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Abstract

We consider the quantization of scalar fields in spacetimes such that, by means of a suitable scaling of the

field by a time dependent function, the field equation can be regarded as that of a field with a time dependent

mass propagating in an auxiliary ultrastatic static background. For Klein-Gordon fields, it is well known that

there exist an infinite number of nonequivalent Fock representations of the canonical commutation relations

and, therefore, of inequivalent quantum theories. A context in which this kind of ambiguities arises and

prevents the derivation of robust results is, e.g., in the quantum analysis of cosmological perturbations. In

these situations, typically, a suitable scaling of the fieldby a time dependent function leads to a description

in an auxiliary static background, though the nonstationarity still shows up in a time dependent mass. For

such a field description, and assuming the compactness of thespatial sections, we recently proved in three

or less spatial dimensions that the criteria of a natural implementation of the spatial symmetries and of a

unitary time evolution are able to select a unique class of unitarily equivalent vacua, and hence of Fock

representations. In this work, we succeed to extend our uniqueness result to the consideration of all possible

field descriptions that can be reached by a time dependent canonical transformation which, in particular,

involves a scaling of the field by a function of time. This kindof canonical transformations modify the

dynamics of the system and introduce a further ambiguity in its quantum description, exceeding the choice

of a Fock representation. Remarkably, forany compact spatial manifold in less than four dimensions, we

show that our criteria eliminate any possible nontrivial scaling of the field other than that leading to the

description in an auxiliary static background. Besides, weshow that either no time dependent redefinition

of the field momentum is allowed or, if this may happen –something which is typically the case only for

one-dimensional spatial manifolds–, the redefinition doesnot introduce any Fock representation that cannot

be obtained by a unitary transformation.
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I. INTRODUCTION

It is well known that the relation between classical and quantum systems is not a one to one

correspondence. In fact, the construction of a quantum theory that corresponds to a given classical

system is generally plagued with ambiguities. Usually, onefirst selects a specific set of variables

which provides an (over-)complete set of coordinates on phase space, assumed to be a symplectic

manifold, and requires this set to be closed under Poisson brackets. In short, one considers then

a suitable Poisson algebra of phase space functions, able todistinguish points, and looks for a

representation of it as an algebra of linear operators on a Hilbert space [1]. Even ignoring all the

freedom existing in the choices that lead to a particular algebra of functions, so that one admits the

identification of classical systems directly with these algebras, their representation as an algebra of

operators introduces ambiguities which affect the physics derived with the resulting quantum the-

ory. In the simplest cases studied in Quantum Mechanics, where the classical system has a finite

number of degrees of freedom and the phase space possesses a linear structure, the ambiguities

are surpassed in the following way. First, one passes to the exponentiated version of (i times) the

natural position and momentum variables, so that one concentrates the analysis just on bounded

functions, and arrives to the so-called Weyl algebra as the characteristic algebra of the system.

Next, one restricts all discussions exclusively to strongly continuous, unitary, and irreducible rep-

resentations of this algebra. The Stone-von Neumann theorem [2] guaranties then that the allowed

representations are all unitarily equivalent, so that the quantum physics is univocally determined.

It is worth emphasizing that the uniqueness of the representation is achieved only when one

imposes certain criteria, assumed for the validity of the Stone-von Neumman theorem. In particu-

lar, if one renounces to the requirement of strong continuity, one can obtain representations which

are not unitarily equivalent to the standard one. For instance, this is the situation that is found in

the polymer representation [3, 4] adopted in Loop Quantum Cosmology [5, 6], namely, the quan-

tization of simple cosmological spacetimes following the methods put forward in Loop Quantum

Gravity [7].

The picture gets more complicated when one analyzes systemswhich possess an infinite num-

ber of degrees of freedom. This is so even for the simplest fieldlike systems, with a phase space

described by a field and its momentum, and a dynamics determined by linear field equations. If

one considers the associated canonical commutation relations (CCR’s), or more precisely the field

analogue of the Weyl algebra, one finds that there exist infinitely many possibilities of represent-
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ing them which are not related by unitary transformations. This infinite ambiguity still arises if

one restricts all considerations to Fock representations [8], where one describes the field in terms

of creation and annihilation operators. Different representations can be interpreted as correspond-

ing to different choices of vacuum, which in turn implies a different identification of the creation

and annihilation parts. These alternatives can also be viewed as distinct choices of a basis of so-

lutions for the dynamical equations, with a different characterization of the field in terms of the

coefficients of the expansion in that basis. Hence, the possible choices of (suitable orthonormal-

ized) bases are related among them by means of linear canonical transformations, often called

Bogoliubov transformations, which change the sets of creation and annihilationlike variables. The

essential difference with respect to Quantum Mechanics is that such linearcanonical transfor-

mations cannot always be implemented as unitary transformations in the quantum theory. As a

consequence, unless one includes additional criteria [8–11] to select a vacuum state (or rather a

unitarily equivalent class of them), one has to deal with an infinite number of nonequivalent Fock

quantizations, each leading to different physical predictions.

Furthermore, in nonstationary scenarios, like those arising in cosmology, there exists an addi-

tional ambiguity which is previous to the selection of a Fockrepresentation, and which is related

to the choice of a canonical pair to describe the field when oneallows that part of its evolution

be assigned to the time dependent spacetime in which the propagation takes place. In fact, in

nonstationary settings, it is customary to scale the field configurations by time varying functions.

This is so irrespective of whether the spacetime in which thepropagation occurs is a true physical

background [12], an effective spacetime (e.g., a quantum corrected background in effective Loop

Quantum Cosmology [6, 13, 14]), or an auxiliary spacetime (like for dimensional reductions of

systems with two commuting spacelike Killing vectors, as inGowdy models [15–17]). A scaling of

this type is found, for instance, in the study of Klein-Gordon (KG) fields in Friedmann-Robertson-

Walker (FRW) spacetimes, in the treatment of scalar perturbations around FRW spacetime –like

in the analysis of Mukhanov-Sasaki variables [18]–, or in the consideration of Bardeen potentials

[19]. As we will comment in more detail below, in such cases the field is typically changed by

a function of the scale factor of the geometry, but the specific functional dependence depends on

the problem under consideration. This scaling of the field configurations can always be completed

into a linear and time dependent canonical transformation,which leads to a new canonical pair of

field variables. Since the transformation varies in time, the new pair has a different (but still linear)

dynamics. Hence, the freedom to perform a transformation ofthis type introduces a fundamental
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ambiguity in the description of the linear system and of its properties under quantum evolution. It

is mainly on this kind of ambiguity that we will concentrate our discussion in this work, propos-

ing criteria that remove it in situations of interest in cosmology and, besides, determine a unique

representation of the CCR’s for the corresponding privileged scaling.

Let us recall that, given a linear field phase space, the relevant information on the choice of

creation and annihilationlike variables is encoded in a basic structure called thecomplex structure

[8, 20]. A complex structureJ is a real, linear map on the phase space which preserves the

symplectic form,σ, and whose square is minus the identity. In addition, it is required that the

composition of the complex structure (acting in one of the entries ofσ) and the symplectic form

provides a positive definite bilinear map on phase space. Every such complex structure defines a

vacuum state which subsequently determines a Fock representation of the CCR’s [8] (or, strictly

speaking, of the corresponding Weyl relations).

A result due to Shale [21, 22] tells us that, if we have a Fock representation of the CCR’s

determined by a complex structureJ, a linear canonical transformationT admits a unitary imple-

mentation in that representation if and only if the antilinear part ofT, namely (T + JT J)/2, is a

Hilbert-Schmidt operator1. Obviously, in infinite dimensions this requirement is not satisfied by

all conceivable canonical transformations, so that not allof them lead to unitarily related quantum

theories. It is worth commenting that the Hilbert-Schmidt requirement can be reinterpreted as the

condition that the analyzed transformation maps the vacuumto a new state with a finite particle

content (to the extent that a particle concept can be employed in the scenario under discussion).

In practical situations, as we have mentioned, one looks forreasonable criteria which can re-

move the ambiguity in the representation and select a preferred vacuum, or equivalence class of

vacua. For instance, one can require a natural quantum implementation of the classical sym-

metries of the system [8]. However, in general cases, and in particular in generic nonstationary

settings, one simply has not sufficient symmetry to pick out a unique Fock representation. This

is particularly important in cosmology. When considering fields that propagate in cosmological

backgrounds, which are nonstationary, the lack of uniqueness criteria renders the predictions of

the Fock quantization devoid of physical relevance, inasmuch as they depend on particular choices

and, furthermore, there exist an infinite number of them.

1 An operatorT on a Hilbert space is called Hilbert-Schmidt if the trace ofT∗T is finite, whereT∗ is the adjoint

operator.
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At least for cases in which the cosmological background still possesses some spatial symme-

tries, it is a standard procedure to keep the requirement that the quantization structures be invariant

under those symmetry transformations, even if this does nottotally fix the representation. Pro-

vided that these transformations are symplectomorphisms,this amounts to the requirement that

the complex structure be invariant. We will callinvariant the representations with this property. In

addition, in the lack of a time symmetry, it sounds reasonable to demand at least that the dynamical

evolution be implemented as a family of unitary transformations. Precisely this combined criteria

of spatial symmetry invariance and unitary dynamics have been used to determine a unique Fock

quantization for certain scalar fields describing gravitational waves [16, 17, 23–26], in the context

of inhomogeneous cosmologies of the Gowdy type. The criteria have been proven to apply as well

to scalar fields with a generic time dependent mass defined ond-spheres, withd = 1, 2, 3 [27, 28],

including the commented (dimensionally reduced) description of the Gowdy fields as particular

cases. More recently, it has been possible to extend the result of the uniqueness of the Fock quan-

tization of scalar fields satisfying a KG equation with time varying mass to fields defined onany

compact spatial manifold in three or less dimensions [29].

