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Several ecosystem services directly depend on mutualistic interactions. In species rich communities, these interactions can 
be studied using network theory. Current knowledge of mutualistic networks is based mainly on binary links; however, 
little is known about the role played by the weights of the interactions between species. What new information can be 
extracted by analyzing weighted mutualistic networks? In performing an exhaustive analysis of the topological properties 
of 29 weighted mutualistic networks, our results show that the generalist species, defined as those with a larger number of 
interactions in a network, also have the strongest interactions. Though most interactions of generalists are with specialists, 
the strongest interactions occur between generalists. As a result and by defining binary and weighted clustering coefficients 
for bipartite networks, we demonstrate that generalists form strongly-interconnected groups of species. The existence of 
these strong clusters reinforces the idea that generalist species govern the coevolution of the whole community.

In  the  past  few  years,  several  studies  have  used  complex  
network theory to unveil hidden secrets of nature. The pat-
terns  of  interactions  between  species  provide  information 
about  the  stability  of  ecological  communities  (Solé  and 
Montoya 2001, Rezende et al. 2007, Stouffer and Bascompte 
2010),  give  a  clue  to  understand  their  diversity  (Bastolla  
et  al.  2009),  help  us  to  assess  ecosystem  services  (Dobson  
et  al.  2006),  and  enlighten  us  about  the  coevolutionary  
process  (Thompson  2006).  Further  understanding  of  the 
architecture of complex ecological networks will shed more 
light onto these questions.

One  kind  of  ecological  network,  mutualistic  networks, 
depicts  the  interactions  of  mutual  benefit  between  species 
in a community. Here, a set of species A, generally animals, 
interacts with another set of species P, generally plants, but 
there  are  no  interactions  within  sets.  Such  a  network  can 
also be referred to as a bipartite network. Species are repre-
sented as nodes, and the interactions between these species 
are represented by links. The information about interactions 
can  be  binary,  where  a  link  indicates  just  an  interaction 
between two species, or can be weighted, where the weight 
represents  how  strong  that  interaction  is  (Bascompte  and 
Jordano 2007).

While  the  aforementioned  works  have  analyzed  the  
structural properties of mutualistic networks in their binary 
representation, a smaller but growing number of papers have 
analyzed  the  relevance  of  interaction  weights.  A  seminal  
work by Bascompte and coworkers (Bascompte et al. 2006), 
found that the asymmetry of dependences (Jordano 1987) 
between  species  in  an  interaction  allows  for  greater  biodi-
versity. Scotti et al. (2007), analyzed how the rank of species 

importance, based on their position in the network, changes 
when  considering  interaction  weights.  Though  the  ranks 
where very different in food webs, they found smaller differ-
ences in plant–pollinator networks. Blüthgen et al. (2008), 
apply  information  theory  measures  to  characterize  the 
degree of specialization in quantitative mutualistic networks. 
Hwang et al. (2009), showed that species strength, defined 
as species’ total number of visits, is correlated with species 
degree in six plant–pollinator networks. Despite these first 
studies, the complete structure of weighted mutualistic net-
works, and how interaction weights are related to network 
structure, is still poorly known.

For  the  majority  of  mutualistic  networks,  interaction 
weights are usually measured as the number of recorded vis-
its  (Supplementary  material  Appendix  1 Table  A1).  Other 
interaction weight measures include the number of indivi-
duals caught, the frequency of visits, or the number of fruits 
removed  in  dispersal  networks.  It  has  been  demonstrated 
that pollinators differ in their pollination effectiveness quali-
tatively  (Herrera  1987)  and  quantitatively  (Herrera  1989), 
as  do  the  same  for  seed  dispersers  (Schupp  et  al.  2010).  
Nevertheless, Vazquez et al. (2005) showed that interaction 
frequency can be used as a surrogate for the total effect of  
one  species  on  another  in  a  mutualistic  community.  With 
this  in  mind,  we  expect  that  the  patterns  from  weighted  
networks described here will not qualitatively change when 
considering different measures of interaction weight.

