometrical and measured physical parameters. 

As was mentioned earlier, there are three unknown constants 𝐴, 𝐶 and 𝐾𝐹 in the equation. 
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Scaled variables defined in Equation 31 combine two parameters – 𝐴  and 𝐶 – into another 

pair ψ0 and γ, and bring the Grad-Shafranov equation to a more convenient form. 

Once ψ0 and γ are determined, the other constants 𝐴  and 𝐶 can be calculated.  

𝐴 =
γψ0

𝑅2
;   𝐶 =

ψ0

𝑅4
(1 − γ) (33) 

The determination of ψ0 and γ will be described later in this section. 𝑅 is a given machine 

major radius and is a known parameter.  

The remaining integration constant 𝐾𝐹 can be found from the expression for the toroidal 

magnetic field at the geometric center of the machine (𝑋 = 1. 𝑌 = 0) (Figure 13): 

𝐵𝑡(1,0) =
𝐹(1,0)

𝑅
=

√2(𝐾𝐹 − 𝐴ψ0χ(1,0))

𝑅
(34)

 

and given the toroidal magnetic field value 𝐵𝑡(1,0) = 𝐵0 one can find, 

𝐾𝐹 =
1

2
(𝐵𝑡

2𝑅2 + 2𝐴ψ0χ(1,0)). (35) 

After the solution χ(𝑥, 𝑦) is found, which itself depends on γ, and ψ0 and γ determined 

based on the given machine parameters imposing certain constraints on the solution, the 

full information of MHD equilibrium for this tokamak is found and various physical 

quantities can be obtained. 

The MAST equilibrium profile is symmetric with respect to the midplane, the general 

solution of Equation (32) will have the following form: 

χ(𝑥, 𝑦) =
γ

2
𝑥2 ln 𝑥 +

1 − γ

8
𝑥4 + ∑ 𝑎𝑗

6

0

χ𝑗(𝑥, 𝑦) (36) 
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where the homogeneous solution has been truncated to seven polynomials allowing us to 

satisfy seven geometry constraints as stated below. The explicit form of these polynomials 

is as follows: 

χ0
𝑒(𝑥, 𝑦) = 1 (37) 

χ1
𝑒(𝑥, 𝑦) = 𝑥2 (38) 

χ2
𝑒(𝑥, 𝑦) = 𝑥2 ln(𝑥) − 𝑦2 (39) 

χ3
𝑒(𝑥, 𝑦) = 𝑥4 − 4𝑥2𝑦2 (40) 

χ4
𝑒(𝑥, 𝑦) = (𝑥4 − 4𝑥2𝑦2) ln (𝑥) − 3𝑥2𝑦2 +

2

3
𝑦4  (41) 

χ5
𝑒(𝑥, 𝑦) = 𝑥6 − 12𝑥4𝑦2 + 8𝑥2𝑦4 (42) 

χ6
𝑒(𝑥, 𝑦) = (𝑥6 − 12𝑥4𝑦2 + 8𝑥2𝑦4) ln(𝑥) − 5𝑥4𝑦2 +

28

3
𝑥2𝑦4 −

8

15
𝑦6. (43) 

The upper index χ𝑖
𝑒 denotes that the polynomials are of even power in the 𝑦 coordinate. 

For vertically asymmetric machines, like NSTX or ITER, one would have to include odd 

power polynomials as well, but the overall procedure would stay the same. Note that γ in 

this approach remains a parameter until the very last steps. 

Geometry constraints are imposed on the reference surface (its cross section is shown 

in Figure 13) defined using the following parametric relation: 

𝑋 = 1 + ε cos(τ + δ0 sin τ) ;  𝑌 = ε𝑘 sin τ , (44) 

where ε =  𝑎/𝑅 is the tokamak inverse aspect ratio (a - minor radius), 𝑘 - elongation, and 

δ is a triangularity (δ0 = arcsin δ), three dimensionless parameters that define the 

geometry, τ is a running parameter in the range from 0 to 2𝜋. The reference surface sets 

the desired equilibrium plasma shape. When the triangularity parameter δ is equal to 0 the 
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plasma poloidal cross-section has an elliptical or circular shape (depending on the 

elongation), the closer δ gets to 1, the more triangular the plasma cross-section shape 

becomes. The reference contour curvature at three selected points (Figure 13) can be found 

from the parametric Equation 44 as follows: 

 
Figure 13. MAST plasma poloidal cross section shape reference geometry 

in normalized coordinates. 

𝑁1 = [
𝑑2𝑥

𝑑𝑦2
]

τ=0

= −
(1 + δ0)2

ε𝑘2
, (45) 

𝑁2 = [
𝑑2𝑥

𝑑𝑦2
]

τ=π

=  
(1 − δ0)2

ε𝑘2
, (46) 

𝑁3 = [
𝑑2𝑦

𝑑𝑥2
]

τ=
π
2

= −
𝑘

ε cos2 δ0
. (47) 

The set of the equations representing the geometry constraints imposed on our solution 

function χ is listed below: 
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1.  χ(1 + ε, 0) = 0, (outer point flux) (48) 

2.  χ𝑦𝑦(1 + ε, 0) = −𝑁1χ𝑥(1 + ε, 0), (outer point curvature) (49) 

3.  χ(1 − ε, 0) = 0, (inner point flux) (50) 

4.  χ𝑦𝑦(1 − ε, 0) = −𝑁2χ𝑥(1 − ε, 0), (inner point curvature) (51) 

5.  χ(1 − δε, 𝑘ε) = 0, (high point flux) (52) 

6.  χ𝑥(1 − δε, 𝑘ε) = 0, (high point slope) (53) 

7.  χ𝑥𝑥(1 − δε, 𝑘ε) = −𝑁3χ𝑦(1 − δε, 𝑘ε). (high point curvature) (54) 

Constraints 1,3,5,6 define the value of χ and its 𝑥 derivative at the high point to be zero. 

Conditions 2,4,7 can be derived starting from the fact that χ should stay constant on the 

reference contour. The change of χ to first order is 𝑑χ = χ𝑥𝑑𝑥 + χ𝑦𝑑𝑦. For the inner and 

outer points, where 
𝑑𝑥

𝑑𝑦
= 0, 𝑑χ should be equal to 0, thus χ𝑦 should be equal to 0 as well. 

It can also be noted that when moving along the contour of constant χ, the direction of the 

infinitesimal displacement should be perpendicular to the χ gradient at that point, or in 

other words (𝑑𝑥, 𝑑𝑦) ⋅ (χ𝑥, χ𝑦) = 0. 

Writing the change of χ to second order, assuming 𝑥 is a function of 𝑦, which is valid 

for inner and outer points and opposite for the upper point of reference curve, gives  

dχ = χ𝑥dx + χ𝑦dy +
1

2
χ𝑥𝑥d𝑥2 + χ𝑥𝑦dxd +

1

2
χ𝑦𝑦d𝑦2 

= χ𝑥 (
𝑑𝑥

𝑑𝑦
𝑑𝑦 +

1

2

𝑑2𝑥

𝑑𝑦2
𝑑𝑦2) + χ𝑦dy +

1

2
χ𝑥𝑥 (

𝑑𝑥

𝑑𝑦
𝑑𝑦)

2

+ χ𝑥𝑦

𝑑𝑥

𝑑𝑦
d𝑦2 +

1

2
χ𝑦𝑦d𝑦2 

= χ𝑥

𝑑𝑥

𝑑𝑦
dy +

1

2
χ𝑥

𝑑2𝑥

𝑑𝑦2
d𝑦2 + χ𝑦dy +

1

2
χ𝑥𝑥 (

𝑑𝑥

𝑑𝑦
)

2

d𝑦2 + χ𝑥𝑦

𝑑𝑥

𝑑𝑦
d𝑦2 +

1

2
χ𝑦𝑦d𝑦2. (55) 
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Using the fact that 
𝑑𝑥

𝑑𝑦
= 0 and χ𝑦 = 0 for constraints 1,4, the first, third, fourth and fifth 

terms are equal to zero. Then the only term left is 

1

2
χ𝑥

𝑑2𝑥

𝑑𝑦2
𝑑𝑦2 +

1

2
χ𝑦𝑦𝑑𝑦2 = 0 ;  χ𝑦𝑦 = −𝑁1,2χ𝑥, (56) 

Constrain number 7 can be proven in the similar manner. 

Combining all constraints and using the explicit form of χ(𝑥, 𝑦) from Equation 36 one 

obtains a set of equations that can be written in a matrix form: 

𝐴𝑖𝑗𝑎𝑗 = γ𝐵𝑖 + 𝐶𝑖 (57) 

𝐴1,𝑗 = χ𝑗(𝑥, 𝑦); 𝐵1 =
1

2
𝑥2 ln 𝑥 −

1

8
𝑥4; 𝐶1 =

1

8
𝑥4; |

(1+ε,0)

𝐴2,𝑗 = χ𝑦𝑦
𝑗 (𝑥, 𝑦) + 𝑁1χ𝑥

𝑗 (𝑥, 𝑦); 𝐵2 = −𝑁1 (𝑥 ln 𝑥 +
1

2
𝑥 −

1

2
𝑥3) ; 𝐶2 =

1

2
𝑥3; |

(1+ε,0)

𝐴3,𝑗 = χ𝑗(𝑥, 𝑦); 𝐵3 =
1

2
𝑥2 ln 𝑥 −

1

8
𝑥4; 𝐶3 =

1

8
𝑥4; |

(1−ε,0)

⋮ ⋮ ⋮

 

Coefficients 𝑎𝑗 then can be found as functions of γ by numerically inverting matrix A and 

𝑎(γ) = γ𝐴−1𝐵 + 𝐴−1𝐶. (58) 

Since now the solution of the scaled Grad-Shafranov equation is known with one remaining 

parameter γ, one can numerically evaluate following integrals: 

𝐾1 = ∫ 𝑑𝑥 𝑑𝑦
γ + (1 − γ)𝑥2

𝑥
, (59) 

𝐾2 = − ∫ 𝑥 χ(𝑥, 𝑦)𝑑𝑥𝑑𝑦, (60) 

𝐾3 = ∫ 𝑥 𝑑𝑥𝑑𝑦. (61) 

As a result, one will have 

𝐾1 = γ𝐾1
γ

+ 𝐾1
0;  𝐾2 = γ𝐾2

γ
+ 𝐾2

0;  𝐾3 = 𝐾3
0. (62) 
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These integrals appear in machine safety factor equation 𝑞∗ and β𝑡 (ratio of plasma kinetic 

pressure to toroidal magnetic field pressure) as follows: 

𝑞∗ =
π𝑎2(1 + κ2)𝐵𝑡

ψ0𝐾1
=

πϵ2(1 + κ2)𝐵𝑡

(𝐴 + 𝐶𝑅2)𝐾1
, (63) 

and 

β𝑡 =
8π2ϵ4(1 − γ)

𝑞∗
2

(
1 + κ2

2
)

2
𝐾2

𝐾1
2𝐾3

. (64) 

Combining these two equations one gets 

1

𝑞∗
=

ψ0

π𝑎2(1 + 𝑘2)𝐵0
(γ𝐾1

γ
+ 𝐾1

0), (65) 

β𝑡 =
2ε4(1 − γ)ψ0

2

𝑎4𝐵0
2

(γ𝐾2
γ

+ 𝐾2
0)

𝐾3
. (66) 

Since know β𝑡 and 𝑞∗ are known for the specific machine, one can find γ and ψ0 from 

these two equations. 

𝑅 =  0.85 major radius in meters
𝑎 =  0.65 minor radius
𝑅

𝑎
= 1.3 aspec ratio

𝑘 =  2.45 elongation
𝛿 = 0.5 triangularity
𝛽𝑡 = 0.14 toroidal beta
𝑞∗ = 3.35 kink safety factor
𝐵0 = 0.52 toroidal magnetic field at R

 

Table 2. MAST parameters. 

Once all free MAST specific constants have been determined using the MAST 

parameters (Table 2), one can find pressure, magnetic field, or current density at any point 

of the poloidal cross-section. Figure 14 shows the flux function ψ, the solution of 
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Grad-Shafranov equation meeting the geometry constraints as well as matching the real 

machine physical parameters. 