Actually, once one allows for a scaling of the field by a time dependent function (treated classi-

cally), as we have commented that frequently happens in cosmology, the description of the (scalar)

field propagation in certain nonstationary spacetimes can be reformulated as that of a field with

a time varying mass in a static background. This typically occurs in FRW spacetimes. The sim-

plest example is that of a test KG field, which after a rescaling by the FRW scale factor (and in

conformal time) obeys a field equation of the form

ϕ̈ − ∆ϕ + s(t)ϕ = 0, (1)

which precisely corresponds to the propagation of a free field with a time dependent mass. Besides,

in source-free Einstein-Maxwell theory, using conformal time and adopting a suitable Lorentz

gauge, the vector potential can be scaled in a similar way to arrive at a massless wave equation in

a static spacetime [30]. A context in which the discussion encounters a natural application is in

the quantization of cosmological perturbations [12, 19, 31]. In particular, for perturbations of the

energy-momentum tensor that are isotropic and adiabatic, the gauge invariant energy density per-

turbation amplitude can be scaled by a suitable time function (other than the scale factor) so as to

satisfy (in conformal time) a field equation of the above type(1), in an effective static background

[19]. One also finds this same kind of equation with varying mass in the asymptotic analysis of
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the dynamics of the perturbations of a massive scalar field inan FRW spacetime, after a suitable

gauge fixing and a scaling of the field [13, 32]2. In addition, the tensor perturbations of an FRW

cosmological background, describing its gravitational wave content, are subject as well to a field

equation of this type after scaling them (and choosing againconformal time) [19]. Therefore, the

result of uniqueness of the Fock representation for a KG fieldwith time varying mass and in a

static spacetime under the criteria of symmetry invarianceand unitary dynamics finds immediate

applications in cosmology, and in particular in the study ofcosmological perturbations, if one con-

templates the possibility of scaling the fields by time dependent functions, which partially absorb

the evolution of the cosmological background. Recall that these results are valid in models with

compact spatial topology. This includes the physically important case of flat models with compact

sections of 3-torus topology [33].

Let us emphasize that different scalings lead to different field descriptions, each of them with

a different dynamics. The Fock quantization of each of these descriptions does not necessarily

provide unitarily equivalent quantum theories. Let us see this in more detail. We already men-

tioned that, on phase space, the scaling of the field by a time function can be regarded as part of

a time dependent linear canonical transformation. The scaling of the field is then completed by

a transformation of the momentum, in which the latter suffers just the inverse scaling, so as to

maintain the canonical structure. Besides, in this transformation, the momentum may acquire a

contribution linear in the field. In order to respect locality and the spatial dependence of the fields,

the most general linear contribution to the momentum that wewill consider consists of the field

multiplied by a (conveniently densitized) function of time. The resulting family of canonical trans-

formations, being time dependent, generally modify the dynamical evolution of the system. In this

regard, it is important to contemplate the presence of a fieldcontribution to the new momentum

if one wants to maintain a dynamics dictated by a quadratic Hamiltonian with certain good prop-

erties, like e.g. the absence of crossed terms mixing the configuration and momentum fieldlike

variables. But the fact that the dynamics changes implies that the criteria for uniqueness, which in

particular include a unitary implementation of the time evolution, must be applied independently

to each field description, at least in principle. Besides, since the descriptions are related by linear

canonical transformations (varying in time, actually), and not all of these transformations can be

implemented in terms of unitary operators in the quantum theory, it is not granted that the different

2 This is an example where Eq. (1) is modified with terms which donot affect the asymptotics.
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formulations attained in this manner result to be unitarilyequivalent. Hence, if we want to reach a

privileged Fock quantization for our system, we need to fix this ambiguity in the field description.

A quite remarkable result, proven first for the case in which the spatial manifold on which the

field is defined is a circle [34], and demonstrated recently for the 3-sphere and the sphere in two

dimensions [35], is that the proposed criteria of natural invariance under the spatial symmetries

and of unitary dynamics happen to select also a unique field description among this class of time

dependent canonical transformations. The description selected is precisely the one in which the

field equations are of the type (1), with time varying mass, ina static background3. When the

spatial manifold is a circle, it was shown that field descriptions differing just in the inclusion of

a field contribution to the momentum are possible, but they are all unitarily equivalent, so that a

representation of the new canonical pair can be directly constructed from the original one in such

a way that the relation is unitary [34]. The aim of the presentwork is to extend this result to any

compact spatial manifold in three or less dimensions. Namely, we want to prove that our criteria

of symmetry invarianceand unitary time evolutionselect in fact a unique field description for our

system onany compact spatial manifold in three or less spatial dimensions. This, together with

the already obtained result about the uniqueness of the Fockrepresentation for the specific field

description in which the KG equation does not contain any dissipative term [that is, the description

in which the background appears to be static and the field equation takes the form (1)], provides a

considerable robustness to the quantization, choosing a unique Fock quantum theory up to unitary

equivalence. In particular, this guaranties the reliability of the quantum predictions.

The rest of the paper is organized as follows. We start by introducing the model in Sec. II. The

uniqueness result about the choice of Fock representation for a scalar field with varying mass prop-

agating in a static spacetime whose spatial sections are compact is reviewed in Sec. III. Although

this result was proven in Ref. [29], we succinctly revisit the arguments of the demonstration for

completeness in the presentation and because they provide the basis for the proof of the result of

this work, namely, that our criteria select also a unique field description among all those related by

a time dependent scaling. The proof that all nontrivial scalings are excluded is presented in Sec.

IV. In addition, in Sec. V we show that either there is no freedom to include a time dependent

linear contribution of the field in the momentum or, if the freedom exists (something that may

3 Remarkably, our results were recently found useful also in the context of string dynamics in arbitrary plane wave

backgrounds [36].
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typically happen only for one-dimensional spatial manifolds), the change does not introduce any

Fock representation which is not attainable from the original one by a unitary transformation. The

relation between the Fock quantization selected by our criteria and the choice of vacuum in terms

of the Hadamard condition [8] is briefly discussed in Sec. VI.We present our conclusions in Sec.

VII. Finally, two appendices are added.

II. THE MODEL AND ITS QUANTIZATION

We begin by considering the Fock quantization of a real scalar field with a time varying mass

function. The fieldϕ is defined on a general Riemannian compact spaceΣ of three or less (spatial)

dimensions, and propagates in a globally hyperbolic background of the formI × Σ, whereI is

a (not necessarily unbounded) time interval. We callhab the metric on the spatial manifoldΣ

(a, b denoting spatial indices), and restrict the discussion here to the case of orthogonal foliations

and a time independenthab. As we have already commented, under very mild assumptions (in

particular on the mass function) it is then possible to show that a preferred Fock representation

is selected by imposing the criteria that the dynamics be unitary and that one achieves a natural

unitary implementation of the spatial symmetries of the field equations [29].

For our analysis, we choose an (arbitrarily) fixed timet0 and, at that instant of time, we consider

the field data (ϕ,Pϕ) = (ϕ,
√

hϕ̇)|t0, where the dot denotes the time derivative andh is the determi-

nant of the spatial metric. By construction, we identify thecanonical phase space of the system

with the set of data pairs{(ϕ,Pϕ)}, equipped with the symplectic formσ that is determined by the

standard Poisson brackets{ϕ(t0, x),Pϕ(t0, y)} = δ(x − y). These brackets are taken independent of

the choice oft0, so that the time independence ofσ is granted. Note also that the configuration

variableϕ is defined as a scalar, and hence the momentumPϕ is a scalar density.

We call∆ the standard Laplace-Beltrami (LB) operator associated with the metrichab. Note

that−∆ is a nonnegative operator, i.e., with the exception of possibly null eigenvalues (in this

respect, see the comments below about zero modes), all eigenvalues of∆ are real and negative.

Employing this operator, we introduce the complex structure J0 determined by:

J0(ϕ) = −(−h∆)−1/2Pϕ,

J0(Pϕ) = (−h∆)1/2ϕ. (2)

The Fock representation defined byJ0 is the analogue of the free massless field representation.
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In fact, J0 is constructed from the LB operator ignoring the existence of a mass in the system.

Nonetheless, rather than the massless case, we are going to consider the general case of the field

equation

ϕ̈ − ∆ϕ + s(t)ϕ = 0, (3)

which, given the expression of the field momentum, is equivalent to the canonical equations of

motion:

ϕ̇ =
1√
h

Pϕ, Ṗϕ =
√

h
[

∆ϕ − s(t)ϕ
]

. (4)

The mass functions(t) is allowed to be quite arbitrary, except for some weak conditions that were

specified in Ref. [28]. Namely, we assume that it has a second derivative which is integrable in

any closed subinterval ofI.

In order to discuss whether the dynamics (4) admits a unitaryimplementation with respect to

the Fock representation determined byJ0, essential ingredients are the general properties of the

LB operator in any compact space [37]. In particular, the eigenmodes of the LB operator allow

us to decompose the field in a series expansion. In the considered general setting, the natural

space of functions onΣ is that of square integrable functions in the inner product provided by the

metric volume element (constructed withhab). Let then{Ψn,l} be a complete set of real orthonormal

eigenmodes of the LB operator with respect to this inner product, with corresponding discrete set

of eigenvalues given by{−ω2
n}, with n ∈ N. Necessarily, these eigenvalues are such thatω2

n tends

to infinity when so doesn. In general, the spectrum of the LB operator may be degenerate, so that

two or more of the eigenmodesΨn,l have the same eigenvalue. The labell takes this degeneracy

into account. We callgn the dimension of the eigenspace with eigenvalue−ω2
n. This degeneracy

number is always finite,Σ being compact. For eachn, the labell runs from 1 togn. In the following,

all sums performed over the spectrum of the LB operator include this degeneracy.

Using these eigenmodes, we can express the fieldϕ as a seriesϕ =
∑

n,l qn,lΨn,l. With this

expansion at hand, it is clear that the degrees of freedom of the field reside in the discrete set of

real modes{qn,l}, which vary only in time. Since the eigenmodes are orthonormal with respect to

the inner product provided by the metric volume element, onegets that the canonical momentum

conjugate toqn,l is pn,l = q̇n,l. Besides, recalling thatJ0 is obtained from the LB operator, it is easy

to realize that this complex structure is block diagonal by modes in the introduced field expansion

and, furthermore, independent of the degeneracy labeled byl.

