
Genomic Resources for Evolutionary Studies in the Large,
Diverse, Tropical Genus, Begonia

Adrian Christopher Brennan & Stephen Bridgett &
Mobina Shaukat Ali & Nicola Harrison &

Andrew Matthews & Jaume Pellicer &

Alex David Twyford & Catherine Anne Kidner

Abstract Begonia is one of the ten largest angiosperm
genera with over 1,500 species found throughout the tropics.
To use this group as a model for the evolution of diversity in
tropical herbaceous plants, we have produced three species
transcriptomes, physical genome size measures, and two
backcross genetic maps. We chose to focus on two Central
American species, B. conchifolia and B. plebeja, and one SE
Asian species, B. venusta, allowing us to pose questions at
widely different evolutionary scales within the genus. We
used next generation sequencing of cDNA libraries to pro-
duce annotated transcriptome databases for each of the three
species. Though Begonia is functionally diploid, transcrip-
tome analysis suggested a genome duplication occurred at
or near the base of the Begonia clade. The genetic maps
were built from first generation backcrosses in both

directions between B. plebeja and B.conchifolia using 105
SNP markers in genes known to regulate development that
were identified from the transcriptomes and the map bulked
out with 226 AFLP loci. The genetic maps had 14 distinct
linkage groups each and mean marker densities of between
3.6 and 5.8 cM providing between 96 and 99 % genomic
coverage within 10 cM. We measured genome size 1C value
of 0.60 and 0.63 pg for B. conchifolia and B. plebeja
corresponding to recombination rates of between 441 and
451 Kb per cM in the genetic maps. Altogether, these new
data represent a powerful new set of molecular genetic tools
for evolutionary study in the genus Begonia.
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Introduction

Owing to the historical nature of speciation, it is difficult
to test hypotheses concerning the underlying evolutionary
forces that originally drove divergence. Convergent evo-
lution offers a chance to tease out signals from the noise
as the independent evolution of the trait in each lineage
can be examined to determine whether similar selective
pressures and similar genetic changes were responsible
(Elmer and Meyer 2011; Wood et al. 2005). Some of the
most exciting insights into adaptation have come from
analysis of convergent traits in large lineages (for exam-
ple: Drummond et al. 2012; Kaeuffer et al. 2012; Melo
et al. 2011; Strecker et al. 2012; Whitehead et al. 2012;
Woodard et al. 2011).

With over 1,500 species growing in a wide range of
environments, Begonia L. (Begoniaceae) offers many exam-
ples of convergent evolution in lineages separated by a few or
many millions of years (Neale et al. 2006). This allows the
evolution of traits to be examined on a range of scales.
Begonia is found throughout the tropics in habitats which
range from wet rainforest to seasonally dry scrubland. Spe-
cies radiations in the New World, Southeast Asia and Africa
have generated many examples of parallel evolution, for
example in leaf form, plant architecture, infloresecence ar-
rangement and drought tolerance (Neale et al. 2006). Begonia
is also a major horticultural crop, being important in both
bedding plants and indoor plants markets (Hvoslef-Eide and
Munster 2007) and consequently large, accessible collections
of species and hybrids are available (Tebbit 2005). Addition-
ally, methods of in-vitro propagation and genetic transforma-
tion that have been developed for commercial exploitation of
Begonia can also be applied to research (Kishimoto et al.
2002; Xu et al. 2011).

Most Begonia species are local endemics and population
genetic studies using a range of marker types have shown
strong population structures (Hughes et al. 2003; Hughes
and Hollingsworth 2008; Matolweni et al. 2000; Nakamura
et al. 2012). However, in the greenhouse, many species are
interfertile (Tebbit 2005; Dewitte et al. 2011). Interfertility
between species opens up the possibility of using genetic
analysis in interspecific crosses to identify loci associated
with species-level variation. Until recently the power of
genetics to investigate evolutionary events has been largely
limited to model species or their close relatives, but the
advent of next generation methods of sequencing and high
throughput genotyping techniques have lowered the barrier
to developing genetic resources for any organism allowing
us to investigate interesting evolutionary patterns wherever
they occur (Harrison and Kidner 2011; Ekblom and Galindo
2011; Wheat 2010).

Here we report the development of genetic resources
for Begonia which will allow study of evolution at

different levels, from populations to species through to
the whole genus. We present transcriptome data for
three species of Begonia that provide the basis of a
new reference sequence database and suggest a whole-
genome duplication may have occurred early in the
lineage leading to Begonia. Genetic variation identified
between transcriptomes was used to produce the first
genetic recombination maps for Begonia. These genetic
map resources provide tools for mapping the genes that
underlie interspecific and population level traits and for
identifying the functional genetic basis of these quanti-
tative differences.

Results

We chose two closely related but ecologically contrasting
species from Central America for transcriptome sequencing
and to generate mapping populations. Begonia plebeja is
widespread in northern Mexico and found in seasonally dry
forests (Fig. 1a) whilst B. conchifolia has a more restricted
distribution in wet rainforests of Southern Mexico and
Central America (Burt Utley 1985; Fig. 1c). These spe-
cies are both members of a phylogenetically well sup-
ported Central American section Gireoudia within
Begonia with characteristic chromosome number, 2n 0

28 (Fig. 1d, Dewitte et al. 2009; Legro and Doorenbos
1971; Thomas et al. 2011).

To represent more of the range of diversity in Bego-
nia a third species, B. venusta, that is more distantly
related to B. conchifolia and B. plebeja (Fig. 1b), was
included in the transcriptome analysis. This species
grows in wet rainforests and field margins along the
Malaysian Peninsula (Kiew 2005). Begonia venusta
belongs to the parallel radiation of Begonia in Southeast
Asia. The lineage leading to B. conchifolia and B.
plebeja split from that leading to B. venusta very early
during Begonia evolution (Fig. 1d). Begonia venusta is
placed in section Platycentrum and has a chromosome
number of 2n 0 44, in contrast to the 2n 0 28 of section
Gireoudia (Dewitte et al. 2009; Legro and Doorenbos 1971;
Thomas et al. 2011).