 

Figure 14. MAST flux function. 

The current density profile can be found from 

𝐽 =
1

μ0𝑟

𝑑𝐹

𝑑ψ
∇ψ × ϕ̂ + [𝑟

𝑑𝑝

𝑑ψ
+

1

μ0𝑟
𝐹

𝑑𝐹

𝑑ψ
] ϕ̂. (67) 

Toroidal and poloidal current density profiles are shown in Figure 15. The magnetic field 

vector at an arbitrary point in the plasma is given by the following expression: 

𝐵ሬ⃗ =
1

𝑟
[𝐹ϕ̂ + ∇ψ × ϕ̂]. (68) 

In Figure 16 the 𝐵ሬ⃗ -field vector components are shown. The poloidal component of the 

magnetic field has two components, 𝐵𝑟 and 𝐵𝑧, the magnitude 𝐵𝑝𝑜𝑙 = √𝐵𝑟
2+𝐵𝑧 

2 is shown 

and the direction of the vector can be easily imagined since it is always tangential to the 
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flux surface. Note that poloidal magnetic field (𝐵𝑝𝑜𝑙) profile is almost identical to poloidal 

current density (𝐽𝑝𝑜𝑙) profile, which is because 𝐽𝑝𝑜𝑙 is related to 𝐵𝑝𝑜𝑙 through 

𝐽𝑝𝑜𝑙 =
−𝐴𝐵𝑝𝑜𝑙

𝜇0𝐹
, (69) 

and 𝐹 in this case is changing very little inside the limiting geometry. In the general case, 

these two profiles can look quite different from each other. 

 

Figure 15. Current density profiles in normalized coordinates. 

The so-called safety factor 𝑞 is another important quantity of MHD equilibrium. It is a 

measure of how tightly the magnetic field lines wrap around the torus and is defined as  

𝑞 =
number of toroidal turns

number of poloidal turns
. (70) 
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Figure 16. Magnetic field components magnitude in normalized 

coordinates. 

As both toroidal and poloidal components of the magnetic field are known at any 

location, one can follow a magnetic field line and determine the safety factor using the 

following algorithm: 

1. Starting from an arbitrary point (X,Y) in the poloidal plane one finds the poloidal and 

toroidal component vectors of the magnetic field at that location. 

2. A small step 𝑑𝑠𝑝 in the poloidal plane in direction of 𝐵𝑝𝑜𝑙 is then made (the size of the 

step should be adjusted depending on the particular surface size, to be small relative to the 

contour circumference). 

3. To follow the magnetic field line the displacement in the ϕ (toroidal) direction is then 

calculated to be 

𝑑𝑠𝑡 =
𝐵ϕ

𝐵𝑝𝑜𝑙
𝑑𝑠𝑝, 
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leading to a change in toroidal angle  

𝑑ϕ =
𝑑𝑠𝑡

𝑋
(71) 

(since X is a radius of the current location). 

4. These steps are repeated until the starting point is reached again. 

5. 𝑞 can now be calculated as follows:  

𝑞 =
∑ 𝑑ϕ

2π
(72) 

The safety factor 𝑞 as a function of starting point of magnetic filed line tracking (𝑟, 0) is 

shown in Figure 17. 

 
Figure 17. Safety factor profile vs. start coordinate. 

Note that one finds the same values of 𝑞 from the left and right with respect to the 

magnetic axis (𝑟~1.2, 𝑧 = 0), the point of minimum or maximum of flux function. The 

reason is that 𝑞 is constant on a flux surface and these enclose the magnetic axis. There is 
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a one-to-one relationship between 𝑞 and ψ that can be shown by plotting 𝑞 as a function of 

ψ. All data points used previously lie on the same curve (Figure 18). 

 

Figure 18. Safety factor profile as a function of flux value. 

It is important to understand that the previously calculated current, field, and 𝑞 profiles 

do not necessarily represent the typical profiles in real machines and are a relatively simple 

example of a possible plasma equilibrium configuration that satisfies the Grad-Shafranov 

equation. 

2.3 EFIT Calculated Equilibrium 

The real plasma shots equilibrium profiles have very little in common with the one 

found using the Solov’ev current and pressure profiles. As can be expected, the real profiles 

are much more complex and thus require more sophisticated techniques for calculation. 

There are various approaches to solve the Grad-Shafranov equation; the commonly 

used EFIT (short for equilibrium fitting) code for profile reconstruction utilizes the Green’s 
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function approach and Pickard Iterations described in Reconstruction of current profile 

parameters and plasma shapes in tokamaks by L.L. Lao [17]. EFIT uses the magnetic 

measurements from external magnetic probes, poloidal flux loops, as well as other 

diagnostics such as MSE (Motional Stark Effect), which provides the information on 

direction of the magnetic field lines inside the plasma, as the constraints for the Grad-

Shafranov equilibrium equation. The algorithm for the solution optimization is more 

complex and flexible compared to the method described in Chapter 2, but it is beyond the 

scope of this dissertation to go into its details. The output of EFIT reconstructed 

equilibrium for the future MAST-U plasma scenario is presented in the following figures. 

One can notice that the flux function profile (Figure 19) looks similar to the one found 

in the Solov’ev method because its shape is defined by the desired geometry of the plasma 

cross section, which imposes constraints on the equilibrium solution.  

 
Figure 19. MAST-U EFIT calculated flux function in normalized 

coordinates. 
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But the profiles of the magnetic field components magnitude and the current densities 

profiles (Figure 20, Figure 21) are very different. The difference comes from the more 

sophisticated constraints imposed on the magnetic field values based on the magnetic 

measurement data for the specific plasma shot as well as other inputs. 

 
Figure 20. Poloidal and toroidal current densities (MAST-U EFIT results) 

in normalized coordinates. 

The safety factor 𝑞 from EFIT calculated equilibrium shown in Figure 22 has the same 

type of dependence as calculated earlier with the magnetic field from Solov’ev plasma 

equilibrium solution, but the difference of its minimum value is quite important because of 

the plasma stability aspects related to the 𝑞 value. The higher values of 𝑞 typically lead to 

a better stability of the plasma equilibrium than with a low 𝑞. When the value of 𝑞 factor 

is lower than one the kink plasma instabilities can occur. 
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Figure 21. MAST-U magnetic field (EFIT reconstructed) in normalized 

coordinates. 

 

 
Figure 22. Safety factor 𝑞 as a function of flux surface defined by flux value 

𝜓. 
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CHAPTER 3. PLASMA DIAGNOSTIC 

Fusion plasmas, at high temperature and density, exhibit very complex dynamics and 

various instabilities occur that can deteriorate plasma energy confinement properties even 

before the fusion process begins.  To prevent and control these instabilities it is necessary 

to understand their nature and the plasma behavior in general.  Plasma stability studies 

require a large data set on plasma parameters that can be obtained from a variety of 

diagnostic measurements. 

Within the vast number of plasma diagnostic methods, which can be categorized 

according to the property or the process being measured, detection of the fusion products 

plays an important role in studying and understanding plasma confinement and the future 

plasma burning process. Two categories of fusion products can be detected from deuterium 

plasmas – neutrons and charged particles such as protons, tritons and alpha particles. The 

conducted research focuses on proton and triton detection to determine the time and 

position dependent fusion-reaction rate profile. 

The neutral beam heated deuterium plasmas in MAST-U have a temperature of about 

1.0 keV. At this temperature the D-D fusion reaction cross-section is very small resulting 

in a small thermal fusion rate. Most of the expected fusion reactions are due to the 

interaction of the plasma ions with the neutral beam particles having an energy of typically 

75 keV. The D-D cross-section at this energy is orders of magnitude higher than the cross-

section at the thermal energy [3]. The possible reactions for 𝐷-𝐷 fusion as was mentioned 

earlier are D(d, p)t with the release of 4.03 MeV energy, and 𝐷(𝑑, 𝑛) 𝐻 
3 𝑒 with 3.27 MeV 

of energy released. 
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3.1 Proton Diagnostic Principle 

In the first reaction the proton carries a kinetic energy 𝑇𝑝 = 3.02 MeVTp = 3.02MeV 

and the triton kinetic energy is Tt = 1.01MeV𝑇𝑡 = 1.01 MeV, neglecting the kinetic energy 

of the colliding reactants. Their momentum magnitudes are equal though (assuming the 

CM is at rest) and their trajectories in a magnetic field would be identical if they originate 

at the same position and fly in the same direction. In the second reaction, the neutron kinetic 

energy is 𝑇𝑛 = 2.45 MeV and the recoiling H 
3 e energy is 𝑇 H 

3 e = 0.82 MeV. The protons 

and tritons produced are not confined and leave the plasma quickly where they can be 

detected. 

These escaping protons and tritons can be detected using ORTEC ULTRA BU-013-

050-300 detectors. Each detector has an 18 mm outer diameter and an 8 mm diameter 

active area. A maximum depletion depth of 300 μm requires a bias voltage of about 40 V.  

Electron-hole pair production requires an energy of only around 3.5 eV/pair. 

Consequently, a large number of electron-hole pairs are produced by a 3 MeV proton, 

which leads to a very good intrinsic energy resolution of the detector.  

 
Figure 23. Ion implanted silicon surface barrier detector. 

The position where the fusion reaction takes place and the direction of the produced 

particle define its trajectory. Assuming a known magnetic field, a time reversed calculation 

starting with the position and direction of the detected particle at the detector can be 

performed to determine the plasma region where the protons and tritons originated.  
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Figure 24. Plasma probing central trajectories for NSTX-U [14]. 

 

 
Figure 25. MAST-U 4 detector probe central trajectories. 
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Central trajectories for the six-detector array are illustrated in Figure 24 together with the 

magnetic field and plasma current directions in NSTX-U. 

The diagnostic probe head consisting of four detectors was successfully used for the 

MAST 2013 experimental campaign and is planned to be reused in a slightly modified 

version in upcoming experiments. Central probing trajectories for the planned MAST-U 

plasma scenario are shown in Figure 25. A detailed description of the 4 detectors probe 

and experiments carried out previously can be found in [19]. 

3.2 Probe Mechanical Design 

A new six detector probe head has been designed for the NSTX-U charged 

fusion-product diagnostic and can be adapted for use at the MAST-U experiment. It 

consists of six detectors placed in individual metal housings with inner and outer 

collimators. The inner collimator is designed as a washer shaped metal insert with a 2 mm 

hole in the center and the outer collimator is a cap shaped part with a 2 mm opening as 

well. The spacing between the collimators is 35 mm, which together with the opening size 

define the angular acceptance of the detector (Figure 26). The big advantage of having 

removable collimators is flexibility in limiting the maximum rates seen by the detectors. 

 
Figure 26. Detector module cut view. 
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The 6-detector probe head has the detector housings mounted on a mid-plane as shown 

in Figure 27. The orientation of the detectors had been selected in such a way that 

trajectories bundles cover more or less evenly spaced regions of plasma where the neutral 

beams interact with the plasma. 

 

Figure 27. Detector probe design. 

The detector array is covered with a ceramic coated metal shield (Figure 28) to reduce 

the heat load and to protect the detectors from damaging radiation in case that plasma 

confinement is suddenly lost. The detector head was built for NSTX-U (Figure 29), but 

because of unexpected operational delays it was adapted for use at MAST-U at the Culham 

Center for Fusion Energy in the UK. 

The number of detectors on the probe head is mostly limited by the physically available 

space allowed by the small diagnostic flange aperture at NSTX-U, along with the detector 

orientation requirements to avoid mutual blocking. For the larger opening diagnostic port 

available at MAST-U an extended midplane design was studied with 8 detectors (Figure 
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30). The core plasma coverage of such system is shown in Figure 31. The new data 

acquisition electronics has a capability of acquiring data from up to 16 channels, so the 

diagnostics can be further extended to obtain more detailed spatial information of the fusion 

emissivity profile. 

 

Figure 28. Detector probe with heat shield. 

