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Glossary

Assembly: the set of processes by which a food web is rebuilt after disturbance

or the creation of new habitat.

Bioenergetics: the flow and transformation of energy in and between living

organisms and between living organisms and their environment.

Cascade model: a food-web model which assumes hierarchical feeding along a

single niche axis, with each species allocated a probability of feeding on taxa

below it in the hierarchy.

Community web: a food web intended to include all species and trophic links

that occur within a defined ecological community. ‘Species’ in this sense might

involve various degrees of aggregation or division of biological species.

Compartmentalisation: the property by which one subset of species within a

food web operates, to varying degrees, independently of other parts.

Ecological stoichiometry: how the balance of multiple chemical elements

within organisms influences their interactions in food webs.

Ecosystem function: the physical, chemical, and biological processes or

attributes that contribute to the self-maintenance of the ecosystem; including

energy flow, nutrient cycling, filtering, buffering of contaminants, and

regulation of populations.

Interaction strength: a measure of how much a predator alters population size,

biomass, or production of its prey. In food webs these are associated with

energy flows while noting that predators can affect prey non-trophically.

Niche model: a food-web model which assigns each consumer a feeding

distribution on the niche axis that can overlap with itself (cannibalism) and

permits trophic loops but still generates realistic patterns whereby species tend

to feed in a linear hierarchy.

Quantitative food web: a food web where the interaction strengths or trophic

flows are quantified.

Scale-independence and/or dependence: the degree to which attributes of a

food web change with food-web size.

Stability: measures of the ability to and/or speed with which a food web
The global biodiversity crisis concerns not only unprec-
edented loss of species within communities, but also
related consequences for ecosystem function. Commu-
nity ecology focuses on patterns of species richness and
community composition, whereas ecosystem ecology
focuses on fluxes of energy and materials. Food webs
provide a quantitative framework to combine these
approaches and unify the study of biodiversity and eco-
system function. We summarise the progression of food-
web ecology and the challenges in using the food-web
approach. We identify five areas of research where these
advances can continue, and be applied to global chal-
lenges. Finally, we describe what data are needed in the
next generation of food-web studies to reconcile the
structure and function of biodiversity.

Reconciling the study of biodiversity and ecosystem
function
We are experiencing two interrelated global ecological
crises. One is in biodiversity, with unprecedented rates
of species loss across all major ecosystems, combined with
greatly accelerated biotic exchange between landmasses
[1]. Consequently, spatial and temporal patterns of species
occurrence are being fundamentally altered by extinction
and invasion. The second crisis concerns the regulation of
ecological processes and the ecosystem services they pro-
vide. Processes such as primary production and nutrient
cycling have been severely altered by human activities [1].

Our understanding of biodiversity comes largely from a
sound theoretical and empirical basis provided by commu-
nity ecology, including core concepts such as niche segre-
gation [2] and Island Biogeography [3,4]. Early studies of
individual species’ habitat preferences and physiological
tolerances have been complemented by studies of inter-
specific interactions from field surveys and experiments.
Applications such as conservation management depend
Corresponding author: Thompson, R.M. (ross.thompson@monash.edu).
largely on mapping of community patterns and studies
of habitat occupancy and preferences. More recently, habi-
tat models have been applied, and the advent of simple and
cheap molecular markers has allowed quantification of
important community assembly (see Glossary) processes
such as dispersal [5]. In community ecology the unit of
study is the individual, population, or species, consistent
with other sub-disciplines such as behavioural and popu-
lation biology.
regains its structure following a disturbance (resilience) or resists change in

food web structure (resistance).
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Ecosystem ecology focuses on the fluxes of energy and
nutrients through ecological systems [6,7]. Whereas com-
munity ecology tends to be reductionist, concentrating
largely on processes driven by individuals, populations,
or species, ecosystem research often takes a more holistic,
systems approach. It remains tractable by aggregating
species into broad functional compartments such as pri-
mary producers, herbivores, and carnivores, with fluxes of
energy and materials between them. This approach has
allowed development of flux models, which have been
applied widely in forestry, fisheries, and agriculture. How-
ever these system-based approaches lack the detail to
detect changes in single species, and the compartments
used cannot be readily reconciled with other areas of
biology [8].