Genome Size Measurements

The genome sizes of B. conchifolia and B. plebeja,
expressed as 1C-values (i.e. the DNA content of an unre-
plicated gametic nucleous sensu Greilhuber et al. 2005),
were fairly similar (1C00.60±0.01 pg and 1C00.63±
0.01 pg respectively), but higher for B. venusta (1C0

1.11±0.00 pg). These genome size similarities reflect the
different chromosome counts for the two Gireoudia spe-
cies and B. venusta.



Transcriptome Analysis

Summary statistics for the Roche 454 Titanium sequence
reads are shown in Table 1. Using total RNA extracted
from vegetative apices for cDNA synthesis, between
200,000 and 260,000 sequence reads were obtained for
each species using Roche 454 sequencing. Assembly of
these reads using Newbler 2.5 resulted in 15,855, 17,385
and 16,206 isotigs (consensus sequence fragments derived
from groups of assembled reads) for B. plebeja, B. con-
chifolia and B. venusta, respectively, with over half of the
isotigs longer than 750 bp (Table 1). We used BLASTX to
identify orthologous genes in Cucumis sativus (cucumber; the
closest related species with a sequenced genome) and found

that 82.1 %, 70.7 % and 78.0 % of B. conchifolia, B. plebeja
and B. venusta isotigs had a match in the cucumber tran-
scriptome with an expect value of e−10 or lower. These
matches were to 8611, 8082 and 8563 unique cucumber tran-
scripts respectively, indicating that there were often two Be-
gonia isotigs for any one cucumber transcript. Assuming that
the assemblies are largely correct, this could indicate a ge-
nome duplication in Begonia.

The similar numbers of isotigs produced for the different
species suggests that, although B. venusta has a higher ge-
nome size than the other two species, it does not have signif-
icantly more genes. An increase in the nuclear DNA content
may reflect expansion in non-coding sequence (such as trans-
posable elements) or a very recent genome duplication which

Fig. 1 Begonia plebeja (a), Begonia venusta (b), Begonia conchifolia (c). Scale bars represent 2 cm. Bayesian phylogeny of South American and
Southeast Asian Begonia based on the chloroplast sequences ndhA, ndhF-rpl32 and rpl32-trnL (d)



has not had time to diverge sufficiently for reads from differ-
ent paralogs to be assembled into separate isotigs.

We used two different methods to examine similarities
between the three transcriptomes. First, reciprocal BLAST
searches between species were used to identify likely ortho-
logs as those sequences that show high similarity in different
species datasets (implemented with RBH, Reciprocal Best
Hit, Orthologs; Barker et al. 2010) . The overlap between
the transcriptomes was low, about a third of the isotigs in any
one species had an identified ortholog in another species
(Fig. 2a). However, RBH Orthologs is very conservative in
its identification of ortholog pairs, requiring an extensive
length of match of sequence identity. We examined the tran-
scriptomes again using a much less conservative measure—
the presence of a reciprocal BLASTN hit of any length and
any e value. By this measure, still fewer than half of B.
conchifolia or B. plebeja isotigs had orthologs in B. venusta
(40.8 %, 42.0 % respectively) and this percentage was only
marginally increased in the comparison between the more
closely related B. conchifolia and B. plebeja (44.3 %). This

observation suggests that the poor overlap was possibly due
to incomplete coverage of genes with low levels of expression
rather than poor conservation of sequences between species.

To investigate the overlap between transcriptomes further,
three sets of isotigs (those found in all three species, isotigs
found in only a pair of species and isotigs unique to one
species, as identified by RBHorthologs) were searched
against the NCBI Refseq Green Plant protein database (Pruitt
et al. 2012). The percentage of good matches to sequences in
the database was higher for isotigs shared between all three
species, presumably reflecting the presence of more strongly
conserved genes in this set (Fig. 2a). This relatively small
conservative subset of 3392 isotigs that have been confirmed
against known proteins provides a good starting point for
molecular evolutionary studies in this genus.

To study the variation in our transcriptomes, we used GS
mapper (Roche) to map the reads from each species onto the
assembled isotigs of each species in turn. The results are
shown in Table 2. Polymorphism frequency, measured as
mean number of polymorphisms per 100 bases, ranged from

Fig. 2 Pattern of sharing (a) of
assembled sequences (isotigs)
between the three individual
species transcriptomes and (b)
of reads within assembled
sequences from the combined
assembly of all three species
transcriptomes (tri-scriptome)
together. Counts are numbers of
isotigs in each sharing category
and percentages are those
sequences that show good
matches with known proteins
from the Green Plants RefSeq
database

Table 1 Statistics for sequencing
and for Newbler 2.5.2 assemblies

(PLE 0 B. plebeja, CON 0 B.
conchifolia, VEN 0 B. venusta
and TRI 0 the combined
tri-scriptome assembly)

PLE CON VEN TRI

Number of bases sequenced 71198213 73094984 63949869

Number of reads 204477 260385 206884

N50 read length 430 401 386

GC content of reads 45.47 % 46.27 % 45.39 %

% Bases aligned 89.30 % 87.27 % 87.64 % 90.81 %

% Reads aligned 88.90 % 81.54 % 85.94 % 88.70 %

Number of isogroups 13929 15671 14391 28526

Number of isotigs 15855 17385 16206 46774

Isotig N50 773 759 760 1041

Number of large contigs (> 0 1 kb) 7482 8017 7561 15597

Numbers of singletons 14767 23341 16453 27316

% Inferred error 1.7 1.45 1.79 2.55

% Isogroups with more than 1 isotig 8.5 7.4 7.3 16.9

Average number of isotigs per isogroup 1.1 1.1 1.1 1.3



0.05 % for B. plebeja mapped onto B. conchifolia to 0.18 %
for B. venusta mapped onto B. conchifolia. As expected,
given the evolutionary relationships between the species,
more high-confidence polymorphisms were detected be-
tween either B. plebeja or B. conchifolia and B. venusta
than between B. plebeja and B. conchifolia. Polymorphism
frequencies within each species, which are indicative of
heterozygosity, ranged from 0.010 % for B. plebeja to
0.003 % for B. conchifolia.