 

 

Figure 29. Machined 6-detector probe head (stainless steel SS316). 
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Figure 30. 8 detector probe (heatshield is not shown), with probing 

trajectories. 

 

Figure 31. MAST-U 8 channel probing bundles with fusion emissivity 

profile shown as a background. 
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The probe head is mounted on the support arm, which has a retraction and rotation motion 

range for plasma probing flexibility, the fixed support arm was also considered for cost 

savings or in case of reciprocating arm unavailability. The retractable support arm designed 

for NSTX-U has the advantage of being equipped with a vacuum gate, thus the probe can 

be retracted and serviced if needed (changing the collimators, etc.) without breaking the 

main vessel vacuum (Figure 35). 

As can be seen from the mechanical design of the detector housing (Figure 26), each 

detector accepts incoming particles within a range of incident angles. The accepted angle 

range together with position and orientation of the detector define its plasma probing 

region, which can be calculated by the time reverse calculation of the trajectories starting 

from the detector. 

The plasma regions probed by each detector/collimator pair for the same plasma 

parameters as in Figure 24 are shown in Figure 32.  The thickness of the bundles depends 

on the angular acceptance of the detectors, which is determined by the collimators. 

Replaceable collimators allow one to adjust the acceptance width and the detector’s particle 

load. These probing regions can be remotely changed (Figure 33, Figure 34)via axial 

rotation and radial retraction capabilities of the reciprocating probe arm supporting the 

probe head inside the vacuum vessel (Figure 35, Figure 36). 



45 

 
Figure 32. Plasma probing trajectories bundles. 

 

 
Figure 33. Probing trajectory bundles for varying radial head position 

(varying distance from the tokamak center to the probe). 
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Figure 34. Probing trajectory bundles for varying axial head rotation. 

 

 
Figure 35. Reciprocating arm and support structure mounted on the 

diagnostic port outside of the vessel (requires adaptation for MAST-U). 
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Figure 36. Reciprocating arm retraction range (probe head shown in green). 

The calculation of the probing trajectory bundles given a known equilibrium magnetic 

field configuration is an essential part of the charged fusion product diagnostic. First of all 

it gives a spatial information of the measured particle rates, and also it is necessary for 

predicted rate calculations given a modeled emissivity. This then allows comparison of the 

predicted and measured rates and validation of the emissivity profile. 

The 4-detector probe design used in the MAST 2013 experimental campaign had no 

removable collimators. Thus the adaptation for the increased power injected by the neutral 

beams and the higher expected rates was performed, collimating inserts were designed and 

are shown in Figure 37 together with a cross-sectional view of the existing 4-detectors 

probe head [19]. These inserts have an inner opening size determined by rate calculations 
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to limit the particle count rates below 200 kHz per detector, which is a safe working limit 

for the detectors to avoid electrical overload and signal pileup. 

 
Figure 37. Collimator inserts for 4-detectors probe head. 

3.3 Effect of Trajectory Curvature Inside the Detector Housing  

Charged fusion product trajectories necessary to determine the plasma regions being 

probed by each detector are calculated by the ORBIT code. It was developed at PPPL [26] 

and upgraded at FIU. The trajectories of fusion products are calculated by numerically 

solving the equation of motion of a charged particle in the equilibrium field obtained from 

the solution of Grad-Shafranov equation. Given the particle mass, charge, and initial 

velocity vector along with the magnetic field configuration, the ORBIT code calculates the 

forward or time reversed track of the particle (the time reversed calculation is done by 

reversing the particle velocity vector and magnetic field vector). For our detector-

collimator system the initial velocity vector can be any vector within the solid angle defined 

by the acceptance. To calculate the probing trajectory bundles, the splitting technique is 
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applied, where the detector and collimator surface are represented either as a rectangular 

grid with equal-square subsections, or a circular grid with sectors of equal areas (Figure 

38). 

 
Figure 38. Collimator/detector schematic splitting for bundles calculations. 

The center point of each element of the detector area is then connected to collimator- 

sector centers in all possible combinations giving the set of all possible trajectories for the 

given detector collimator pair. In the case of a disk-shape splitting on 𝑘 elements, the inner 

central round segment should have a radius of 𝑟𝑐 = 𝑟/√𝑘 in order to have the same area as 

the rest of the segments. The possible trajectory directions are first calculated in the 

coordinate system of the detector, and then transformed into the tokamak coordinate system 

to form the input file of the ORBIT code. The acceptance of each segment pair combination 

can be calculated as 

𝐴𝑖𝑗 =
𝑆𝑖𝑆𝑗 sin2 𝜃𝑖𝑗

𝑑𝑖𝑗
2 , (73) 

d 

𝑁𝑥 

𝑁𝑦 

𝑁 
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where 𝑆  is a segment area, 𝜃𝑖𝑗 is an angle between detector/collimator direction 𝑑 and the 

vector connecting two selected segments 𝑑𝑖𝑗. 

A trajectory is started at the collimator exit with the initial velocity direction defined 

by the vector 𝑑𝑖𝑗, Figure 39 a). Since our detector housings are made of non-magnetic 

material, the trajectory from the detector to the collimator exit is not shielded from the 

magnetic field and hence is curved. For accurate probing bundle calculations the effect of 

the mentioned curvature needs to be included in the trajectories’ initial values at the exit of 

the collimator. Neglecting the magnetic field in the collimator the initial value of the 

velocity direction (unit vector) is given by the central detector-collimator sightline. 

However, it would be inaccurate to start the trajectory from the detector since as that 

trajectory would be possibly trapped inside the detector housing (Figure 39 b). On the 

average, the magnetic field inside the detector-collimator leads to an effective overall 

average deflection of the trajectories with respect to the central line and perpendicular to 

the magnetic field. This angle can be calculated from the Lorentz force integral over 

distance 𝑑 with the small angle approximation: 

𝛼 =
𝑞[𝑣⃗ × 𝐵ሬ⃗ ]

𝑚𝑣2

𝑑

2
, (74) 

where 𝑑 is the detector to collimator distance. Thus, the initial velocity vector of the 

trajectory which starts from the outer collimator should be tilted by the angle 𝛼 as shown 

in Figure 39 c). 
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Figure 39. Trajectory curvature on detector – collimator distance. 

A frequently used characterizations of the probing trajectory is its crossing point with 

the tokamak mid-plane since the emissivity distribution peak is typically located on the 

midplane (Figure 40). One can estimate how this crossing point shifts when the additional 

angle 𝛼 is introduced to the trajectory starting direction (Figure 41). As an approximation 

the poloidal projection of the trajectory can be represented by a circle with a radius 𝑟𝑝 ≅

50 cm, which is the radius of a 3 MeV proton in a 0.65 T toroidal magnetic field with its 

velocity perpendicular to the field. The calculated deflection angle 𝛼 in this case is about 

20,  which is comparable to the trajectory angle spread range (Figure 39 b)): 

∆𝛼𝑡𝑟𝑎𝑗 =
4𝑟𝑐

𝑑
≅ 60, (75) 

where 𝑟𝑐 is the collimator opening radius (~2 mm), and 𝑑 is the collimator/detector spacing 

(~35 mm). Assuming that the detector is located on a midplane, the shift in the midplane 

crossing point in the small angle approximation is 

d 

900 + 𝛼 
𝐵ሬ⃗  

a) b) c) 

∆𝛼𝑡𝑟𝑎𝑗 
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∆𝑟 = 𝑟𝑝𝛼2 =
𝑑2

4𝑟𝑝
. (76) 

 

Figure 40. Spherical Tokamak Mid-Plane (𝑍=0) 

For a detector – collimator spacing of 3.5 cm the shift is ~1 mm. It should be noted that 

this approximation assumes a uniform magnetic over the entire trajectory span. 

 
Figure 41. Midplane crossing shift due to trajectory direction correction 

angle 𝛼 in a uniform magnetic field. 

The tokamak magnetic field is highly nonuniform and this shift, calculated using 

ORBIT, appears to be much bigger and should be taken into consideration. In Figure 42 

the midplane crossing for various trajectory bundles are shown in the form of histograms, 

Mid-Plane 

𝑅 

𝑍 

z 

r 0 

∆𝑟 

𝛼 
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where the horizontal axis is the midplane crossing radial coordinate, and the bin content 

represents the number of the trajectories crossing the mid-plane within the bin width. Each 

bundle consists of 81 trajectories since the 3×3 segments splitting is used for the detector 

and collimator representation. Solid vertical black lines show the mean value of the 

crossing radius for each bundle, and the dashed lines represent the bundle midplane width 

calculated by the crossing radii variance. It can be noted that the bundle shift caused by the 

angle correction of the starting trajectories is of the order of 1 cm, which is the same order 

as a bundle size. If the plasma emissivity profile has a significant spatial gradient, such that 

its change on the 1 cm scale is notable, the shifts can lead to a significant difference in the 

calculated predicted rate and needs to be properly considered. 

 
Figure 42. Trajectories bundles midplane crossing with and without 

correction. 

The predicted rates seen by the 4 detector probe head with probing bundles calculated 

using the MAST-U planned plasma equilibrium EFIT data and a TRANSP simulated 
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emissivity profile for the expected plasma scenarios are shown in Figure 43. The calculated 

rate difference caused by the angle correction in this case is not very significant since the 

emissivity is not changing dramatically on the calculated bundles shift scale. The rate error 

bars correspond to the statistical uncertainty in the count rate with an integration time of 

∆𝑡 = 1 ms. 

 

Figure 43. Predicted rate change due to starting trajectory angle correction. 
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CHAPTER 4. DETECTOR ACCEPTANCE AND RATE PREDICTION 

The goal of this chapter is to describe the procedure of calculating the particle flow rate 

seen by the detector based on a TRANSP (PPPL plasma fluid transport code) predicted 

emissivity profile and the physical acceptance of the detector. For the demonstrative 

purposes, it is convenient to consider the 2D motion problem at first and then move to the 

3D case. This can be helpful since the phase space of the 3D motion contains 6 coordinates, 

which makes it hard to visualize and intuitively feel certain effects related to phase-space 

volume conservation during the motion. The 2D motion is described by the trajectories in 

4D phase space in the general case, while for the motion in a purely magnetic field, where 

the particle speed stays constant, it can be reduced to 3 coordinates by choosing position 

coordinates 𝑥 and 𝑦, as well as the velocity vector’s polar angle as the generalized 

coordinates. These coordinates do not form a canonical set since the equations of motion 

are not canonical Hamiltonian equations. Nevertheless, this set of coordinates is convenient 

to use to find certain conserved quantities. 

One can consider a linear detector with the active area located on the x-axis, and linear 

collimator parallel to the x-axis at 𝑦 = 𝑦𝑑 (Figure 44). For each point 𝑥  on the active 

surface the acceptance angle ranges from φ0(𝑥 ) to 𝜑1(𝑥 ) are given by 

𝜑0(𝑥) = tan−1 (−
𝑥 

𝑦𝑑
) ;  𝜑1(𝑥) = tan−1 (

𝑥𝑑

2 𝑦𝑑
−

𝑥 

𝑦𝑑
) . (77) 

This relation defines our detector acceptance as a surface in the 𝑥 − 𝜑 plane bounded 

between 𝜑0(𝑥) and 𝜑1(𝑥) lines when 𝑥 runs from −𝑥𝑑/2 to 𝑥𝑑/2. A ratio of 𝑥𝑑/𝑦𝑑 = 2 

was chosen in Figure 45 to highlight that the upper and lower borders are not straight lines 

(normally 𝑥𝑑/𝑦𝑑  ≪ 1 and the phase space shape in this case is simply a parallelogram). 
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Figure 44. Detector acceptance calculation geometry in 2D. 

 
Figure 45. Acceptance shape in phase space. 

