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SUMMARY 

Mutations and polymorphisms in the gene encoding factor H (CFH) have been 

associated with atypical Hemolytic Uremic Syndrome (aHUS), Dense Deposit Disease 

(DDD) and Age-related Macular Degeneration (AMD). Experimental evidence supports 

that many of these CFH genetic variations disrupt the regulatory role of factor H (FH), 

sustaining the concept that dysregulation of complement is a unifying pathogenic 

feature of these disorders. Evidence of a causal relationship with the disease is, 

however, not available for all CFH genetic variations found in patients, which is a 

potential cause of misinterpretations with important consequences for the patients and 

their relatives. I890 and L1007 are two of such CFH genetic variations. They have 

repeatedly been reported associated with aHUS and are also found in DDD and AMD 

patients. Here we report an extensive genetic and functional analysis of these CFH 

variants. Our results indicate that I890 and L1007 segregate together as part of a distinct 

and relatively infrequent CFH haplotype in Caucasians. Extensive analysis of the 

purified S890/V1007 (control) and I890/L1007 (disease-associated) FH protein variants 

failed to provide evidence that these amino acid substitutions have functional 

implications. These data, the presence of the I890 and L1007 variants in healthy 

individuals and their high frequency in Sub-Saharan African and African American 

populations strongly suggest that I890 and L1007 are FH rare polymorphisms unrelated 

with disease. 
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INTRODUCTION 

Complement factor H (FH) is the main regulator of the alternative pathway (AP) 

of the complement system. FH exerts this regulatory activity in three different ways: it 

binds to C3b, competing with factor B (FB) in the assembly of the AP C3-

proconvertase complex (C3bB); it accelerates the decay of the AP C3-convertase 

(C3bBb); and acts as cofactor of factor I (FI) in the proteolytic inactivation of C3b 1-3. 

FH regulates complement activation both in fluid phase and on cellular surfaces 4-6, 

preserving complement homeostasis and preventing uncontrolled C3b deposition and 

host tissue damage. 

FH is a relative abundant plasma protein that is secreted as a single-chain 

glycoprotein of 155 KD composed of 20 homologous domains of 60 amino acids 7, 

named short consensus repeats (SCR). FH concentration in plasma is highly variable, 

ranging from 116 to 562 µg/ml 8. Different interaction sites for C3b and polyanions 

have been identified along the 20 SCR of FH. The SCR 1-4 region is the unique C3b 

binding site capable to act as cofactor for FI in the cleavage of C3b and to accelerate the 

decay of AP C3-convertase 9.  Similarly, the C3b and polyanion binding site at SCR 19-

20 determines the ability of FH to bind C3b deposited on the cell surface, being this 

region of FH essential for self-pathogen discrimination 10, 11. 

Mutations and polymorphisms in the CFH gene are associated with atypical 

hemolytic uremic syndrome (aHUS), dense deposit disease (DDD), and age-related 

macular degeneration (AMD) (reviewed in 12). The available data support the 

hypothesis that AP dysregulation is a unifying pathogenic feature of these diverse 

conditions. They also illustrate a remarkable genotype-phenotype correlation in which 

distinct genetic variations at CFH specifically predispose to aHUS, AMD or DDD. In 

fact, the functional characterization of these disease-specific CFH genetic variations is 
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being instrumental to understand the molecular basis underlying each of these 

pathologies. 

In aHUS, a thrombotic microangiopathy characterized by thrombocytopenia, 

haemolytic anemia and acute renal failure, and where endothelial cell injury appears to 

be the primary pathogenic event, the most prevalent genetic alterations in the CFH gene 

are missense mutations that alter the C3b- and polyanion-binding site at the C-terminus 

of FH. These mutations rarely result in hypocomplementemia or decreased FH plasma 

levels 13-16. Functional studies have demonstrated that these aHUS-associated FH 

molecules present normal regulatory activity in plasma but a limited capacity to protect 

cells from complement lysis 17-20. This functional alteration is clearly distinct from the 

lack of complement regulation in plasma, leading to complete C3 consumption and 

severe hypocomplementemia that characterizes DDD patients. 