A gap exists between community ecology, which incor-
porates species diversity, and ecosystem ecology, which can
describe changes in function but does not incorporate
diversity (Table 1). In the 1980s biodiversity–ecosystem
function (BEF) studies attempted to bridge this gap. These
studies initially focused on concerns over the consequences
Table 1. An overview of community ecology and ecosystem scien
disciplines
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of species loss for ecosystem productivity and stability [9].
Early studies relating biodiversity to functions such as
primary productivity, decomposition, pollination, and fish-
eries production were necessarily simple and primarily
focused on single trophic levels ([9] for a review). The
limitations of this approach have been widely described
[9,10], and there is a growing recognition that BEF studies
would benefit from a framework that considers effects of
changes in biodiversity across trophic levels on multiple
ecosystem processes [9–11].

We propose that reconciling biodiversity and ecosystem
function in a single conceptual framework is best achieved
through application of a food-web approach. Food webs are
maps of the trophic interactions between  species, usually
simplified into networks of species and the energy links
between  them. These networks have a suite of attributes
which can be calculated to describe food web structure
(Box 1). Because this approach includes both species and
energy flows among species, food webs provide a natural
framework for understanding species’ ecological roles and
the mechanisms through which biodiversity influences
ce, and the potential for food-web ecology to integrate across
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Box 1. Food webs and food-web attributes

Food webs characterise the networks of trophic interactions that occur

among species within ecological communities. We focus here on

biodiversity and ecosystem function of whole communities of species

rather than more narrowly defined networks such as host–parasitoid

and mutualistic networks5. Individual species, aggregates of species,

life-stages of species, or non-taxonomic groups (e.g., detritus) form

nodes within food webs. Flows of energy form links via transfers of live

or dead biomass between nodes. Food webs are usually characterised

as binary networks where links are either present or absent, although

webs with weighted links that quantify energy flows (‘weighted

networks’) are becoming increasingly common [18,90]. Many attributes

are used to describe aspects of food-web structure (Table I).

Table I. Food webs

Food-web attribute Biological meaning

Taxa richness (S) Number of taxa (nodes) in the food web.

Number of trophic links (L) Number of directed feeding links (edges) between taxa.

Linkage density (= L/S) Number of links per taxon. A measure of mean dietary specialisation across the food web [90].

Connectance (C) (= L/{S2}) Proportion of potential trophic links that do occur. An indication of degree of inter-connectivity in a food

web, typically 0.05–0.30 [91,92].

Generality (G) The mean number of prey per consumer [93].

Vulnerability (V) Mean number of consumers per prey [93].

Food chain A distinct path within the food-web matrix from any taxon down to a basal taxon (a taxon which feeds on no

other taxa) [18].

Mean chain length (mean FCL) Average number of links found in a food chain across a food web [94]. Food-chain length appears to be

reduced by disturbance and increased by higher energy supply and increased ecosystem size [21–23].

Maximum chain length (max FCL) The maximum number of links found in any food chain in a food web [94].

Number of basal taxa (b) The number of taxa which do not consume any other taxa, by definition autotrophs.

Number of intermediate taxa (i) The number of taxa which are both consumed by, and consume, other taxa.

Number of top taxa (t) The number of taxa which are not consumed by any other taxa.

Prey:predator (= {b + i}/{t + i}) A measure of food-web ‘shape’; high values are more triangular, low values are more ‘square’ in shape.

When <1 the food web has an inverted structure that might indicate instability. Note criticisms of this

attribute [95] and its sensitivity to the common practice of aggregating of low trophic level taxa.

Robustness The minimum level of secondary extinction that occurs in response to a particular perturbation (species

removal) [96].

Food-web motifs The set of unique connected parts of a food web containing n species. Can be thought of as the fundamental

building blocks of complex networks. Most studies focus on triplets of species, for which there are 13

possible combinations.

