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Abstract

We consider the quantization of scalar fields in spacetimels that, by means of a suitable scaling of the
field by atime dependent function, the field equation can garded as that of a field with a time dependent
mass propagating in an auxiliary ultrastatic static baskgd. For Klein-Gordon fields, it is well known that
there exist an infinite number of nonequivalent Fock repredi®ns of the canonical commutation relations
and, therefore, of inequivalent quantum theories. A cdniexvhich this kind of ambiguities arises and
prevents the derivation of robust results is, e.g., in thentum analysis of cosmological perturbations. In
these situations, typically, a suitable scaling of the flich time dependent function leads to a description
in an auxiliary static background, though the nonstatiityatill shows up in a time dependent mass. For
such a field description, and assuming the compactness sp#i&l sections, we recently proved in three
or less spatial dimensions that the criteria of a naturalémentation of the spatial symmetries and of a
unitary time evolution are able to select a unique class dhrily equivalent vacua, and hence of Fock
representations. In this work, we succeed to extend ouneniess result to the consideration of all possible
field descriptions that can be reached by a time dependenhicah transformation which, in particular,
involves a scaling of the field by a function of time. This kiaficanonical transformations modify the
dynamics of the system and introduce a further ambiguitysiguantum description, exceeding the choice
of a Fock representation. Remarkably, &y compact spatial manifold in less than four dimensions, we
show that our criteria eliminate any possible nontrivighlsty of the field other than that leading to the
description in an auxiliary static background. Besidesshaw that either no time dependent redefinition
of the field momentum is allowed or, if this may happen —soimgthwhich is typically the case only for
one-dimensional spatial manifolds—, the redefinition dussntroduce any Fock representation that cannot

be obtained by a unitary transformation.
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I. INTRODUCTION

It is well known that the relation between classical and quiansystems is not a one to one
correspondence. In fact, the construction of a quantunryttbat corresponds to a given classical
system is generally plagued with ambiguities. Usually, firs¢ selects a specific set of variables
which provides an (over-)complete set of coordinates os@lspace, assumed to be a symplectic
manifold, and requires this set to be closed under Poissakeéts. In short, one considers then
a suitable Poisson algebra of phase space functions, ablistioguish points, and looks for a
representation of it as an algebra of linear operators orieHispacel[1]. Even ignoring all the
freedom existing in the choices that lead to a particulagladg of functions, so that one admits the
identification of classical systems directly with theseeshlgs, their representation as an algebra of
operators introduces ambiguities whidfeat the physics derived with the resulting quantum the-
ory. In the simplest cases studied in Quantum Mechanicstenthe classical system has a finite
number of degrees of freedom and the phase space possessesr atructure, the ambiguities
are surpassed in the following way. First, one passes toxppenentiated version of {imes) the
natural position and momentum variables, so that one caraten the analysis just on bounded
functions, and arrives to the so-called Weyl algebra as tagacteristic algebra of the system.
Next, one restricts all discussions exclusively to strgrgintinuous, unitary, and irreducible rep-
resentations of this algebra. The Stone-von Neumann thef@jgguaranties then that the allowed
representations are all unitarily equivalent, so that thengum physics is univocally determined.

It is worth emphasizing that the uniqueness of the reprasientis achieved only when one
imposes certain criteria, assumed for the validity of tren8tvon Neumman theorem. In particu-
lar, if one renounces to the requirement of strong contynaite can obtain representations which
are not unitarily equivalent to the standard one. For irathis is the situation that is found in
the polymer representation [3, 4] adopted in Loop Quantusn@dogy [5/) 6], namely, the quan-
tization of simple cosmological spacetimes following thethods put forward in Loop Quantum
Gravity [7].

The picture gets more complicated when one analyzes systhioB possess an infinite num-
ber of degrees of freedom. This is so even for the simplestikel systems, with a phase space
described by a field and its momentum, and a dynamics detedhin linear field equations. If
one considers the associated canonical commutationae$aCCR’s), or more precisely the field

analogue of the Weyl algebra, one finds that there exist tefinmany possibilities of represent-



ing them which are not related by unitary transformationkisnfinite ambiguity still arises if
one restricts all considerations to Fock representati®hsvhere one describes the field in terms
of creation and annihilation operators.fidrent representations can be interpreted as correspond-
ing to different choices of vacuum, which in turn implies &elient identification of the creation
and annihilation parts. These alternatives can also beedes distinct choices of a basis of so-
lutions for the dynamical equations, with afdérent characterization of the field in terms of the
codficients of the expansion in that basis. Hence, the possildiee$ of (suitable orthonormal-
ized) bases are related among them by means of linear cahdransformations, often called
Bogoliubov transformations, which change the sets of meaind annihilationlike variables. The
essential dference with respect to Quantum Mechanics is that such licaaonical transfor-
mations cannot always be implemented as unitary transtwnsain the quantum theory. As a
conseqguence, unless one includes additional criterial]Btelselect a vacuum state (or rather a
unitarily equivalent class of them), one has to deal withrdimite number of nonequivalent Fock
guantizations, each leading tdf@rent physical predictions.

Furthermore, in nonstationary scenarios, like thoseragigi cosmology, there exists an addi-
tional ambiguity which is previous to the selection of a Foegresentation, and which is related
to the choice of a canonical pair to describe the field whenadlogvs that part of its evolution
be assigned to the time dependent spacetime in which thegatipn takes place. In fact, in
nonstationary settings, it is customary to scale the fiefdigarations by time varying functions.
This is so irrespective of whether the spacetime in whiclkptiopagation occurs is a true physical
background/[12], anféective spacetime (e.g., a quantum corrected backgrouni@iectiee Loop
Quantum Cosmology [6, 13, 14]), or an auxiliary spacetinie (for dimensional reductions of
systems with two commuting spacelike Killing vectors, a&owdy models [15-17]). A scaling of
this type is found, for instance, in the study of Klein-Gand&G) fields in Friedmann-Robertson-
Walker (FRW) spacetimes, in the treatment of scalar peatiohs around FRW spacetime —like
in the analysis of Mukhanov-Sasaki variables [18]—, or i ¢bnsideration of Bardeen potentials
[19]. As we will comment in more detail below, in such cases fikld is typically changed by
a function of the scale factor of the geometry, but the spetifictional dependence depends on
the problem under consideration. This scaling of the fielffigoirations can always be completed
into a linear and time dependent canonical transformatitich leads to a new canonical pair of
field variables. Since the transformation varies in time,rtw pair has a fferent (but still linear)

dynamics. Hence, the freedom to perform a transformatidhisftype introduces a fundamental
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ambiguity in the description of the linear system and of itgpgrties under quantum evolution. It
is mainly on this kind of ambiguity that we will concentrateraliscussion in this work, propos-
ing criteria that remove it in situations of interest in cadayy and, besides, determine a unique
representation of the CCR’s for the corresponding priétkgcaling.