As an alternative method of comparison, the low varia-
tion between transcriptomes allowed us to assemble all three
transcriptomes together using Newbler 2.5.2 (Roche) as a
joint ‘tri-scriptome’. This reduced the number of unassem-
bled reads from 54,561 (14,767+23,341+16,453) for the
individual assemblies to 27,316 for the joint assembly and
gave us a set of 38,448 isotigs. A total of 72.2 % of the joint
tri-scriptome isotigs had sequence from more than one spe-
cies and 43.5 % contained reads from all three species,
confirming that in most cases the program has assembled
reads from orthologs together. This gave us a set of 17,627
isotigs representing genes found in all three species, over

half of which had a BLASTX match in the Green Plant
Refseq database (with e value of e−40 or less; Fig. 2b).
BLASTX showed also that these isotigs had hits at e−10 or
below to 12442 unique cucumber genes that represent near-
ly half of the annotated cucumber proteins (25600). Addi-
tional BLASTX matches of tri-scriptome reads against the
Uniprot database using Annot8r were used to assign GO-
term, EC and KEGG functional annotations to these match-
ing isotigs (Supplementary Table 1).

Figure 3 shows histograms of the number of reads per
isotig for the joint tri-scriptome compared to the number of
reads in the individual assemblies, illustrating that the as-
sembly increased the read depth of isotigs. The joint tri-
scriptome also increased the isotig lengths (see Fig. 4). The
longest isotigs in this assembly were the mostly highly
expressed genes such as tubulin, suggesting that assembly
was still limited by coverage, but a cytochrome P450 family
member and a Armadillo/beta catenin-like repeat were also
highly represented.

We used BLASTN to compare the joint tri-scriptome to
the individual assemblies. In total, 2,695 isotigs from the

Table 2 High confidence SNPs
identified between and within
species

(P 0 B. plebeja, C 0 B. conchifolia,
V 0 B. venusta)

Comparison Total SNPs Species-level SNPs Mapped bases % Polymorphisms

C onto P 29988 21944 41216046 0.0532414

P onto C 31104 15522 39763005 0.0390363

V onto C 88112 70189 38231807 0.183588

C onto V 80700 66110 44100971 0.149906

V onto P 81518 65223 37893074 0.1721238

P onto V 73073 54273 39634494 0.1369338

P onto P 6079 517 60719146 0.0100117

C onto C 1852 399 60067876 0.0030832

V onto V 4633 444 52316073 0.0088558

Fig. 3 The number of reads per
assembled sequence (isotig) in
the tri-scriptome assembly and
in the pooled individual assem-
blies. More tri-scriptome isotigs
have medium to large numbers
of reads



joint transcriptome had no corresponding isotig in any indi-
vidual, suggesting that they represent genes identifiable only
through the combination of data from all three transcrip-
tomes. As expected these isotigs had low numbers of reads
(2.4±5.37) in comparision to 39.7 (±129.6) for isotigs that
were also found in at least one individual assembly. How-
ever, 2,358 of the new isotigs had a BLASTX match in the
Green Plant database, including 254 matches at e < 0 e−40,
confirming they were likely to represent true genes and not
assembly artifacts.

The transcriptomes were produced from non-normalised
cDNA pools and therefore the read number per isotig is
related to the expression level of the gene. Figure 5 shows
plots of the number of reads per isotig from each species. In
order to control for the partial nature of the transcriptomes
only those isotigs which include at least one read from each

species are shown. There was a strong correlation between
expression levels in B. plebeja and B. conchifolia but not
between B. venusta and either B. plebeja or B. conchifolia
(Fig. 5) suggesting that expression differences have accu-
mulated with evolutionary distance across the genus Bego-
nia. While limited coverage of the transcriptomes limits the
statistical certainty of observed patterns of gene expression,
we were able to make some initial qualitative observations
that could be followed up with further confirmatory studies.

The sequence with the highest number of reads was a
peroxidase expressed very highly in B. conchifolia (2,960
reads from the single species assembly) and B. plebeja
(3,437 reads) compared to B. venusta (491 reads). The
Arabidopsis thaliana ortholog of this gene (At4g21960,
PRXR1) is also highly expressed, at 24.5 times the average
transcript level (TAIR www.arabidopsis.org). Peroxidases

Fig. 4 Isotig lengths (bp) for the individual assemblies (a) and the tri-scriptome assembly (b). Note that the tri-scriptome has longer isotigs

http://www.arabidopsis.org


are involved in stress response, in particular regulation of
damage from photorespriation (Zamocky et al. 2008).
Higher expression in B. conchifolia and B. plebeja than B.
venusta could indicate a greater tolerance to high light
levels, or it could simply be due to transient stresses in the
individual plants assayed.

A SHEPHERD (SHP)-like gene was expressed highly in
B. venusta (635 reads) in comparison to B. plebeja (49
reads) and B. conchifolia (102 reads). This is a heat-shock
protein family member and the A. thaliana orthlog
(At4g24190) may be involved in the regulation of meristem
size via regulation of CLAVATA (CLV) protein folding in
response to abiotic stress (Ishiguro et al. 2002; Song et al.
2009). It is also highly expressed in A. thaliana at 10.5×
average transcription levels (TAIR). High levels of heat
shock proteins are associated with greater tolerance of abi-
otic stresses such as temperature (Kadota and Shirasu 2012;
Sangster et al. 2008).

Another interesting isogroup, which may represent a type
2 metallothionein metal-binding protein, was very highly
expressed in all transcriptomes (B. conchifolia 1,365 reads,
B. plebeja 1,016 reads, B. venusta 590 reads) but does not
have a clear ortholog in the Green Plant Protein or NCBI
databases (all BLASTX matches have relatively weak e
values greater than e−20). Although the expression pattern
and genus-wide sequence variation of this gene could be
easily determined, without functional information from a
model species it would be difficult to formulate a hypothesis
as to its role.