10



Let us then define

an,l =

√

ωn

2
qn,l + i

pn,l√
2ωn

, (5)

which, together with their complex conjugatesa∗n,l form a set of annihilation and creationlike

variables4. In these variables, the complex structureJ0 is totally diagonal, taking the standard form

J0(an,l) = ian,l andJ0(a∗n,l) = −ia∗n,l. In other words,an,l anda∗n,l can be regarded as the variables that

are promoted to annihilation and creation operators in the Fock representation determined byJ0.

Returning to the dynamics, one can check that the modes obey the equations of motion:

q̈n,l +
[

ω2
n + s(t)

]

qn,l = 0. (6)

It is worth noticing that all the modes are decoupled, and that the evolution equations are the same

for all modes in the same eigenspace (indicated by the labeln). The evolution of the variables

(an,l, a∗n,l) from the fixed reference timet0 to any other timet is a linear transformation which is

then block diagonal, owing to the decoupling of the modes, and insensitive to the degeneracy label

l. Thus, the transformation adopts the general form

an,l(t) = αn(t, t0)an,l(t0) + βn(t, t0)a
∗
n,l(t0). (7)

Since the evolution respects the symplectic structure, this transformation must be canonical. This

implies that, for all values ofn andt and independently of the value oft0, one has

|αn(t, t0)|2 = 1+ |βn(t, t0)|2. (8)

Actually, a canonical transformation of the type (7) can be implemented in terms of a unitary

operator in the Fock representation defined by the complex structureJ0 if and only if the sequence

formed by its corresponding beta-functionsβn(t, t0) is square summable, namely, if
∑

n gn|βn(t, t0)|2

is finite [22] (note that the degeneracy has been taken into account). To elucidate whether this sum

is finite or not, we need to know the behavior of the beta-functions for largen, i.e., to know the

asymptotic behavior of the dynamics for modes with large value ofω2
n. This asymptotic analysis

was carried out in Ref. [28]. It was proven there that, for anypossible mass functions(t) and any

values oft andt0, the leading term in the beta-function is proportional to 1/ω2
n. It then turns out

4 Obviously, these variables are ill-defined for zero modes, i.e., whenωn = 0. However, our discussion on the unitary

implementation of the dynamics does not depend on a finite number of modes. So, we will analyze exclusively

nonzero modes in the rest of the text. Unitarity and uniqueness for zero modes can be attained following methods

and criteria of Quantum Mechanics.
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that the requirement that the sum of|βn(t, t0)|2 be finite is equivalent to the finiteness of
∑

n gn/ω
4
n.

Indeed, this condition is satisfied for all Riemannian compact manifolds in three or less dimen-

sions. This fact follows from the asymptotic properties of the spectrum of the LB operator. In

particular, the number of eigenstates whose eigenvalue does not exceedω2 in norm is known to

grow in d dimensions at most likeωd [37]. With this bound in the growth rate, one can prove that

gn/ω
4
n is summable.

If the manifold (Σ, hab) possesses an isometry group, the LB operator is automatically invariant

under it. Therefore, these symmetries are directly transmitted to the field equations (4). In the

canonical formulation, the group translates into canonical transformations which commute with

the dynamics. More generally, we will consider the subgroupof the unitary transformations [in the

Hilbert space of square integrable (configuration) functions with respect to the measure defined by

the metric volume element associated withhab] that commute with the LB operator, or a convenient

subgroup of it determined by the isometries, provided that this latter subgroup satisfies certain

conditions which we will explain later on. We will call this symmetry groupG, which leaves the

dynamics invariant. As part of our criteria for the uniqueness of the quantization, we demand

that these symmetries find a natural unitary implementationin the quantum theory. In fact, this

is ensured in the Fock representation determined by the complex structureJ0, since this structure

depends exclusively on the LB operator (and the metric volume element), and hence inherits its

invariance under the symmetry groupG. Thus, the complex structureJ0 is invariant underG

and determines a Fock representation in which the quantum counterpart of Eq. (6) is a unitary

dynamics. In the next section, we will prove that, if there exists another Fock representation with

the same properties, it has to be unitarily equivalent to theone defined byJ0.

III. UNIQUENESS OF THE REPRESENTATION

In order to obtain a natural unitary implementation of the symmetry groupG in the Fock rep-

resentation, we just have to concentrate our attention on complex structuresJ that are invariant

under its action. Therefore, the first step in our analysis isto characterize theseG-invariant com-

plex structures, something that is possible by means of a suitable application of Schur’s lemma

[24, 25, 28].

Let us analyze the action of the groupG on the canonical phase space. We start by studying

its action on the configuration space, formed from the valuesof the fieldϕ at timet0. We will call
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Q this configuration space. Recall that, by construction, theaction ofG is naturally unitary onQ
(with respect to the inner product obtained with the metric volume element) and commutes with

the LB operator. Therefore, each of the eigenspaces of the LBoperator corresponding to different

eigenvalues provides an irreducible representation ofG or, otherwise, can be composed in a finite

number of mutually orthogonal irreducible subspaces. In this way, we can decompose the config-

uration spaceQ in a convenient hierarchy of finite dimensional subspaces: first, as a direct sum

of eigenspacesQn of the LB operator (the superscriptn labeling the associated eigenvalue), and

then each of these eigenspaces as a direct sum of irreduciblerepresentationsQn
m of the symmetry

groupG (the labelm counting the different components for eachn). Note that, ifG is taken as the

maximal subgroup of the unitary group that commutes with theLB operator, all these irreducible

representations are distinct. On the other hand if, starting with the spatial isometries, we rather

identify G with a subgroup of the former maximal subgroup, we nowassumethat all such rep-

resentations differ (this is the case, e.g., with the isometry group of thed-sphere or thed-torus).

Clearly, if we callgn,m the dimension of those representations,Qn
m, the sum ofgn,m over m must

equal the degeneracygn for each value ofn. In particular, the integersgn,m can never exceedgn.

We can proceed similarly to get a decomposition in irreducible representations of the spaceP
formed by the momentum fieldsPϕ at the fixed timet0. Since the momenta are scalar densities, the

integral for the inner product is performed in this case withthe inverse volume element. Altogether,

we arrive at a decomposition of the phase space of the system,Γ, in the formΓ = ⊕nΓ
n = ⊕n,mΓ

n
m,

where we have calledΓn
m = Qn

m ⊕ Pn
m. Besides, given thatG acts in the same way on fields and on

their momenta, the group action coincides on the subspaceQn
m and on its counterpartPn

m.

Via Schur’s lemma [38], a direct consequence of this decomposition in irreducible representa-

tions is that theG-invariant complex structures must be block diagonal, witha (possibly) different

block Jn,m for eachΓn
m, since they commute withG and cannot mixdifferent irreducible repre-

sentations5. Therefore, the allowed complex structuresJ must all admit the generic expression

J = ⊕Jn,m. In each componentΓn
m, one can always find a basis of configuration variables and cor-

responding momentum variables which arises from a suitablechoice of orthonormal eigenmodes

5 In principle, Schur’s lemma can be applied only to complex representations, while we are dealing with a basis of

real eigenmodes of the LB operator. Nonetheless, since the relation between real and complex eigenmodes is linear,

and the dynamics is both linear and common to all the eigenmodes in the same eigenspace, the implications of the

lemma can be translated to our description in terms of real modes without serious obstructions for the analysis of

the evolution (see, e.g., the discussion in Ref. [33]).
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of the LB operator, like those that we introduced in the previous section to expand the field. For

each givenn, the complete set{qn,l, pn,l} is obtained as the union of all such bases when the whole

set of subspacesΓn
m of Γn are considered6. Besides, on eachΓn

m, the corresponding complex struc-

tureJn,m consists of four maps,Jqq
n,m, Jqp

n,m, Jpq
n,m, andJpp

n,m, according to the four choices of initial and

final space betweenQn
m andPn

m. Moreover, each of these four maps, established between thesame

irreducible representation ofG, is itself invariant under the action of the group, and therefore must

be proportional to the identity mapI by Schur’s lemma (the proportionality constants being re-

stricted by the imposition that the complex structure be a real map). In total, we conclude that the

G-invariant complex structures adopt also a block diagonal form in each subspaceΓn
m, the blocks

being given by a 2-dimensional complex structure formed outof the four proportionality constants

mentioned above. This 2-dimensional complex structure only mixesqn,l with pn,l for each value of

l, and coincides for all the labelsl in the same subspaceΓn
m.

To compare a genericG-invariant complex structureJ with the reference one,J0, it is conve-

nient to change the basis on phase space to the complex variablesan,l anda∗n,l. Since all invariant

complex structures have the same block form, and they are symplectomorphisms, one can eas-

ily show that they are always related by a transformation of the typeJ = KJ0K−1, whereK is a

symplectic map which admits the same decomposition in 2× 2 blocks that we have found forJ

[24]. Likewise, all the 2-dimensional blocks ofK are identical in each spaceΓn
m. Hence, each

invariant complex structure is totally characterized by a discrete set of 2-dimensional symplectic

mapsKn,m. We can view each of these (real) maps as 2× 2 matrices and express them in terms

of two complex numbers,κn,m andλn,m, which provide their diagonal and nondiagonal elements,

respectively [28]. The condition that the map preserves thesymplectic form translates into the

relation|κn,m|2 = 1+ |λn,m|2.
Note that, then, the complex structuresJ andJ0 will be unitarily equivalent if and only if the

symplectic transformation between them,K, admits a unitary implementation with respect to (e.g.)