Let us recall that, given a linear field phase space, the aatanformation on the choice of
creation and annihilationlike variables is encoded in adsstsucture called theomplex structure
[8, 120]. A complex structure) is a real, linear map on the phase space which preserves the
symplectic form,o, and whose square is minus the identity. In addition, it guned that the
composition of the complex structure (acting in one of thigies of o) and the symplectic form
provides a positive definite bilinear map on phase spaceryBSieh complex structure defines a
vacuum state which subsequently determines a Fock repatisenof the CCR’s|[8] (or, strictly
speaking, of the corresponding Wey! relations).

A result due to Shale [21, 22] tells us that, if we have a Fogkasentation of the CCR’s
determined by a complex structudea linear canonical transformatidnadmits a unitary imple-
mentation in that representation if and only if the antidinpart of T, namely T + JT J)/2, is a
Hilbert-Schmidt operatdr Obviously, in infinite dimensions this requirement is natisfied by
all conceivable canonical transformations, so that natfathem lead to unitarily related quantum
theories. It is worth commenting that the Hilbert-Schmatjuirement can be reinterpreted as the
condition that the analyzed transformation maps the vaciauannew state with a finite particle
content (to the extent that a particle concept can be emglimyhe scenario under discussion).

In practical situations, as we have mentioned, one looksdasonable criteria which can re-
move the ambiguity in the representation and select a pegfetacuum, or equivalence class of
vacua. For instance, one can require a natural quantum nnepi@ation of the classical sym-
metries of the system|[8]. However, in general cases, anaiticplar in generic nonstationary
settings, one simply has notfigient symmetry to pick out a unique Fock representations Thi
is particularly important in cosmology. When considerirgds that propagate in cosmological
backgrounds, which are nonstationary, the lack of unigs®iceteria renders the predictions of
the Fock quantization devoid of physical relevance, inagnas they depend on particular choices

and, furthermore, there exist an infinite number of them.

L An operatorT on a Hilbert space is called Hilbert-Schmidt if the traceToT is finite, whereT* is the adjoint
operator.



At least for cases in which the cosmological backgroundl missesses some spatial symme-
tries, itis a standard procedure to keep the requiremetititeguantization structures be invariant
under those symmetry transformations, even if this doegatally fix the representation. Pro-
vided that these transformations are symplectomorphiimsamounts to the requirement that
the complex structure be invariant. We will caivariantthe representations with this property. In
addition, in the lack of a time symmetry, it sounds reasom#dbtiemand at least that the dynamical
evolution be implemented as a family of unitary transforiore. Precisely this combined criteria
of spatial symmetry invariance and unitary dynamics hawnhesed to determine a unique Fock
guantization for certain scalar fields describing graiotal waves|[16, 17, 23—26], in the context
of inhomogeneous cosmologies of the Gowdy type. The caiteaive been proven to apply as well
to scalar fields with a generic time dependent mass defineldspheres, witld = 1, 2, 3 [27,/28],
including the commented (dimensionally reduced) dedoripdf the Gowdy fields as particular
cases. More recently, it has been possible to extend thi ofshie uniqueness of the Fock quan-
tization of scalar fields satisfying a KG equation with timeying mass to fields defined amy
compact spatial manifold in three or less dimensions [29].

Actually, once one allows for a scaling of the field by a timpeledent function (treated classi-
cally), as we have commented that frequently happens in@logiy, the description of the (scalar)
field propagation in certain nonstationary spacetimes eareformulated as that of a field with
a time varying mass in a static background. This typicallguss in FRW spacetimes. The sim-
plest example is that of a test KG field, which after a resgaliy the FRW scale factor (and in

conformal time) obeys a field equation of the form
¢ —Ap + S(t)p =0, 1)

which precisely corresponds to the propagation of a freg fth a time dependent mass. Besides,
in source-free Einstein-Maxwell theory, using conformaid and adopting a suitable Lorentz
gauge, the vector potential can be scaled in a similar wayriveaat a massless wave equation in
a static spacetime [30]. A context in which the discussiotoenters a natural application is in
the quantization of cosmological perturbations [12, 19, 81 particular, for perturbations of the
energy-momentum tensor that are isotropic and adiabbhggyauge invariant energy density per-
turbation amplitude can be scaled by a suitable time fundther than the scale factor) so as to
satisfy (in conformal time) a field equation of the above t{fje in an dfective static background

[19]. One also finds this same kind of equation with varyingseia the asymptotic analysis of
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the dynamics of the perturbations of a massive scalar fietthiRRW spacetime, after a suitable
gauge fixing and a scaling of the field [13/) 32]n addition, the tensor perturbations of an FRW
cosmological background, describing its gravitationav@eontent, are subject as well to a field
equation of this type after scaling them (and choosing agamformal time)/[19]. Therefore, the
result of uniqueness of the Fock representation for a KG fiet time varying mass and in a
static spacetime under the criteria of symmetry invariaarwe unitary dynamics finds immediate
applications in cosmology, and in particular in the studgasmological perturbations, if one con-
templates the possibility of scaling the fields by time dejgem functions, which partially absorb
the evolution of the cosmological background. Recall thase results are valid in models with
compact spatial topology. This includes the physicallyamt@nt case of flat models with compact
sections of 3-torus topology [33].

Let us emphasize thatftierent scalings lead to fiierent field descriptions, each of them with
a different dynamics. The Fock quantization of each of these iggiscrs does not necessarily
provide unitarily equivalent quantum theories. Let us $gg ih more detail. We already men-
tioned that, on phase space, the scaling of the field by a timetibn can be regarded as part of
a time dependent linear canonical transformation. Tharggalf the field is then completed by
a transformation of the momentum, in which the latteffexs just the inverse scaling, so as to
maintain the canonical structure. Besides, in this tramsétion, the momentum may acquire a
contribution linear in the field. In order to respect localind the spatial dependence of the fields,
the most general linear contribution to the momentum thatwileconsider consists of the field
multiplied by a (conveniently densitized) function of timhe resulting family of canonical trans-
formations, being time dependent, generally modify theadiyical evolution of the system. In this
regard, it is important to contemplate the presence of a fietdribution to the new momentum
if one wants to maintain a dynamics dictated by a quadratimil@anian with certain good prop-
erties, like e.g. the absence of crossed terms mixing thégrwation and momentum fieldlike
variables. But the fact that the dynamics changes impligsttte criteria for uniqueness, which in
particular include a unitary implementation of the timeletion, must be applied independently
to each field description, at least in principle. Besidas;eithe descriptions are related by linear
canonical transformations (varying in time, actually)damot all of these transformations can be

implemented in terms of unitary operators in the quanturaret is not granted that the filerent

2 This is an example where Edl (1) is modified with terms whicmdbafect the asymptotics.



formulations attained in this manner result to be unitadyivalent. Hence, if we want to reach a
privileged Fock quantization for our system, we need to fix &@mbiguity in the field description.