An episode of increased gene duplication, including a
whole-genome event, results in an intermediate peak in the
negative exponential frequency distribution of sequence
divergence between duplicate genes (Vision et al. 2000;
Paterson et al. 2004; Schranz and Mitchell-Olds 2006;
Barker et al. 2008). A peak of synonymous substitution

values (Ks 0 0.51−0.58) for paralogous genes was observed
for all three Begonia transcriptomes (Fig. 6). The presence
of this peak in all three species suggests that a whole
genome duplication occurred in the lineage leading to the
genus Begonia or early during Begonia evolution. Likely
dates for the origin of Begonia range from 24 to 45 MYA
(Goodall-Copestake et al. 2009) and the origin of the South-
east Asian lineage, to which B. venusta belongs is dated to
~22 MYA (Thomas et al. 2012). The Begonia lineage split
from that of cucumber (which lacks this genome duplica-
tion) ~82.1 MYA (Schaefer et al. 2009). Begonia isotigs
whose paralog pairs fall in the peak of Ks have an average
Ks of 1.159 with their cucumber orthologs (as identified by
reciprocal TBLASTX hits), suggesting that the Begonia-
lineage duplication occurred sometime after the split from
cucumber, but before 22 MYA. Conservation of paralogs
over this period of time suggests diversification of gene
functions and that these three transcriptomes will provide
valuable data for studying the evolution of gene families.

Analysis of the ratio of non-synonymous to synonymous
substitutions (Ka/Ks values) for Begonia-cucumber ortho-
log pairs also identified several with elevated Ka/Ks ratios,
and several with reduced ratios. Orthologs with elevated Ka/
Ks values included disease resistance and signaling genes
such as NB-ARC domain-containing disease resistance pro-
tein (Ka/Ks 0 1.20) and a receptor like protein of the RPL44
family (Ka/Ks 0 1.22) (Wang et al. 2008). The reduced
Ka/Ks ortholog set included key functional genes such
as Cyclin-dependent protein kinase CYCB1 ortholog
(Ka/Ks 0 0.07) (Day and Reddy 1998), and an NKS1
ortholog, likely involved in ion homeostatis (Ka/Ks 0

0.044) (Choi et al. 2011). Further analysis of the rela-
tive rates of change will be undertaken once the paral-
ogs can be more clearly distinguished by comparison to
a draft genome sequence.

Fig. 5 Paired-species comparisons of transcriptome read numbers per isotig ortholog. B. conchifolia and B. plebeja (a), B. plebeja and B. venusta
(b), B. conchifolia and B. venusta (c)



Genetic Mapping

Genetic maps for the genomes ofB. conchifolia and B. plebeja
were constructed for the two backcross mapping families
(Fig. 7, Supplementary Table 1, and 2). A total of 117 indi-
viduals from the backcross to B. conchifolia (CBC) and 225
individuals from the backcross to B. plebeja (PBC) were
genotyped for mapping. A total of 4,867 potential AFLP loci
were obtained using 12 primer combinations and 255 used for
mapping in one or both populations following quality control
analysis. SNPs in 105 genes with potential roles in develop-
ment were identified from the transcriptomes and genotyped
by competitive allele specific PCR technology (KASP) and
these SNP genotypes were then mapped in one or both back-
cross families. The combined SNP and AFLP datasets con-
sisted of 199 markers genotyped across 117 individuals for the
CBC family and 330 markers genotyped across 225 individ-
uals for the PBC family (Supplementary Table 1, and 2).

In total, 165 and 294 markers were placed on the final CBC
and PBC genetic maps respectively, with 136 of these markers
shared between maps. Other genotyped markers could not be
mapped with high confidence, either because they appeared
unlinked to all other markers (linkage scores < logarithm of
odds [LOD] 4) or showed anomalous strong linkage to
markers in different well supported linkage groups. A more
detailed breakdown of marker composition is provided in
Supplementary Table 1. In general, the B. plebeja parent was

heterozygous at more markers than B. conchifolia, generating
more segregating polymorphisms that could be mapped.

Both genetic maps consisted of 16 linkage groups. How-
ever a pair of linkage groups in each map was represented
by weakly linked ends of a single chromosome in the other
map indicating that these extra linkage groups are likely to
be artifacts of the mapping method, rather than biological
reality and that the number of distinct linkage groups in each
map is actually 14 (Fig. 7). Map summary statistics are
shown in Supplementary Table 2. The total map distance
was estimated to be between 1,034 and 1,043 cM for the
CBC map and between 1,099 and 1,110 cM for the PBC
map for the add2s and method4 genome length estimators,
respectively. Similarly, mean observed linkage group length
was slightly smaller for CBC at 53.6 cM (st. dev. 30.5 cM),
than for PBC at 61.6 cM (st. dev. 26.3 cM).

Consistent with the different numbers of markers mapped
onto each map, mean marker distance was greater for CBC at
5.8 cM (st. dev. 5.5 cM), than for PBC at 3.6 cM (st. dev.
4.1 cM). The percentage of the genome within 5 cM of a
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Fig. 6 Evidence for genome duplication from patterns of Ks in ortho-
log clusters. B. conchifolia (a), B. plebeja (b) and B. venusta (c) all
show a significant peak in the same position (Ks 0 0.51−.58),

supporting a genome wide duplication in early Begonia evolution or
before the emergence of the genus. Heights of peaks indicate qualitatively
the strength of evidence for a peak at that position

Fig. 7 Genetic linkage maps based on reciprocal backcross popula-
tions between B. plebeja and B. conchifolia. Map distances in Kosambi
centiMorgans are shown in the left scale bar. Linkage group labels
from the backcross to B. conchifolia start with “Con”, while those from
the backcross to B. plebeja start with “Ple”. Linkage groups are ordered
in pairs, one from each genetic map that share markers (i.e. orthologous
chromosomes) as shown by linking lines
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mappedmarker was estimated to be 79% in the CBCmap and
93 % in the PBC map while 96 % or 99 % of the genomes
were estimated to be within 10 cM of a marker according to
the estimator of Fishman et al. (2001). However, markers were
not evenly distributed in either map according to dispersion
chi square tests. Uneven distribution of markers across genetic
maps is typical of highly structured eukaryotic genomes. We
speculate that clusters of SNP markers could indicate gene
rich regions, while clusters of AFLPs could indicate repetitive
sequence regions with a relatively high frequency of restric-
tion sites for the enzymes used to generate AFLPs. Alterna-
tively, since mapping families represent interspecies crosses,
local chromosomal rearrangements between species that limit
homologous recombination in hybrids could appear as clus-
ters of markers on genetic maps.