J0. We have already commented that this amounts to demand the square summability (including

degeneracy) of the beta-functions (or rather beta-coefficients, in this case) corresponding to the

mapK, which are nothing but the complex numbersλn,m [29]. Hence, the necessary and sufficient

condition forJ andJ0 to be unitarily related is that
∑

n,m gn,m|λn,m|2 be finite.

On the other hand, let us assume that the evolution map,U, admits a unitary implementation

6 See, nonetheless, the comments in the previous footnote.

14



with respect to aG-invariant complex structure,J. This is

equivalent to say (via a change of basis from the creation andannihilationlike variables that

diagonalizeJ to those forJ0) that K−1UK can be implemented as a unitary transformation with

respect toJ0 or, alternatively, that the beta-functions ofK−1UK are square summable. The effect

of the transformationK is to replace the functionsαn andβn for J0 with new ones, adapted to

the basis which diagonalizesJ. We emphasize that these new functions depend no more just on

n, but also on the indexm. A direct calculation leads to the following expression forthese new

beta-functions:

βJ
n,m(t, t0) = (κ∗n,m)2βn(t, t0) − λ2

n,mβ
∗
n(t, t0) + 2iκ∗n,mλn,mℑ[αn(t, t0)]. (9)

Here, the symbolℑ denotes the imaginary part.

Therefore, aG-invariant complex structure allows for a unitary implementation of the dynamics

if and only if
∑

n,m gn,m|βJ
n,m(t, t0)|2 is finite at all instants of timest. We can then easily adapt the

discussion of Ref. [28] to show that the unitary implementation of the dynamics with respect to

J implies indeed that this complex structure is unitarily equivalent to J0. A sketch of the proof

goes as follows. Employing that
√

gn,mβ
J
n,m(t, t0) and

√
gnβn(t, t0) are square summable (because

the dynamics is unitary with respect toJ –by hypothesis– andJ0), we conclude that the sequences

formed by
√

gn,mℑ[αn(t, t0)] λn,m/κ
∗
n,m must also be square summable at all times. Then, making

use then of the asymptotic behavior ofℑ[αn(t, t0)], which was discussed in Ref. [28], we can easily

deduce the square summability, at all instants of time, of
{

√
gn,m
λn,m

κ∗n,m
sin

[

ωn(t − t0) +
∫ t

t0

dt̄
s(t̄)
2ωn

]}

. (10)

We can now appeal to Luzin’s theorem and integrate the finite sums of the squared elements of

this sequence (which are measurable functions) over a suitable set in the time intervalI in order to

show that, actually, the sum
∑

n,m gn,m|λn,m|2 has to be finite [28]. But this finiteness is precisely the

necessary and sufficient condition for the unitary equivalence between the twocomplex structures

J andJ0. This proves that any complex structure that is invariant under the groupG and allows for a

unitary implementation of the dynamics turns out to be related withJ0 by a unitary transformation,

so that there exists one and only one equivalence class of complex structures satisfying our criteria.
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IV. UNIQUENESS OF THE FIELD DESCRIPTION

In the previous sections, we have demonstrated the uniqueness of the Fock quantization adopt-

ing since the very beginning a specific field description for our system. However, in nonstationary

backgrounds, as we have discussed in the Introduction, it seems most natural to allow for time de-

pendent scalings of the fields, which may absorb part of the dynamical variation of the background.

In this context, one must consider the possibility of performing linear canonical transformations

that depend on time and that, as far as the field is concerned, amount to a scaling by a time func-

tion. This introduces a new ambiguity in our quantization, different in extent to the one considered

so far, because this type of canonical transformations change the field dynamics. Hence, one may

wonder whether it is still possible to use our criteria and select not just one privileged Fock repre-

sentation for the KG field description with time dependent mass in an auxiliary static background,

but also a unique field description for our system when scalings are contemplated. This is the sub-

ject that we will address in the following. The main aim of this work is to prove that our criteria

eliminate in fact this apparent freedom in the choice of fielddescription.

A. Unitary implementability condition

The most general linear canonical transformation depending (only) on time and which changes

the field just by a scaling has the form

φ = f (t)ϕ, Pφ =
Pϕ
f (t)
+ g(t)

√
hϕ. (11)

Note that we have allowed for a contribution of the fieldϕ in the new momentum, and that this

contribution has been multiplied by
√

h so as to obtain a scalar density. The functionf (t), which

provides the scaling of the field, is assumed to be nonvanishing, to avoid the artificial introduction

of singularities. In addition, the two functionsf (t) andg(t) are real, and we suppose that they are

at least twice differentiable, so that the transformation does not spoil the differential structure for-

mulation of the field theory. Furthermore, there is no loss ofgenerality in assuming thatf (t0) = 1

andg(t0) = 0 at the reference timet0. In fact, the values of these two functions att0 can be set

equal to those data by means of a constant linear canonical transformation. But, given a Fock

representation for the original fields with symmetry invariance and a unitary dynamics, we im-

mediately obtain a Fock representation for any constant linear combination of the canonical fields
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which possesses the same properties [34]. Therefore, in thefollowing we restrict our discussion

to functionsf (t) andg(t) with the above initial data.

The dynamics of the new canonical pair (φ,Pφ) admits a description in terms of a Bogoli-

ubov transformation similar to that in Eq. (7), but with different functions ˜αn(t, t0) and β̃n(t, t0).

Adopting again creation and annihilationlike variables like those for the massless case, but now

constructed from the new canonical pair, one can calculate the relation between the new alpha and

beta-functions and the original ones. Ignoring the explicit reference to the dependence ont0 in all

functions, and defining 2f±(t) = f (t) ± 1/ f (t), one obtains:

α̃n(t) = f+(t)αn(t) + f−(t)β
∗
n(t) +

i
2

g(t)
ωn

[αn(t) + β
∗
n(t)] , (12)

β̃n(t) = f+(t)βn(t) + f−(t)α
∗
n(t) +

i
2

g(t)
ωn

[α∗n(t) + βn(t)]. (13)

In the following, we will demonstrate that, if one performsany canonical transformation of

the above type withf (t) other than the unit function, the dynamics becomes such that one cannot

implement it as a unitary transformation with respect toany invariant Fock representation. The

arguments of the proof are a suitable generalization of those presented in Refs. [34, 35].

Let us first make fully explicit the condition for a unitary implementation. Suppose that we are

given an invariant Fock representation of the CCR’s, determined by a sequence of pairs (κn,m, λn,m)

as explained in the previous section. The dynamics associated with the new canonical pair (φ,Pφ)

can be implemented as a unitary transformation in the considered invariant Fock quantum theory

if and only if the sequences with elements
√

gn,mβ̃
J
n,m(t, t0) are square summable for all possible

values oft [28, 34], where

β̃J
n,m(t, t0) = (κ∗n,m)2β̃n(t, t0) − λ2

n,mβ̃
∗
n(t, t0) + 2iκ∗n,mλn,mℑ[α̃n(t, t0)], (14)

in complete parallelism with Eq. (9). For simplicity, we obviate the reference tot0 from now on.

Thus, assuming a unitary evolution with respect toJ in the new field description is equivalent

to saying that
∞
∑

n

∑

m

gn,m|β̃J
n,m(t)|2 < ∞ (15)

at all instants of timet. Since every term in the sum is positive, it follows that, if we select a

particular valueM of m for eachn, the sequence{gn,M |β̃J
n,M(t)|2} is also summable. We emphasize

that this is so for any possible choice ofM. In turn, this summability immediately implies that

{β̃J
n,M(t)/(κ∗n,M)2} is square summable, because bothgn,M and|κn,M | are always greater than (or equal
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to) 1. In particular, it is then guaranteed that, for everyt, the terms of these sequences tend to

zero in the limit of infiniten. The next step in our line of reasoning is to introduce the asymptotic

behavior ofαn(t) andβn(t) in the expression of̃βJ
n,M(t), using relations (12,13). According to the

analysis performed in Ref. [28], one can takeβn(t) = 0 andαn(t) = e−iωnτ up to order 1/ωn (at

least), whereτ = t − t0. As a consequence, we arrive at the result that the conditionof a unitary

implementation of the dynamics implies that the sequences with elements

[

eiωnτ − z2
n,Me−iωnτ

]

f−(t) − 2izn,M sin(ωnτ) f+(t) (16)

must tend to zero at all times in the limit of largen. We have calledzn,M = λn,M/κ
∗
n,M.

Splittingzn,M in its real and imaginary parts,zn,M = xn,M + iyn,M, we introduce the definitions:

An,M = 2yn,M( f+ − xn,M f−), Bn,M = (1+ y2
n,M − x2

n,M) f−,

Cn,M = (1+ x2
n,M − y2

n,M) f− − 2xn,M f+, Dn,M = −2xn,Myn,M f−, (17)

where, to simplify the notation, we have ignored the explicit time dependence of the functions

f±(t). Note that, since|λn,M | ≤ |κn,M |, we have

|zn,M |2 = |xn,M |2 + |yn,M |2 ≤ 1. (18)

Taking the real and imaginary parts of the expression (16), we see that the sequences given by

An,M sin(ωnτ) + Bn,M cos(ωnτ) (19)

and

Cn,M sin(ωnτ) + Dn,M cos(ωnτ) (20)

have to vanish in the limitn→ ∞ at all instants of timet ∈ I. These conditions can be employed

to prove that, indeed, unitarity of the dynamics can be attained only if the functionf (t) in Eq. (11)

is the unit function.