A quite remarkable result, proven first for the case in whiehgpatial manifold on which the
field is defined is a circle [34], and demonstrated recentiytiie 3-sphere and the sphere in two
dimensions|[35], is that the proposed criteria of naturehifance under the spatial symmetries
and of unitary dynamics happen to select also a unique fieddrgigion among this class of time
dependent canonical transformations. The descripticacsal is precisely the one in which the
field equations are of the typEl (1), with time varying massa istatic backgrourid When the
spatial manifold is a circle, it was shown that field desaoip$ difering just in the inclusion of
a field contribution to the momentum are possible, but theyadlrunitarily equivalent, so that a
representation of the new canonical pair can be directlgirooted from the original one in such
a way that the relation is unitary [34]. The aim of the preseotk is to extend this result to any
compact spatial manifold in three or less dimensions. Ngmet want to prove that our criteria
of symmetry invariancand unitary time evolutioselect in fact a unique field description for our
system orany compact spatial manifold in three or less spatial dimerssidrhis, together with
the already obtained result about the uniqueness of the feprksentation for the specific field
description in which the KG equation does not contain angigéive term [that is, the description
in which the background appears to be static and the fieldtiequakes the forn{1)], provides a
considerable robustness to the quantization, choosingiaelrock quantum theory up to unitary
equivalence. In particular, this guaranties the religpdf the quantum predictions.

The rest of the paper is organized as follows. We start bgdhicing the model in Sec. 1. The
uniqueness result about the choice of Fock representati@ndcalar field with varying mass prop-
agating in a static spacetime whose spatial sections arpaxins reviewed in Sec. Ill. Although
this result was proven in Ref._[29], we succinctly revisi lrguments of the demonstration for
completeness in the presentation and because they prénadmsis for the proof of the result of
this work, namely, that our criteria select also a uniquel fildscription among all those related by
a time dependent scaling. The proof that all nontrivialiecg are excluded is presented in Sec.
IV. In addition, in Sec. V we show that either there is no fre@dto include a time dependent

linear contribution of the field in the momentum or, if thedd®am exists (something that may

3 Remarkably, our results were recently found useful alsténdontext of string dynamics in arbitrary plane wave
backgrounds [36].



typically happen only for one-dimensional spatial marmi#)| the change does not introduce any
Fock representation which is not attainable from the odabame by a unitary transformation. The

relation between the Fock quantization selected by ougraaiand the choice of vacuum in terms

of the Hadamard condition![8] is briefly discussed in Sec.Wé present our conclusions in Sec.

VII. Finally, two appendices are added.

. THE MODEL AND ITS QUANTIZATION

We begin by considering the Fock quantization of a real sdadll with a time varying mass
function. The fieldy is defined on a general Riemannian compact spamfehree or less (spatial)
dimensions, and propagates in a globally hyperbolic bamkyt of the forml x X, wherel is
a (not necessarily unbounded) time interval. We bgllthe metric on the spatial manifold
(a, b denoting spatial indices), and restrict the discussior hethe case of orthogonal foliations
and a time independeht,. As we have already commented, under very mild assumptians (
particular on the mass function) it is then possible to shioat & preferred Fock representation
is selected by imposing the criteria that the dynamics btagnand that one achieves a natural
unitary implementation of the spatial symmetries of thedfedjuations [29].

For our analysis, we choose an (arbitrarily) fixed tigh@nd, at that instant of time, we consider
the field data¢, P,) = (¢, Vh),, Where the dot denotes the time derivative arislthe determi-
nant of the spatial metric. By construction, we identify taonical phase space of the system
with the set of data pairfge, P,)}, equipped with the symplectic formthat is determined by the
standard Poisson brackeis(to, X), P,(to, y)} = 6(x —y). These brackets are taken independent of
the choice ofty, so that the time independencewfs granted. Note also that the configuration
variabley is defined as a scalar, and hence the momenRyima a scalar density.

We call A the standard Laplace-Beltrami (LB) operator associatel thie metrich,,. Note
that —A is a nonnegative operator, i.e., with the exception of gdgsiull eigenvalues (in this
respect, see the comments below about zero modes), alivaiger ofA are real and negative.

Employing this operator, we introduce the complex struefgrdetermined by:

Jolg) = ~(-hay P,
H(P,) = (~h)*. @

The Fock representation defined fyis the analogue of the free massless field representation.
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In fact, Jo is constructed from the LB operator ignoring the existenica mass in the system.
Nonetheless, rather than the massless case, we are goiogdider the general case of the field
equation

$—Ap +s(t)p =0, (3)

which, given the expression of the field momentum, is eqamalo the canonical equations of

motion:
1

.:—P,
‘10 \/H(P

The mass functios(t) is allowed to be quite arbitrary, except for some weak ctoowls that were

P, = Vh[Ag - s(t)g]. (4)

specified in Ref.|[28]. Namely, we assume that it has a secendadive which is integrable in
any closed subinterval d@f

In order to discuss whether the dynamick (4) admits a unitapfementation with respect to
the Fock representation determined Jy essential ingredients are the general properties of the
LB operator in any compact space |[37]. In particular, theeeigodes of the LB operator allow
us to decompose the field in a series expansion. In the coedidgneral setting, the natural
space of functions oB is that of square integrable functions in the inner productided by the
metric volume element (constructed with). Let then{\V',,} be a complete set of real orthonormal
eigenmodes of the LB operator with respect to this inner pegdvith corresponding discrete set
of eigenvalues given bi-w?}, with n € N. Necessarily, these eigenvalues are suchaaends
to infinity when so does. In general, the spectrum of the LB operator may be degenesathat
two or more of the eigenmodé&,, have the same eigenvalue. The lablkes this degeneracy
into account. We calf), the dimension of the eigenspace with eigenvalug. This degeneracy
number is always finite&, being compact. For eactithe label runs from 1 tay,. In the following,
all sums performed over the spectrum of the LB operator aehinis degeneracy.