Let  us  first  describe  traditional  network  characteristics 
for unweighted mutualistic networks. The standard way to 
characterize a species is by its degree, which is defined as its 
number of interactions with other species. Degree provides 
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a first hint about the species’ functional role in the network.  
Although  measuring  specialization  in  the  field  may  be  
challenging,  in  the  grounds  of  both  ecological  (Waser  and 
Ollerton 2006) and coevolutionary (Thompson 2005) the-
ory, specialization is here defined as the number of species 
a  focal  species  interacts  with.  This  widely  used  definition 
establishes a gradient between generalist and specialist spe-
cies.  Therefore,  the  most  connected  species  are  generalists 
whereas  specialists  have  few  interactions.  At  the  network 
level,  a  first  characterization  of  network  structure  is  given 
by  the  degree  distribution.  This  is  the  frequency  distribu-
tion of the number of links, or degree, per species. Jordano 
and coworkers studied the degree distributions of 29 plant– 
pollinator and 24 plant–frugivore networks (Jordano et al. 
2003). Most of the networks exhibited degree distributions 
with  a  truncated  power-law  regime.  This  means  that  most 
species have very few links while few species have many more 
interactions  than  would  be  expected  by  random  networks 
with similar properties.

Not all interactions, however, are equally strong. That is 
to say, species with several interactions will have interactions 
of varying weights. The unweighted network, therefore, may 
not tell the whole story (Jordano 1987). In a weighted net-
work, the sum of the weights of all interactions of a species 
gives the species’ strength. Strength is the weighted analog to 
species’ degree, and is a measure of the centrality of a species 
in the network. Species centrality is correlated with the spe-
cies’ pattern of interaction and its functional role in a com-
munity or Eltonian niche (Elton 1927). The strength of an 
species i, si, was defined by Barrat et al. (2004) as

s a wi ij ij
j 1

N



∑

 
(1)

where  a  is  the  adjacency  matrix  whose  elements  aij  take  
the value 1 if a link connects species i to the species j and 0 
otherwise. The weight of the every link is given by the matrix 
w and N is the total number of nodes. In this paper, we have 
used  the  literal  definition  of  Barrat  and  coworkers,  where 
the  weight  wij  of  a  link  represents  the  number  of  the  visits 
between these species, being wij  wji. Nevertheless Bascompte 
et al. (2006) defined a similar species strength as the sum of 
the dependences, d, of all animals on a specific plant or the 
sum of dependences of all plants on a specific animal. They 
found  the  dependences  matrix  to  be  asymmetric,  being  dij 
different from dji.

A  node’s  degree  and  strength  are  measures  that  provide 
information  about  the  centrality  of  a  single  species  within 
a  network  structure.  Previous  studies  traced  a  relationship 
between node’s degree and the relevance of that node to the 
structural stability of the network (Solé and Montoya 2001). 
Species in a network can be ranked according to this criterion 
of node relevance (Scotti et al. 2007), this sort of relevance is 
known as node’s centrality. Throughout the paper, we explore 
some characteristics of species within their communities that 
are plotted as a function of node’s degree. We can therefore 
study how some species properties change according to their 
relevance for community stability.

Here, we ask the question of what new information can 
be extracted by analyzing weighted mutualistic networks. We 
develop and compare equivalent metrics in unweighted and 

weighted networks and examine to what extent the observed 
patterns  change  and  why.  What  new  questions  can  be 
addressed by using quantitative networks? How do our results 
complement  previous  work? To  answer  these  questions,  we 
examine a set of statistical measures (Barrat et al. 2004), such 
as: distribution of weights, strength-degree correlation, aver-
age  weight  as  a  function  of  end-point  degree,  and  average 
nearest-neighbors’  degree.  Furthermore,  we  introduce  two 
new  clustering  measures  for  binary  and  weighted  bipartite 
networks that provide novel information about whether spe-
cies tend to be organized in small interconnected groups.