DDD is a very rare form of glomerulonephritis with isolated C3 deposits 

characterized by the presence of dense deposits within the glomerular basement 

membrane (GBM) 21. DDD is associated with complement abnormalities that lead to 

persistent reduction of C3 serum levels and to intense deposition of degradation 

products of C3 in the GBM. Among the different factors associated with these 

complement abnormalities are mutations in the CFH gene. These CFH mutations result 

in truncations or amino acid substitutions that impair secretion of FH into circulation or 

that eliminate the complement regulatory activities located at the N-terminus of FH 22-24. 

Thus, CFH mutations that decrease FH in plasma, or eliminate its complement 

regulatory activity, lead to unrestricted activation of complement in plasma, causing 

damage to glomerular cells and deposition of complement products in the GBM. 

Age-related macular degeneration (AMD), the most common cause of blindness 

in the elderly in developed countries, is characterized by drusen, lipoproteinaceous 
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deposits localized between the retinal pigment epithelium (RPE) and Bruch´s 

membrane, that lead to an extensive atrophy of the RPE and overlaying photoreceptor 

cells (geographic atrophy, GA) or aberrant choroidal neovascularization (CNV) under 

the macular area. AMD and DDD share pathological similarities with accumulation of 

complement-containing debris within the eye and kidney respectively. Indeed, AMD-

like pathology is well-recognized in patients with DDD 25. The identification of CFH as 

a major susceptibility locus for AMD and the characterization of multiple genetic 

variants in the CFH genomic regions conferring risk or protection to AMD indicate that 

the complement system plays a significant role in AMD pathogenesis 26-30. However, 

CFH association data showed no overlapping between CFH at-risk polymorphisms for 

aHUS and AMD 20. 

The peculiar genotype-phenotype correlation between specific CFH genetic 

variations and a particular disease contrast with the situation of the CFH I890 and 

L1007 variations (in SCR 15 and SCR 17, respectively) that have been repeatedly 

reported associated with aHUS and are also found in DDD and AMD patients 29, 31-33. 

To characterize the functional consequences of these CFH genetic variations we have 

purified the different FH protein variants to homogeneity from the plasma of 

appropriate carriers and tested their capacity to bind to surface-bound C3b, analyzed 

their cofactor activity in the FI-mediated inactivation of fluid phase C3b and performed 

FH-dependent hemolytic assays. None of these assays showed functional alterations in 

the regulatory activity of the FH, which strongly suggest that they are rare FH 

polymorphisms without functional consequences. 
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RESULTS 

Sequencing analyses of the CFH gene in the aHUS (n=259) and DDD (n=19) 

Spanish cohorts identified four aHUS patients (H54, H97, H142 and H244) and one 

DDD patient (GN3) carrying two nucleotide changes (c.2669 G>T; S890I and c.3019 

G>T; V1007L) in heterozygosis. The same c.2669 G>T and c.3019 G>T nucleotide 

changes were also detected in heterozygosis in two out of 173 controls, an occurrence 

that is not significantly different to that found in patients. These Complement profiles 

and clinical data of the aHUS and DDD patients carrying the S890I and V1007L amino 

acid changes, as well as additional genetic alterations in other complement genes found 

in these patients are summarized in Table 1. 

Two aHUS pedigrees were available for segregation analysis. In both cases it 

was demonstrated that the patients inherited both nucleotide changes (c.2669 G>T and 

c.3019 G>T) from the same progenitor, illustrating that they were carried by the same 

CFH allele. Further analyses of several SNPs within the CFH gene demonstrated that in 

all carriers, these I890 and L1007 amino acid changes associated with the same CFH 

haplotype, suggesting a single evolutionary origin for the I890/L1007 CFH haplotypes 

identified in the aHUS, DDD and control individuals (Table 2). Interestingly, the 

I890/L1007 CFH haplotype carries the AMD and DDD risk polymorphism His402, 

which may have implications for its association with AMD and DDD. The I890/L1007 

CFH haplotype is probably old. This is supported by the existence of I890/L1007 CFH 

“recombinant” haplotypes like that of H97, affecting the promoter region of CFH or the 

genomic rearrangement that resulted in the generation of the CFH::CFHR1 hybrid gene 

in H142. 
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As indicated, the I890/L1007 CFH haplotype in H142 is remarkable because, in 

addition, it encodes a CFH::CFHR1 hybrid gene that resulted from a non-homologous 

recombination between the CFH and CFHR1 genes. Thus, the FH protein encoded by 

this CFH allele carries a total of four amino acid changes compared to a normal CFH 

allele: I890 and L1007 and another two (L1191 and A1197) characteristic of the exon 6 

of CFHR1 fused to the exon 23 of CFH in the CFH::CFHR1 hybrid gene (Table 2) 34. 