Using these eigenmodes, we can express the fiedd a serieg = Y, 0, ¥n). With this
expansion at hand, it is clear that the degrees of freedoimedfie¢ld reside in the discrete set of
real modegq,,}, which vary only in time. Since the eigenmodes are orthommbmith respect to
the inner product provided by the metric volume element, gets that the canonical momentum
conjugate tay,, is pn; = On,. Besides, recalling thak is obtained from the LB operator, it is easy
to realize that this complex structure is block diagonal mdes in the introduced field expansion

and, furthermore, independent of the degeneracy labeléd by
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Let us then define
pn,l

N ©)

which, together with their complex conjugatas form a set of annihilation and creationlike

= [y +i
an| = 2Cln,l

variable$. In these variables, the complex structdgés totally diagonal, taking the standard form
Jo(an) = ian) andJo(ay,) = —iay,. In other wordsa, anday,, can be regarded as the variables that
are promoted to annihilation and creation operators in tuk Fepresentation determined by

Returning to the dynamics, one can check that the modes bbayquations of motion:

G + [w5 + S(t)] gy = 0. (6)

It is worth noticing that all the modes are decoupled, antlittieaevolution equations are the same
for all modes in the same eigenspace (indicated by the lgbeThe evolution of the variables
(@ny, a;;’l) from the fixed reference timi to any other timd is a linear transformation which is
then block diagonal, owing to the decoupling of the moded,iasensitive to the degeneracy label

I. Thus, the transformation adopts the general form

an)(t) = an(t, to)an (to) + Bn(t, to)ay, (to). (7)

Since the evolution respects the symplectic structurs,tthnsformation must be canonical. This

implies that, for all values afl andt and independently of the value igf one has

lan(t, to)/* = 1+ Bn(t, to) > (8)

Actually, a canonical transformation of the typé (7) canrelemented in terms of a unitary
operator in the Fock representation defined by the complegtsireJ, if and only if the sequence
formed by its corresponding beta-functigigt, to) is square summable, namelyif, gn|Bn(t, to)[?
is finite [22] (note that the degeneracy has been taken imtoust). To elucidate whether this sum
is finite or not, we need to know the behavior of the beta-fianst for largen, i.e., to know the
asymptotic behavior of the dynamics for modes with largei@alfw?. This asymptotic analysis
was carried out in Ref._[28]. It was proven there that, for pagsible mass functios(t) and any

values oft andty, the leading term in the beta-function is proportional t@3. It then turns out

4 Obviously, these variables are ill-defined for zero modes,whenw, = 0. However, our discussion on the unitary
implementation of the dynamics does not depend on a finitebenmof modes. So, we will analyze exclusively
nonzero modes in the rest of the text. Unitarity and unigaesifier zero modes can be attained following methods
and criteria of Quantum Mechanics.
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that the requirement that the sum|gxt, to)|* be finite is equivalent to the finiteness Bf, g,/ w?.
Indeed, this condition is satisfied for all Riemannian coatpaanifolds in three or less dimen-
sions. This fact follows from the asymptotic properties lué spectrum of the LB operator. In
particular, the number of eigenstates whose eigenvalug wioieexceedv? in norm is known to
grow ind dimensions at most like® [37]. With this bound in the growth rate, one can prove that
gn/wi is summable.

If the manifold E&, h,,) possesses an isometry group, the LB operator is autorhaiimaariant
under it. Therefore, these symmetries are directly tratiethto the field equation§l(4). In the
canonical formulation, the group translates into candrireasformations which commute with
the dynamics. More generally, we will consider the subgraithe unitary transformations [in the
Hilbert space of square integrable (configuration) fundtiwith respect to the measure defined by
the metric volume element associated witf] that commute with the LB operator, or a convenient
subgroup of it determined by the isometries, provided thet fatter subgroup satisfies certain
conditions which we will explain later on. We will call thigimimetry groupG, which leaves the
dynamics invariant. As part of our criteria for the uniquesnef the quantization, we demand
that these symmetries find a natural unitary implementatidghe quantum theory. In fact, this
is ensured in the Fock representation determined by the lexrsfpructuredy, since this structure
depends exclusively on the LB operator (and the metric vel@hement), and hence inherits its
invariance under the symmetry gro@ Thus, the complex structurd is invariant undeiG
and determines a Fock representation in which the guantumteart of Eqg. [(6) is a unitary
dynamics. In the next section, we will prove that, if therésexanother Fock representation with

the same properties, it has to be unitarily equivalent totieedefined byl,.

. UNIQUENESS OF THE REPRESENTATION

In order to obtain a natural unitary implementation of thesyetry groupG in the Fock rep-
resentation, we just have to concentrate our attention amptex structures that are invariant
under its action. Therefore, the first step in our analysie sharacterize thege-invariant com-
plex structures, something that is possible by means oftaldaiapplication of Schur’s lemma
[24,125,28].

Let us analyze the action of the gro@on the canonical phase space. We start by studying

its action on the configuration space, formed from the vabid¢ise fieldy at timet,. We will call

12



Q this configuration space. Recall that, by constructionaitteon of G is naturally unitary orQ
(with respect to the inner product obtained with the metdlumne element) and commutes with
the LB operator. Therefore, each of the eigenspaces of thegeator corresponding toftkrent
eigenvalues provides an irreducible representatida of, otherwise, can be composed in a finite
number of mutually orthogonal irreducible subspaces. imway, we can decompose the config-
uration space in a convenient hierarchy of finite dimensional subspacest, fas a direct sum
of eigenspaceQ" of the LB operator (the superscriptlabeling the associated eigenvalue), and
then each of these eigenspaces as a direct sum of irredvefisksentationQy, of the symmetry
groupG (the labelm counting the dferent components for each. Note that, ifG is taken as the
maximal subgroup of the unitary group that commutes withLfBeperator, all these irreducible
representations are distinct. On the other hand if, stastiith the spatial isometries, we rather
identify G with a subgroup of the former maximal subgroup, we resgumehat all such rep-
resentations dlier (this is the case, e.g., with the isometry group ofdksphere or thel-torus).
Clearly, if we callg,m the dimension of those representatioQ8, the sum ofg, ,, over m must
equal the degeneragy for each value oh. In particular, the integerg, , can never exceegi,

We can proceed similarly to get a decomposition in irredecibpresentations of the spae
formed by the momentum field, at the fixed timéy,. Since the momenta are scalar densities, the
integral for the inner product is performed in this case whthinverse volume element. Altogether,
we arrive at a decomposition of the phase space of the sybtemthe formI" = @,I" = &, ml T},
where we have callell, = Q, @ #p,. Besides, given thdb acts in the same way on fields and on
their momenta, the group action coincides on the subs@a@nd on its counterpafey,.