B. Proof of the non-unitarity of time dependent scalings

We notice first that all sequencesAn,M, Bn,M, Cn,M, andDn,M are bounded, owing to inequality

(18). Using this fact, one can form suitable linear combinations of the expressions (19) and (20)

and conclude that the following sequences must have a vanishing limit as well:

(An,MDn,M − Bn,MCn,M) sin(ωnτ), (21)

(An,MDn,M − Bn,MCn,M) cos(ωnτ). (22)
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Obviously, this is only possible ifAn,MDn,M − Bn,MCn,M tends to zero. A simple calculation shows

that

An,MDn,M − Bn,MCn,M = f− (x2
n,M + y2

n,M − 1)[(1+ x2
n,M + y2

n,M) f− − 2xn,M f+]. (23)

We now prove that a further necessary condition for the unitary implementability of the dy-

namics is that the sequence of elements (x2
n,M + y2

n,M − 1) [one of the factors in Eq. (23)] does

not tend to zero. Let us suppose that it does and show that thisleads to a contradiction. In this

case, while expression (23) automatically has a vanishing limit, this is not sufficient to guaranty

unitarity. In particular, we still have to check that both expressions (19) and (20) tend to zero for

all values oft. By taking the sum of the squares of those expressions, and using our hypothesis

thatx2
n,M + y2

n,M → 1, we obtain that

( f+ − xn,M f−) sin(ωnτ) + yn,M f− cos(ωnτ) (24)

must tend to zero at all times,t. At this stage, two possibilities are available. We consider first the

case in whichyn,M → 0. Since we have already assumed thatx2
n,M + y2

n,M → 1, it follows thatx2
n,M

tends to 1. From expression (24), we then conclude that theremust exist a subsequence of values

of n such that one gets a zero limit either forf sin(ωnτ) or sin(ωnτ)/ f (or both, if both types of

subsequences exist). In either case, recalling the positivity of the function f , we have that sin(ωnτ)

must tend to zero, on some subsequence, for all timest. However, this is actually impossible, as

we show in Appendix A (see also Ref. [35]). We consider now thealternate case in whichyn,M

does not tend to zero. As explained in detail in Appendix B, this leads to the conclusion that

sin[ωnτ + Θn,M(t)] (25)

must have a vanishing limit on some subsequence of values ofn, at all instants of timet, where

cot[Θn,M] =
1

yn,M

f+
f−
− xn,M

yn,M
. (26)

Again, using the result proven in Appendix A, one concludes that the sequence given by expression

(25) cannot tend to zero for all values oft in any given intervalI. Therefore, the only possibility

which is compatible with our hypothesis of a unitary implementation of the dynamics is that the

sequence{x2
n,M + y2

n,M − 1} does not tend to zero in the limit of largen.

The next step in our demonstration is to show that, in addition to the condition proven above,

the unitary implementation is not achievable unless the function f (t) is the unit function. Let

us suppose that, on the contrary, this is not the case. Then, there exist values oft such that
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f (t) , 1. We will consider those values oft, and only those, and will show that the existence

of those times leads in fact to a contradiction. Recall that the function f is strictly positive and

continuous (actually, we have assumed that it is twice differentiable). In particular, this implies

that f (t) , 1 if and only if f−(t) , 0. Therefore, we are considering points wheref−(t) , 0, and

we have assumed that such points exist. Going back to expression (23), a necessary condition for

the unitary implementation of the dynamics is that the sequences with elements

(x2
n,M + y2

n,M − 1)[(1+ x2
n,M + y2

n,M) f− − 2xn,M f+] (27)

tend to zero, at all the considered values oft. Moreover, we know that the sequence formed by

(x2
n,M+y2

n,M−1) cannot tend to zero at infinitely largen. Hence, there existsǫ > 0 and a subsequence

S of positive integersn such that|x2
n,M + y2

n,M − 1| > ǫ in S. This in turn implies that the second

factor in Eq. (27) must tend to zero on that subsequence, a result from which one easily concludes

that

f 2(t)[(1 − xn,M)2 + y2
n,M] − [(1 + xn,M)2 + y2

n,M] (28)

must have a vanishing limit on the subsequenceS. It then immediately follows that the function

f (t) must coincide at all the considered values oft, simply because the time independent sequences

(1− xn,M)2+y2
n,M and (1+ xn,M)2+y2

n,M cannot both tend to zero. Thus, we reach the conclusion that

the functionf can attain at most two distinct values, one of them equal to 1 (e.g., at the reference

time t0) and the other assumed to be different from it. But this is forbidden by continuity. The

contradiction shows that the only consistent possibility is that f (t) is indeed the unit function, as

we wanted to prove.

V. UNIQUENESS OF THE FIELD DESCRIPTION: MOMENTUM REDEFINIT ION

In the previous section, we have proven that a unitary implementation of the dynamics with re-

spect to an invariant Fock representation requires the function f in Eq. (11) to be the unit function.

There remains however the possibility of a nontrivial time dependent canonical transformation,

coming from the redefinition of the momentumPφ = Pϕ + g(t)
√

hϕ. We will now show that (in

less than four spatial dimensions) two distinct scenarios may occur. If the sequence of elements

gn/ω
2
n is not summable, then unitarity can only be achieved withg(t) = 0. Alternatively, ifgn/ω

2
n

gives in fact a summable sequence, then one can attain a unitary dynamics for any functiong(t),
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but this is possible only in the representation defined byJ0, or in representations that are unitarily

equivalent to it, and therefore the physical predictions remain uniquely determined.

Let us return to the summability condition that guaranties the unitary implementation of the

dynamics with respect to the representation selected by thecomplex structureJ, condition which

in particular implies that the sequence{ √gn,mβ̃
J
n,m(t)/(κ∗n,m)2} is also square summable (overn and

m). We particularize the discussion to the only allowed case,f (t) = 1, as we have seen. Then, a

direct calculation shows that

β̃J
n,m(t)

(κ∗n,m)2
= βn

(

1+
ig(t)
2ωn

)

− z2
n,mβ

∗
n

(

1− ig(t)
2ωn

)

+ izn,m
g(t)
ωn

[ℜ(βn) +ℜ(αn)
]

+i
g(t)
2ωn
α∗n + i

g(t)
2ωn

z2
n,mαn + 2izn,mℑ(αn). (29)

The symbolℜ stands for real part. Note that the square summability of
√

gn,mβn and the bounded-

ness of|zn,m| imply that all the terms inβn lead to square summable contributions. Since the set of

square summable objects is a linear space, we conclude that anecessary condition for the unitary

implementation of the dynamics is that the sum
∑

n
∑

m gn,m|Bn,m|2 be finite, where

Bn,m(t) = 2zn,mℑ(αn) +
g(t)
2ωn

[

α∗n + z2
n,mαn + 2zn,mℜ(αn)

]

(30)

is the remaining part of̃βJ
n,m(t)/(κ∗n,m)2 (divided byi).

We now make use of the analysis performed in Ref. [28], where it was demonstrated that, up

to order 1/ωn, one gets the asymptotic behaviorαn(t) ≈ e−iωnτ for largen. As a consequence,

it is easy to see that a necessary condition for a unitary quantum dynamics is the finiteness of
∑

n
∑

m gn,m|An,m|2, where we have called

An,m(t) = 2|zn,m|ℑ(αn) +
g(t)
2ωn

[

ei(ωnτ−δ) + |zn,m|2e−i(ωnτ−δ) + 2|zn,m| cos(ωnτ)
]

. (31)

Here, we have introduced the notationzn,m = |zn,m|eiδ.

Sinceωn → ∞, it is clear that the sequence of elements
√

gn,mAn,m/ωn must also be square

summable (overn andm). In addition, we know that the contribution to this sequence coming

from the second term in Eq. (31) is square summable, because so is
√

gn,m/ω
2
n (as discussed

in Sec. II) and the multiplying factor is bounded in norm for each t, as one can easily check

(recall that|zn,m| ≤ 1). Hence, the contribution of the first term, namely the sequence formed by
√

gn,m|zn,m|ℑ[αn(t)]/ωn, must be square summable as well for all timest. But then, the kind of

arguments presented at the end of Sec. III (and discussed in more detail in Ref. [28]) lead us to

conclude that{ √gn,m|zn,m|/ωn}must be square summable.
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Let us consider again the sequence given by
√

gn,mAn,m. The terms coming from the two last

summands in Eq. (31) are clearly square summable, since|zn,m|e−i(ωnτ−δ)+2 cos(ωnτ) is bounded in

norm by 3 and we have already seen that
√

gn,m|zn,m|/ωn has this summability property. Therefore,

the rest of summands provide also a square summable sequence. In particular, the imaginary part

is necessarily square summable by its own. In this way, we deduce that

g(t)
ωn

√
gn,m sin(ωnτ − δ) (32)

has to be square summable at all instants of time,t.

Obviously, this condition is satisfied if the functiong(t) vanishes identically. On the contrary,

let us suppose that this is not the case. Since the functiong(t) is continuous, if it is not the null

function there must exist an interval of values oft for which it differs from zero. In consequence,
√

gn,m sin(ωnτ − δ)/ωn must provide a square summable sequence at all values oft in that interval.

Then, applying once more the type of arguments employed at the end of Sec. III and detailed in

Ref. [28] (actually, in this case one can appeal to simpler arguments like those published in Refs.

[24, 26, 27]), we conclude that the sequence formed by
√

gn,m/ωn must be square summable. We

thus see that, in those cases where the sum ofgn,m/ω
2
n (over n andm) diverges, we arrive at a

contradiction, proving that unitarity can be reached exclusively if g(t) vanishes. This happens, for

instance, when the spatial manifold is the 2-sphere [26] or the 3-sphere [28].

On the other hand, in the case that{gn,m/ω
2
n} has a finite sum (like, e.g., when the manifold is

S1 [34]), we consider again the sequence of elements
√

gn,mAn,m and analyze in further detail the

condition that it be square summable. From our discussion inthe paragraph above Eq. (32) and

the assumed summability ofgn,m/ω
2
n, we get that the contribution coming from the first term in

Eq. (31), namely
√

gn,m|zn,m|ℑ[αn(t)] (up to an irrelevant multiplicative factor), is actuallysquare

summable for all the values oft in the studied interval. Then, a straightforward generalization

of the discussion presented in Ref. [28] (see Sec. IV.C) allows us to conclude that
√

gn,m|zn,m|
forms a square summable sequence and, moreover, that the same applies to

√
gn,m|λn,m|. This last

step follows from the fact that the convergence of the partial sums ofgn,m|zn,m|2 implies that|λn,m|
tends to zero whenn → ∞. Since|κn,m|2 = 1 + |λn,m|2, we then have that|κn,m| → 1 in that limit,

and thus the value of 1/|κn,m| is bounded at largen. Summarizing,g(t) is necessarily the zero

function unless{gn,m/ω
2
n} is summable, and in that case one must have that

∑

n,m gn,m|λn,m|2 is finite.