Degree distribution The frequency distribution of the number of interactions per taxa (termed its ‘degree’). Can identify

important interactors such as keystone species.

Intervality The degree to which the prey in a food web can be ordered so that the diets of all species are placed

contiguously within a single dimension [82].
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ecosystem function [12]. Recognising that the relationship
between  biodiversity and ecosystem function is a recipro-
cal one, we have taken an inclusive approach, and consider
mechanisms whereby biodiversity can influence function,
and function can influence biodiversity. We have deliber-
ately not considered  stability as a function, as this has
been the subject of a recent major review [13]. We use five
core challenges for the application of food-web approaches
to biodiversity and ecosystem function studies to organise
our discussion of emerging trends  in this area. We finish by
summarising those trends  into an overview of what the
next generation of food-web studies needs to include in
order to be applied to the study of biodiversity and ecosys-
tem function.

Food webs as a tool for BEF studies
The use of food webs to describe fluxes of energy between
species was mired for many years in debate over inclusive-
ness, approaches to sampling, and the meaning of some of
the food-web attributes that can be calculated [13–15].
There is now a clear understanding of the limitations of
older data and the need for methodological rigour in de-
scribing food webs [14,15]. With those concerns dealt with,
food-web ecology can be placed in the context of other major
sub-disciplines of ecology. Table 1 shows the potential for
food-web ecology to act as an underlying conceptual and
analytical framework for studying biodiversity and ecosys-
tem function. However, doing so requires addressing a
series of key challenges.

Challenge one: relating food-web structure to ecosystem

function

There is now an established suite of attributes that de-
scribe food-web structure, and it is known that food-web
structure can influence function [16,17]. The central chal-
lenge is determining which aspects of structure are related
to which aspects of function. Because many food-web attri-
butes systematically vary with the size and complexity of
webs (Box 1, [18,19]) understanding these underlying pat-
terns is critical in determining relationships between attri-
butes and ecosystem functions.

Simple relationships between food-web attributes and

ecosystem functions Traditionally, most food webs have
been described as ‘binary’ networks, with trophic links
between taxa identified as either present or absent. These
relatively simple representations of food webs allow calcu-
lation of a suite of attributes that can be correlated with
measures of ecosystem function. The basic attribute of
food-web size is measured as the number of species (S).
Complexity measures incorporate the number of trophic
links (L) in terms of link density (L/S) or connectance, the
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proportion of potential links that actually occur (L/S2). A
central measure of all networks’ structure is the variability
of links among nodes or ‘degree distributions’ that, in food
webs, describe the balance among trophic specialists and
generalists. When normalized by L/S, degree distributions
have a general exponential-type shape [20] indicating that
most paths of energy flow through food webs go through
relatively few species. This is consistent with species re-
moval experiments in BEF studies, which have suggested a
small sub-group of species disproportionately influences
productivity [9].

Incorporating energy flow Weighted networks allow food-
web metrics to include the strength of trophic interactions,
and therefore provide an estimate of energy flow through the
web. Relationships between energy fluxes and biodiversity
have been proposed in the past, notably that systems with
larger amounts of energy entering the food web should be
able to support longer food chains and hence more biodiver-
sity [6,21], although there is the potential for interactions
with ecosystem size and disturbance [22,23]. The power of
integrating ecosystem functions into food-web studies is
clearly illustrated by the studies that have related food-
chain length to basal energy supply. Importantly these are
also readily applicable to management issues. For instance,
food-web studies have shown that riparian vegetation influ-
ences energy inputs to streams, with consequences for fish
populations [24]. A potential application is using basal
productivity data and food-web models to determine the
size of reserves needed to support top predators.

Emerging trends and future directions There is consider-
able potential to use food webs as a tool for achieving greater
understanding of the relationships between attributes of
food webs and ecosystem function. As yet there have been
relatively few studies of the effects of food-web attributes on
various ecosystem functions in a multi-trophic level context.
Studies of variability in food web attributes along produc-
tivity gradients have suggested that such relationships do
exist [21], but there is a need for experimental studies to
explore the underlying mechanisms. Most importantly, un-
derstanding the reciprocal nature of relationships between
food web structure and ecosystem function is essential. This
understanding will only come from manipulative studies of
food webs where both species composition and ecosystem
functions are measured and manipulated individually and
in combination.