Material and methods

We have analyzed the topological properties of twenty nine 
weighted  mutualistic  networks.  Twenty  of  them  represent 
interactions  between  plants  and  pollinators,  six  represent 
interactions  between  plants  and  seed  dispersers,  and  three 
networks  represent  interactions  between  ants  and  trees  
(Supplementary  material Table  A1).  With  these  networks, 
we have calculated several metrics commonly used in com-
plex networks analysis. We then quantified the structure of 
the mutualistic networks taking into account the weight of 
the interactions. This allows us to answer several questions, 
as detailed in the following.

1)  What  is  the  relationship  between  species’  strength 
and its degree? To answer this question we plot the average 
strength of species with the same degree as a function of spe-
cies degree, k. Barrat et al. (2004) showed that this relation-
ship is well fit by the curve:

s(k) ~ kb (2)

Since  species’  degree,  k,  and  species  strength,  s,  are  corre-
lated, but not necessarily linearly, the parameter b provides 
information  about  the  shape  of  this  correlation.  One  pos-
sibility is that those species with a larger degree have many 
interactions but with low weights and thus a low strength. In 
these networks, the importance of highly-connected species 
would be lower than that predicted by its degree. This behav-
ior  would  correspond  to b  1.  Another  possibility  is  that 
interaction  weights  are  randomly  distributed.  In  this  case, 
corresponding to b » 1, degree and strength exhibit a linear 
correlation and both measures provide the same information 
about species’ importance. In this null case, we can approxi-
mate  interaction  weight  between  every  two  species,  wij,  as 
the  average  interaction  weight  across  the  community.  The 
third possibility is that highly-connected species tend to have 
stronger interactions than the average interaction weight. In 
this case, species’ degree and species’ strength are not linearly 
correlated, and just considering species’ degree would under-
estimate the importance of the most-connected species and 
overestimate the importance of less connected species. This 
third case corresponds to b  1.

2)  Are  links  between  generalists  stronger  than  links 
between specialists? Not all interactions from a species have 
the same weight. Species exhibit preferences for some of the 
other  species  that  they  are  connected  to.  How  do  species 
tend  to  allocate  their  visits?  One  way  to  answer  this  ques-
tion is to calculate the dependence of the weight, wij, on the 



end-point  degree  of  a  link  (Barrat  et  al.  2004).  End-point 
degree of a link is the product ki · kj of the degrees of the two 
nodes connected by that link. Barrat and coworkers shown 
that the average weight as a function of end-point degree can 
be approximated in some cases as

w(k k ) (k k )i j  i j  ∼
 

(3)

where w(ki  kj) represents the average weight of links with 
a certain end point degree. If the exponent q is greater than 
zero, there is a positive correlation between end-point degree 
and  the  average  weight  of  a  link.  In  this  case,  highly- 
connected nodes tend to be linked via strong interactions. If 
the exponent q is below zero, the opposite occurs.

These  two  previous  measures  provide  extra  information 
about the importance of the node in the network, informa-
tion that can be only obtained from weighted networks. To 
quantify the structural organization of the network, we can 
explore other measures such as the clustering coefficient. The 

clustering coefficient of a species in unipartite networks such 
as food webs, where all nodes are of the same type and links 
are allowed between any two nodes, measures the fraction of 
interconnected  neighbors  of  a  given  node,  i.e.  the  fraction 
of species, connected to a focal species, that are connected 
themselves.  Networks  with  a  large  clustering  coefficient, 
and with a small average number of links between any two 
nodes in the network are referred to as ‘small worlds’ (Watts 
and Strogatz 1998). Mutualistic networks have small world 
properties (Olesen et al. 2006). Therefore, what affects one 
species  will  indirectly  affect  all  species  to  which  it  is  con-
nected  and  so  on.  The  clustering  coefficient  can  thus  have 
large  implications  for  how  fast  a  perturbation  propagates 
across the network (Pastor-Satorras and Vespignani 2001).