Via Schur’s lemmal[38], a direct consequence of this decaitipa in irreducible representa-
tions is that thé&-invariant complex structures must be block diagonal, wi{possibly) diferent
block J,m for eachI}, since they commute witls and cannot mixdifferentirreducible repre-
sentations Therefore, the allowed complex structuesnust all admit the generic expression
J = ®Jym. In each componerit), one can always find a basis of configuration variables and cor

responding momentum variables which arises from a suidée of orthonormal eigenmodes

5 In principle, Schur’s lemma can be applied only to compleeesentations, while we are dealing with a basis of
real eigenmodes of the LB operator. Nonetheless, sincetatan between real and complex eigenmodesiis linear,
and the dynamics is both linear and common to all the eigeesodthe same eigenspace, the implications of the
lemma can be translated to our description in terms of realasavithout serious obstructions for the analysis of
the evolution (see, e.g., the discussion in Ref. [33]).
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of the LB operator, like those that we introduced in the prasisection to expand the field. For
each givem, the complete sdty,;, p,,} is obtained as the union of all such bases when the whole
set of subspacdg), of I are consideréd Besides, on ead}, the corresponding complex struc-
ture J,m consists of four mapslim, Jam, Jhm @andJhh, according to the four choices of initial and
final space betwee®;, and®;;,. Moreover, each of these four maps, established betweeathe
irreducible representation &, is itself invariant under the action of the group, and tfe@meemust

be proportional to the identity mapby Schur’s lemma (the proportionality constants being re-
stricted by the imposition that the complex structure beaameap). In total, we conclude that the
G-invariant complex structures adopt also a block diagomahfin each subspadé,, the blocks
being given by a 2-dimensional complex structure formedbthe four proportionality constants
mentioned above. This 2-dimensional complex structure mmkesq,, with p,, for each value of

[, and coincides for all the labelsn the same subspat8,

To compare a generiG-invariant complex structuré with the reference onel, it is conve-
nient to change the basis on phase space to the complexlea@gbanda;, . Since all invariant
complex structures have the same block form, and they ar@lsgtomorphisms, one can eas-
ily show that they are always related by a transformatiorheftyped = KJ,K™, whereK is a
symplectic map which admits the same decompositionin22blocks that we have found far
[24]. Likewise, all the 2-dimensional blocks &F are identical in each spad®. Hence, each
invariant complex structure is totally characterized byiscigtte set of 2-dimensional symplectic
mapsK,n. We can view each of these (real) maps as 2 matrices and express them in terms
of two complex numberss,, and,m, which provide their diagonal and nondiagonal elements,
respectively|[28]. The condition that the map preservesstymplectic form translates into the
relation|knml® = 1 + [Anml?.

Note that, then, the complex structur&and J, will be unitarily equivalent if and only if the
symplectic transformation between thdfy,admits a unitary implementation with respect to (e.qg.)
Jo. We have already commented that this amounts to demand tiaeesgummability (including
degeneracy) of the beta-functions (or rather betdfments, in this case) corresponding to the
mapK, which are nothing but the complex numbggs, [29]. Hence, the necessary andistient
condition forJ andJ, to be unitarily related is thgt,, ,, Onmldnml® be finite.

On the other hand, let us assume that the evolution tdapdmits a unitary implementation

6 See, nonetheless, the comments in the previous footnote.
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with respect to &-invariant complex structure, This is

equivalent to say (via a change of basis from the creationaammdhilationlike variables that
diagonalizeJ to those forJy) that K-UK can be implemented as a unitary transformation with
respect taly or, alternatively, that the beta-functionskf!UK are square summable. Thiest
of the transformatiorK is to replace the functions, andg, for J, with new ones, adapted to
the basis which diagonalizes We emphasize that these new functions depend no more just on
n, but also on the indem. A direct calculation leads to the following expression floese new

beta-functions:

Bam(ts to) = (k) Bt to) = A7 1fBn(L to) + 2ikG pelnmI[en(t, to)].- 9)

Here, the symbaoll denotes the imaginary part.

Therefore, &-invariant complex structure allows for a unitary implertagion of the dynamics
if and only if 3, gn.mLBg,m(t, to)[? is finite at all instants of times We can then easily adapt the
discussion of Ref.| [28] to show that the unitary implemdotabf the dynamics with respect to
J implies indeed that this complex structure is unitarily igglent to J,. A sketch of the proof
goes as follows. Employing tha§/Gn, mB; m(t. to) and {/GBa(t, to) are square summable (because
the dynamics is unitary with respectde-by hypothesis— andp), we conclude that the sequences
formed by +/Gnm Ian(t, to)] Anm/k;,, Must also be square summable at all times. Then, making
use then of the asymptotic behaviorifr,(t, to)], which was discussed in Ref. [28], we can easily

deduce the square summability, at all instants of time, of

wnlt—to) + ft t dfs(at_)]} (10)

We can now appeal to Luzin’s theorem and integrate the finitessof the squared elements of

A .
{ \/gn,mK:’m sin

nm

this sequence (which are measurable functions) over ebdeigat in the time intervdlin order to
show that, actually, the sui,, » gnmldnml® has to be finite [28]. But this finiteness is precisely the
necessary and flicient condition for the unitary equivalence between the tamplex structures
JandJy. This proves that any complex structure that is invariadieuhe grougs and allows for a
unitary implementation of the dynamics turns out to be eslatith J, by a unitary transformation,

so that there exists one and only one equivalence class gflegrstructures satisfying our criteria.
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IV. UNIQUENESS OF THE FIELD DESCRIPTION

In the previous sections, we have demonstrated the uniga@i¢he Fock quantization adopt-
ing since the very beginning a specific field description far £ystem. However, in nonstationary
backgrounds, as we have discussed in the Introductiorenibsenost natural to allow for time de-
pendent scalings of the fields, which may absorb part of thawhycal variation of the background.
In this context, one must consider the possibility of perfirg linear canonical transformations
that depend on time and that, as far as the field is concernsalrat to a scaling by a time func-
tion. This introduces a new ambiguity in our quantizatiaffedent in extent to the one considered
so far, because this type of canonical transformationsgehére field dynamics. Hence, one may
wonder whether it is still possible to use our criteria anécenot just one privileged Fock repre-
sentation for the KG field description with time dependenssia an auxiliary static background,
but also a unique field description for our system when sgalare contemplated. This is the sub-
ject that we will address in the following. The main aim ofstlwork is to prove that our criteria

eliminate in fact this apparent freedom in the choice of fagdcription.