New measures of structure of food webs also have
potential to show correlations with function [18]. A food-
web motif is a recognisable regular pattern of connections
between nodes. Using food-web motifs to decompose larger,
more complex food webs into more basic building blocks
[25,26] shows that motifs are shared by food webs from
distinct habitat types [26]. Motif analyses has also quanti-
fied the ‘embeddedness’ of individual species within their
network in order to better link to traditional community
ecology concepts such as keystone species [27]. These
relationships underpin food-web function – in particular
the dynamics of food webs when subjected to extinctions,
invasions, and other disturbances. Fortunately, such
modelling is becoming increasingly tractable.
Challenge two: combining food web and ecosystem

models

Biodiversity studies typically describe species’ occurrence
and abundance distributions at one or a small number of
points in time. In contrast, ecosystem studies typically
describe fluxes of energy and materials on longer time scales
(years to decades). This increased temporal resolution of
ecosystem studies combined with more focus on quantifying
energy flows forced ecosystem ecologists to simplify systems
into relatively few compartments. Early species-based dy-
namical food-web modelling also used simplifications. May
[28] and others conducted local stability analyses for diverse
communities at equilibrium, using interaction matrices
where the species were linked randomly and had random
interaction strengths. Other researchers used non-linear
dynamical approaches, but only for small modules of inter-
acting species [29]. Understanding BEF relationships
requires dynamic food-web models with a full suite of inter-
acting species and incorporating fluxes of materials.

The cascade and niche models of food webs One impor-
tant step in modelling the dynamics of complex networks
has been introducing realistic, non-random underlying
structure. In the 1980s, Joel Cohen and colleagues devel-
oped the hierarchical cascade model [30], which assumes
hierarchical feeding along a single niche axis, with each
species allocated a probability of feeding on species below it
in the hierarchy. The cascade model did a reasonable job of
generating structure similar to the empirical datasets used
at the time, but did poorly with more realistic, complex
datasets, and failed to incorporate some natural features
such as trophic loops (where Species A consumes Species B,
which consumes Species C which consumes Species A) and
cannibalism.

The niche model [31] modifies the cascade model by
assigning each consumer a feeding distribution on the
niche axis that can overlap with itself (cannibalism), and
permits trophic loops. The niche model matches empirical
data much better than the cascade or random models, and
a probabilistic version of the niche model is providing ways
to further explore the extent to which the constraints
imposed by the niche model are consistent with empirical
data [32]. These simple models allow exploration of how
food-web structure systematically depends on the number
of links and species in a system [20].

Incorporating ecosystem function into food web models

Modelling BEF relationships requires realistic dynamic
food web models as a basis on which are superimposed
fluxes of materials. The niche model has become one of
the main tools for providing the underlying food-web struc-
ture on which complex bioenergetic models are run, allowing
modelling of the relationships between biodiversity and
ecosystem function. Such models can now simulate the
biomass dynamics of 50 or more interacting species. This
means that it is possible to model how factors such as the
functional responses in consumer–resource interactions
[33], adaptive consumer behaviour [34], and body-size dis-
tributions across species [35] influence biodiversity in com-
plex communities. For example, in multi-trophic level food
webs where coexistence of primary producers is strongly
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limited by competition for abiotic resources, dynamic models
demonstrated that top-down control is necessary to prevent
competitive exclusion and thus species loss [35]. These
dynamic models predict species interactions by the body
sizes of the taxa using empirically well-supported allometric
scaling relationships of functional attributes such as meta-
bolic and feeding rates with body sizes. This type of dynam-
ical modelling is now being applied to specific systems, such
as time-series data for 24 guilds of taxa in Lake Constance,
northern Europe [36]. This marks the first time that an
ecosystem model has successfully reproduced the well-re-
solved seasonal plankton succession of a lake, and repre-
sents an important step towards using such models to
improve conservation and management decisions. For ex-
ample, such a model could be used to assess the effects of
changes in nutrient loads on plankton communities and
therefore whether the lake may be prone to algal blooms.