Since  mutualistic  networks  are  bipartite  graphs,  plants 
linked to an animal cannot interact with other plants, and 
vice  versa.  Unfortunately,  the  traditional  clustering  coeffi-
cient is therefore always zero. To get around this, the stan-
dard way to calculate the clustering coefficient is to project 

Figure 1. Schematic illustration of how to compute unweighted and weighted bipartite clustering coefficient following Eq. 5 and Eq. 6. (a) 
The example graph is represented as a matrix w, where 0 represents no interaction and non-zero values indicate the weight of the link between 
two species. In the matrix representation, animals appear in rows and plants in columns. The colored boxes contain the nodes’ labels, red for 
animals and green for plants. (b) The network can also be represented as a graph, where species are linked by lines with their width propor-
tional to link weight. (c) In this example, we calculate both clustering coefficients for the species labeled i  1, which is the animal corre-
sponding to the first row of w matrix, with k1  3; s1  21; q1  2; knn

1  3. It takes part in two quadrilaterals formed by nodes (1-6-2-5) and 
(1-7-3-5), respectively. In the example, the weighted clustering coefficient is greater than the unweighted clustering coefficient.



C (i)
q

k k k 1 /24b
i

i
nn

i i


 2( )  

(5)

Succinctly,  C4b(i)  is  the  probability  that  two  neighbors  of 
species i share another neighbor in addition to i.

3)  Are  clusters  formed  by  strong  or  weak  interactions?  
Are  we  over  or  underestimating  clustering  coefficient  of 
networks  when  ignoring  link  weight?  If  quadrilaterals  are 
formed by strong interactions between species, clusters will 
play a larger role in both community structure and dynamics 
than if they are formed by weak interactions. To be able to 
answer this question, we also introduce a weighted cluster-
ing  coefficient  for  bipartite  graphs,  Cw

4b(i),  which  is  a  gen-
eralization  of  C4b(i).  Figure  1  also  shows  how  to  calculate  
Cw

4b (i). In the weighted version, the number of quadrilaterals 
is  multiplied  by  the  average  normalized  weight  of  the  two 
links connecting node i. This expression is given by
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where qimn is the number of quadrilaterals formed with near-
est neighbors m and n, and w~im and w~in are the normalized 
weights of the links between i and m and between i and n, 
respectively; where
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Normalizing the weights ensures that the clustering coeffi-
cient will take a value between 0 and 1.

To compare between binary and weighted networks, we  
will  calculate  the  average  clustering  coefficient  C—4b  and  
the  average  weighted  clustering  coefficient  C

—w
4b.  If  the 

weighted  clustering  is  larger  than  the  binary  one,  C
—w

4b/
C—4b  1,  species  form  highly  interdependent  clusters.  On 
the  other  hand,  if  weighted  clustering  is  smaller,  clusters  
are formed by links with low weight and will have a minor 

a  bipartite  graph  into  two  graphs  (Onody  and  de  Castro 
2004, Olesen et al. 2006). The first graph is for animals; two 
animals are connected if they share a plant in the bipartite 
graph.  The  second  graph  is  for  plants  following  the  same 
procedure.  Traditional  clustering  coefficient  analyses  can 
then be performed. This projection procedure is not without 
its problems, however. The original network structure is lost, 
and  the  meaning  of  links  is  changed.  In  plant–pollinator 
networks, for example, links in the bipartite network repre-
sent pollination interactions, but in the projected networks 
a link between two species represents niche overlap (Ribeiro 
Mello et al. 2011).