To purify the I890/L1007 FH variant from non-mutated FH in heterozygote 

carriers we used affinity chromatography with the MBI-7 anti-human FH monoclonal 

antibody 35. This antibody specifically recognizes the H402 variant of FH and was used 

to capture the FH allele carrying the I890 L1007 amino acid changes from the plasma of 

patients H54 and H142, who are FH Y402H heterozygotes. The eluted protein was 

further purified by gel filtration and concentrated free of contaminants. We followed the 

same protocol to purify the S890/V1007 FH allele from control FH Y402H 

heterozygote donors (Figure 1). After quantification by ELISA, the purified proteins, 

S890/V1007, I890/L1007 and I890/L1007/L1191/A1197, were tested functionally in a 

number of different assays. 

To test whether the I890/L1007 amino acid changes affect the cofactor activity 

for the FI-mediated proteolysis of C3b, S890/V1007 and I890/L1007 FH variants were 

mixed with C3b and incubated in the presence of FI at 37ºC. After densitometric 

analysis of coomassie stained gels, the ratio between α´chain/βchain of C3b was used to 

calculate the percentage of C3b cleavage. As illustrated, no differences in the cofactor 

activities between FH variants S890/V1007 and I890/L1007 (Figure 2A,B) or between 

S890/V1007 and I890/L1007/L1191/A1197 (Figure 2A,B,C) were appreciated, 

indicating that these amino acid substitutions do not have a significant effect on the 

cofactor activity of FH. As a control that our assays have appropriate sensitivity to 
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detect small functional alterations we have included in these experiments the V62 and 

I62 FH polymorphic variants previously, which shown to present slightly differences in 

their FI cofactor activities 36 (Figure 2D)  

To explore the effect of the I890/L1007 amino acid changes in the interaction 

with C3b we performed a C3b binding plate assay. Purified C3b was immobilized on 

microtiter plates and identical quantities of the I890/L1007 and S890/V1007 FH 

variants were added and allowed to interact for two hours at 37°C. FH bound to C3b 

was detected using the Ox24 monoclonal antibody. FH was quantified in parallel in the 

same ELISA experiment. Our results show that the binding to C3b of the purified FH 

protein I890/L1007 was undistinguishable from that of the control FH S890/V1007 

(Figure 3A). These results indicate that the amino acid changes in the SCR 15 and 17 do 

not alter the capacity of FH to bind C3b. We also used in these experiments the V62 and 

I62 FH polymorphic variants as it has also been shown previously that they present 

slight differences in their C3b-binding capacity 36 (Figure 3B). 

To investigate the potential effect of the I890 and L1007 amino acid changes 

in the regulatory activity of FH on cell surfaces, the S890/V1007 and I890/L1007 FH 

variants were tested in a FH-dependent hemolytic assay developed in our laboratory. In 

these assays a human serum carrying a well-characterized CFH mutation that alters the 

C-terminus of FH 18, was reconstituted with identical amounts of the S890/V1007, 

I890/L1007 or I890/L1007/L1191/A1197 FH variants and incubated with sheep 

erythrocytes in the presence of 7 mM Mg2+ and EGTA. Lysis of erythrocytes in this 

assay inversely correlates with the capacity of FH to regulate the alternative pathway on 

the cellular surface. Our results indicate that the I890/L1007/L1191/A1197 FH variant 

presents decreased inhibition of the erythrocyte lysis compared with the native non-

mutated variant of FH (figure 4B). This reduced capacity to regulate the alternative 
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pathway on the cellular surface was expected because this FH variant is also the product 

of a CFH::CFHR1 hybrid gen 34. In contrast, the FH variant from H54 showed no 

difference with the FH control and demonstrated to act efficiently in the protection 

against erythrocyte lysis. These data, again, indicates that the S890I and V1007L amino 

acid substitutions are not altering the capacity of FH to regulate the complement AP on 

the cellular surface. 
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DISCUSSION 

Mutation screening of complement genes in aHUS, DDD and AMD has become 

a laboratory routine. Identification of mutations helps diagnosis and provides useful 

information to anticipate the evolution of the disease in the patients and their response 

to treatments, conditioning clinical decisions. For example, among aHUS patients, those 

carrying CFH mutations have the worse prognosis and poorest renal transplantation 

outcomes, although they associate with good responses to plasma treatment. In addition, 

identification of mutations and polymorphisms associated with increased risk to these 

pathologies also influence the genetic counselling provided to patients and their 

relatives. It is therefore critical to obtain evidence supporting that the disease-associated 

mutations identified in these screenings have a causal relationship with the pathology. 