Remarkably, this is precisely the condition that guaranties that the representation defined by the

complex structureJ (with Bogoliubov coefficients of the “beta” type given byλn,m) is unitarily
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equivalent to the representation determined by the complexstructureJ0.

Therefore,g(t) must vanish identically unlessgn,m/ω
2
n is summable. If this last property is

satisfied, one may change the momentum by adding a time dependent, linear contribution of the

field, while respecting the existence of invariant representations which implement the dynamics

as a unitary transformation. However, all such representations belong to the same unitary class

of equivalence, which is just the class containing the representation determined by the complex

structure associated with the massless situation,J0. In this sense, we can ensure the uniqueness

of the field description and its corresponding Fock representation under our criteria of symmetry

invariance and unitary evolution. This is the main result ofthe present paper.

For the sake of completeness, the next section will be devoted to discuss how the selected

unitaryFock quantization is related with the Fock quantization obtained by imposing the so-called

Hadamard condition [8]. To make the discussion more accessible, we will start by briefly recalling

the context in which the Hadamard approach arises, emphasizing the physical relevance of this

formulation, and the uniqueness result that it provides in universes with compact spatial sections.

VI. CONNECTION WITH THE HADAMARD QUANTIZATION

As it is well known, in the theory of scalar fields there exist classical observables which have

no counterpart within the Weyl algebra of quantum observables. This happens with the stress-

energy tensor, which is excluded from the Weyl algebra owingto its quadratic dependence on

the field, involving the (mathematically ill-defined) product of distributions. In order to incorpo-

rate this tensor in the quantum theory, a procedure was introduced in the seventies called point-

splitting (see for instance Ref. [39]). This method provides a consistent regularization scheme

by extracting the spurious infinities associated with quadratic field terms. Roughly speaking, the

point-splitting renormalization method assumes that the expectation value of the anticommutator

functionG(x, y) = 〈φ(x)φ(y) + φ(y)φ(x)〉, for the state of interest, possesses a Hadamard singular-

ity structure [40] in small normal neighborhoods. Since theexpectation value of the stress-energy

tensor can be obtained fromG(x, y) by differentiation, the regularization ofG(x, y) provides a

renormalized value of it. The prescription consists then insubtracting a suitable Hadamard solu-

tion toG(x, y) and declaring the coincidence limit of this difference as the regularized value of the

two-point function. The limitx → y in the formal point separated expression of the expectation

value of the stress-energy tensor will exist and define a finite value.
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The point-splitting prescription relies on the use of Hadamard states (i.e., states satisfying the

Hadamard ansatz), which can be proven to exist inany globally hyperbolic spacetime. There-

fore, given a free scalar field in an arbitrary (globally hyperbolic) spacetime, one can spec-

ify a Hadamard representation of the CCR’s by looking for a Fock vacuum state satisfying the

Hadamard condition [i.e., a state whose two-point functionG(x, y) has a short-distance behavior

of the Hadamard type]. This approach rules out infinitely many Fock representations. Since this

Hadamard condition is sufficient to ensure that a well-defined quantum stress-energy tensor is ob-

tained, it is reasonable from a physical point of view to impose it (i.e., implement the Hadamard

approach) as a criterion to select the representation of theCCR’s, at least if the classical back-

ground in which the field propagates is given a physical significance. Unfortunately, the Hadamard

criterion does not suffice to pick out auniquepreferred quantization in general; indeed, generi-

cally there exist infinitely many non unitarily equivalent Hadamard vacuum states. Remarkably,

for free scalar fields in spacetimes with compact Cauchy surfaces, it has been shown [8] that all

Hadamard vacua belong to the same class of unitarily equivalent states. This result, together with

the uniqueness discussed in the previous sections, imply that we have at our disposal two different

criteria in order to select a unique preferred quantizationof the linear KG field. Thus, for such

systems, one may wonder whether theunitary and theHadamardquantizations are in conflict or

not. This is the question that we want to address in this section.

For the sake of conciseness, let us consider the case of a KG field φ with massm on a closed

FRW spacetime with the spatial topology of a 3-sphere (k = +1). It is a simple exercise to see,

in conformal time, that under the time dependent scalingϕ = aφ, wherea is the scale factor,

the dynamics of the scaled fieldϕ coincides with that of a scalar field with time varying mass

s(t) = m2a2−(ä/a) propagating in a static background whose Cauchy surfaces are 3-spheres. Now,

the first thing we must notice is that the Hadamard and the unitary quantizations are constructed

from different phase space descriptions: on the one hand, the unitaryquantization is based on a

preferred representation for the scaled fieldϕ, selected as the fundamental field by the criteria

of unitarity and spatial symmetry invariance (see Sec. IV),which is determined by the complex

structureJ0; on the other hand, the Hadamard quantization rests on a preferred representation

of the fieldφ obtained by imposing the Hadamard condition. In short, the Hadamard and the

unitarity (combined with spatial symmetry invariance) criteria select representations of the CCR’s

for distinct fields, related by a time dependent canonical transformation. In order to properly

compare these quantizations we have to: (i) choose (once andfor all) a basic field variable, say
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ϕ (ii) determine how the Hadamard quantization can be translated to theϕ-description, and (iii)

compare the result with the representation selected by unitary evolution and spatial symmetry

invariance.

As we will show below, the Hadamard quantization defines a representation of the CCR’s,

when reformulated in theϕ-description, which is related by means of a unitary transformation

with the quantization picked out by our criteria. This result will be achieved by employing that, on

closed FRW spacetimes and in theφ-description, Hadamard states are indeed unitarily equivalent

to adiabatic vacuum states [41]7. Translating the form of adiabatic states to theϕ-description, we

will establish the equivalence of the quantization with theone selected byJ0 by proving that the

transformation that relates the corresponding vacuum states is unitary. Hence, in the framework of

theϕ-description, the Hadamard quantization defines a theory which allows for the same physical

predictions than the quantum theory specified by the requirement of a unitary evolution, together

with the invariance under the spatial symmetries. In this sense, we can assure that there is no

tension between the unitary and the Hadamard quantizations.

To demonstrate that the vacuum state defined byJ0 is unitarily equivalent to an adiabatic vac-

uum state in theϕ-description, we will consider four steps. In the first one, we will extract the

Cauchy data for an adiabatic state (in particular of zeroth order) for the fieldφ. Next, we will

find (via the time dependent canonical transformation) the corresponding Cauchy data in theϕ-

description. Then we will consider the Cauchy data that parametrize ourJ0-state. And, finally, we

will compare the two sets of Cauchy data parameterizing the different states, concluding that they

are unitarily related.

Let us start by recalling the definition of adiabatic states.In a closed FRW spacetime, with

metric gab = −dτadτb + a2(τ)hab, whereτ denotes the cosmological time andhab stands for the

round metric of the 3-sphere, the dynamics of the fieldφ is dictated by the differential equation

φ′′ + 3
a′

a
φ′ − 1

a2
∆φ +m2φ = 0. (33)

Here, the prime denotes the derivative with respect toτ. One can perform a mode decomposition

of the field:

φ(τ, x) =
∑

n

[

anφn(τ, x) + a∗nφ
∗
n(τ, x)

]

; φn(τ, x) = Qn(x)un(τ), (34)

7 A precise characterization of adiabatic states can be found, for instance, in Ref. [42].
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where{Qn(x)} is a complete set of eigenfunctions of the LB operator,∆Qn = −n(n + 2)Qn, and

n denotes the tuple formed by the eigenvalue integer labeln and the degeneration labelsl andm,

standard for the harmonics on the 3-sphere (see, e.g., Ref. [28]). The time dependent part of the

mode solutions,un, satisfies

u′′n + 3
a′

a
u′n + w2

nun = 0; w2
n =

n(n+ 2)
a2

+m2. (35)

In addition, the modesun are subject to the normalization conditionun(u∗n)
′ − u∗nu

′
n = ia−3, coming

from the requirement that the corresponding field solutionsbe normalized with respect to the KG

inner product and the fact that the eigenfunctions{Qn} are orthonormal on the 3-sphere.

At cosmological timeτ0, the Cauchy data of the field modesun are

qn = un|τ0, pn = a3u′n|τ0. (36)

In terms of the Cauchy dataqn andpn, the normalization condition readsqnp∗n − q∗npn = i.

Let us focus our attention on solutions of the form

un(τ) =
1

√

2a3Ωn

exp

(

−i
∫ τ

τ̄

Ωn(τ̃)dτ̃

)

. (37)

Substituting this formula in Eq. (35), we get that the positive functionsΩn must satisfy

Ω2
n = w2

n −
3
4

(

a′

a

)2

− 3
2

a′′

a
+

3
4

(

Ω′n
Ωn

)2

− 1
2

Ω′′n
Ωn
. (38)

We can try to solve this equation by an iterative process, in which one obtains ther-th (positive)

functionΩ(r)
n from the preceding oneΩ(r−1)

n ; namely,

(

Ω(r+1)
n

)2
= w2

n −
3
4

(

a′

a

)2

− 3
2

a′′

a
+

3
4

(

Ω
(r) ′
n

Ω
(r)
n

)2

− 1
2
Ω

(r) ′′
n

Ω
(r)
n

, r ∈ N;
(

Ω(0)
n

)2
= w2

n. (39)

In general, because of the arbitrariness of the scale factora, one cannot ensure the positivity of the

right-hand side in the first formula of Eq. (39), so that the iteration procedure may break down.

However, it can be shown that, for a sufficiently largen,
(

Ω
(r+1)
n

)2 is always strictly positive in a

finite time interval [42]. Hence, the iteration procedure can be safely performed whenever a finite

time interval and an ultraviolet regime are considered.