Another option that does not change the original structure 
of the graph or links’ meaning, is to calculate the clustering 
coefficient  for  cycles  of  four  connections,  C4,  as  suggested 
by Lind et al. (2005). In order to adapt their procedure to 
mutualistic  networks,  we  propose  a  specific  definition  of 
clustering coefficient for bipartite graphs, C4b, where inter-
actions  inside  a  set  don’t  exist.  We  call  all  species  that  are 
connected to a species i that species’ first neighbors. The sec-
ond neighbors of species i are then all species connected to 
their first neighbors but that are not directly connected to 
i. The bipartite clustering coefficient for an species i can be 
defined  as  the  fraction  of  common  connections  between  
second-nearest neighbors (not counting i). If a second-nearest 
neighbor is connected to two neighbors of node i, then one 
can find a quadrilateral formed by node i, by the two first 
neighbors that share a neighbor different from i (that node 
is a second-nearest neighbor of i), and by the species shared 
by the two first neighbors of i. In Fig. 1, we illustrate a case 
study to visually help to the calculation of C4b(i). The bipar-
tite clustering coefficient C4b(i) for node i is defined as

C (i)
q
Q4b

i

i



 
(4)

where  qi  is  the  number  of  observed  quadrilaterals  around 
node i and Qi is the total number of possible quadrilaterals 
around node i. The total number of possible quadrilaterals is 
the number of second-nearest neighbors, ki

nn, multiplied by 
the total number of pairs of neighbors given by ki(ki 2 1)/2. 
The bipartite clustering coefficient can then be defined as
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Figure 2. (a) Cumulative probability distribution of node degree for all species. The solid line is the fit to a truncated power-law P(k) » k2g 
exp(2k/kc) with parameters g  0.35  0.03 and kc  9.7  0.9. (b) Cumulative probability distribution of node strength for all species. 
The solid line is the fit to a truncated power-law P(s) » s2g exp(2s/sc) with parameters g  0.36  0.02 and sc  134  23.



effect on the network structure. If C
—w

4b/C
—

4b ≈ 1, binary clus-
tering  is  a  good  measure  for  clustering  in  mutualistic  net-
works, and incorporating link weights as we have in C w

4b is 
unnecessary to understand the clustering phenomenon.

4)  Will  generalist  species  tend  to  be  more  or  less  clus-
tered than specialist ones? Does this pattern change, when 
considering  the  weighted  clustering  coefficient? To  address 
these  questions,  we  compute  the  average  (unweighted  
and  weighted)  clustering  coefficient  of  species  with  the  
same degree k. We then plotted the C4b(k) and the C w

4b(k). 
These measures provide information about the small-world 
properties of mutualistic networks (Olesen et al. 2006).

5)  Do  species  tend  to  interact  with  species  that  have  a 
similar  number  of  links  than  themselves?  In  mutualistic 
networks, it is known that specialists tend to interact with 
generalists (Vázquez and Aizen 2004). This phenomenon is 
called disassortative mixing (Newman 2002). Will this pat-
tern be enhanced or disfigured by the consideration of link 
weights? To  answer  this  question,  we  compare  the  average 
nearest-neighbors’ degree, i.e. the average degree of all nodes 
linked to node i, with the weighted average-nearest neigh-
bors’ degree introduced by Barrat et al. (2004) as

k (i)
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In  Fig.  A2  of  the  Supplementary  material  Appendix  1,  we 
visually illustrate a case study to help calculate unweighted 
and weighted average-nearest neighbor’s degree.

The origin and interpretation of this metric is as follows. 
Since interaction weights are the number of recorded interac-
tions, we can reinterpret the weighted graph as a multigraph 
(Newman 2004) in which every visit, is now a link, and thus 
a  plant–animal  pair  can  share  multiple  links.  By  doing  so,  
we consider  that every  recorded  visit is  a  link between the 
two species. If the strongest interactions of a species occur 
with  their  most  connected  neighbors,  kw

nn(i)  will  be  higher 
than knn(i), and vice versa.

Results

If  we  focus  on  node-level  properties,  we  find  that  the  dis-
tribution of species’ strength is as heterogeneous as the well 
known  species’  degree.  Throughout  the  manuscript  and 
remaining figures, we have used a plant pollinator network 
from Memmott (1999) as a representative example. In this 
example,  the  cumulative  distributions  of  node  degree  and 
node  strength  are  fitted  to  truncated-power  laws  (Fig.  2). 
The  numerical  values  for  every  dataset  are  summarized  in 
Supplementary material Appendix 1.