The acceptance of this detector-collimator combination corresponds to the area of this 

surface, which in this case would be 

𝑎 = [2
𝑥𝑑

𝑦𝑑
tan−1

𝑥𝑑

𝑦𝑑
− ln (1 +

𝑥d
2

𝑦d
2)] 𝑦𝑑. (78) 
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For small opening angle detectors, when 𝑥𝑑/𝑦𝑑  ≪ 1 this reduces to 

𝑎 =
𝑥𝑑

𝑦𝑑
𝑥𝑑 , (79) 

which is just a product of the active area size 𝑥𝑑 and the opening angle, which is equal to 

𝑥𝑑/𝑦𝑑 in the small angle approximation. This approximation is valid within 1% relative 

error for opening angles up to ten degrees. 

4.1 Acceptance Reduction Due to a Magnetic Field 

As mentioned earlier if a magnetic field is present the geometric relations become 

considerably more complicated and the Monte Carlo method was used to study the 

acceptance with magnetic field. Trajectories inside the detector-collimator system were 

calculated using a tracking algorithm with low computational cost and extremely good 

long-term accuracy – the so-called Boris algorithm. It solves the discretized equation of 

motion in electromagnetic field through the relations 

𝑥𝑘+1 − 𝑥𝑘

∆𝑡
= 𝑣𝑘+1, (80) 

𝑣𝑘+1 − 𝑣𝑘

∆𝑡
=

𝑞

𝑚
[𝐸𝑘 +

(𝑣𝑘+1 + 𝑣𝑘) × 𝐵𝑘

2𝑐
] . (81) 

Even though this algorithm is not symplectic, it conserves the phase space volume, which 

is an essential condition for a good particle tracking simulation. A more detailed 

description of this method and its advantages can be found in the paper by J. Boris [22].  

Figure 46 shows that the angular range in the presence of a magnetic field is not affected 

much for points close to the middle of the detector active surface, but is considerably 

reduced for points close to the edges. One should expect that the acceptance decreases 

compared to the case with straight trajectories. 
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Figure 46. Acceptance reduction due to trajectories curvature. 

To numerically calculate the acceptance of the detector in the presence of a magnetic 

field the Monte Carlo method can be utilized.  One generates a set of random starting 

positions on the surface of the detector that are evenly distributed, followed by randomly 

selecting the initial angle of the trajectory within some angular range. The range can be 

chosen arbitrarily, from -π/2 to π/2 for example, the only requirement being that it must 

cover all possible good trajectories orientations. An optimal range would be 

[−2 tan−1(−𝑥𝑑/2𝑦𝑑) , 2 tan−1(−𝑥𝑑/2𝑦𝑑)] instead of [−𝜋/2, 𝜋/2] as it reduces the 

number of bad trajectories, thus saving computation time. 

After tracking the trajectories and counting those that can leave the detector-collimator 

system (good trajectories), the value of the detector acceptance will be 

𝑎𝑚𝑐 = 4 𝑥𝑑 tan−1 (
𝑥𝑑

2𝑦𝑑
)

𝑁𝑔𝑜𝑜𝑑

𝑁𝑡𝑜𝑡𝑎𝑙
. (82)  

The relative error of this method is proportional to the inverse square root of the number 
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of good trial samples. To check the accuracy of this Monte Carlo method the acceptance 

of the detector in the absence of a magnetic field was calculated analytically and compared 

to the Monte Carlo result. Trajectory sets used for comparison (25, 100 and 1000) are 

shown in Figure 47.  

 
Figure 47. Monte Carlo acceptance calculation trajectories without 

magnetic field. 

Results of the comparison are shown in Figure 48. On the 𝑦 axis the Monte Carlo calculated 

acceptance is plotted, normalized to the analytical value, versus the logarithm of the 

number of trial trajectories N. For 104 trials the relative error is on the order of a few 

percent. Using the same method one can investigate the effect of the magnetic field 

presence on the detector acceptance. Using the Boris algorithm, one can now study the 

effect of the magnetic field on the acceptance for the 2-dimensional case as well as for the 

real detector-collimator configurations. 
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Figure 48. Monte Carlo calculated acceptance (normalized by theoretical 

value) with relative error. 

The acceptance reduction strongly depends on the magnitude of the magnetic field, or 

to be more accurate, on the trajectory curvature angle on the length of the detector-

collimator system, which can be inferred form Figure 46. In the trajectories sets shown in 

Figure 49 this angle is about 15𝑜, while the detector opening angle is about 20𝑜. This 

rotation angle of the velocity vector is relatively high, for instance in the MAST magnetic 

field strengths the curvature of the trajectory on the length of the detector is about 2𝑜 only, 

and detector opening around 6𝑜. Despite of the relatively high trajectory curvature used in 

calculation, the difference between the calculated acceptance with a magnetic field 

compared to the acceptance without a field is on the order of 1%, so that it can be neglected 

in rate calculations and the analytical acceptance value can be used. The same conclusion 

applies to the 3D case. 
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Figure 49. Monte Carlo acceptance calculation trajectories (2D) with 

magnetic field. 

4.2 Rate Calculation Based on TRANSP Modeled Emissivity Profile 

This section describes the calculation of particle rates measured by a detector-

collimator combination given an equilibrium magnetic field and an emissivity function. It 

is assumed that the emissivity is only a function of the poloidal position but not the fusion-

product angle. This corresponds to the case where the fusion reaction cross-section is 

isotropic. This is typically a good approximation, but anisotropy effects need to be analyzed 

and will be discussed in more details later.  

To calculate the particle rate observed by a detector one needs to integrate the 

emissivity over the entire acceptance of the detector-collimator combination. In the two 

dimensional case, this integral looks is 

𝑁̇ =
1

2Π
∮ 𝜉(𝑥, 𝑦)∆𝜑(𝑥, 𝑦)𝑑𝑥𝑑𝑦 , (83) 
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where 𝜉(𝑥, 𝑦) is the emissivity profile containing the number of fusion products per unit 

time per unit area produced at the specified location and flying into equally probable 

directions (2D case). In other words, it can be written as a volume integral of the trajectories 

manifold in phase space (Figure 51) weighted by the emissivity, where the 𝜑 dependence 

of the emissivity is applicable to the anisotropic reaction cross-section case 

𝑁̇ =
1

2Π
∫ 𝜉(𝑥, 𝑦, 𝜑)

 

𝑀

𝑑Γ. (84) 

The problem is how to find ∆𝜑(𝑥, 𝑦) at an arbitrary point of space. One needs to know 

the time reversed propagation of the detector phase space acceptance. The Monte Carlo 

simulated detector phase space shape is best for this study. 

 
     

     

 

        

         

 Figure 50. Monte Carlo simulated detector acceptance phase space points
 (black dots), and theoretical acceptance without magnetic field (blue
 parallelogram).

In Figure 50 the acceptance phase space shape is shown with black dots while the analytical  

 

             



63 

  

   

      

           

     

        

      

        

      

       

     

   

       

   

 

̇  ̇  

     

   

    

 

 

 

 

parallelogram. It is noticeable that the magnetic field shifts the acceptance slightly.

 Starting with the given initial positions and directions based on the simulated 

acceptance phase-space shape, one can track the particles and follow their trajectories in 

phase space rather than plotting 𝑥 − 𝑦 projections only (Figure 51). The accepted angle 

range at any position, ∆𝜑𝜑(𝑥𝑥, 𝑦𝑦), can be found numerically.

 This approach will be necessary if the detector has a large angular acceptance and 

emissivity varies significantly over the manifold width. In our case the opening angle of 

the detector is small, and the emissivity can be assumed to be constant over the width of 

the manifold since the probing bundles are quite narrow. Consequently, the emissivity 

changes only along the central probing trajectory. In this approximation we need to 

integrate the cross-section of the manifold multiplied by the emissivity along the central 

probing trajectory to obtain the expected particle flow rate.

 The remaining problem is how to find the manifold cross-section, which can be found 

using Liouville’s theorem. Liouville’s equation governs the time evolution of the phase- 

space density function 𝑓𝑓(𝑝𝑝, 𝑞𝑞, 𝑡𝑡):

 𝑁
𝜕𝜕𝑓 𝜕𝜕𝑓 𝜕𝜕𝑓
 + ∑( = 0 𝑞𝑖 + 𝑝𝑖 )
𝜕𝜕𝑡 𝜕𝜕𝑞 𝑖𝜕𝜕𝑝𝑖
 𝑖𝑖=1

(85)

where 𝑝 and 𝑞 are the canonical momenta and coordinates.

Liouville’s theorem states that the distribution function is constant along phase space

trajectories. Another formulation is that the volume taken by a hypothetical ensemble in 

phase space stays constant in time,

∫ 𝑑Γ = ∫ 𝑑 3𝑝 𝑑 3𝑞 = 𝑐𝑜𝑜𝑛𝑛𝑠𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡.
 𝑉𝑝𝑝ℎ𝑎𝑎𝑠𝑠𝑒

(86)

calculation of the acceptance without a magnetic field is shown as a blue area
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Figure 51. Phase space manifold of accepted trajectories showing the time 

evolution of the detector phase-space acceptance ensemble. 
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For a small opening-angle detector the phase space manifold cross section will remain 

equal to the initial detector acceptance value, thus to calculate the expected rate we need 

to move along the bundle central probing trajectory and integrate the emissivity value along 

it, multiplied by the detector acceptance. 

𝑁̇ = 𝑎 ∫ 𝜉(𝑙) 𝑑𝑙 (87) 

4.3 Rate Calculation Approach Analytical Justification 

To prove the rate calculation method described by Equation 87 one can again consider 

a simplified case of 2D free-particle motion in the absence of a magnetic field. The detector 

active area of the size 𝑥𝑑 in a general case can have its normal  𝑛ሬ⃗ 𝑑 vector being tilted with 

respect to the sightline by some angle 𝜃, and letting the angular acceptance of the detector 

be ∆𝜃 as shown in Figure 52. 

 
Figure 52. Tilted detector geometry. 

If one knows the phase space density function 𝑓(𝑝, 𝑞, 𝑡) of the fusion products next to 

the active area, the particle flow per unit area per unit time could be calculated as 

𝑑𝑁̇

𝑑𝑠
(𝑞, 𝑡) = ∫ 𝑣⃗ ∙ 𝑛ሬ⃗ 𝑑𝑓(𝑝, 𝑞, 𝑡)𝑑𝑝

 

𝑝𝑎𝑐𝑐

, (88) 

𝑦 

𝑥 𝑥𝑑 

𝑛ሬ⃗ 𝑑 

𝜃 

∆𝜃

2
 

active area 
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where  𝑣⃗ is velocity vector, 𝑣⃗ = (𝑞𝑥̇, 𝑞𝑦̇), and the integral is taken over all accepted particles 

with momenta defined by the opening angle and orientation of the detector. 

The phase space density function satisfies the collisionless Boltzmann equation, which 

in the absence of forces that can change the particle momenta is 

𝜕𝑓

𝜕𝑡
+ ∑ (

𝜕𝑓

𝜕𝑞𝑖
𝑞𝑖̇ +  

𝜕𝑓

𝜕𝑝𝑖
𝑝𝑖̇)

𝑁

𝑖=1

= SEm. (89) 

On the right side of the equation is the source term due to the emission of fusion products, 

and can be expressed using the 2D emissivity given by 

𝑆𝐸𝑚(𝑝, 𝑞) =
𝜉(θ, 𝑞)𝛿(𝑝 − 𝑝𝑜)

𝑝0
 . (90) 

Here the emissivity 𝜉 is a function of the emission angle and position, corresponding to a 

general case of anisotropic reaction cross-section. When considering an isotropic reaction 

cross-section, the emissivity angle dependence disappears. The 1D Dirac delta-function 

indicates that the emitted particles are monoenergetic, 𝐸0 =
𝑝0

2

2𝑚
, which is a valid 

simplification despite the fact that the real fusion products have some finite energy spread 

due to the reaction kinematics, which will be discussed later. 