Extensive synteny in order of shared homologous
markers was observed between homologous linkage groups
in the two backcross maps. Across 136 shared markers, only
four markers on separate linkage groups (BTF21,
RCAG_134, GCAA_104, and RCAA_202 on linkage
groups 6, 7, 10, and 14, respectively, Fig. 7) showed linkage
order differences that involved more than four adjacent
markers (Fig. 7, Supplementary Table 1). Other minor dif-
ferences in linkage order are more likely to reflect genotyp-
ing errors (mean 1.96 % among all AFLP loci) or missing
data (mean 7.63 and 3.31 % AFLPs and SNPs, respectively)
than differences in gene order.

Discussion

Begonia is a highly speciose genus of tropical plants but
their success appears to rest on high diversity and endemism
between regions rather than on plasticity and wide species
distributions (Hughes and Hollingsworth 2008). We de-
scribe here a set of tools that can be used to study the genetic
basis of this diversity in the face of ongoing threats to
tropical biodiversity in general (Myers et al. 2000).

We used two closely related species from Mexico and
Central America (B. plebeja and B. conchifolia) and a third
species from a parallel radiation of Begonia species in
Southeast Asia (B. venusta). The genome size 1C values
for these three species were determined to be 0.63 pg,
0.60 pg and 1.11 pg respectively. Previous research in the
genus showed that Begonia is characterized by having small
genomes (Dewitte et al. 2009), but differences up to around
6-fold have been reported between species with similar
chromosome numbers, suggesting extensive gene duplication,
transposon activity or repeat expansion can occur in Begonia.
The distribution of Ks values for paralog pairs in B. venusta
provides no evidence for a recent genome duplication suggest-
ing that the larger genome of B. venusta reflects an increase in
the number transposons and repetitive elements. However, a

very recent duplication may result in paralogs so similar that
theywould be assembled together into a single isotig leaving no
evidence in the transcriptome sequences of the duplication. A
proportion of the polymorphisms detected in B. venusta could
represent sequence variation between recent paralogs rather
than alleles.

Partial transcriptomes were generated from vegetative buds
from each species and orthologs and paralogs identified. Over-
lap between the transcriptomes was about a third, and 3,392
genes with orthologs in all three species were identified. Poly-
morphism rates vary from 0.003 % for B. conchifolia to
0.010 % for B. plebeja. The higher polymorphism frequency
in B. plebeja may reflect more frequent outcrossing in this
species, as it has larger, showier flowers with more stamens
than B. conchifolia and occurs in more open habitats conducive
to insect mediated cross-pollination (Burt Utley 1985).

As the polymorphism frequencies between the species
were low (maximum of 0.17 % between B. conchifolia
and B. venusta), we assembled all three transcriptomes
together into a joint tri-scriptome in order to increase the
number of isotigs assembled and their read depth and length.
This generated a set of 17,627 isotigs including reads from
all three species. By using all three species, we have come
closer to the typical number of genes expressed in angio-
sperms (25,000–35,000 Bennetzen et al. 2004; Sterck et al.
2007), bearing in mind that some of these isotigs could be
splice variants and chimeric sequences that have escaped
detection in our analyses and that these transcriptomes were
made from vegetative buds rather than a full range of tissue
types and ages. We concluded that the joint tri-scriptome
assembly was a useful means of identifying additionalBegonia
genes, although further sequencing would be required to elim-
inate the possibility that some isotigs had been assembled from
paralogous gene families.

The read numbers per species from this set of 17,627
isotigs can be used as an indication of comparative expres-
sion levels. The Central American species, B. conchifolia
and B. plebeja showed patterns of expression more similar
to each other than to the Southeast Asian B. venusta. This
presumably reflects changes in gene expression patterns
over evolutionary time. The outliers, with highly different
expression between species, are candidates for differential
regulation. Alternatively, apparent differences in representation
might reflect sequence divergence, as divergent transcripts
might be assembled into species-specific contigs which would
not be detected in the combined species transcriptome analy-
ses. High levels of sequence divergence would also mark a
gene out as worthy of further study as a candidate for divergent
selection between species.

An intermediate peak in the distributions of substitution
rates (Ks values) in paralogous isotigs identified in each
species support the hypothesis of a whole genome duplica-
tion early in Begonia evolution to at least before 22 MYA.



Whole genome duplications are common in angiosperm
lineages and contribute to potential for diversification (Otto
and Whitton 2000; Petit and Thompson 1999; Vamosi and
Dickinson 2006). The variation in chromosome number and
genome size in Begonia as a whole suggests that genome
duplication could be an important driver of diversity within
the group (Dewitte et al. 2009; Legro and Doorenbos 1971).
Ongoing research to identify and analyse orthologous and
paralagous gene sets will undoubtedly provide further insights
into the interplay between genome duplication and species
diversification in Begonia.

A genetic map was constructed by genotyping backcross
populations between B. conchifolia and B. plebeja for 105
SNPs in developmental genes and 255 AFLP markers.
Individual maps for each backcross show that synteny is
highly preserved between the two species suggesting that
their divergence has not been accompanied by large scale
genomic restructuring. The most closely related species to
Begonia, which has a genetic map and genome sequence is
cucumber, Cucumis sativus (Huang et al. 2009; Zhang et al.
2012). We looked for synteny between the sequenced Begonia
markers and their orthologs in cucumber by BLASTX search-
ing the isotigs containing the markers against the cucumber
genome to find cucumber best hits and comparing relative
positions. This revealed only one case of co-linearity: in
markers that are 1.8 cM apart in B. plebeja and 350 Kb apart
in C. sativus. Absence of large-scale synteny is perhaps not
surprising for species whose lineagesmost probably split in the
late Cretaceous (81 MYA) (Schaefer et al. 2009), but future
studies with higher density genetic maps or genome assemblies
are required to better assess and understand the pattern and
scale at which synteny breaks down between these lineages.