Here we have studied two FH amino acid substitutions, I890 and L1007, lacking these 

functional information that have repeatedly been found among Spanish aHUS and DDD 

patients and that have also been reported associated with aHUS in other Caucasian 

cohorts 31-33. In addition, S890I and V1007L were described as rare polymorphisms 

associated with AMD 29. 

The peculiar concurrence of both S890I and V1007L amino acid substitutions in 

all these cases is explained by the segregation analysis performed here in two aHUS 

pedigrees that revealed that these two amino acid changes segregate together with a 

unique CFH haplotype characterized by a specific combination of SNPs (Table 2). The 

high allelic frequency of the S890I and V1007L polymorphisms in Sub-Saharan African 

(0,267; 0,317) and African American (0,455; 0,591) populations (rs515299 and 

rs534399, respectively), suggest that this CFH haplotype has an African origin and was 
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introduced in Caucasians some time ago. In support of this conclusion, one of the 

patients in our cohort carrying this haplotype (H244) has a Sub-Saharan African origin. 

Carriers of the I890/L1007 CFH haplotype present normal FH levels in plasma 

with a contribution of the I890/L1007 FH allele of approximately 50% (Table 1). These 

data illustrate that these amino acid substitutions do not influence the 

expression/secretion of FH. To characterize the potential consequences of the S890I and 

V1007L substitutions in the functional activities of FH we performed three different 

functional assays using purified FH proteins. We tested the capacity of the I890/L1007 

FH variant to bind to surface-bound C3b, analyzed its cofactor activity in the FI-

mediated inactivation of fluid phase C3b and performed a FH-dependent hemolytic 

assay to determine its capacity to regulate the alternative pathway on cellular surfaces. 

None of these assays showed functional alterations in the regulatory activity of FH. This 

failure to detect functional alterations caused by the S890I and V1007L substitutions is 

not a consequence of a lack of sensitivity of our assays. They clearly revealed the subtle 

functional differences caused by the FH Val62Ile polymorphism or by the modification 

of the C-terminal region of FH that occurs in the CFH::CFHR1 hybrid gene 34, 36. We, 

therefore, concluded that the FH S890I and V1007L variants are most likely CFH 

polymorphisms without functional consequences. Furthermore, recent structural data 

have shown that SCR15 and SCR17, including these variations, are not implicated in 

the interaction between FH and C3b (Morgan et al. 2011). 

Carriers of the I890/L1007 CFH haplotype in the Spanish aHUS cohort present 

other well-characterized mutations and/or polymorphisms in complement genes that 

may help to explain the development of the disease in these individuals. Thus, patient 

H54 carries in homozygosis the aHUS-conferring risk allele MCPggaac 37; Patient H97 
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also carries in homozygosis the MCPggaac allele and, in addition, the mutation C86Y in 

the FI gene which produces a partial deficiency of FI in plasma (Table 1); and in patient 

H142, the I890/L1007 CFH haplotype also carries a CFH::CFHR1 hybrid gene, which 

produces a FH protein with reduced capacity to regulate the alternative pathway on 

cellular surfaces (Figure 4B) 34. Similarly, patient GN3 is positive for C3 nephritic 

factor (C3Nef). Lastly, an increased frequency of the I890/L1007 CFH haplotype in 

DDD and AMD should be expected because this CFH haplotype also carries the CFH 

H402 allele (rs1061170), a very strong risk factor for both AMD and DDD 20, 26. 

In conclusion, we failed to provide evidence supporting a causal relationship of 

I890/L1007 with aHUS. The lack of functional consequences of the CFH S890I and 

V1007L amino acid substitutions, their presence in healthy individuals and their very 

high frequency in Sub-Saharan African and African American populations strongly 

suggest that S890I and V1007L are rare FH polymorphisms unrelated with the disease.  
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MATERIALS AND METHODS 

Complement analysis, mutation screening and genotyping. 