The phase space density function can be considered time independent since the 

emissivity profile is quasi steady as the time scale of the emissivity changes is much larger 

than the time of flight of particles leaving the plasma 

𝜕𝑓

𝜕𝑡
= 0. (91) 

For free particles the Hamiltonian is 

𝐻 =
𝑝⃗2

2𝑚
, (92) 
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and 

𝑝̇ = −
𝜕𝐻

𝜕𝑞
= 0;  𝑞̇ =

𝜕𝐻

𝜕𝑞
=

𝑝

𝑚
(93) 

The Boltzmann equation then becomes 

𝜕𝑓

𝜕𝑥
𝑝𝑥 +  

𝜕𝑓

𝜕𝑦
𝑝𝑦 =

𝑚

𝑝0
𝜉(𝑥, 𝑦)𝛿(𝑝 − 𝑝0). (94) 

The density function 𝑓(𝑝, 𝑞) should also be a delta function in 𝑝: 

𝑓(𝑝, 𝑞) = 𝑓𝑞(𝑞)𝛿(𝑝 − 𝑝0). (95) 

Rewriting the momentum components in polar coordinates where the angle is measured 

as shown in Figure 52 and integrating over momentum magnitude 𝑝 we get 

𝜕𝑓𝑞(𝑥, 𝑦)

𝜕𝑥
sin 𝜃 +  

𝜕𝑓𝑞(𝑥, 𝑦)

𝜕𝑦
cos 𝜃 =

𝑚

𝑝0
2 𝜉(𝑥, 𝑦). (96) 

Integrating this expression along the path of the central trajectory one finds: 

𝜕𝑓𝑞(𝑥, 𝑦)

𝜕𝑥
sin 𝜃 𝑑𝑙 +  

𝜕𝑓𝑞(𝑥, 𝑦)

𝜕𝑦
cos 𝜃 𝑑𝑙 =

𝑚

𝑝0
2 𝜉(𝑥, 𝑦)𝑑𝑙, (97) 

𝜕𝑓𝑞(𝑥, 𝑦)

𝜕𝑥
𝑑𝑥 +  

𝜕𝑓𝑞(𝑥, 𝑦)

𝜕𝑦
𝑑𝑦 =

𝑚

𝑝0
2 𝜉(𝑥, 𝑦)𝑑𝑙, (98) 

and

∫ ∇𝑓𝑞 ∙ 𝑑𝑙
∞

(𝑥,0)
=

𝑚

𝑝0
2 ∫ 𝜉(𝑥, 𝑦)𝑑𝑙

∞

(𝑥,0)
. (99) 

From the fundamental theorem for line integrals and since 𝑓(∞) = 0, 

𝑓𝑞(𝑥, 0) =
𝑚

𝑝0
2 ∫ 𝜉(𝑥, 𝑦)𝑑𝑙

∞

(𝑥,0)

. (100) 

Using this result in Equation 88, and noting that 𝑣⃗ ∙ 𝑛ሬ⃗ 𝑑 =
𝑝𝑦

𝑚
=

𝑝

𝑚
cos 𝜃, we get 
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𝑑𝑁̇

𝑑𝑥
(𝑥) = ∫

𝑝

𝑚
cos 𝜃 𝑓𝑞(𝑥) 𝛿(𝑝 − 𝑝0) 𝑝 𝑑𝑝

 

𝑝𝑎𝑐𝑐

𝑑𝜃 =

∫
𝑝0

2

𝑚
cos 𝜃 𝑓𝑞(𝑥) 𝑑𝜃

𝜃+
∆𝜃
2

𝜃−
∆𝜃
2

=

𝑝0
2

𝑚
𝑓𝑞(𝑥) [sin(𝜃 +

∆𝜃

2
) − sin(𝜃 −

∆𝜃

2
)] =

𝑝0
2

𝑚
𝑓𝑞(𝑥)cos 𝜃 2 sin

∆𝜃

2
=

cos 𝜃 2 sin
∆𝜃

2
∫ 𝜉(𝑥, 𝑦)𝑑𝑙

∞

0

.

(101)

 

For a small opening angle (∆𝜃 ≪ 1), and considering the emissivity being constant on the 

width of the bundle, or 𝑓𝑞(𝑥, 0) being constant for 𝑥 on the detector surface size one gets 

𝑁̇ = 𝑥𝑑 cos 𝜃 ∆𝜃 ∫ 𝜉(𝑥, 𝑦)𝑑𝑙

∞

0

. (102) 

Since 𝑥𝑑 cos 𝜃 ∆𝜃 = 𝑎, where 𝑎 is a detector acceptance, this validates Equation 87 that 

can be used for the expected rate calculations based on the probing bundles and a given 

fusion emissivity profile extracted from the TRANSP simulations. 

The validation of the above principle of rate calculation, which is based on Liouville’s 

theorem of phase space volume conservation, would require more advanced considerations 

when the particles move in the presence of a magnetic field, since the canonical momentum 

would include the magnetic-field vector potential and the equations of motion will not be 

as simple as in free space. The detailed proof of the similar matter can be found in 

Application of Liouville's Theorem to Electron Orbits in the Earth's Magnetic Field by W. 

F. G. Swann [23]. 
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CHAPTER 5. PROTON ENERGY SPECTRUM 

The expected spectrum of protons emitted in a fusion reaction and detected by our 

diagnostic system is determined by multiple factors, such as the fusion reaction kinematics, 

the reaction cross-section angular dependence, and the probing trajectory location. As was 

stated earlier, most of the fusion reactions in experimental spherical tokamaks plasmas 

appear from the non-thermal neutral beam ions interacting with the thermal plasma ions. 

Because the energy of the fast neutral beam ions (~50 keV) is usually almost 100 times 

higher than the thermal ion energy, the reactions between them can be treated as a beam-

target interaction. 

5.1 Fusion Reaction Kinematics 

The geometry of the reaction kinematics for a stationary cold plasma ion hit by the 

energetic beam ion is shown in Figure 53. The velocity vector of a secondary fusion product 

is not shown to avoid the diagram overload. 

 

Figure 53. Reaction kinematics geometry (3D) depicting the fast beam ions 

(index 1) and fusion product (index 3) velocities unit vectors orientation 

relative to the magnetic field vector at the fusion reaction location. 
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All the directions are specified relative to the magnetic field vector 𝐵ሬ⃗  at the reaction 

location. Index 1 denotes the projectile beam ion particle, which is a deuteron in our case, 

the variables with the index 2 correspond to the stationary plasma ion (also deuterons), 

indexes 3 and 4 are assigned to the outgoing fusion product particles, (proton and triton or 

neutron and He 
3  for the D − D reaction), 𝜒 denotes the pitch angle of the particle (the angle 

between particle’s velocity vector and magnetic field vector), and 𝜙 is the gyro angle (a 

precession phase angle of a particle’s velocity vector). Since we are detecting only one of 

the reaction products, velocity 𝑣⃗4 is not shown on the kinematics diagram. 

In the beam-target approximation, where 𝑣1 ≫ 𝑣2, target particle considered to be 

stationary at the reaction location and thus the vector 𝑣⃗2 is not present on the reaction 

kinematics diagram. The center of mass velocity has almost the same direction as 𝑣⃗1, so 

the angle of the outgoing particle 3 velocity 𝜃𝑙𝑎𝑏 is the angle between velocity vectors 𝑣⃗3 

and 𝑣⃗1.  

The relation between the pitch angle of the fusion product velocity in the center of mass 

to that pitch angle in the lab frame can be found from momentum and energy conservation 

equations. Omitting the intermittent steps of the kinematics equations, the expression for 

this relation can be written as [20] 

cos  𝜃𝑐𝑚 = −𝑘0 sin 𝜃𝑙𝑎𝑏 + cos 𝜃𝑙𝑎𝑏  √1 − 𝑘0
2 sin2 𝜃𝑙𝑎𝑏 , (103) 

where  

𝑘0 = 𝑉√
𝑚3(𝑚3 + 𝑚4)

2𝑚4(𝑄 + 𝐾)
, (104) 
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𝑚3 and 𝑚4 are the fusion products masses, 𝑉 is the center of mass velocity, 𝑄 is the reaction 

Q factor defined in Capter 1, and 𝐾 is the relative kinetic energy of the fusing particles. 

5.2 Cross-section Anisotropy  

In the center of mass frame, the cross-section of the 𝐷(𝑑, 𝑝)𝑇 reaction has a significant 

anisotropy. According to E. Brown and N. Jarmie [21], it can be parametrized in the form 

𝜎(𝜃) = 𝑎 + 𝑏 cos2 𝜃 + 𝑐 cos4 𝜃 , (105) 

where sigma is a differential cross-section as a function of the center of mass angle 𝜃𝑐𝑚. 

The asymmetry coefficients 𝑏 and 𝑐, as well as the total cross-section (implying the 𝑎 

coefficient) depend on the collision energy. Further details can be found in [21]. The 

differential cross-section is shown in Figure 54 for an incident deuteron energy of 69.9 keV 

which is close to the planned neutral-beam particle energy at MAST-U (75 keV). 

 
Figure 54. Differential cross-section of D(d, p)T fusion for incident energy 

of 69.9 KeV as a function of center of mass angle [21]. 
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The anisotropy is relatively strong, its minimum value is about 30% less than the 

maximum, so the fusion products have higher probability to have their velocity vectors 

being collinear to the incident beam particle direction. This anisotropy should be taken into 

account for the expected rate calculations. 

The differential cross-section in the lab frame can be found from the one in the center 

of mass frame as 

𝜎𝑐𝑚(𝜃𝑐𝑚) sin 𝜃𝑐𝑚𝑑𝜃𝑐𝑚 = 𝜎𝑙𝑎𝑏(𝜃𝑙𝑎𝑏) sin 𝜃𝑙𝑎𝑏𝑑𝜃𝑙𝑎𝑏 , (106) 

which implies the probability for reaction products scattering into a c.m. solid angle 

𝑑Ω𝑐𝑚 = sin 𝜃𝑐𝑚𝑑𝜃𝑐𝑚𝑑𝜙𝑐𝑚 is equal to the probability of scattering into the lab frame solid 

angle 𝑑Ω𝑙𝑎𝑏 = sin 𝜃𝑙𝑎𝑏𝑑𝜃𝑙𝑎𝑏𝑑𝜙𝑙𝑎𝑏, and also uses the fact that 𝑑𝜙𝑐𝑚 = 𝑑𝜙𝑙𝑎𝑏.  

Using the expression for cos 𝜃𝑐𝑚 (Equation 103), it is convenient to rearrange Equation 

106 in the following way: 

𝜎𝑙𝑎𝑏(𝜃𝑙𝑎𝑏) = −
𝜎𝑐𝑚(𝜃𝑐𝑚)

sin 𝜃𝑙𝑎𝑏

𝑑 cos 𝜃𝑐𝑚

𝑑𝜃𝑙𝑎𝑏
 (107) 

Taking the derivative of cos 𝜃𝑐𝑚 with respect to 𝜃𝑙𝑎𝑏, one obtains the final expression for 

the differential cross-section in the laboratory frame to be 

𝜎𝑙𝑎𝑏(𝜃𝑙𝑎𝑏) = 𝜎𝑐𝑚 (arccos (−𝑘0 sin 𝜃𝑙𝑎𝑏 + cos 𝜃𝑙𝑎𝑏  √1 − 𝑘0
2 sin2 𝜃𝑙𝑎𝑏)) ∙

∙ (√1 − 𝑘0
2 sin2 𝜃𝑙𝑎𝑏 +

𝑘0
2 cos2 𝜃𝑙𝑎𝑏

√1 − 𝑘0
2 sin2 𝜃𝑙𝑎𝑏

+ 2𝑘0 cos 𝜃𝑙𝑎𝑏) . (108)

 

As can be seen from Figure 55 the transformation from the center of mass to the laboratory 

frame leads to a prevailing forward-direction scattering probability. The ratio between the 

total proton cross-section in the forward half (0 ≤ 𝜃𝑙𝑎𝑏 ≤ 𝜋/2): 
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𝜎𝑓 = 2𝜋 ∫ 𝜎𝑙𝑎𝑏(𝜃𝑙𝑎𝑏) sin 𝜃𝑙𝑎𝑏 𝑑𝜃𝑙𝑎𝑏  
𝜋/2

0

(109) 

and cross-section 𝜎𝑏 in the region (𝜋/2 ≤ 𝜃𝑙𝑎𝑏 ≤ 𝜋) is 𝜎𝑓/𝜎𝑏 = 1.09 in the case of the 

D(d, p)T reaction of a 69.9 keV deuteron beam and a target deuteron plasma ion. 