Mean marker distance is 5.8 cM for the B. conchifolia
map and 3.6 cM for the B. plebeja map covering 96 % and
99 % of the genome within 10 cM, respectively. As men-
tioned above, the non-replicated holoploid nuclear DNA
contents (1C-value) of B. conchifolia and B. plebeja were
estimated to be 591.5 and 616 Mb respectively (1 pg equates
to 978 Mb, Doležel et al. 2003). Although slightly smaller,
these genome size values are comparable to those previously
published for Begonia, where 1C-values of 694.3 to 733.5 Mb
were reported for three species in Section Gireoudia (Dewitte
et al. 2009), to which these two species belong. According to
this physical genome size estimate, 1 cM corresponds to aver-
age recombination rates of 441 and 451 Kb in the CBC
and PBC backcross maps respectively. These observed recom-
bination frequencies are somewhat lower than those seen in
other plants (50 Kb/cM for Carica papaya (Yu et al. 2009) and
260 Kb/cM for A. thaliana (Singer et al. 2006)). Although
recombination frequency can vary considerably across the
genome and is dependent on the specific demographic history
of the individual or species considered, the low recombination
frequency observed in this Begonia mapping family holds

promise for association mapping of genes underlying Begonia
diversity in natural populations with relatively low marker
density. Conversely, finemapping of the geneswill be a greater
challenge requiring large mapping families, but will be offset
by the rapidly decreasing costs of genotyping that makes
construction of high density maps feasible.

Conclusions

We have generated three transcriptomes and a genetic map
that increase the potential of the mega diverse genus Bego-
nia for evolutionary studies. We plan to use the genetic map
to understand the genetic basis of speciation between this
closely related species pair and to study traits which may
have been key in their adaptations to very different season-
ally dry tropical forest and wet rainforest habitats. The tran-
scriptomes will prove useful in analysing future Begonia
whole genome sequences that we are in the process of
developing. With these improved sequence data, we hope
to better unravel gene orthology and paralogy in order to
understand the consequences of the genome duplication
early in Begonia's evolutionary history and how it has
contributed to the diversity of the genus. The sequence data
we have produced that show low sequence divergence be-
tween Central American and Southeast Asian sections of the
genus will also allow the generation of large numbers of
genome-wide molecular genetic markers to examine the
evolutionary forces generating and maintaining this diversi-
ty at the population-level for species in this genus. For
example, this transcriptome sequence data has already been
used to develop microsatellite markers for population genet-
ic studies of other Begonia species in Mexico (Twyford et
al., in prep).

The relative ease with which genetic resources can be
developed from scratch has largely overcome the limitations
on the choice of species which can be studied genetically.
With the resources we have developed, we have added over
1,500 Begonia species to the lists of plants with character-
ised transcriptomes and molecular recombination maps in
close relatives.

Methods

Plants

An individual each of B. conchifolia and B. plebeja in
long-term cultivation at Royal Botanic Garden Edinburgh
(RBGE accession numbers: 20042082 and 20051406, re-
spectively) were cross pollinated in the glasshouse during
the winter of 2007 with B. plebeja acting as the maternal
parent and B. conchifolia as paternal parent. The F1 was



only partially self fertile so backcrosses to each parent were
used to generate mapping families of sufficient size. F1
seeds were germinated on sterilised compost (16 Bark:
3 Peat: 1 Perlite plus finely sieved osmocote) in a warm
28°C humid environment. F1 seedlings (family number
CKB137) were moved to individual 15 cm diameter
pots of compost (as above) and grown in a glasshouse
with supplemental lights and an average temp of 28°C.
Seedlings from a backcross between CKB137.6
(maternal) and B. conchifolia (n0117) and from a back-
cross between CKB137.8 (maternal) and B. plebeja pa-
ternal (n0277), were sown in the spring of 2009 and
plants were subsequently maintained under the same
conditions as the parents and F1s.

Genome Size Measurements

Nuclear DNA contents (C-values) were assessed by flow
cytometry. Fully expanded leaf tissue from each accesion
(about 1 cm2) was chopped along with an internal standard
(Solanum lycopersicum ‘Stupiké polní rané’ 2C01.96 pg or
Petroselinum crispum ‘Champion Moss Curled’ 2C0
4.45 pg) in 2 mL of ‘General purpose isolation buffer’
(GPB; Loureiro et al. 2007) with 3 % PVP-40 following
the one-step procedure described by Doležel et al. (2007).
The nuclear suspension was then filtered through a nylon
mesh (30 μm) to remove debris, stained with Propidium
Iodide (Sigma-Aldrich) at a final concentration 60 μg·mL−1

and supplemented with 100 mg·mL−1 ribonuclease A
(RNase A; Sigma-Aldrich). Samples were kept on ice
for 15 min and 5,000 particles were recorded using a
Partec Cyflow SL3 (Partec GmbH, Canterbury, UK)
flow cytometer fitted with a 100 mW green solid state
laser (Cobolt Samba, Solna, Sweden). Nine replicates
per accesion were processed and the resulting floures-
cence histograms were analysed with FlowMax software
(Partec GmbH).

DNA Extraction

Approximately 20 μg of silica dried inforesence or leaf was
pulverized using a TissueRupter milling machine (Qiagen,
Crawley, UK) for three rounds of 20 Hz for 90 s with added
sand. Alternatively, fresh young leaf tissue (100 μg approx.)
was ground to a powder after freezing with liquid nitrogen.
Individual DNeasy Plant Mini kits (Qiagen) were used with
the following changes to the supplier’s instructions. The
initial digestion at 65°C was extended to 30 min and two
elutions (subsequently combined) were performed with 50–
100 ul AE buffer each for 1–15 h to improve DNA yield.
DNAwas extracted twice from the parents and from ~10 %
of backcross progeny to assess and control for genotyping
errors.