C3 and C4 concentrations were determined by nephelometry (Immage®, 

Beckman Coulter) and FH plasma concentration was quantified by a specific sandwich 

ELISA method using polyclonal and monoclonal antibodies developed in house that 

does not cross react with the CFHRs proteins.  No C3Nef was measured in serum 

plasma by standard procedures 38. Patients and healthy volunteers were screened for 

mutations and polymorphisms in the CFH, MCP, CFI, CFB, C3 and THBD genes by 

automatic DNA sequencing of PCR amplified fragments. Genomic DNA was prepared 

from peripheral blood cells according to standard procedures. Each exon was amplified 

from genomic DNA by using specific primers derived from the 5’ and 3’ intronic 

sequences as described 15, 39-41. Automatic sequencing was performed in an ABI 3730 

sequencer using a dye terminator cycle sequencing kit (Applied Biosystems, Foster 

City, CA). Copy number variations in the CFHR1-R3 genes were analyzed by MLPA as 

described 42. The studies described herein received IRB approval (Comision de 

Bioetica, Consejo Superior de Investigaciones Científicas and CEIC, Hospital 

Universitario La Paz, Madrid, Spain). Patients and their relatives gave their informed 

consent.  

Proteins 

FH allele carrying the mutations I890 and L1007 was isolated from fresh plasma 

of aHUS patient H54 and a relative of the aHUS patient H142. We used a CNBr-

activated sepharose 4B (GE healthcare) column coupled with the monoclonal antibody 

MBI-7 that exclusively recognizes the FH H402 protein variant 35. Fractions containing 
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FH were collected, concentrated and applied to a gel-filtration column (Superose 6, GE 

Healthcare). Fractions containing the FH were pooled and purity of final preparations 

was confirmed in SDS-PAGE coomassie stained gels (Figure 1). C3 was purified by 

affinity chromatography and gel filtration as described previously 43. C3b was generated 

by limited digestion with trypsin and re-purified by gel filtration as described above. 

C3b was obtained without any detectable contaminants or aggregates. Factor I was 

purchased from Comptech (Tyler, TX). Concentration of sample proteins was assessed 

using absorbance at 280 nm and molarities were calculated using an extinction 

coefficient for CFH of 1.95 35 and for C3 of 0.98 (Protean Software, DNAStar).  

Cofactor activity for FI-mediated proteolysis of fluid phase C3b 

The fluid-phase cofactor activity of FH was determined in a C3b proteolysis 

assay using purified proteins. In brief, C3b, FH and FI were mixed in 10 mM Hepes pH 

7.5, 150 mM NaCl, 0.02% Tween 20 at final concentrations of 50 μg/ml, 4 μg/ml and 

2.5 μg/ml, respectively. Mixtures were incubated at 37ºC during 10 minutes. In another 

set of assays, samples were collected at 2.5, 5, 7.5 and 10 minutes of incubation. The 

reactions were stopped by the addition of 3μl of SDS sample buffer (2% SDS, 62.5 mM 

Tris, 10% Glycerol, 0.75% Bromophenol Blue). Samples were analyzed in 10% SDS-

PAGE under reducing conditions. Gels were stained with Coomassie brilliant blue R-

250 (BioRad) and proteolysis of C3b determined by measuring the cleavage of the 

α’chain using a GS-800 calibrated densitometer (BioRad) and the MultiGauge software 

package (Fujifilm). The C3b βchain was used as an internal control to normalize the 

amount of protein added between samples. Percentage of cleavage was determined by 
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the ratio between α´chain/βchain of C3b and setting as 0% of proteolysis by using a 

control FH in the absence of FI. 

 

 

ELISA C3b–binding assay 

The binding of FH variants to surface-bound C3b was determined by ELISA 

method. 96-well polystyrene microtiter plates were coated with C3b (2.5 μg/ml) in 

coupling buffer (0.1 M NaHCO3 pH 9.5) overnight at 4ºC. The plate was blocked with 

washing buffer (20 mM Tris, 150 mM NaCl and 0.1% Tween 20) with 1% Bovine 

Serum Albumin for 1 hour at room temperature (RT). After washing, serial dilutions of 

FH variants (starting dilution was 2.5μg/ml) were added and incubated with surface-

bound C3b for 2 hours at 37ºC. After washing, the plate was incubated with anti-FH 

monoclonal antibody Ox24 for 1 hour at RT, and then with a secondary antibody 

coupled with horseradish peroxidase (DAKO). Colour reaction was developed with o-

phenylene-diamine (DAKO) and absorbance measured at 492 nm. FH preparations used 

in the ligand assay were quantified in duplicate in the same ELISA plate using 

immobilised polyclonal anti-FH antibody to capture FH followed by the Ox24 and 

secondary antibodies to measure the amount of FH. Concentrations of FH were 

calculated from curves obtained using purified standard samples. 