 
Figure 55. Differential cross-section in C.M. and laboratory frame. The 

differences are caused by transition from the moving C.M. to the laboratory 

frame. 

One of the important questions related to the cross-section anisotropy is if it has a 

significant influence on the predicted rates. The modeled emissivity profiles contain the 

reaction rate per unit volume per unit time as a function of coordinates but assume that it 

is isotropic in a 4𝜋 solid angle. Because of the cross-section asymmetry some directions 

may become more favorable and the emission rate per solid angle in a specified direction 

needs to be calculated instead.  

 



74 

Considering the case of the anisotropic monoenergetic neutral beam with a given pitch 

angle 𝜒1 at the location of the reaction and assuming the particles making their way into 

the detector have a pitch angle 𝜒3, one can calculate the differential emissivity given by 

𝑑𝜉(𝑟)

𝑑Ω
=

𝜉4𝜋(𝑟)

4𝜋

1

𝜎𝑎𝑣𝑔

1

2𝜋
  ∫ 𝜎𝑙𝑎𝑏(𝜃𝑙𝑎𝑏)𝑑𝜙1,

2𝜋 

0

(110) 

where 𝜉4𝜋 is the integral emissivity in all solid angles given in the emissivity profile, and 

𝜎𝑎𝑣𝑔 = 𝜎𝑡𝑜𝑡/4𝜋. The meaning of the integral is statistical averaging over the beam particle 

gyro angle 𝜙1, which are evenly distributed in 2𝜋. 

Since the incident deuteron velocity vector and a fusion proton velocity vector are 

completely defined by their respective pitch and gyro angles, the relative angle between 

them can be found as 

cos 𝜃𝑙𝑎𝑏 = cos 𝜒1 cos 𝜒3 +sin 𝜒1 sin 𝜒3 cos 𝜙1 , (111) 

which defines the 𝜃𝑙𝑎𝑏 as a function of 𝜙1. 

One can define the emissivity anisotropy scaling factor as 

𝑘𝑎𝑛(𝜒1, 𝜒3) =
1

𝜎𝑎𝑣𝑔

1

2𝜋
  ∫ 𝜎𝑙𝑎𝑏(𝜃𝑙𝑎𝑏)𝑑𝜙1

2𝜋 

0

. (112) 

The predicted rate calculation then modifies to 

𝑁̇ = 𝑎 ∫ 𝑘𝑎𝑛𝜉(𝑟)𝑑𝑙

∞

0

. (113) 

One needs to keep in mind that since 𝑘𝑎𝑛 depends on 𝜒3, which is changing along the 

probing trajectory, thus it is a function of the reaction location 𝑟. 
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From Figure 56 one can infer that the change of the predicted rates after including the 

cross-section anisotropy can be expected to be on the order of up to 10 percent.  

 

Figure 56. Emissivity anisotropy scaling factor as a function of the proton 

pitch angle 𝜒3 for different pitch angles 𝜒1 of a monoenergetic 69.9 keV 

deuteron beam. 

 
Figure 57. Cross-section anisotropy effect on predicted rates. 
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The comparison of the predicted rates with and without the cross section anisotropy effect 

for the TRANSP emissivities is shown in Figure 57. The scaling factor 𝑘𝑎𝑛 was calculated 

based on the proton pitch angle 𝜒3 shown in Figure 67 and a beam pitch angle 𝜒1 = 𝜋/6. 

The rate error bars are shown with an integration time of ∆𝑡 = 1 ms, which leads to a 

relative error of 10% for a rate of 100 kHz (𝛿𝑅/𝑅 = 1/√𝑅∆𝑡 ). 

5.3 Proton Spectrum Calculation 

According to [20], the energy of the fusion product with mass 𝑚3 in the laboratory 

frame is given by the expression: 

𝐸3 =
𝑚4

𝑚3 + 𝑚4
 (𝑄 + 𝐾) + 𝑉 cos θcm√

2𝑚3𝑚4

𝑚3 + 𝑚4

(𝑄 + 𝐾) +
1

2
𝑚3𝑉2 . (114) 

The Q-factor of the reaction causes a significant energy spread of the fusion protons. The 

proton energy in the center of mass frame does not depend on the scattering angle and for 

the D(d, p)T reaction is 3.05 MeV for an incident deuteron beam energy of 69.9 keV. In 

the lab frame, however, the proton energy varies from 2.7 MeV to 3.4 MeV (Figure 58). 

For the proton spectrum calculation one can consider the reaction cross-section to be 

isotropic 𝜎𝑐𝑚(𝜃𝑐𝑚) = 𝑐𝑜𝑛𝑠𝑡, which simplifies the problem of analytical spectrum 

derivation as done by W.W. Heidbrink [20]. In Monte Carlo calculations of proton spectral 

properties one can include the anisotropy from Equation 108. 

From the proton energy (Equation 114) one can infer that the energy spectrum of 

protons emitted in all directions in the case of an isotropic cross section, will have a 

constant energy probability density function, since the energy depends linearly on cos 𝜃𝑐𝑚. 
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Figure 58. Proton energy vs scattering angle (𝜃𝑙𝑎𝑏) in the laboratory frame 

for the D(d, p)T reaction at 69.9 keV beam energy. 

Note that a monoenergetic and unidirectional incident beam is implied and the particles are 

detected in a 4𝜋 solid angle. The proton energy spectrum will be uniform for a fixed 

observation direction and an incoming beam having an isotropic direction distribution, 

what is referred to as a monoenergetic isotropic beam in [20]. 

To generate a set of incident velocity vectors with a random direction we can take a 

pitch angle 𝜒1 = cos−1(2 Rnd(0,1) − 1) and gyro angle 𝜙1 = 2π Rnd(0,1), where 

Rnd(0,1) is a random number from 0 to 1 with uniform distribution. Since for the reaction 

kinematics only the relative gyro angle is important, i.e. 𝜙1 − 𝜙3, we can put 𝜙3 = 0 

without loss of generality. 

Combining Equation 111 and Equation 103 one can calculate the scattering angle in 

the center of mass frame and calculate the proton energy using Equation 114. Taking the 

random sets for incident particle angles generated as described earlier the proton calculated 

energy 𝐸3 can be histogrammed. 
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Figure 59. Proton spectrum from isotropic monoenergetic (69.9 keV) beam 

fusion with target (1 keV) plasma ions with isotropic cross-section (Monte 

Carlo simulation with 106 samples). 

Note that the energy range of resulting histogram (Figure 59) matches the one depicted in 

Figure 58. If the cross-section anisotropy is included in the calculation (Equation 105) the 

energy distribution becomes nonuniform, as shown in Figure 60. 

In a real measurement the injected neutral beam ions have a pitch angle as well as an 

energy distribution, and consequently, the emitted fusion protons will have a more complex 

energy spectrum. To address these aspects one can start with the consideration of 

anisotropic monoenergetic neutral beam interacting with a thermal plasma and derive the 

produced spectrum of the emitted fusion products. 

The expression for the energy distribution function of fusion products 𝐹(𝐸3) for an 

isotropic cross-section can be found in [20]. Including angular dependence of the reaction 

cross section leads to the following new expression: 
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Figure 60. Proton spectrum from isotropic monoenergetic (69.9 keV) beam 

fusion with target (1 keV) plasma ions with anisotropic cross-section 

(Monte Carlo simulation with 106 samples). 

∫ 𝐹(𝐸3
′ )𝑑𝐸3

′

𝐸𝑢

𝐸𝑙

∝ ∫ 𝜎𝑙𝑎𝑏(𝑣⃗1)𝑣1𝑓1(𝑣⃗1)𝐻(𝑣⃗1)𝑑𝑣⃗1, (115) 

where 𝐸𝑙 is a lower energy limit of some arbitrary energy range, 𝐸𝑢 is an upper limit, and 

𝐻 is a Heaviside type function defined as 

𝐻(𝑣⃗1) = {
1, 𝑖𝑓 𝐸𝑙 < 𝐸3(𝑣⃗1) < 𝐸𝑢

0,                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (116) 

For the anisotropic monoenergetic beam the probability distribution function is 

𝑓(𝑣⃗1) ∝ 𝛿(𝑣 − 𝑣𝑏)𝛿(𝜒 − 𝜒1). (117) 

 

Equation 115 reduces to 

∫ 𝐹(𝐸3
′ )𝑑𝐸3

′

𝐸 

0

∝ ∫ 𝜎𝑙𝑎𝑏(𝜙1)𝐻(𝜙1)𝑑𝜙1

𝜙 

𝜋

. (118) 
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Here we used the fact that the minimal energy corresponds to the gyro angle 𝜙1 = 𝜋 (𝜙3 

was agreed to be set equal to 0), since in this case the angle between incoming particle and 

fusion product is maximal and the energy 𝐸3 is consequently minimal. One should keep in 

mind that the integral limits are interdependent, i.e. 𝐸(𝜙). Differentiating the right side of 

Equation 118 with respect to 𝐸 and the left side with respect to 𝜙 one gets 

𝐹(𝐸3) ∝ 𝜎𝑙𝑎𝑏(𝜃𝑙𝑎𝑏) (
𝑑𝐸3

𝑑𝜙1
)

−1

. (119) 

Using Equation 114 one finds 

𝑑𝐸3

𝑑𝜙1
=  𝑉√

2𝑚3𝑚4

𝑚3 + 𝑚4

(𝑄 + 𝐾)
𝑑 cos 𝜃𝑐𝑚

𝑑𝜙1
. (120) 

Since 𝜎𝑐𝑚(𝜃𝑐𝑚)𝑑 cos 𝜃𝑐𝑚 = 𝜎𝑙𝑎𝑏(𝜃𝑙𝑎𝑏)𝑑 cos 𝜃𝑙𝑎𝑏, then 

𝑑 cos 𝜃𝑐𝑚

𝑑𝜙1
=

𝑑 cos 𝜃𝑙𝑎𝑏

𝑑𝜙1

𝜎𝑙𝑎𝑏

𝜎𝑐𝑚
, (121) 

and using Equation 111 and differentiating it with respect to 𝜙1 leads to 

𝐹(𝐸3) ∝ (sin 𝜒1 sin 𝜒3 sin 𝜙1)−1 𝜎𝑐𝑚(𝜃𝑐𝑚). (122) 

This is the so-called reduced fusion-product distribution function. For an incident beam 

perpendicular to the magnetic field and the observation direction perpendicular to the field 

as well, the resulting spectrum is shown in Figure 61. The twin-lobed shape of the 

distribution is a consequence of the beam ion gyro motion, since the fast ions have uniform 

distribution in gyro angle 𝜙1, and 𝑑𝐸3~ sin(𝜃𝑐𝑚) 𝑑𝜙1 (Equation 120), for c.m. angles 𝜃𝑐𝑚 
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close to 0 or 𝜋 the probability density for 𝐸3 goes to infinity, but of course remains 

integrable, which can be inferred from Equation 118. 

 

Figure 61. Proton spectrum emitted perpendicular to magnetic field (𝜒3 =
𝜋/2) from anisotropic (𝜒1 = 𝜋/2) monoenergetic (69.9 keV) beam fusion 

with target (1 keV) plasma ions (isotropic cross-section assumed). 

Convolving the reduced distribution function for all possible values 𝜒3, taking into 

account that for an isotropic beam 𝜒3 has a probability distribution of ~sin (𝜒3), one can 

get the uniform proton energy distribution resulting in the same distribution function as in 

Figure 59. Due to the numerical convolution, the spectrum plot has spikes, which can be 

smoothed out but were left for demonstrative purpose to indicate that the obtained 

distribution indeed consists of the series of twin-lobed reduced distribution functions 

convolved together (Figure 62). 
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Figure 62. Proton spectrum emitted by isotropic monoenergetic (69.9 keV) 

beam fusion with target (1 keV) plasma ions with isotropic reaction cross-

section (convolution of reduced distribution function). 