A. Unitary implementability condition

The most general linear canonical transformation depgn@inly) on time and which changes

the field just by a scaling has the form
P‘P
¢="1(e,  Py= o g(t) Vhe. (11)

Note that we have allowed for a contribution of the figldh the new momentum, and that this
contribution has been multiplied byh so as to obtain a scalar density. The functfgt), which
provides the scaling of the field, is assumed to be nonvargsko avoid the artificial introduction
of singularities. In addition, the two functiorf§t) andg(t) are real, and we suppose that they are
at least twice dterentiable, so that the transformation does not spoil thieréntial structure for-
mulation of the field theory. Furthermore, there is no losgeferality in assuming thdi(ty) = 1
andg(ty) = O at the reference timi. In fact, the values of these two functionstatan be set
equal to those data by means of a constant linear canonaafarmation. But, given a Fock
representation for the original fields with symmetry ineaige and a unitary dynamics, we im-

mediately obtain a Fock representation for any constaeaticombination of the canonical fields
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which possesses the same properties [34]. Therefore, ifolloe/ing we restrict our discussion
to functionsf (t) andg(t) with the above initial data.

The dynamics of the new canonical padr, P,) admits a description in terms of a Bogoli-
ubov transformation similar to that in EQ.1(7), but withfdrent functionsy(t, to) andBa(t, to).
Adopting again creation and annihilationlike variabléslthose for the massless case, but now
constructed from the new canonical pair, one can calculatediation between the new alpha and
beta-functions and the original ones. Ignoring the exptafierence to the dependencetpim all

functions, and defining 2(t) = f(t) + 1/f(t), one obtains:

o) = 0 + 080 + 52 an() + 5,0 (12
Bul) = £.08:0 + 10030 + 52 (a0 + (0] (19

In the following, we will demonstrate that, if one perforrasy canonical transformation of
the above type witH (t) other than the unit function, the dynamics becomes sudloti@acannot
implement it as a unitary transformation with respecafy invariant Fock representation. The
arguments of the proof are a suitable generalization oftlpossented in Refs. [34,/35].

Let us first make fully explicit the condition for a unitary plementation. Suppose that we are
given an invariant Fock representation of the CCR’s, deitezthby a sequence of paing f, Anm)
as explained in the previous section. The dynamics assolowgth the new canonical paig(P,)
can be implemented as a unitary transformation in the censitinvariant Fock quantum theory
if and only if the sequences with elemen{,@még’m(t, to) are square summable for all possible

values oft [28,34], where

Bont.to) = (K5 ) Bnlt, to) = A2 Bn(t, to) + 2k}, pdnmI[En(t, to)], (14)

in complete parallelism with EqI(9). For simplicity, we adte the reference tiy from now on.
Thus, assuming a unitary evolution with respecf o the new field description is equivalent
to saying that

D7 Gl O < o0 (15)
n m
at all instants of timd. Since every term in the sum is positive, it follows that, i select a
particular valueM of mfor eachn, the sequencgnm Léﬂ,M(t)F} is also summable. We emphasize
that this is so for any possible choice M. In turn, this summability immediately implies that

{N#’M(t)/(K;’M)Z} is square summable, because gt and|x, | are always greater than (or equal

17



to) 1. In particular, it is then guaranteed that, for everthe terms of these sequences tend to
zero in the limit of infiniten. The next step in our line of reasoning is to introduce thergdptic
behavior ofa,(t) andg,(t) in the expression Q&ﬂ,m(t)’ using relations (12,13). According to the
analysis performed in Ref._[28], one can takgt) = 0 anda,(t) = e up to order Yw, (at
least), wherer = t — to. As a consequence, we arrive at the result that the condfianunitary

implementation of the dynamics implies that the sequendésalements
| = 2 e | £-(t) - 2izom Sin(wnT) f. (1) (16)

must tend to zero at all times in the limit of largeWe have called,m = Anm/«; -

Splitting z, v in its real and imaginary partg,y = X.m + iYnm, We introduce the definitions:
Ao = 2am(fe = Xom ), Bum = (L+Yam — X,
Cn,M = (1 + Xr21,|v| - Yﬁ,M)f— - 2Xn,M f+, Dn,M = _2Xn,Myn,M f—, (17)

where, to simplify the notation, we have ignored the expliche dependence of the functions

f.(t). Note that, sinc€l,ul| < |knml, we have
Zaml® = Xaml® + [Ynml® < 1. (18)
Taking the real and imaginary parts of the expressioh (16)s@e that the sequences given by
Anm Sin(wnt) + Bym COSnT) (19)

and
Chm Sin(wnt) + Dy COSnT) (20)

have to vanish in the limih — oo at all instants of time € I. These conditions can be employed
to prove that, indeed, unitarity of the dynamics can bemthonly if the functionf (t) in Eq. (11)

is the unit function.

B. Proof of the non-unitarity of time dependent scalings

We notice first that all sequencégw, Bom, Com, andDy  are bounded, owing to inequality
(@8). Using this fact, one can form suitable linear comhorat of the expressiong ([19) ard [(20)
and conclude that the following sequences must have a vagibmit as well:

(AumDnm = BamCim) sin(wn), (21)
(AumDnm — BomCim) COS@nT). (22)
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Obviously, this is only possible i, Doy — BomCnm tends to zero. A simple calculation shows
that

AymDnm — BomCim = - (Xﬁ,M + yzn,M -1+ Xﬁ,M + yzn,M)f— — 2%nom fi]. (23)

We now prove that a further necessary condition for the anitaplementability of the dy-
namics is that the sequence of elemetxﬁgM(+ yﬁ’M — 1) [one of the factors in Eq.[(23)] does
not tend to zero. Let us suppose that it does and show thaetds to a contradiction. In this
case, while expressioh (23) automatically has a vanistini, lthis is not sdificient to guaranty
unitarity. In particular, we still have to check that bottpexssions (19) and (20) tend to zero for
all values oft. By taking the sum of the squares of those expressions, angd asr hypothesis

thatx?,, +y2,, — 1, we obtain that

(fy = Xom f2) sin(wnt) + Yom f- COS@T) (24)

must tend to zero at all times, At this stage, two possibilities are available. We consfilst the
case in whichy,y — 0. Since we have already assumed tfaf + 2, — 1, it follows thatx? ,
tends to 1. From expressidn (24), we then conclude that thest exist a subsequence of values
of n such that one gets a zero limit either fbsin(w,7) or sin@ny7)/f (or both, if both types of
subsequences exist). In either case, recalling the pigibithe functionf, we have that sing,7)
must tend to zero, on some subsequence, for all timelowever, this is actually impossible, as
we show in Appendix A (see also Ref. [35]). We consider nowélernate case in whicy, v

does not tend to zero. As explained in detail in Appendix B lads to the conclusion that
SiNfwnt + O m(t)] (25)

must have a vanishing limit on some subsequence of valugsabfall instants of time, where

1 f+ Xn,M

cot[®nv] = (26)

Yam o Yam'
Again, using the result proven in Appendix A, one concluthes the sequence given by expression
(28) cannot tend to zero for all valuestah any given interval. Therefore, the only possibility
which is compatible with our hypothesis of a unitary implenation of the dynamics is that the
sequencex? , + Yz, — 1} does not tend to zero in the limit of large