We  have  studied  the  relationship  between  the  species’ 
strength and its number of interactions in order to assess the 
shape of that correlation (Fig. 3). The dashed line represents 
the fit to a randomized network, where a node’s strength is 
directly  proportional  to  its  degree  and  then  exponent b  is 
equal to one. In contrast, fit to real data, solid line, exhibits  
a b  exponent  significantly  larger  than  one.  Indeed,  the 
value of the exponent b is greater than 1 for the largest net-
works (Supplementary material Appendix 1 Table A2). The 
observed values of b exponent demonstrate a non-linear rela-
tionship between species degree and species strength. It can 
be seen qualitatively as the difference between the slopes of 
the fits in Fig. 3. This result implies that highly-connected 
species have stronger interactions than expected if interaction 
weights are randomly distributed. Removing highly-connected 
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Figure 3. Correlation between species’ strength and degree for the 
network of Memmott (1999). The solid line represents the best fit 
to the real data, and the dashed line represents the expected strength 
if weights were randomly assigned. Symbols represent the average 
node  strength  of  all  nodes  with  a  certain  degree.  (a)  Red  squares 
represent  data  for  animals.  (b)  Green  circles  represent  data  for 
plants. (c) Black diamonds represent the data for all species together. 
For randomized networks in which strength of a node is directly 
proportional to its degree, the exponent b  1. In contrast, the real 
data is best fit with an exponent b significantly larger than one.



the end-point degree of a link, the stronger the interaction 
between the two species connected by that link. Exponent q 
is larger than zero for all networks studied with more than 
forty  species.  Supplementary  material Table  A4  shows  the 
values of the exponent q for all networks studied.

When considering binary information, generalists interact 
preferentially with specialists: the average degree of nearest 
neighbors knn(i) decreases as node degree increases (Fig. 6). 
Therefore, nodes with high degree have a larger probability 
to be connected to low-degree nodes. This pattern is called 
disassortative mixing. Figure 6 shows that, when consider-
ing weighted links, disassortative mixing diminishes since 
the  slope  of  the  weighted  data  is  less  than  that  for  the 
binary data. This occurs because a node’s links with larger 
weights tend to point to neighbors with larger degree, in 
order for k w

nn(i)  k nn(i). As can be seen in Fig. 6, this differ-
ence is larger for highly-connected nodes. This means that, 
from the collection of a generalist’s interactions, most are 
with specialists. Nevertheless, the weights are not equally 
distributed  among  these  interactions.  Interactions  with 
specialists  are  weak  whereas  those  few  interactions  with 
generalists are very strong, as was seen in Fig. 4a. All of the 
mutualistic  networks  studied  exhibit  similar  results,  as 
shown in Supplementary material Table A5.

We also observe differences between weighted and binary 
data  when  calculating  the  clustering  coefficient.  Figure  7 
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Figure 4. (a) Color plot of the weighted interaction matrix of Memmott (1999). Pollinators are represented in rows and plants in columns. 
We sort species by their degree such that species with the largest number of interactions are located in the top left corner. The color bar on 
the right corresponds to link weight (frequency of visits); white means no interaction is observed. (b) Interaction weight distribution, i.e. 
the cumulative probability of finding a link with a certain weight. The solid line is the fit to a power law with scaling exponent equal to 
20.81  0.02. This power law fit holds for the majority of networks studied here.

species,  therefore,  has  a  quantitatively  greater  effect  on  a  
network than would be predicted solely by their degrees.