Emerging trends and future directions The development
of models that use underlying food-web models as a frame-
work for modelling patterns of body mass and body size are
the first step towards predicting patterns of energy flow.
Because most physiological functions scale predictably with
body size, the ability to incorporate this variable into food
web models is a critical step. For example in spring-fed
creeks, changes in body size result in changes in energy
flow via differences in size-dependent consumption and
processing rates [37]. Food web models that incorporate
body size will allow prediction of the knock-on effects of
changes in body size for total fluxes of energy through food
webs, and any indirect effects on other taxa. Such models are
likely to be very powerful, particularly given predicted and
experimentally-demonstrated effects of climate change on
body size, species abundances, and prey selection in food
webs [38], which have currently unknown effects on ecosys-
tem function.

Challenge three: from individual traits to ecosystem

function

Relating the traits of individual organisms to their ecologi-
cal functions is a significant challenge. Individual variation
in behaviour and physiology can cascade up to ecosystem
processes [39], and adaptive behaviour can be an impor-
tant force structuring food webs [34]. Although food webs
ideally integrate ecological levels from individuals to popu-
lations to ecosystems, most work has occurred at the
population level. Much recent effort has focused on extend-
ing predator–prey population dynamics to food webs, and
has shown emergent food-web attributes, which result
from interactions of population-level dynamics [34,35].
Even more complete models that include individual vari-
ability in consumption and competition and incorporate
evolutionary dynamics have now been developed [40].
These models can predict energy flow and biomass for
relatively small food webs, but have the potential to be
extended to larger food webs.

Linking individuals to food webs to ecosystem function

Research on metabolic drivers of individuals’  consumer–
resource interactions provides  a powerful way to under-
stand BEF relationships [41]. Metabolism depends
systematically  on body size and environmental tempera-
ture [42]. Extending these simple physiological relation-
ships for individual animals to the level of whole
communities can be achieved using relatively simple food-
web models. By assuming equilibria between metabolic
demands and resource supply through the links, mass
balance models can estimate energy fluxes through food
webs. Recently, studies of how body masses and associated
energy fluxes are distributed across trophic levels [43] have
shown how non-random distributions of species’ interaction
strengths constrain complex food webs into quantitative
configurations, preventing unstable consumer oscillations
and competitive exclusion among basal species [40]. Food
webs in this context have provided a framework for bringing
together individual physiology, community energy flux, and
stability to predict relationships between species diversity
and ecosystem functioning [44].

Emerging trends and future directions Increasingly,
individual-level variability is being incorporated into food
web studies, and applied to understanding BEF relation-
ships. This has been aided by novel approaches to the
partitioning of variation in empirical studies [45]. Incorpo-
rating individual variability in body size of animals into food
web models has already been discussed above. However,
individual-to-individual variability in resource use can also
be seen in a number of groups, including individual niche
specialists in trees [46] and individual ‘specialists’ and
‘generalists’ within rodent populations [47]. Incorporating
these complexities into food web models will be challenging,
but there are clear avenues for future research. Individual-
based modelling (IBM) approaches have the potential to
bring individual-level variability into food-web models
[48,49]. Increases in computational power are now sufficient
to support IBM approaches to connect individual-level pro-
cess with population-level structure and dynamics in food
webs [48] but as yet have been little used in this context.

Challenge four: incorporating space and time into BEF

studies

Spatial and temporal variability in food web structure has
the potential to influence ecosystem function and all of the
underlying relationships so far discussed.