The next step in our demonstration is to show that, in addliitothe condition proven above,
the unitary implementation is not achievable unless thetfan f(t) is the unit function. Let

us suppose that, on the contrary, this is not the case. Therg exist values of such that
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f(t) # 1. We will consider those values tf and only those, and will show that the existence
of those times leads in fact to a contradiction. Recall thatfunctionf is strictly positive and
continuous (actually, we have assumed that it is twidkedentiable). In particular, this implies
that f(t) # 1 if and only if f_(t) # 0. Therefore, we are considering points whér¢) # 0, and
we have assumed that such points exist. Going back to expng@3), a necessary condition for

the unitary implementation of the dynamics is that the seqges with elements

(Xr21,M + yzn,M - DL+ Xr21,M + yzn,M)f— - 2Xm fi] (27)

tend to zero, at all the considered valued.oMoreover, we know that the sequence formed by
(Xr21,M +yﬁ’,\,| —1) cannot tend to zero at infinitely largeHence, there exists> 0 and a subsequence
S of positive integers such thaix?,, + y2,, — 1| > e in S. This in turn implies that the second
factor in Eq. [2¥) must tend to zero on that subsequenceud fiemm which one easily concludes
that

2O = Xam)? + Yam] = [(1 + Xam)® + Y] (28)

must have a vanishing limit on the subsequeBcét then immediately follows that the function
f (t) must coincide at all the considered values, agimply because the time independent sequences
(1—Xam)?+Y2y and (I+ x,m)*+Y3  cannot both tend to zero. Thus, we reach the conclusion that
the functionf can attain at most two distinct values, one of them equal t&ad.,(at the reference
time tp) and the other assumed to befdrent from it. But this is forbidden by continuity. The
contradiction shows that the only consistent possibisityhiat f (t) is indeed the unit function, as

we wanted to prove.

V. UNIQUENESS OF THE FIELD DESCRIPTION: MOMENTUM REDEFINIT ION

In the previous section, we have proven that a unitary implaation of the dynamics with re-
spect to an invariant Fock representation requires thaifum€ in Eq. (11) to be the unit function.
There remains however the possibility of a nontrivial timependent canonical transformation,
coming from the redefinition of the momentuy = P, + g(t) vVhe. We will now show that (in
less than four spatial dimensions) two distinct scenariag otcur. If the sequence of elements
gn/w? is not summable, then unitarity can only be achieved with= 0. Alternatively, ifg,/w?

gives in fact a summable sequence, then one can attain ayudytaamics for any functiogy(t),
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but this is possible only in the representation defineddwr in representations that are unitarily
equivalent to it, and therefore the physical predictiomsam uniquely determined.

Let us return to the summability condition that guaranttes wnitary implementation of the
dynamics with respect to the representation selected bgahmplex structure, condition which
in particular implies that the sequencgGnmBym(t)/ (k> is also square summable (oveand
m). We particularize the discussion to the only allowed cd¢g,= 1, as we have seen. Then, a

direct calculation shows that

B (t - . |
fk%,r:)z =P (1 ¥ ISS) ) = Zumb (1 - ISS)) + 'Zn,m%? [R () + R(an)]
H 36(2 @+ iggi Zomttn + 21203 (). (29)

The symbolR stands for real part. Note that the square summability@f,3, and the bounded-
ness ofz, | imply that all the terms i, lead to square summable contributions. Since the set of
square summable objects is a linear space, we conclude tiegeasary condition for the unitary

implementation of the dynamics is that the sERY. i, GnmlBnml? be finite, where

a(t)

2w,

is the remaining part cﬁﬁ’m(t)/(/<;;,m)2 (divided byi).

Bom() = 22um3(an) + 5 | + 2t + 22amBR ()| (30)

We now make use of the analysis performed in Refl [28], wheras demonstrated that, up
to order Jw,, one gets the asymptotic behavigy(t) ~ e for largen. As a consequence,
it is easy to see that a necessary condition for a unitary tgoanlynamics is the finiteness of

S0 > m GnmlAnml?, Where we have called
t . .
Aarn(t) = 2Zoml3(an) + %) |+ |7 2™ 4 20z, 1 COS{AT) | (31)
n

Here, we have introduced the notatmp, = |z, |€°.

Sincewn, — oo, it is clear that the sequence of elemeRf§,mA.m/wn Must also be square
summable (oven andm). In addition, we know that the contribution to this sequeroming
from the second term in Eq.(B1) is square summable, becauie ggnm/w? (as discussed
in Sec. 1) and the multiplying factor is bounded in norm facht, as one can easily check
(recall that|z,m| < 1). Hence, the contribution of the first term, namely the sege formed by
VOnmlZoml B[en(t)]/wn, must be square summable as well for all timesBut then, the kind of
arguments presented at the end of $e¢. Il (and discussednm detail in Ref. [[28]) lead us to

conclude that \/gnmlz.ml/wn} Must be square summable.
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Let us consider again the sequence givenfi A, m. The terms coming from the two last
summands in Eq[(31) are clearly square summable, ginge ") + 2 cosfu,7) is bounded in
norm by 3 and we have already seen tR@, m|z,ml/wn has this summability property. Therefore,
the rest of summands provide also a square summable sequepeeticular, the imaginary part
is necessarily square summable by its own. In this way, weckethat

%? VOnm SiN(WnT — 6) (32)
has to be square summable at all instants of time,

Obviously, this condition is satisfied if the functigit) vanishes identically. On the contrary,
let us suppose that this is not the case. Since the fungfipms continuous, if it is not the null
function there must exist an interval of values &r which it differs from zero. In consequence,
\/Onm Sin(wn7 — 8)/w, Must provide a square summable sequence at all valuea tfat interval.
Then, applying once more the type of arguments employedeatid of Secl_Ill and detailed in
Ref. [28] (actually, in this case one can appeal to simplguents like those published in Refs.
[24,126, 27]), we conclude that the sequence formed /Oy ,/w, must be square summable. We
thus see that, in those cases where the sug, @fw? (over n and m) diverges, we arrive at a
contradiction, proving that unitarity can be reached esigkly if g(t) vanishes. This happens, for
instance, when the spatial manifold is the 2-sphere [26h@Btsphere [28].