An adiabatic vacuum state ofr-th order is a Fock state constructed from a solutionun to Eq.

(35) with initial conditions at timeτ0:

un(τ0) =W(r)
n (τ0), u′n(τ0) = W (r) ′

n (τ0), (40)
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whereW(r)
n (τ0) is given by

W(r)
n (τ0) =

1
√

2a3Ω
(r)
n

exp

(

−i
∫ τ0

τ̄

Ω(r)
n (τ̃)dτ̃

)

. (41)

In particular, usingΩ(0)
n = wn = [n(n+ 2)+m2a2]1/2/a one obtains the adiabatic solution of zeroth

order,W(0)
n . Then, from Eq. (36), we get that the Cauchy data for the zeroth order adiabatic state

at timeτ0 are

qn =W(0)
n , pn = −a2W(0)

n

[

a′
(

1+
m2

2w2
n

)

+ iawn

]

. (42)

By using the mapϕ = aφ, as well as the relationship between conformal and cosmological

times8, the corresponding Cauchy data in theϕ description att0 are given by,

Qn = aW(0)
n , Pn = −aW(0)

n

(

ȧm2

2aw2
n

+ iawn

)

. (43)

It is straightforward to check thatQnP∗n − Q∗nPn = i.

Next, let us consider the mode solutions of the fieldϕ associated with the complex structureJ0.

We will call vn(t) the time dependent part of these solutions. At the reference conformal timet0,

the Cauchy data ofvn defining (and defined by) the field decomposition dictated byJ0 are

Q̄n = vn|t0 =
1

[4n(n+ 2)]1/4
, P̄n = v̇n|t0 = −i

[

n(n+ 2)
4

]1/4

. (44)

Clearly, this pair of data satisfies the normalization condition Q̄nP̄∗n − Q̄∗nP̄n = i.

The zeroth order adiabatic state, parametrized by the Cauchy data (43) obtained by “dragging”

the state to theϕ-description, is related to the vacuum state characterizedby the data (44) via a

Bogoliubov transformation of the form:

Qn = αnQ̄n + βnQ̄
∗
n, Pn = αnP̄n + βnP̄

∗
n, (45)

where

αn = i(PnQ̄∗n − QnP̄∗n), βn = i(QnP̄n − Q̄nPn). (46)

The equivalence of the considered states depends on whetherthe antilinear part of the Bogoliubov

transformation defines a square summable sequence; namely,
∑

n |βn|2 < ∞, where we have already

taken into account thatβn depends onn only. Since each eigenspace of the LB operator onS3 has

dimensiongn = (n + 1)2, the square summability condition reads
∑

n gn|βn|2 < ∞. That is, the

8 The two times are related byτ(t) =
∫

adt. Besides, we chooset0 such thatτ0 = τ(t0).
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states will be unitarily related if and only if this sum is finite. To elucidate whether this is the

case or not, we will analyze the asymptotic behavior ofβn and prove that the answer is in the

positive. Therefore, the unique (up to unitary equivalence) Hadamard vacuum state gives, in the

ϕ-description, a state which is in fact unitarily equivalentto the vacuum determined byJ0.

From Eqs. (43) and (44), it is straightforward to see that

QnP̄n − Q̄nPn =
aW(0)

n

[4n(n+ 2)]1/4

[

i
(

awn −
√

n(n+ 2)
)

+
ȧm2

2aw2
n

]

. (47)

Substituting in this equation the expression ofW(0)
n , and writingn(n + 2) = a2w2

n(1 − x2
n), where

xn = m/wn, we get

QnP̄n − Q̄nPn =
1

2(1− x2
n)1/4

[

i
(

1−
√

1− x2
n

)

+
ȧx3

n

2ma2

]

e−i
∫

wn. (48)

Thus, in the asymptotic limitn >> 1 (i.e., whenxn << 1) the ultraviolet behavior ofβn is

βn = i

[

im2a2

4n2
+O

(

1
n3

)]

e−i
∫

wn. (49)

Therefore
√

gnβn ∼ O(1/n), a fact that implies that{ √gnβn} is square summable. So, the analyzed

states are equivalent. In conclusion, the Fock quantization selected by the criterion of a unitary

evolution (together with the invariance under the spatial symmetries) defines a representation of

the CCR’s which is unitarily equivalent to the one determined by the Hadamard criterion when the

latter is translated to theϕ-description.

On the one hand, the fact that the two approaches, namely the Hadamard criterion and the

unitary one, select the same unitary equivalence class of representations –in the spatially compact

case and using theϕ-description– is probably not completely unexpected, since both approaches

rely on related dynamical aspects. However, the two perspectives are, at leasta priori, intrinsically

different. In the unitary approach, what is imposed is only the existence of unitary transformations

implementing the evolution between any two (regular) instants separated by a finite (notinfinitesi-

mal) interval of time, with no further requirement regarding continuity with respect to time, or any

pre-established local form of the vacuum state. On the otherhand, in the Hadamard approach a

seemingly stronger condition, fixing the local singularitystructure of the vacuum state, is imposed,

which is strong enough to ensure the regularization of the stress-energy tensor. It seems far from

obvious whether these two approaches should lead to equivalent quantizations. If one adopts the

point of view, as we do, that preserving unitarity of the dynamics is a desirable aspect in quantum

physics, the fact that the two perspectives actually lead toequivalent quantum theories appears by
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itself as an interesting and reassuring result. It is also worthwhile mentioning that the Hadamard

condition essentially translates the information about the causal structure of the classical back-

ground into the local structure of the quantum states. This is of course what one wants when the

classical background has a true physical meaning, but things are less clear when the background is

only an effective or an auxiliary one. In particular, when part or all ofthe degrees of freedom are

gravitational, the true causal structure is a dynamical entity with possibly little or no relation with

the causal structure of the auxiliary background where the degrees of freedom are represented as

scalar fields. This happens e.g., in the case of Gowdy models and in the treatment of cosmolog-

ical perturbations [13, 17]. Similarly, when quantum corrections are partially incorporated in the

spacetime where the scalar field propagates, its causal structure is only an effective concept. In

such cases, we find it important that one can take advantage ofcriteria which do not make explicit

use of the causal structure of the background as a fundamental entity. Finally, let us emphasize

that the established relation between the Hadamard criterion and the unitarity criterion applies just

to theϕ-description, while it is exclusively the latter of these criteria (together with the invariance

under the spatial symmetries) which picks out that description as a privileged one.

VII. CONCLUSIONS

As we have discussed, a major problem in the quantization of (scalar) fields in nonstationary

scenarios is the ambiguity that generically appears in the selection of a Fock quantum description.

On the one hand, the possibility of absorbing part of the fieldevolution in the time dependence of

the spacetime where the propagation takes place affects the choice of a canonical pair for the field,

as well as the dynamics of the system that we want to quantize.On the other hand, even if a specific

pair is picked out, among all those related by time dependentlinear canonical transformations, it

is well known that there exists an infinite number of unitarily inequivalent representations for

the corresponding CCR’s and, therefore, of physically different quantum theories, each of them

leading to different results. In this situation, it is clear that the quantum predictions have doubtful

significance, because if they are falsified one can always adhere to another inequivalent Fock

quantization in the infinite collection at hand. This problem is especially relevant in cosmology,

a context where the setting is naturally nonstationary, andis so both because the window for

quantum effects seems to be narrow and because one cannot falsify the quantum physics by an

unlimited number of repeated measurements, but rather by observing the Universe in which we
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live. In these circumstances, determining an unambiguous quantization whose predictions can be

trusted is essential if one wants to develop a realistic program of quantum cosmology.

We recently proved that, when the field dynamics can be put in the form of that of a KG field in

a static spacetime but with a time varying mass, there exist some reasonable criteria which allow

one to select a unique unitary class of equivalence of Fock representations, and hence one reaches

uniqueness in the Fock quantization. These criteria are theinvariance of the vacuum under the

spatial symmetries of the field equations and the unitary implementation of the field dynamics.

This uniqueness result is valid for fields defined onanycompact spatial manifold in three or less

dimensions [35]. In other words, in less than five spacetime dimensions, the spatial topology is

not relevant as far as compactness is guaranteed. In noncompact cases, the infrared divergences

play an important role and generically prevent the extension of the result. Even so, in cosmology

for instance, one can appeal to the physical irrelevance of large scales beyond a causal radius to

justify that the results obtained with the assumption of compactness should still be applicable.

In many practical situations, and in particular for fields incosmological spacetimes, the above

field description, for which our uniqueness theorem had beenproven, is reached indeed after a

suitable scaling of the field by a function of time. This scaling can be considered, as we have

commented, part of a linear canonical transformation, obviously time dependent, in which the

momentum suffers the inverse scaling. Besides, in this canonical transformation, it is extremely

convenient to allow for a possible time dependent linear contribution of the field to the redefined

momentum.

In this work, we have analyzed the effect of this class of canonical transformations on the

quantization. Since the transformations are time dependent, they actually modify the dynamics

of the field, and hence affect the restrictions imposed by our uniqueness criteria, which include

the unitarity of the evolution. In consequence, these canonical transformations introduce a new

infinite ambiguity in the quantization of the system, previous to the choice of Fock representation

once a particular field description is accepted. The main result of this work is to demonstrate that,

again forany compact spatial manifold in three or less dimensions, thereexists no ambiguity in

the choice of field description if one insists in our criteriaof vacuum invariance under the spatial

symmetries and a unitary implementation of the dynamics.