Spatial variability in food web structure and ecosystem

functions Most food webs do not include spatial variation of
web structure. Empirical studies incorporating spatial vari-
ability have shown that food-web topology is strongly influ-
enced by spatial segregation of taxa [50]. Theoretical studies
have long shown the potential for spatial variability and
movement of animals to stabilize food-web dynamics [51,52].
More recently, empirical studies have shown the potential
for spatial coupling across food webs based on an animal’s
adaptive foraging behaviour [53]. The movement of preda-
tors between patches of resources can be a critical compo-
nent in determining landscape-scale persistence of taxa and
landscape-scale maintenance of ecosystem functions [54].

Temporal variability in food web structure and ecosys-

tem functions Temporal variability also remains a poorly-
understood feature of food-web dynamics. Several studies
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have shown that intra-annual temporal variability alters
food-web structure [55,56], but the interaction between
temporal variability and ecosystem functions remains un-
clear. Because organisms at higher trophic levels tend to be
larger and longer-lived, the temporal scale of response
becomes longer as we move up food webs. This means that
predator responses to change lag behind those of primary
consumers. Increasing rates of biological change, such as
those occurring due to climate change, might therefore
alter food-web dynamics, favouring bottom–up forces, in-
creasing biomass of basal groups such as plants, algae, and
bacteria [57]. Food webs have already provided a concep-
tual framework for generating hypotheses on the effects of
changing climate [58]. There is clear evidence from the
empirical studies to date that the functional consequences
of climate change can be predicted, modelled, and under-
stood using food-web approaches [59,60].

At much longer temporal scales, evolution is an active
force within food webs, because trophic relationships are a
product of phylogenetic relationships and evolutionary
relationships between predators and prey [61,62]. The
interplay between intraspecific (e.g., closely related taxa
tend to share trophic relationships) and inter-specific (e.g.,
strong interactions between predators and prey, and
plants and pollinators) interactions will have profound
effects on food-web structure [63], and the balance of these
can determine the occurrence and strength of niche parti-
tioning effects on ecosystem functioning [9]. Most studies
have considered food webs as a fixed suite of species with
no variation in patterns of connectivity through evolution-
ary time [64]. As a result, speciation within food webs
remains poorly understood. Even a model with small num-
bers of species and relatively few traits shows that many
food-web outcomes are possible [65]. A number of recent
reviews have discussed the potential for food webs to
influence speciation, and therefore ecological functions
[66,67], and this topic will not be covered in detail here.

Emerging trends and future directions The increasing
ability to model temporal variability in food-web structure
and thus ecosystem function using dynamic models has
been discussed above. There is considerable potential to
further extend the temporal nature of those models to
include evolutionary processes. It is surprising that there
have not been similar attempts to incorporate spatial
variability into models of food web structure. As spatial
ecology increasingly considers ecological processes in a
landscape framework, there is potential to develop meta-
food-web theory to mirror developments in meta-commu-
nity and meta-ecosystem theory. This needs to include the
movements of individuals – as the movement of top pre-
dators (in particular) across landscapes can strongly affect
local food web structure and ecosystem function [68]. How-
ever, there remains a gap between general ecological theo-
ry in this space, food web ecology, and ultimately BEF
theory. The Unified Neutral Theory of Biodiversity [69] has
made a major contribution to spatial ecology over the last
decade. However, the theory has features which make it
incompatible with food webs, including a core assumption
of ecological equivalence and an inability to incorporate
trophic structure. Developing theory and models which
reconcile neutral type dynamics and food web models is
a key challenge for the next decade.

Challenge five: biodiversity loss and effects on

ecosystem function

Predicting biodiversity using food web models Previous
research on the relationship between biodiversity and
ecosystem functioning has been criticised for its assump-
tion of random species losses in experiments because
extinctions are known to occur non-randomly in nature
[70]. Predicting which species will go extinct has been a
major research avenue in food-web ecology, which could
inform future biodiversity experiments. Simulations based
on network structure use random or systematic removal of
certain species from empirical food webs can predict which
species are left without interacting partners and would
thus go secondarily extinct [71]. Dynamical models are also
being used to explore primary and secondary species
extinctions [72,73]. The position of species in a network
has been used to estimate their dynamic importance [27]
and vulnerability to extinction [74]. In an applied context,
food-web studies have now been used to determine future
vulnerability to species loss. Using food-web analysis of
food webs degraded by over-fishing, it was possible to show
that the degraded food webs were more vulnerable to
future species loss than comparable marine food webs
which had been subjected to lower levels of exploitation
[75].