For an anisotropic beam with energy distribution 𝑓1(𝐸1), the resulting proton energy 

distribution function can be found as an average of the reduced distribution functions with 

a weight 𝐸1 (since in Equation 115 𝑣1𝑑𝑣⃗1~𝑣1𝑣1
2𝑑𝑣1~𝐸1𝑑𝐸1): 

𝐹𝑐(𝐸3) = ∫ 𝜎 (𝐸1)𝐸1𝑓1(𝐸1)𝐹(𝐸3, 𝐸1)𝑑𝐸1. (123) 

Using the result from Equation 122 for a reduced probability function, one can perform 

the convolution defined by the above equation for a given beam energy distribution and 

obtain a more realistic fusion-product energy spectrum. The following figures show the 

proton spectra for an anisotropic beam with thermal deuterium plasma ions, for a beam 

with a normal energy distribution around the maximum value of 69.9 keV and a deviation 

of 17 keV, for various beam pitch angles 𝜒1, and a proton pitch angle of 𝜒3 = 𝜋/3. 
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Figure 63Figure 64Figure 65Figure 66 contain the Monte Carlo simulated proton 

energy histograms which show the exact match with the analytically found spectra 

(analytically means using the reduced proton distribution function analytical expression 

and performing its numerical convolution). 

 

Figure 63. Analytical and Monte Carlo simulated proton spectrum emitted 

at 𝜒3 = 𝜋/3 pitch angle, from fusion with anisotropic deuteron beam of 

pitch angle 𝜒1 = 2𝜋/3 and energy distribution 𝑓(𝐸) ∝ exp (−1/2 ∙
(𝐸 − 69.9 keV)2/(17 keV )2) . 
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Figure 64. Analytical and Monte Carlo simulated proton spectrum emitted 

at 𝜒3 = 𝜋/3 pitch angle, from fusion with anisotropic deuteron beam of 

pitch angle 𝜒1 = 𝜋/2 and energy distribution 𝑓(𝐸) ∝ exp (−1/2 ∙
(𝐸 − 69.9 keV)2/(17 keV )2) . 

 

Figure 65. Analytical and Monte Carlo simulated proton spectrum emitted 

at 𝜒3 = 𝜋/3 pitch angle, deuteron beam pitch angle 𝜒1 = 𝜋/3 and energy 

distribution 𝑓(𝐸) ∝ exp (−1/2 ∙ (𝐸 − 69.9 keV)2/(17 keV )2) . 
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Figure 66. Analytical and Monte Carlo simulated proton spectrum emitted 

at 𝜒3 = 𝜋/3 pitch angle, from fusion with anisotropic deuteron beam of 

pitch angle 𝜒1 = 𝜋/6 and energy distribution 𝑓(𝐸) ∝ exp (−1/2 ∙
(𝐸 − 69.9 keV)2/(17 keV )2) . 

5.4 Pitch Angle Variation Along the Probing Trajectory 

Up to this point we considered the spectrum of protons emitted either in all directions, 

which appears to be uniform, or in a single direction defined by the pitch angle 𝜒3. In our 

diagnostic, each detector observes protons that are produced in a fusion reaction at some 

point along the trajectory bundle corresponding to the detector orientation and collimator 

openings. Since our bundles are relatively thin, for the spectral property calculation we use 

only the central trajectory for each detector. One can realize that the pitch angle is varying 

along the trajectory (Figure 67), thus the spectrum of protons detected by our system’s 

individual channel will represent a convolution of the reduced distribution function 
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described earlier with respect to 𝜒3 along the probing trajectory with the weight factor 

equal to the fusion emissivity at each point. 

The pitch angle variation along a central trajectory is shown in Figure 67. The energy 

spectrum for three different neutral beam pitch angles 𝜒1 is shown in Figure 68. The fast 

neutral beam is not unidirectional but has some distribution in pitch angle 𝜒1. This 

distribution can be obtained from TRANSP and an additional convolution can be carried 

out for obtaining more realistic predicted spectra. The measured spectral information thus 

can potentially be used to infer the fast ions distribution properties, which would require a 

deconvolution procedure that is expected to be difficult especially in the presence of the 

noise in the data and energy resolution limitations. 

 

Figure 67. Pitch angle of the central probing trajectory as a function of radial 

and vertical position along the central probing trajectory for 4 detectors. 
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Figure 68. Expected proton spectrum emitted from thermal ions fusion with 

anisotropic deuteron beam of pitch angle 𝜒1 and energy distribution 𝑓(𝐸) ∝
exp (−1/2 ∙ (𝐸 − 69.9 keV)2/(17 keV )2) detected by the channel with 

given pitch angle 𝜒3 variation along the central probing trajectory. 

For the proton diagnostic system tested in MAST 2013 experimental campaign, electrical 

noise introduced a substantial proton energy resolution deterioration that prevented the 

extraction of useful spectral characteristics, but the future resolution improvement attempts 

may help to obtain clearer and more informative proton energy spectra. 
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CHAPTER 6. DATA ACQUISITON AND ANALYSIS 

The data acquisition system for our detector probe consists of the signal processing 

chain of preamplifier, timing filter amplifier, digitizer and PC. The current pulse signals 

produced by the surface barrier detectors are integrated in Canberra 2003BT Pre-

Amplifiers, which generate output signals with typical amplitudes of tens of millivolts for 

MeV particles and signal decay times of a few hundred microseconds. Those signals are 

then amplified by Ortec 474 and Canberra 2111 timing filter amplifiers with adjustable 

integration and differentiation times. The output signals have amplitudes of about 0.7 V 

and pulse widths of a few hundred nanoseconds. The amplified and shaped signals are then 

digitized using a GaGe Dynamic Signals Octopus CompuScope Express (CSE 8387) 16 

(2×8) channel 100 MS/s digitizer with 14 bit resolution and 4G sample storage (2×2 GS), 

and sent to the PC through a fiber optic link (Figure 69). The entire data acquisition system 

is controlled using a LabVIEW based program. The system is expected to achieve an 

energy resolution of around 150 keV (FWHM) but the real life energy resolution can be 

strongly affected by electrical noise due to the high sensitivity of the detector system and 

the hostile electrical environment close to a tokamak plasma. 

6.1 Predecessor Diagnostic System 

A previous version of a similar system was tested in a MAST (Mega Ampere Spherical 

Tokamak) experiment carried out at the Culham Center for Fusion Energy in Oxford, UK. 

That system had four detectors and a different mechanical design. A typical example of 

raw data from MAST is shown in Figure 70. 
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Figure 69. Data acquisition electronics scheme [19]. 

 
Figure 70. Typical signal shape from MAST data. The proton peak 

amplitude is ~0.7 V and the triton peak is ~0.23 V (3 MeV and 1 MeV 

energy particles), the peak width is of the order of 100 ns.  

The MAST 2013 experimental campaign demonstrated that this diagnostic system can 

work in a spherical tokamak. The new system has more channels (up to 8) and will be 

operated in plasmas with a considerably higher neutron rates. It is also more flexible as the 
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collimator configuration can be changed for each detector. The online data acquisition 

program has been updated, which resulted in considerable speed gains for saving the 

acquired data. 

6.2 Data Analysis 

The raw (digitizer) data analysis procedure consist of three main steps: characteristic 

peak shape determination, raw data fitting, particle determination and rate calculation. For 

the first step a set of high quality particle signals need to be selected, which had to be done 

previously by visually inspecting the peaks and manually selecting those with a good 

shape. A new automatic selection process has been developed where a random set of high 

quality peaks are selected. The selection process starts with a selection of peaks with 

signals above a user defined threshold. These selected peaks are then normalized and an 

analytic expression for the peak shape is fit to the sample peaks. Only those peaks with a 

reduced chi square value below another user defined value are retained. A second fit is then 

performed where all selected and normalized peaks are fit with a common set of 

parameters. These define the peak shapes used in a full analysis of the raw data.  The peak 

shape is given by the analytical 

𝑉(𝑡) = 𝑉0𝑒−𝑐1(𝑡+𝑡0)(𝑡 + tanh 𝑐2(𝑡 + 𝑡0)), (124) 

where 𝑉0 is a normalization constant, 𝑐1
−1 is a decay time, 𝑐2

−1 is a rise time and 𝑡0 is a 

constant related to 𝑐1 and 𝑐2 to bring the peak maximum to 𝑡 = 0 (𝑉′(0) = 0). Typically, 

twelve peaks are used for the characteristic shape determination. An example of an 

automatic peak shape fit is shown in Figure 70. 
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Figure 71. Superposition of all selected normalized peak data (points) and 

the common normalized peak shape. 

Once the peak shape is determined, the raw data can be completely analyzed. As before the 

signal peak positions are determined and then the data are analyzed as described in 

reference [19]. 

 
Figure 72. Subset of fitted data. A 10th order polynomial has been used as 

to model the background and the signal baseline. 
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After fitting is complete, the resulting peak heights are analyzed providing time 

dependent energy spectra where protons and tritons can be identified (the He 
3  peaks are 

hard to separate from the background). Selecting an integration time, the number of events 

within a selected energy range and time window are evaluated and the corresponding 

particle rate is calculated. A typical example of the particle rates as a function of time is 

shown in Figure 73. Details of the data analysis can be found in [19]. 
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Figure 73. Experimental rates for MAST 2013 shot 29975 (1 ms integration). Data for three channels (three detectors) 

are shown with the shaded area around each curve being a statistical uncertainty.
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6.3 Electrical Noise Testing 

One of the biggest obstacles to achieve good energy resolution of the detected particles 

is the presence of electrical noise in the raw data. The installation of the new diagnostic at 

the NSTX-U facility was planned for June 2016 but got canceled due to the discovery of a 

short in one of the poloidal field coils located on the center stack. As a consequence, the 

experimental campaign at NSTX-U had to be stopped and the machine disassembled. We 

were however able, using a preliminary installation of the existing DAQ to perform tests 

while NSTX-U was being started. This allowed us to perform early electrical noise testing 

with some detectors placed in the vicinity of the tokamak vacuum vessel. 

High amplitude electrical noise, typically originating from switching power supplies, 

was detected with distinct spectral features shown in Figure 74. 250 kHz noise pulses with 

an internal 3 MHz structure are prominent in the test data. Electrical shielding of the 

electronic equipment, cable twisting and high frequency noise filters will be used, if 

necessary, to suppress this noise. Charged particles, probably produced by neutrons in the 

detectors, were also identified. The observed rates were significantly lower than those 

expected for protons (~100 Hz vs. ~100 kHz) and are not expected to cause problems for 

proton identification. 
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Figure 74. NSTX-U electrical noise testing results. 
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CHAPTER 7.  TRANSP SIMULATIONS 

One of the goals of the diagnostic is a validation of the theoretically calculated emissivity 

profile, done by comparing the measured and expected particle detection rates. A neutron 

camera that is available at MAST-U detects the neutron flow rate through collimated 

sightlines that are straight versus the curved paths of the proton diagnostic, thus providing 

similar information as the proton system. Both systems provide complementary 

information on the emissivity profile and can be used in a combined analysis or to cross 

check the results from each instrument.  The calculation of the expected rates requires two 

main inputs – the plasma equilibrium magnetic field to calculate the probing trajectories 

bundles, and the emissivity profile. The equilibrium magnetic field is calculated by the 

EFIT module as discussed in Chapter 2, and the emissivity profile calculated by the plasma 

particle and energy transport code TRANSP [27], [28]. 

7.1 TRANSP Physics Overview 

TRANSP is a simulation code developed at PPPL for plasma particles, energy, and 

momentum time dependent transport. It assumes toroidal symmetry of the machine and 

utilizes a 2D coordinate system, where one coordinate is a normalized flux surface and the 

second one is the poloidal angle with respect to the magnetic axis. This set of coordinates 

have certain advantages for the solution of the transport equation, and the calculated 

quantities can be easily presented in standard poloidal cross-section coordinates 𝑅 and 𝑍 

afterwards. 