More specifically, we have proven that no scaling of the field is permitted with respect to the

description in which the propagation occurs apparently in astatic background, if one wants to

reach a Fock representation in which the vacuum has the spatial symmetries of the field equations
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and the corresponding dynamics is implemented as a unitary transformation. This only leaves the

freedom of changing the momentum by adding a time dependent contribution that is linear in the

field. We have shown that there exist two possibilities. If the LB operator, excluding the subspace

of zero modes, has an inverse that is not trace class (so that the sum ofgn,m/ω
2
n diverges), then the

form of the momentum is totally fixed by our two requirements of vacuum invariance and unitary

evolution. No freedom exists to add a linear contribution ofthe field. In this way, the field de-

scription of the system is completely determined by our criteria, and the studied time dependent

canonical transformations are all precluded, except the trivial one. This is in fact the situation

encountered, e.g., in the case ofT3 topology [33] orS3 topology [35]. The other possibility is

that, on the opposite, the inverse of the LB operator, once its kernel is removed, is indeed trace

class. Typically, this happens if the spatial manifold on which the field theory is defined is one

dimensional. The number of eigenstates of the LB operator with eigenvalue smaller or equal than

ωn (i.e.
∑

ñ≤n
∑

m gñ,m) grows then at most likeωn, and the eigenvalue itself should grow liken. It

is then not difficult to check that the sum ofgn,m/ω
2
n is finite. In this case, changes in the momen-

tum that add a term which is linear in the field, multiplied by any function of time and properly

densitized, are allowed while respecting the existence of aFock representation which satisfies our

criteria in the field description with the new momentum. However, all these field descriptions can

be obtained then directly from the original one, by a straightforward implementation of the canon-

ical transformation. None of these descriptions admit a Fock representation that, while fulfilling

the criteria of vacuum invariance and unitary evolution, turns out to be inequivalent to the repre-

sentation adopted in the original field description. In thissense, the quantization is again unique.

These results confirm and extend those obtained for the first time in the context of Gowdy cos-

mologies withT3 topology [34], where the effective theory consists of a scalar field propagating

on the circle but with a specific time dependent mass. In total, we have proven that, in three or less

spatial dimensions, there exists a unique Fock quantization for this kind of systems, up to unitary

transformations, if one demands a natural unitary implementation of the spatial symmetries of the

field equations and a unitary implementation of the dynamics. This uniqueness result provides

the desired robustness to the quantization process, and leads to a quantum theory whose physical

predictions are, to the extent discussed in this work, uniquely determined. Finally, let us remark

that the Fock quantization selected by our criteria defines arepresentation which is unitarily equiv-

alent to that corresponding to the Hadamard quantization ofa KG field in a closed FRW spacetime

provided, of course, that the latter is reformulated in terms of the scaled fieldϕ. Although we
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have proven this result only for the case in which the spatialsections are isomorphic to 3-spheres,

there seems to be no serious obstruction to extend it to universes with any other compact spatial

topology.
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Appendix A: Nonzero limit of oscillatory functions

In Sec. IV we made use of the fact that sin(ωnτ), and more generally sin(ωnτ + Θn,M) (with

M fixed for eachn), cannot tend to zero in the limitn → ∞ on any subsequence of the positive

integers for allt (or equivalently for allτ = t − t0) in a given interval. We will prove this statement

in this appendix.

Let [a, b] be an interval of the real line with Lebesgue measureL = b− a and

W = {wn; n ∈ N+} (A1)

be a monotonous and diverging sequence of positive real numbers; namelywn+1 > wn for all

n ∈ N+, with wn being unbounded for largen. In particular,W may be a subsequence of the

sequence of eigenvalues{ωn; n ∈ N+}. Besides, let

{θn(t); n ∈ N+} (A2)

be a sequence of twice differentiable phases, i.e., functions with values onR modulo 2π. We also

require that there exist positive numbersX andY such that

|θ̇n| < X, |θ̈n| < Y, (A3)

for all n (greater than a certain nonnegative integer,n0) and all timest ∈ [a+ t0, b+ t0].

Under these conditions, we will now show that

un(τ) = sin2 [wnτ + θn(t)] (A4)
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cannot tend to zero∀τ ∈ [a, b], which obviously implies that sin(wnτ + θn) cannot tend to the zero

function.

The functionsun(τ) are clearly integrable, and a straightforward computation shows that

∫ b

a
un(τ)dτ =

L
2
− 1

2

∫ b

a
cos [2wnτ − 2θn(τ + t0)] dτ. (A5)

In addition,
∫ b

a
cos [2wnτ − 2θn(τ + t0)] dτ =

sin [2wnb− 2θn(b+ t0)]

2wn − 2θ̇n(b+ t0)
− sin [2wna− 2θn(a+ t0)]

2wn − 2θ̇n(a+ t0)
(A6)

+ 2
∫ b

a

θ̈n
(

2wn + 2θ̇n
)2

sin [2wnτ − 2θn(τ + t0)] dτ, (A7)

and
∣

∣

∣

∣

∣

∫ b

a

θ̈n
(

2wn + 2θ̇n
)2

sin [2wnτ − 2θn(τ + t0)] dτ
∣

∣

∣

∣

∣

≤ L max
I

∣

∣

∣

∣

∣

θ̈n
(

2wn + 2θ̇n
)2

∣

∣

∣

∣

∣

. (A8)

Sincewn is a monotonous diverging sequence, it is now straightforward to check that conditions

(A3) are sufficient to ensure that the integral over [a, b] of cos [2wnτ − 2θn(τ + t0)] tends to zero

whenn goes to infinity. Therefore, the sequence of integrals
∫ b

a
un(τ)dτ converges toL/2.

Finally, let us suppose that the sequence of functionsun(τ) converges to the zero function on

[a, b]. Since the functions|un(τ)| are bounded from above by the constant unit function, we can

apply the Lebesgue dominated convergence theorem [2]. Thistheorem ensures that the sequence

of integrals
∫ b

a
un(τ)dτ would converge indeed to the integral of the zero function, i.e. to zero.

But this is incompatible with the fact, demonstrated above,that
∫ b

a
un(τ)dτ converges toL/2. This

contradiction shows that the values ofun(τ) cannot converge to zero for all values ofτ ∈ [a, b], as

we wanted to prove.

Appendix B: The phasesΘn,M

In this appendix, we show that expression (24) can be replaced by expression (25) under the

assumption thatyn,M does not tend to zero. For convenience, we repeat here the starting expression,

( f+ − xn,M f−) sin(ωnτ) + yn,M f− cos(ωnτ), (B1)

obtained with the hypothesis thatx2
n,M + y2

n,M → 1 for largen. Recall also thatM is fixed for each

value of the positive integern, and that the functionsf (t) and f+(t) are strictly positive.
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Let us introduce the definitions

ρn,M cos[Θn,M] = f+ − xn,M f− ,

ρn,M sin[Θn,M] = yn,M f− , (B2)

such that

cot[Θn,M] =
1

yn,M

f+
f−
− xn,M

yn,M
(B3)

and

ρ2
n,M = ( f+ − xn,M f−)

2 + y2
n,M f 2

− . (B4)

In particular,ρ2
n,M is bounded from below by (f+ − | f−|)2. Besides, sinceyn,M does not tend to zero,

there exists a subsequenceS of values ofn and a numberǫ > 0 such that|yn,M | > ǫ on S. For n

taking values in the subsequenceS, we then conclude that

ρ2
n,M(t) ≥ ( f+ − | f−|)2 + ǫ2 f 2

− = ̺
2(t). (B5)

We note that the lower bound defined above is strictly positive for all values oft: if f−(t) , 0 then

̺2 ≥ ǫ2 f 2
−(t) > 0; whereas, iff−(t) = 0, we have thatf (t) = 1, and hencef+(t) = 1, which implies

in turn that̺2 = 1.

Employing definitions (B2), expression (B1) reads:

ρn,M sin[ωnτ + Θn,M]. (B6)

A necessary condition for the unitary implementation of thedynamics is that Eq. (B1), and there-

fore expression (B6), tend to zero for all the possible values of t. In particular, the above expression

must tend to zero on the subsequenceS. But, on that subsequence, which is independent oft, the

lower bound (B5) is valid, leading to the conclusion that a unitary dynamics requires that the

sequence formed by sin[ωnτ + Θn,M] tend to zero onS at all timest, as claimed in Sec. IV.

Let us finally show that the first and second derivatives of thefunctionsΘn,M(t) constitute

uniformly bounded (sub)sequences onS (with respect to the variation ofn; recall in this sense

that the labelM is not free, but fixed for each value ofn). This result shows that the conditions

assumed in Appendix A are actually satisfied.

It is straightforward to calculate the first and second time derivatives ofΘn,M:

Θ̇n,M =
yn,M

ρ2
n,M

ḟ
f
,

Θ̈n,M =
yn,M

ρ2
n,M f













f̈ − ḟ 2

f
− 2 ḟ ḟ−
ρ2

n,M

[(x2
n,M + y2

n,M) f− − xn,M f+]













. (B7)
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Taking into account thatx2
n,M + y2

n,M ≤ 1 and thatρ2
n,M(t) is bounded from below by̺2(t) onS [see

the bound (B5)], we get that, for each value oft,

|Θ̇n,m| ≤
1
̺2

| ḟ |
f
, (B8)

|Θ̈n,m| ≤
1
̺2 f

(

| f̈ | + ḟ 2

f
+

2| ḟ ḟ−|
̺2

[| f−| + | f+|]
)

. (B9)

Since bothf (t) and̺2(t) are strictly positive continuous functions, the right hand side of the two

inequalities (B8) and (B9) are indeed bounded functions oft on any closed interval. Hence, for

any time interval [a, b], there exist positive numbersX andY such that

|Θ̇n,M | < X, |Θ̈n,M | < Y, (B10)

for all integersn belonging to the subsequenceS and all times. This concludes our proof.
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[42] C. Lüders and J.E. Roberts, Commun. Math. Phys.134, 29 (1990).

37


	I Introduction
	II The model and its quantization
	III Uniqueness of the representation
	IV Uniqueness of the field description
	A Unitary implementability condition
	B Proof of the non-unitarity of time dependent scalings

	V Uniqueness of the field description: momentum redefinition
	VI Connection with the Hadamard quantization
	VII Conclusions
	 Acknowledgements
	A Nonzero limit of oscillatory functions
	B The phases n,M
	 References