If  we  shift  our  focus  from  the  nodes  to  their  links,  
we find that the interactions between species in a mutualistic 
community are not equally weighted. Figure 4a graphically 
shows  how  link  weights  are  allocated  in  the  network.  As  
can be seen in the color bar, some interactions can be orders 
of  magnitude  larger  than  others  from  the  same  network. 
In fact, as is shown in Fig. 4b, the link-weight distribution 
follows  a  power-law.  Table  A3  in  Supplementary  material 
Appendix 1 shows the parameters of the fit to a power-law 
or a truncated power-law for the cumulative probability dis-
tribution of finding a link with a certain weight. Most inter-
actions are weak whereas a few interactions are very strong.

The weighted interaction matrix depicted in Fig. 4a sug-
gests that the strongest interactions occur between general-
ists (dark red color in the top-left corner). To quantify this 
pattern,  we  have  studied  the  average  weight  as  a  function 
of end-point degree. We find a positive, significant relation-
ship  between  the  average  weight  of  a  link  and  the  degree 
of the nodes that are connected by that link. This relation-
ship is quantified by the exponent q. In Fig. 5, we plot the 
average  weight  of  a  link  as  a  function  of  end-point  degree 
for the same network described before. Since the exponent 
q is larger than zero, we observe that the strongest interac-
tions occur between high-degree nodes. Therefore, the larger 
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Figure 5. Average weight of links as a function of their end-point 
degree for the network of Memmott (1999). The solid line repre-
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Figure  6.  Average  degree  of  nearest  neighbors,  knn,  as  a  function  of 
node degree for the network of Memmott (1999). Symbols represent 
the  mean  average-degree-of-nearest-neighbors  for  all  nodes  with  a  
certain degree. Filled and open symbols correspond to weighted and 
binary data, respectively. The solid line is the best fit for the weighted 
network whereas the dashed line represents the best fit for the binary 
network. (a) Red squares represent data for animals. (b) Green circles 
represent data for plants. (c) Black diamonds represent the data for all 
species together. The negative slope, which represents dissasortativeness 
of unweighted data, tends to diminish or vanish for weighted data.

shows the difference between weighted and binary clustering 
coefficients distributed across species with different degree. 
We  find  that  weighted  clustering  tends  to  be  larger  than 
binary clustering across the range of degrees. Moreover the 
difference between weighted and binary clustering is larger 
the  larger  the  degrees  (see  also  Fig.  A1  in  Supplementary 
material Appendix 1 to see more clearly how this difference 
grows).  This  result  indicates  that,  in  mutualistic  networks, 
clusters  tend  to  be  formed  by  strong  interactions.  Indeed, 
the strongest interactions are between interconnected groups 
of generalist species. For a majority networks studied here, 
C
—w

4b/C
—

4b  1 for every degree.

Discussion and conclusions

From our examples, it is possible to appreciate the intricate 
relationship between weight and topology when characteriz-
ing mutualistic networks. We show how interaction weights 
are distributed across the skeleton provided by binary links. 
Our analysis of weighted networks provides novel informa-
tion that cannot be obtained by measures based on topologi-
cal information alone. It also allows us to directly compare 
weighted and unweighted metrics, and to explore the extent 
to  which  interaction  weights  are  necessary  to  accurately 
characterize  the  organization  of  mutualistic  communities. 
The  present  manuscript  therefore  compliments  previous 
approaches  at  understanding  the  complex  architecture  of 
mutualistic networks.

One of the differences that we observe between binary 
and weighted mutualistic networks relates to the interpreta-
tion and quantification of species importance. If one species 
goes extinct, such a perturbation affects the whole network 
in  terms  of  the  loss  of  connectivity  and  the  subsequent  

secondary extinctions (Memmott et al. 2004). The number 
of  secondary  extinctions  after  species  extinction  depends 
on the network connectivity and on the number of links 
of  the  species  that  goes  extinct.  Therefore,  using  binary 