Emerging trends and future directions Understanding
how the locations of species within a network relate to their
functional role has the potential to provide a major ad-
vance in BEF research. The vast majority of studies pre-
dicting effects of species loss on biodiversity are based on
single trophic levels, meaning that adopting a food web
approach could fundamentally alter expectations of the
effects of extinctions [76]. Food-web models already exist
that can predict potential secondary extinctions, but these
have not been extended to predict functional consequences
of species loss. This predictive ability may be particularly
important when it is considered that extinctions within
food webs are highly non-random with respect to functional
roles [77–79]. Mapping functional roles onto vulnerability
to primary and secondary extinctions in food webs is a
highly promising area of future research.

Food webs are also now at the point where we under-
stand what attributes reliably reflect degradation and
vulnerability to future change. For example, marine food
webs that have been degraded have simpler food web
structure (shorter food chains, less trophic loops, and lower
connectivity), with likely consequences for food web stabil-
ity [75]. Food webs have not yet been used as indices of
degradation, in a systematic sense. However, particularly
in marine environments, we are well positioned to apply
food webs in this way [80].

Concluding remarks
Achieving a mechanistic understanding of how biodiver-
sity relates to ecosystem function is necessary for estimat-
ing the impacts of species loss and invasion, and in
managing ecosystems for ecosystem services [10]. The
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BEF relationship  within trophic levels is underpinned by
niche partitioning, which is implicit in the niche model of
food-web structure [81]. Food-web research has made
considerable progress in developing metrics for interval-
ity, which describe resource partitioning  and directly
relate species loss to occupation of niche space [82,83].

Food-web approaches emphasise that biodiversity is not
only an independent variable within BEF research, but
also a dependent variable in terms of an ecosystem’s ability
to maintain biodiversity. Attributes of food-web structure,
such as allometric degree distributions [43], appear to be
critical for biodiversity maintenance. Current research
challenges include linking specific structural and function-
al attributes of food webs and their biotic and abiotic
context to the maintenance of specific components of bio-
diversity (e.g., genetic, species, and interaction diversity),
and ecosystem function (e.g., total trophic flow and biomass
maintenance). Recent advances in the quantification of
multivariate functional traits of species [84] need to be
integrated into network analyses to generate a more mech-
anistic approach to biodiversity and ecosystem functioning
based on species traits, interactions, and energy flow.

Using food webs, we can extend the attributes of indi-
viduals and populations to ecosystem properties such as
production and element cycling. Earlier modelling
approaches explored the impacts of trophic dynamics on
ecosystem outcomes [85] in experimental contexts. Future
dynamical modelling will explore impacts of population
dynamics on functions such as ecosystem-level production
and throughput, and applied to questions of how anthro-
pogenic changes will affect the functioning of ecosystems.

Food webs have provided a framework for the integra-
tion of diverse sub-fields of ecology. Food-web structure is
well described, the significance of numerous food-web
attributes is understood, and there exist sophisticated
Box 2. A case study – food-web insights from the Colorado Rive