TRANSP numerically solves the set of transport equations ([5], [16]), the particle 

balance equation has the form 
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𝜕𝑛

𝜕𝑡
+ ∇(𝑛𝑢ሬ⃗ ) = 𝑆, (125) 

where 𝑛 is the density of a given particle species, 𝑢ሬ⃗  is the average velocity of these particles, 

𝑆 is a source or sink term that can be nonzero if the fusion reactions occur and particles are 

created or destroyed, or if neutral particles from neutral beam injection, pellets, or thermal 

neutrals are ionized. 

The momentum balance equation has the following form: 

𝑚𝑛 [
𝜕

𝜕𝑡
+ 𝑢ሬ⃗ ∙ ∇] 𝑢ሬ⃗ = −∇ ∙ 𝑃 + 𝑞𝑛(𝐸ሬ⃗ + 𝑢ሬ⃗ × 𝐵ሬ⃗ ) − 𝑆𝑢ሬ⃗ + 𝐴, (126) 

where 𝑚 is the mass of a given particle species, 𝑃 is the pressure tensor, 𝑞 is the charge 

and 𝐴 is a term including the collisional momentum transfer due to forces like neutral beam 

thermalization drag, or ionization and recombination forces. 

The energy balance equation can be written as 

3𝜕𝑝

2𝜕𝑡
+

3

2
(𝑢ሬ⃗ ∙ ∇)𝑝 +

3𝑝

2
∇ ∙ 𝑢ሬ⃗ + (𝑃 ∙ ∇) ∙ 𝑢ሬ⃗ + ∇ ∙ 𝑞⃗ℎ = 𝑀 − 𝑢ሬ⃗ ∙ 𝐴 +

1

2
𝑢2𝑆, (127) 

where 𝑞⃗ℎ is the heat flow vector and 𝑀 is the energy density change rate from interspecies 

collisions. The transport equations are reformulated in a diffusion like equation, with the 

general form 

𝜕𝑎

𝜕𝑡
= ∇ ∙ (𝐷𝑎∇ 𝑎), (128) 

with TRANSP calculated diffusion coefficients 𝐷𝑎 for a physical quantity 𝑎 such as particle 

density, heat etc. 

TRANSP takes into the consideration multiple additional relations, such as an ideal gas 

equation of state for plasma particles, plasma angular momentum change due to the torque 

from neutral beam injection, an angular momentum balance equation, and magnetic field 
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diffusion. There are several links posted on the TRANSP help webpage [29] for articles 

related to these aspects, such as [30] and others. 

The general input values required for a TRANSP calculation involve the plasma 

current, the static electric potential, the plasma cross-section geometry, the power radiated 

from the plasma, the electron density and temperature profiles, the ion temperature profile, 

and the ion effective charge. As output one obtains the resistivity profile, the safety factor 

profile, the current density profile, the electric potential profile, the particle density profile, 

the particle flow and diffusion coefficients, the heat flow, the conductive heating, the 

emissivity profile etc. 

The quantities calculated by TRANSP are flux-surface averaged, which may not be a 

very accurate representation of the emissivity when there exists a large population of 

trapped fast ions. Trapped ions are ions with a small velocity component parallel to the 

magnetic field. Due to the magnetic mirroring effect they stop moving along the magnetic 

field line in the high-field region of the magnetic field and reverse their drift direction. As 

a consequence, they are not traveling completely around the flux surface. (Figure 75) 

The module NUBEAM, integrated in TRANSP, performs a time dependent Monte 

Carlo calculation of the slowing down of fast ions originating from the neutral beam. The 

typical time scale for collision processes between fast beam ions and bulk plasma particles 

is much shorter than the typical equilibrium evolution time scale of the bulk plasma. During 

the short time interval during which the deposition and slowing down of fast ions is 

calculated the bulk plasma properties are therefore assumed to be constant. The deposited 

quantities (energy, momentum, particles) are then passed to the TRANSP plasma model 

allowing it to evolve accordingly for a short time interval. After that the procedure is 
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repeated. The emissivity is calculated on a two-dimensional grid in the poloidal cross 

section. This is the most important TRANSP output for comparison to our measured proton 

(or neutron) rates. 

 

 

Figure 75. Passing (left) and trapped (right) fast ion gyrocenter motion for 

a poloidal cross-sectional projection. Dashed lines represent the equilibrium 

flux surfaces. 

7.2 Application of the Kick Model [25] 

Data analysis from previous experimental campaigns revealed a significant 

discrepancy between the detected and the calculated proton rates based on 

TRANSP/NUBEAM emissivity profiles, the detected rates were between 50 to 75 percent 

of the predicted values [24]. Specifically, for shots with plasma MHD activity a factor of 

two differences were observed. 
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Figure 76. MAST 2013 experimental campaign Charged Fusion Products 

Diagnostic (CFPD) count rates comparison with TRANSP emissivity 

calculated rates [24]. Scenario 1 is a quiescent MHD plasma discharge, and 

Scenario 6 is a sawtooth instability plasma discharge. 

To study this issue the so-called kick model by M. Podesta [25] was used to calculate 

the emissivity profiles impacted by MHD activities such as fishbone instabilities and TAE 

(Toroidal Alfven Eigenmodes) via the reduced fast ion transport model in the TRANSP 

code. The kick model uses spatial profile of a selected mode and calculates the kick 

probability matrix for fast ions, which describes the probability of a fast ion to receive a 

momentum kick from the MHD perturbation at the given particle location in phase space. 

Based on this matrix and the kick scaling amplitude, which is passed as a parameter to 

TRANSP, the fast ion transport simulation applies these kicks to the particles and thus 

models the perturbation’s effect on the fast-ion distribution evolution and hence the 

emissivity profile. 
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Figure 77. Plasma discharge (shot) 29976 emissivity profile where the Kick 

model was applied to the fast ion transport simulation in TRANSP. Upper 

right plot is the emissivity as a function of the radial coordinate for a fixed 

vertical position (horizontal slice at 𝑧 = 25.6 cm). The bottom right plot 

shows a slice of the emissivity at constant 𝑟 = 100.8 cm as function of 𝑧. 

The red cross indicates the intersection point of the two slices (vertical and 

horizontal). 

We calculated emissivity profiles for five different times during the plasma discharge. 

Figure 77 shows the emissivity profile for 𝑡 = 0.205 s with an unscaled kick amplitude for 

the TRANSP calculation. One can clearly see that the emissivity is not constant on a flux 

surface (see Figure 14 showing the typical flux surfaces for MAST). In Figure 78 the 

resulting emissivity profile is shown with a doubled kick amplitude. Compared to the 

profile with a smaller amplitude (Figure 77) the profile appears wider, less peaked in the 

radial direction while the change in the vertical direction is less apparent.  
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Figure 78. Shot 29976 emissivity profile where the Kick model was applied 

with doubled kick amplitudes scaling to the fast ion transport simulation in 

TRANSP. Upper right plot is the emissivity as a function of the radial 

coordinate for a fixed vertical position (horizontal slice at 𝑧 = 25.6 cm). 

The bottom right plot shows a slice of the emissivity at constant 𝑟 =
100.8 cm as function of 𝑧. The red cross indicates the intersection point of 

the two slices (vertical and horizontal). 

The calculated model rates were compared to the experimental measured rates. Figure 

80 shows an overview of the experimental rates for MAST shot 29976 during the full 

discharge time. Channel 0 data is not available for this shot presumably due to neutral-

beam-spray particle overload. The same problem most likely affected Channel 1 after 0.19 

s as well. Channel 3 is showing unexpectedly low rates due to a partial obstruction of its 

sightline. Calculated rates based on Kick model emissivity profiles with unscaled and 

doubled kick amplitudes are shown with circles and triangles for the five selected time 

points. The predicted rates with unscaled kick amplitudes appear to be roughly a factor of 

two higher than the measured rates. 
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Figure 79. MAST shot 29976 measured and predicted rates with kick model TRANSP simulated emissivity profiles. 

Measured rates data is not available for Channel 0 (Detector 1) and Channel 1 (Detector 2) after 0.19 s presumably 

due to the neutral beam spray particle overload and of bad quality for Channel 3 (Detector 4) because of partial 

obstruction of the sightline.  
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Focusing on Channel 2 data one can see (Figure 80) that with the introduction of the 

kick model the predicted rates can be brought closer to the measured values by changing 

the scaling factor of the kick amplitudes. The use of the kick model has just begun and is 

an ongoing project that is well beyond the scope of this work. While the modeled particle 

rates seem to agree better with the measured ones, other diagnostic data need also to be 

tested in order to evaluate the validity of this model. This was however the first time that 

proton and neutron rate data have been compared to TRANSP calculations including the 

kick model. 

 

Figure 80. MAST shot 29976 Channel 2 measured proton rate and rate 

predicted with TRANSP simulated emissivity profile with a kick model 

applied and kick amplitude scaling factor set to 1 and 2. 
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CHAPTER 8. CONCLUSION 

Within the scope of this dissertation, several important aspects of a plasma diagnostic 

with charged fusion-product particle detection were examined. The underlying properties 

of fusion reactions and plasma confinement principles were reviewed, and the analytical 

approach of finding the plasma equilibrium from the solution of the Grad-Shafranov 

equation was studied and implemented, with contribution of connecting the obtained 

solution to the real tokamak parameters. Analytically obtained magnetic field and current 

density profiles were compared to the corresponding outputs of the commonly used 

equilibrium solver EFIT. 

A new design of the instrument was realized including a set of mechanical drawings 

produced at FIU followed by machining at a local contractor. The new system is much 

more flexible thanks to its modular design and it also allows an extension to a higher 

number of detectors. A removable collimation system for each detector housing makes it 

suitable for various plasma scenarios with increased injected beam power and the resulting 

higher particle flow rates. Detector orientation optimization was performed to achieve an 

optimal probing of the core plasma for various possible equilibrium magnetic field 

configurations. A new graphical user interface was developed for particle orbit calculations 

to simplify and speed up the optimization process. The orbit tracking code was modified 

to account for trajectory curvature inside the detector-collimator system and the effect on 

probing localization due to that effect was studied. 



106 

A Monte Carlo based detector-collimator system acceptance calculation was 

implemented and the acceptance reduction due to the presence of a magnetic field was 

studied leading to the conclusion that it can be neglected at MAST-U as well as NSTX-U. 

The rate calculation method was discussed, analytically justified, and used for rate 

calculations based on the TRANSP simulated emissivity profiles. The results of these 

calculations were used to determine the optimal collimator openings for the new system 

including the necessary acceptance-reducing inserts for the previously used 4-channel 

system. 

The kinematics of the fusion reaction was reviewed, and the proton energy spectrum 

was studied analytically using a reduced distribution function derivation [20]. A 

comparison to the Monte Carlo simulated spectrum showed the validity of the analytical 

approach and convoluted energy spectra were calculated for typical probing-trajectory and 

neutral-beam-energy distributions. The fusion reaction cross-sectional anisotropy was 

introduced and its effect on the predicted rate was calculated. 

The data acquisition LabView code was developed for the new digitizer hardware and 

successfully tested. The data analysis code was revised and updated with database 

parameter storage and a graphical user interface was added.  

TRANSP simulations with a kick model enhanced reduced fast ion transport code were 

performed and the output emissivity profiles were used to study the influence of plasma 

MHD perturbations on fast ion redistribution and reaction rates.  
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Data taking for various plasma and neutral beam power conditions are planned to be 

carried out in 2020. Temperature measurement of the sensors installed in the probe head 

will be obtained and analyzed to determine the heat load on the detectors to judge the need 

for a detector cooling system. An energy resolution optimization will be attempted to 

achieve 100-150 keV energy resolution (FWHM) in order to measure the proton energy 

spectrum. The proton energy spectrum contains information about the velocity distribution 

of plasma and neutral beam ions. The fast ion thermalization processes and fast ion losses 

due to scattering or various other MHD instabilities can be studied using spectral data. 

A detailed analysis of the future experimental data will allow us to determine absolute 

rates and extract time-dependent emissivity-profile data that can be compared to TRANSP 

calculations and other available diagnostic data. The new data will allow us to study the 

effects of plasma instabilities on fast ion redistribution, losses and thermalization 

processes. 
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