Phylogenetics

A phylogeny of 45 representative Begonia species was con-
structed to place B. conchifolia, B. plebeja and B. venusta into
phylogenetic context. Sequences of the Begonia chloroplast
ndhA intron, the ndhF-rpl32 and rpl32-trnL spacers were
obtained either from the National Centre for Biotechnology
Information (http://www.ncbi.nlm. nih.gov/) or from whole
Begonia chloroplast genome sequences (Harrison and Kidner
in prep). Sequences were aligned using MAFFT v6.717 (Mul-
tiple Alignment using Fast Fourier Transform) (Katoh and Toh
2008) applying the iterative refinement method (FFT-NS-i) and
using default parameter settings (gap opening penalty: 1.53,
offset-value: 0.0) and then manually adjusted.

The three nucleotide regions were concatenated to produce
an alignment of 4086 characters and analysed as an unparti-
tionedmatrix in a Bayesian analysis, using parameters: GTR +
I- optimised proportion of invariable sites and across site rate
variation. The model used was the same as that used in
Thomas et al. (2012). The analysis was performed inMrBayes
v3.1.2 with 4 chains and 1,000,000 generations (Huelsenbeck
and Ronquist 2001).

RNA Extraction

Three vegetative buds were harvested from mature plants of
B. plebeja and B. conchifolia (the same individuals used for
mapping) and from two individuals of B. venusta (RBGE
accession numbers 20021604 and 20021596). Buds were
dissected to leave apices with three developing leaves, the
longest of which was less than 5 mm long. Dissected buds
were frozen in liquid nitrogen and ground for RNA
extraction.

Total RNA was isolated using Invitrogen Plant RNA
purification reagent. Complementary DNA (cDNA) was
synthesized using the SMART cDNA protocol (Zhu et al.
2001) by the Evrogen synthesis service (Evrogen, Moscow,
Russia). cDNA fragment libraries were prepared for Roche
454 Titanium sequencing and sequenced on the 454-FLX
titanium platform (Roche, West Sussex, UK), followed by
signal-processing and base-calling using the Roche Shotgun
signal-processing software, gsRunProcessor version
2.0.01.12 (Roche) for B. conchifolia and B. plebeja, and
gsRunProcessor version 2.3 (Roche) for B. venusta. The
reads have been deposited in the Genbank Sequence Read
Archive, accession number ERP001195.

Transcriptome Analysis

Repeat elements were identified by BLASTX (Altschul et
al. 1997) searching reads against the Plant Repeat Element
Database (Ouyang and Buell 2004) and plastid, mitochon-
drial and viral sequences from the RefSeq database and

http://www.ncbi.nlm


these sequences were removed before subsequent analysis.
Reads were assembled using Newbler 2.5 (Roche) with
options enabled for transcriptome assembly ("-cdna"), and
trimming of SMART adapters ("-vt SMARTAdapters"). The
“-urt” option (“use read tips”) was enabled, to yield longer
assemblies (“isotigs”), although this may result in less ac-
curate calling of low coverage bases. In addition to assem-
bled isotigs of reads, Newbler also outputs isogroup data for
groups of overlapping but distinct isotigs that probably
correspond to alternative transcripts for individual genes.
Summary statistics for the 454 reads including numbers of
bases and reads, median read length (N50), percentage GC
content, percentage alignments, numbers of isogroups and
isotigs, median isotigs lengths, numbers of unaligned sin-
gleton reads and percentage inferred error were calculated
using a custom Perl script (available upon request).

Polymorphisms between species were identified using
GSmapper (Roche) by mapping reads from one species onto
assembled isotigs of the second species. High confidence
SNPs between species were identified as those for which all
reads from one species differed from the isotig assembly
sequence, and involved at least 3 reads in each direction or
at least 7 reads in the same direction.

Reciprocal BLAST searches of the assembled transcrip-
tomes were performed using RBH Orthologs at Evopipes.-
net (http://evopipes.net, Barker et al. 2010). This program
searches for reciprocal best hits with MEGABLAST (Zhang
et al. 2000; Ma et al. 2002). Although MEGABLAST is not
recommended for cross species comparisons (Korf et al.
2003), the three species are so closely related (Fig. 1d) that
it should function acceptably well. This analysis identified
isotigs that were either shared between two or three species
or unique to one species (Fig. 2a). BLASTX was used to
determine the number of contigs in each of these categories
that matched sequence from the Green Plant Ref set
(National Centre for Biotechnology Information 2002;
Pruitt et al. 2012) with expect (e) values of less than −40.
The transcriptomes for individual species were annotated
with BLASTX hits at less than 1 × e−40 against Uniref and
the Green Plant reference databases. We also used Annot8r
(Schmid & Blaxter, 2008) to examine the tri-scriptome
alignment of all three species to identify genes and annotate
gene functions. This program uses BLASTX searches
against the uniprot database (The Uniprot Consortium
2011; http://www.uniprot.org/) and subsequent GO-term,
EC and KEGG annotations to determine the likely function
of genes. Annotation data, along with reciprocal BLASTX,
was uploaded into a partigene database (Parkinson et al. 2004)
available at http://genepool-blast.bio.ed.ac.uk/partigene/
Begonia.

Patterns of gene duplication that can be informative about
past polyploidization events were analysed using DupPipes
at Evolpipes.net (www.evopipes.net, Barker et al. 2008,

2010). Briefly, the program used MEGABLAST to identify
gene family members within the transcriptome with at least
40 % nucleotide similarity over 300 bp and BLASTX to
identify gene matches in the Green Plant Ref set database
(NCBI) with at least 30 % similarity over 150 bp. The amino
acid sequences of remaining isotig families were deduced,
trimmed for non-coding sequence, and transcribed back to
DNA sequences using Genewise v2.2.2 (Birney et al. 2004),
MUSCLE v3.6 (Edgar 2004) and vRevTrans 1.4 (Wernersson
and Pedersen 2003). Synonymous substitution Ks values,
a measure of neutral divergence, for each duplicate pair
were estimated under the F3-4 maximum likelihood
model (Goldman and Yang 1994) using PAML (Yang
1997). Finally, only node Ks values for each gene family
cluster and Ks values >0.05 and >2.0 were retained, removing
biases related to gene family size and potentially identical
genes missed by read alignments. The natural log Ks distri-
bution was analysed to identify peaks of duplication relative to
a null hypothesis of an exponentially declining distribution
due to background gene birth-death processes using mixture
analysis as implemented by the mclust package in R v13
software (Fraley and Raftery 2006; R Development Core
Team 2012).