Food-webs  can elucidate ecological  responses to management

actions. Cross et al. [89] studied the effects of an experimental flood

in the Colorado River, by describing the full food web of the

ecosystem, including  energy flows from primary producers to

animals; invertebrate community composition, biomass, and produc-

tion; and fish biomass and production (Figure I). The flood reduced

production of invertebrate biota considerably,  but highly non-

randomly; two dominant invasive invertebrates,  Potamopyrgus

antipodarum and Gammarus lacustris declined substantially. Coun-

ter-intuitively, the biomass of rainbow trout (Oncorhynchus mykiss)
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Figure I. Food webs from the Colorado River pre- a
and useful modelling approaches. In this context, there
are clear questions that now can be addressed in food-web
ecology. Describing how food web topology changes along
environmental gradients such as eutrophication or physical
disturbance [86,87] and over time in heavily impacted sys-
tems is the first step [75]. Linking these topological changes
to changes in ecosystem functioning and the robustness of
systems to further change is a major challenge. However, it
is exactly for challenges such as these where food-web
approaches hold the most promise. Invasion–extinction
dynamics are most profitably viewed through a lens of
trophic change, as it not just biodiversity change that is
important but the ecosystem-wide changes in functioning
that accompany changes in the identities of the players.
Observations of the ‘invasional meltdown’ of communities
and related ecosystem functions on Christmas Island, after
the arrival of the yellow crazy ant, provide an illustration of
the utility of considering systems in this way [88].

Can our existing knowledge be applied to understanding
BEF relationships in a management context? Research on
the interplay between food-web structure and ecosystem
function can provide managers with a powerful tool to under-
stand, predict, and manage ecosystems experiencing multi-
ple competing demands and environmental perturbations. In
some cases a food-web approach has already been effectively
applied: for instance in marine fisheries management [75,80]
and in studies of functional consequences of anthropogenic
impacts on stream and river ecosystems [89] (Box 2).

The development of quantitative analysis of food webs
provides an opportunity to reconcile ecological processes
and biodiversity patterns into a single analytical frame-
work. Importantly this is increasingly coupled with the
ability to model the effects of food-web structure on ecosys-
tem functions. While the data we have can provide insights
into these relationships, the next generation of biodiversity
r

increased after the high flow. Crucially, understanding the patterns of

energy flow in a food-web context allowed the complex cause and

effect relationships of the experimental flood to be disentangled.

Post-flooding, the production of two sub-dominant but palatable

invertebrate taxa (Simuliidae and Chironomidae) increased greatly.

Because these invertebrates had higher interaction strengths with

rainbow trout, energy flow to trout increased, leading directly to the

observed increases in trout biomass. Here, using food-web ap-

proaches allowed a clear understanding of what was influencing a

functional outcome of management interest (trout biomass).
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Box 3. Taking a food-web approach to reconciling the structure and function of biodiversity

The next generation of empirical studies addressing the relationships

between biodiversity and ecosystem function can benefit from

adopting a food-web approach. Such studies need to have the

following characteristics.

Diversity within functional groups needs to be explicitly measured,

particularly in ecosystem ecology studies. This can be carried out

either through traditional taxonomy or using molecular approaches.

Where molecular data is available, phylogenetic approaches can be

applicable.

Fluxes of energy and materials need to be incorporated, particularly

in community ecology studies. While measurements of interaction

strengths can be needed, binary representations of links are also

informative. Methods for measuring primary and secondary produc-

tion need to be incorporated into food web studies. There is

considerable potential for stable isotope approaches and related

mixing models to be used as a means to assess food sources of

animals and the origin of nutrients for primary producers.

Incorporation of information on species traits such as body size and
physiological traits. These traits are likely to influence both ecosys-

tem function and trophic interactions. Understanding potential trade-

offs between functional roles and food-web interactions is essential.

Consideration of biodiversity and ecosystem function studies in a

landscape context. Food-web studies that take into account functional

attributes such as dispersal and resource tracking will be able to relate

patterns of food-web structure across landscapes to large-scale

measures of ecosystem function such as regional productivity.

Use of well understood food-web and network attributes to explore

relationships between structure and function. Despite a troubled

history, a suite of food-web and network attributes now exist which

are likely to have relationships with functional measures. However,

there is a need for studies that include both of these factors.

Use of species removal experiments and studies as the basis for

dynamic models which include both biodiversity and ecosystem

function. Species removal experiments have been frequently carried

out, but measuring consequences  for food-web structure and

ecosystem function is extremely  rare. These studies have the

potential to provide powerful insights into the functional conse-

quences of invasion and extinction.

Review
and ecosystem function studies need to adopt a food-web
approach (Box 3) in order to disentangle the complex inter-
relationships between pattern and process in ecological
systems.
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