strongly-interconnected  groups  of  species.  This  pattern  is 
not absent of evolutionary consequences. The presence of 
strong clusters between highly-connected species reinforces 
the idea of generalist species governing coevolution of the 
whole community (Thompson 2005). In mutualistic net-
works, convergence and complementarity of traits favor the 
incorporation of new species, resulting in a coevolutionary 
vortex that leads to the inclusion of even more species in 
the network of interactions (Thompson 2006). When a new 
species is included in the network, some of the species that 
were there previously obtain more interactions. If a certain 
species develops more interactions along evolutionary time, 
the strength of that species’ interactions will also increase, 
and be redistributed across neighbors. That species will have 
a progressive tendency to tightly interact with other gener-
alists, and that tendency creates the aforementioned clus-
ters  formed  by  strong  links  between  generalists. We  have 
shown that differences between weighted and unweighted 
clustering coefficients are larger the larger species’ degree. 
This result is consistent with the recently reported impor-
tance of super-generalists for the evolutionary dynamics of 
mutualistic interactions (Guimarães et al. 2011). In looking 
at  how  weighted  and  unweighted  clustering  coefficient 
changes between species with different number of connec-
tions,  one  can  see  a  fingerprint  of  how  the  coevolutionary 
vortex  shapes  the  weighted  architecture  of  mutualistic  
networks.

Quantitative  interactions  help  reveal  relevant  patterns 
in  the  structure  of  mutualistic  networks,  as  the  patterns 
described here. The tight relationship between structure and 
dynamics  (Thébault  and  Fontaine  2010)  implies  that,  by 
improving our understanding of mutualistic network struc-
ture, we directly improve our predictive power over popula-
tion dynamics and network structure. As sugges ted by Van 
Veen et al. (2006) for food webs, quantitative data provide 
useful tools to think about structuring processes.

information, we can answer the question of how important 
a species is when preserving connectivity. Nevertheless, to 
measure energy flow through the network, link weights are 
necessary. By using interaction strength, we can answer the 
question of how important the same species is when pre-
serving  the  total  number  of  visits  (Kaiser-Bunbury  et  al. 
2010),  other  surrogates  for  interaction  strength,  or  more 
precise measures that take into account pollination effec-
tiveness.  If  the  sole  objective  is  to  rank  species  according 
to  their  importance,  weighted  links  are  unnecessary  in 
mutualistic  networks  (Scotti  et  al.  2007).  Here,  however, 
we show that, when compared to the rest of species in the 
network,  highly-connected  species  are  more  important 
when  preserving  the  total  number  of  visits  than  they  are 
when  preserving  network  connectivity.  Just  as  Bascompte 
and coworkers pointed out (Bascompte et al. 2006), species 
strength increasing faster than species degree implies that 
degree is insufficient to assess the importance of a species 
in a network.

With  regard  to  species  interactions,  generalists  tend  to 
interact  with  specialists,  and  vice  versa.  This  is  manifested 
as the negative slope in the average nearest-neighbor’s degree 
for  the  binary  data:  the  larger  a  node  degree,  the  lower 
the  average  degree  of  their  neighbors  (consistent  with  the 
observation by Vázquez and Aizen 2004). By comparing the 
observed pattern in binary networks to the same metric in 
weighted networks, we show that a species’ strongest inter-
actions occur with their most connected neighbors, and this 
tendency is larger the larger the degree of the species. There-
fore,  weighted  and  unweighted  average  nearest-neighbor’s 
degree provide complementary information that can be used 
to answer different questions.

We also find that, while most interactions of general-
ists  are  with  specialists,  the  strongest  interactions  occur 
between  generalists  themselves.  As  a  result,  generalists 
form  not  only  interconnected  groups  of  species,  but 
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Figure 7. Distribution of average weighted clustering coefficient divided by average unweighted clustering coefficient for nodes with the 
same degree. (a) Red squares represent data taken from animals. (b) Green circles represent data taken from plants. For both animals and 
plants, species with larger degree have a larger weighted clustering coefficient relative to their binary clustering coefficient. For animals, the 
difference between weighted and binary coefficients is clearer due to better statistical power, since there are 79 animals compared to only 
25 plants.
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