SNP Genotyping

The assembled transcriptomes for B. plebeja and B. conchi-
folia were interrogated for SNPs within potential develop-
mental genes for marker development. The first set of
selected genes are known to influence morphology and
micro-morphology in other plant species. A second larger
set of genes consisted of potential transcription factors based
on the BLAST annotation of the Begonia transcriptomes.
Transcription factors were targeted because changes in their
expression frequently lead to large phenotypic effects. The
final set consisted of genes with potential influences on
morphology or responses to common developmental cues,
such as light, were also isolated using searches of the
BLAST annotation in the partigene database. To identify
sequence polymorphisms for genetic mapping, isotig
sequences from one parent species were BLAST searched
against the transcriptome for the other parent to identify
potential orthologs. Probable orthologs were identified as
having BLASTN e-values of less than e−100, deemed to be a
suitably stringent similarity threshold between these closely
related species. When likely orthologs were found, a recip-
rocal BLAST search was done to confirm orthology and to
identify any other closely related sequences. If potential
paralogs were detected, a locus was not considered further
for SNP marker development. Aligned reads were then
inspected to identify highly supported SNPs between species
surrounded on each side by approximately 50–60 bp of high
quality conserved sequence against which to design primers.

http://evopipes.net
http://www.uniprot.org/
http://genepool-blast.bio.ed.ac.uk/partigene/Begonia
http://genepool-blast.bio.ed.ac.uk/partigene/Begonia
http://www.evopipes.net


As a final check, the presence of introns near to the SNP was
investigated by comparing the target sequence (~120 bp) to the
annotated genome sequence for the closest fully sequenced
relative of Begonia; Cucumis sativa (Cucurbitaceae) using
BLASTX at the online plant genome resource website Phyto-
zome v5.0 (http://www.phytozome.net/).

In total, 130 SNPs in target genes were identified using
this approach. Summary data for these loci are provided in
the supplementary Table 1. Primer design and genotyping
was performed by KBiosciences (Hoddesdon, UK) using
their proprietary competitive allele-specific PCR genotyping
system (KASP). This led to 112 SNP markers being geno-
typed across 288 samples representing two repeats of each
parent species, two F1s, 162 PBC mapping individuals, and
117 CBC1 mapping individuals. A final set of 105 SNPs
were retained for further analysis following inspection of
SNP genotype results for interpretable heritability in map-
ping families.

AFLP Genotyping

A PCR amplification protocol for amplified fragment length
polymorphisms (AFLPs) was modified from the online pro-
tocol (http://bioweb.usu.edu/wolf/aflp_protocol.htm). The
complete AFLP methods and the sequences of primers are
provided in supplementary information (Supplementary
Note 1). In total, all 12 combinations of four fluorescent
dye-labeled EcoRI primers and three non-labelled MseI
primers were genotyped across all individuals. Genotyping
was performed on an ABI 3730 capillary sequencer system
at the Genepool Sequencing and Bioinformatics Facility at
the University of Edinburgh. Trace data were viewed and
analyzed using GeneMapper v4.0 (Applied Biosystems Inc.,
Foster City, CA, USA) and the presence or absence of frag-
ments between 55 bp and 500 bp scored. Samples that
exhibited a summed AFLP peak height for a particular primer
combination that was in the lower ~10 % of the distribution
were removed. Loci that could not differentiate B. conchifolia
and B. plebeja and fragments that occurred at significantly
higher or lower frequencies than expected according to Men-
delian inheritance (>0.90 or <0.25) were also excluded. Fre-
quency distributions of peak heights were then examined at
the position of each remaining locus (typically giving a bi-
modal distribution corresponding to presence or absence of
the fragment), allowing a threshold intensity to be set for
filtering the presence of a fragment. Filtered data was then
analysed in AFLPscore v1.4b (Whitlock et al. 2008), that
compared normalized peak heights between duplicated AFLP
samples to estimate error rates for different filter threshold
combinations of locus median peak height and sample relative
peak heights. Optimal filtering procedures were chosen that
typically led to estimated AFLP genotyping error rates from
2 % to 5 % per primer combination.

Genetic Mapping

Genetic maps were constructed using the demonstration
version of Joinmap v4 (Plant Research International, Wage-
ningen, Netherlands). The populations were treated as an
outcrossed mapping family (CP type) because heterozygous
parental species genotypes resulted in many informative
AFLP and SNP loci that with alleles that were present in
approximately 3:1 proportions that could therefore not have
been mapped with parameters restricted for backcross
populations.

Linkage groups of loci were identified at >4 logarithm of
odds (LOD) score and a maximum of 25 Kosambi centi-
Morgan (cM) between neighbouring loci. Genetic maps
were estimated using Joinmap’s default parameters for re-
gression mapping. Map quality was assessed by examining
goodness of fit G2 likelihood ratio statistics and by compar-
ing locus sharing and order between homologous linkage
groups in the two mapping families. Large initial linkage
groups with poor statistical support that were not recovered
from both populations were re-analysed and frequently split
into two well-supported linkage groups after removal of a
few markers that reduced their overall support. Genetic map
data was graphed using MapChart v2.2 (Voorrips 2002).
Total map length was estimated by either adding twice mean
marker distance to the length of each linkage group (add2s
method; Fishman et al. 2001) or by multiplying by the
correction factor (marker number +1)/(marker number −1)
(method 4; Chakravarti et al. 1991). The percentage of the
genome present within 5 and 10 cM distance of a mapped
marker, assuming markers are randomly distributed on
genetic maps, was estimated according to 1-exponent
((−2*distance*marker number)/map length) according to
Fishman et al. (2001). The extent of marker clustering on the
genetic maps was tested using a chi2 dispersion test against a
null poisson distribution of evenly distributed markers sepa-
rated by mean marker distance.
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