Factor H-dependent hemolytic assay 

The capacity of FH to regulate the activity of the AP on cellular surfaces was 

assessed with a hemolytic assay using sheep erythrocytes and a serum carrying a well-
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characterized CFH mutation, FH-W1183L 18. In brief, 1x107 sheep erythrocytes in AP 

buffer: VBS (2.5 mM barbital, 1.5 mM sodium barbital, 144 mM NaCl, pH 7.4) with 7 

mM MgCl2 and 10 mM EGTA, were incubated with 10% FH-W1183L serum in AP 

buffer and increasing amounts of the different FH variants for 30 minutes at 37 °C. The 

reaction was stopped by adding VBS 20 mM EDTA. After centrifugation, supernatants 

were read at 414 nm. FH variants I890/L1007 and I890/L1007/L1191/A1197 were 

compared to the same control FH variant, S890/V1007, in two independent assays. 

S∆FH without added FH was taken as 100% of lysis and serum diluted in AP buffer 

plus 20 mM EDTA were used as blank for spontaneous lysis. 
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TABLE 1. Clinical and complement data of patients carrying the CFH I890 and L1007 genetic variants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 aHUS DDD 
 H54(1) H97 H142(2) H244(3) GN3(4) 

Age of onset (years) 51 41 3.5 1 5.5 

C3 (700-1400 µg/ml) 59 123 94,3 135 135 

C4 (140-470 µg/ml) 7 24,5 24,2 31,5 31,5 

Total FH (116-562 µg/ml) 127,4 256,8 150 316 161,8 

% FHI890-L1007* 46% 47% 56% - - 

FI (75-115%)** 99% 52% 104% 80% 103% 

Additional mutations none CFI C86Y CFH::CFHR1 
hybrid gene none none 

Del CFHR1-CFHR3 none none het none none 

Autoantibodies none none none none C3Nef 

Renal status (outcome)*** Deceased ESRD ESRD MRI MRI 

Transplantation (recurrences) none Yes (no) Yes (no) none none 
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(1) Male patient who was diagnosed of post-transplant HUS (microangiopathic hemolytic anemia with schistocytes, and renal 

failure) associated with Tacrolimus and Cyclosporin threatment. He died one month later from pneumonia caused by 

Acynetobacter and Aspergillus.  

(2) After almost 4 years of haemodialysis, this male patient received a cadaver kidney transplant on September 2010. He was treated 

with eculizumab (Soliris®) before transplantation and every 15 days afterwards, following the protocol recommended by 

Alexion Pharmaceuticals. He is actually in good condition. 

(3) This is male child from Nigeria. He developed HUS after diarrhoea and a respiratory infection. He was under peritoneal dialysis 

and recovered partial renal function. No recurrences. Actually present moderate renal insufficiency 

(4) Diagnosis of DDD in this patient was established on the basis of renal biopsy (light microscopy, immunofluorescence and 

electron microscopy) performed at presentation of the disease. It was observed moderate mesangial hipercellularity and 

increased mesangial matrix without double-contour in the capillary walls. Immunofluorescence showed intense isolated 

granular C3 staining  in the capillary walls and in the mesangium as nodular ring forms, negative for immunoglobulins or 

other complement proteins. EM revealed abundant electrondense ribbon-like deposits within the GBM and local electrondense 

deposits in the mesangium. The presentation was a nephritic syndrome with microhematuria and without proteinuria. He 

showed persistence hypocomplementemia C3 (8 mg/dl) and four months after was C3NeF positive. This situation was 

maintained for 12 years. In 1992, at age 20 years old, he presented proteinuria 5.75 g/day; Serum Creatinine: 1,0 ; Creatinine 

Clearance: 147ml/min  and was remained C3Nef positive. He was treated with Prednisone. By 2007, after 33 years of 

evolution, the C3Nef titters were only detected as traces, with normalization of C3 levels and with an almost complete 

remission of the proteinuria after combined ACEI and ARB therapy. He presented ocular manifestations of AMD (drusen) at 
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age 33. The patient actually presents a moderate renal insufficiency (Creatinine: 1,9 ; Creatinine Clearance: 65 ml/min ) and 

proteinuria 1,2 g/day.  

* In FH His402Tyr heterozygotes, levels of expression of the FHI890-L1007 alelle were determined by ELISA using anti FH 

402His specific antibodies35.  

**  Factor I levels are referred to a reference pool of sera. 

***  ESRD, end stage renal disease; MRI, moderate renal insufficiency. 



  29 

. 

TABLE 2. CFH haplotypes carrying the FH I890 and L1007 amino acid substitutions. 

 

 

Promoter 
-232 C>T 

V62I 
c.184 G>A 

Y402H 
c.1204 T>C 

Q672Q 
c.2016 A>G

E936D 
c.2808 G>T 

S890I 
c.2669 G>T 

V1007L 
c.3019 G>T 

S1191 
c.3645 C 

V1197 
c.3663 T 

N1 C G C A G T T C T 

N2 C G C A G T T C T 

H54 C G C A G T T C T 

H244 C G C A G T T C T 

GN3 C G C A G T T C T 

H97 C A C A G T T C T 

H142 C G C A G T T C T 
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FIGURE LEGENDS 

 

Figure 1. SDS-PAGE coomassie-stained gel of the purified FH variants.  

The S890/V1007, I890/L1007 or I890/L1007/L1191/A1197 FH variants were purified 

from the plasma of a healthy individual and the aHUS patients H54 and H142, as 

described in Materials and Methods. 

 

Figure 2. Cofactor activity of FH variants in the proteolysis of fluid phase C3b. 

C3b and FI were incubated with equal amounts of either S890/V1007, I890/L1007 or 

I890/L1007/L1191/A1197 FH variants for 10 minutes at 37ºC and the reaction was 

stopped by the addition of SDS sample buffer. Samples were analyzed by SDS-PAGE 

under reducing conditions and gels were Coomassie-stained (a). A densitometric 

analysis of C3b proteolysis from triplicates of these experiments is shown in (b). A 

time-course analysis of C3b proteolysis is shown in (c). Fluid phase cofactor activity 

was measured be examining C3b cleavage at 2.5, 5, 7.5 and 10 minutes reaction for 

both control S890/V1007 (filled triangles) and I890/L1007/L1191/A1197 (open 

triangles) FH variants. Percentage of cofactor activity was determined by the ratio of 

C3b cleaved,  α´chain/βchain, and normalized to 0% proteolysis of control samples. 

Inset panel shows the double reciprocal plot of the S890/V1007 (open circles) and 

I890/L1007/L1191/A1197 (filled circles) of the cofactor activity curves. Multiple linear 

regression analysis showed no significant differences between the slopes for 

S890/V1007 and I890/L1007/L1191/A1197 cofactor activities. The sensitivity of our 

assay was demonstrated by including in the experiment a S890/V1007 FH carrying the 

I62 polymorphism (open circles). 
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Figure 3. Capacity of the FH variants to bind to C3b. 

The interaction between serial dilutions of purified FH with C3b deposited in 96-well 

plates is expressed as percentage of the amount of S890/V1007 FH variant bound to 

C3b at a concentration of 2.5 μg/ml. Means ± S.D. of three independent experiments are 

shown for I890/L1007 (open triangles), two samples of the S890/V1007 FH variant 

(filled triangles and filled circles) and for a S890/V1007 FH carrying the I62 

polymorphism (open circles). This last one sample illustrate the sensitivity of our assay. 

 

Figure 4. Inhibition of the lysis of sheep erythrocytes by the FH variants. 

A volume of serum from a control patient carrying a well-characterized mutation in 

CFH giving 100% lysis when added to sheep erythrocytes was mixed with different 

amounts of the purified FH variants. The lysis observed is shown as percentage of the 

lysis in the absence of added FH and was plotted against added FH. Means ± S.D. of 

three independent experiments are shown for S890/V1007 (open circles) and 

I890/L1007 (filled circles) (a) and for S890/V1007 (open circles) and 

I890/L1007/L1191/A1197 (filled circles) (b). Statistical differences as follows: *: 

p<0,05; **: p<0,01; ***: p<0,001. 
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