On the other hand, in the case tr{lg{m/wﬁ} has a finite sum (like, e.g., when the manifold is
S! [34]), we consider again the sequence of elemafdsmA.m and analyze in further detail the
condition that it be square summable. From our discussidhdrparagraph above Eq. {32) and
the assumed summability of,n/w?, we get that the contribution coming from the first term in
Eq. (31), namelyy/Gnmlz,mlI[an(t)] (up to an irrelevant multiplicative factor), is actuaguare
summable for all the values ofin the studied interval. Then, a straightforward geneagion
of the discussion presented in Ref. |[28] (see Sec. IV.Cyallas to conclude that/gp mlzyml
forms a square summable sequence and, moreover, that teeap@iies to/g, mldnml. This last
step follows from the fact that the convergence of the plastians ofg,m|z,ml*> implies that A, |
tends to zero when — . Sincelknml? = 1+ |1,m/?, we then have thak, | — 1 in that limit,
and thus the value of /k, | is bounded at larga. Summarizingg(t) is necessarily the zero
function unlessg,m/w?} is summable, and in that case one must haveEm,%tgn,m|ﬂn,m|2 is finite.
Remarkably, this is precisely the condition that guarantiat the representation defined by the

complex structure) (with Bogoliubov codicients of the “beta” type given by, ) is unitarily
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equivalent to the representation determined by the congtitextureld,.

Therefore,g(t) must vanish identically unlesg,m/w? is summable. If this last property is
satisfied, one may change the momentum by adding a time depenidear contribution of the
field, while respecting the existence of invariant représgons which implement the dynamics
as a unitary transformation. However, all such represiemstelong to the same unitary class
of equivalence, which is just the class containing the gmtation determined by the complex
structure associated with the massless situatign|n this sense, we can ensure the uniqueness
of the field description and its corresponding Fock repregem under our criteria of symmetry
invariance and unitary evolution. This is the main resulihef present paper.

For the sake of completeness, the next section will be ddviateliscuss how the selected
unitary Fock quantization is related with the Fock quantizatioraot®d by imposing the so-called
Hadamard condition [8]. To make the discussion more adukessve will start by briefly recalling
the context in which the Hadamard approach arises, emphgglze physical relevance of this

formulation, and the uniqueness result that it providesiinarses with compact spatial sections.

VI. CONNECTION WITH THE HADAMARD QUANTIZATION

As it is well known, in the theory of scalar fields there exisissical observables which have
no counterpart within the Weyl algebra of quantum obsee&blThis happens with the stress-
energy tensor, which is excluded from the Weyl algebra owings quadratic dependence on
the field, involving the (mathematically ill-defined) pradwf distributions. In order to incorpo-
rate this tensor in the quantum theory, a procedure wasdutexd in the seventies called point-
splitting (see for instance Refl _[39]). This method progideconsistent regularization scheme
by extracting the spurious infinities associated with gaadfield terms. Roughly speaking, the
point-splitting renormalization method assumes that ttpeetation value of the anticommutator
functionG(x,y) = (@(X)a(y) + ¢(Y)o(X)), for the state of interest, possesses a Hadamard singular-
ity structure [40] in small normal neighborhoods. Sincedhkpectation value of the stress-energy
tensor can be obtained frofa(x,y) by differentiation, the regularization @(x,y) provides a
renormalized value of it. The prescription consists thesuhtracting a suitable Hadamard solu-
tion to G(x, y) and declaring the coincidence limit of thifi@girence as the regularized value of the
two-point function. The limitx — y in the formal point separated expression of the expectation

value of the stress-energy tensor will exist and define afiratue.
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The point-splitting prescription relies on the use of Hadeadrstates (i.e., states satisfying the
Hadamard ansatz), which can be proven to exisanig globally hyperbolic spacetime. There-
fore, given a free scalar field in an arbitrary (globally hsasic) spacetime, one can spec-
ify a Hadamard representation of the CCR’s by looking for akFeacuum state satisfying the
Hadamard condition [i.e., a state whose two-point func@gr, y) has a short-distance behavior
of the Hadamard type]. This approach rules out infinitely yneack representations. Since this
Hadamard condition is slicient to ensure that a well-defined quantum stress-enengptés ob-
tained, it is reasonable from a physical point of view to irs@dt (i.e., implement the Hadamard
approach) as a criterion to select the representation o€C@R’s, at least if the classical back-
ground in which the field propagates is given a physical ficamnce. Unfortunately, the Hadamard
criterion does not dtice to pick out auniquepreferred quantization in general; indeed, generi-
cally there exist infinitely many non unitarily equivalenagtamard vacuum states. Remarkably,
for free scalar fields in spacetimes with compact Cauchyasss, it has been shown [8] that all
Hadamard vacua belong to the same class of unitarily egunvatates. This result, together with
the uniqueness discussed in the previous sections, imgliywh have at our disposal twofigirent
criteria in order to select a unique preferred quantizatibthe linear KG field. Thus, for such
systems, one may wonder whether thetary and theHadamardquantizations are in conflict or
not. This is the question that we want to address in this@ecti

For the sake of conciseness, let us consider the case of a K@ fwith massm on a closed
FRW spacetime with the spatial topology of a 3-sphére- (+1). It is a simple exercise to see,
in conformal time, that under the time dependent scaling a¢, wherea is the scale factor,
the dynamics of the scaled field coincides with that of a scalar field with time varying mass
s(t) = nPa? - (&/a) propagating in a static background whose Cauchy surfaeed-spheres. Now,
the first thing we must notice is that the Hadamard and theynguantizations are constructed
from different phase space descriptions: on the one hand, the ugitangization is based on a
preferred representation for the scaled figldselected as the fundamental field by the criteria
of unitarity and spatial symmetry invariance (see $et. Which is determined by the complex
structureJp; on the other hand, the Hadamard quantization rests on arpedfrepresentation
of the field ¢ obtained by imposing the Hadamard condition. In short, tlaeldtfnard and the
unitarity (combined with spatial symmetry invariance}eria select representations of the CCR’s
for distinct fields, related by a time dependent canonical transformatio order to properly

compare these quantizations we have to: (i) choose (oncéoamdl) a basic field variable, say
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¢ (ii) determine how the Hadamard quantization can be tréesleo thep-description, and (iii)
compare the result with the representation selected byamynévolution and spatial symmetry
invariance.

As we will show below, the Hadamard quantization defines aesmtation of the CCR’s,
when reformulated in the-description, which is related by means of a unitary tramsdion
with the quantization picked out by our criteria. This reésuill be achieved by employing that, on
closed FRW spacetimes and in thelescription, Hadamard states are indeed unitarily etgriva
to adiabatic vacuum states [41]Translating the form of adiabatic states to ghdescription, we
will establish the equivalence of the quantization with ¢time selected by, by proving that the
transformation that relates the corresponding vacuurastaunitary. Hence, in the framework of
thep-description, the Hadamard quantization defines a theorghndilows for the same physical
predictions than the quantum theory specified by the reongrg of a unitary evolution, together
with the invariance under the spatial symmetries. In thissegwe can assure that there is no
tension between the unitary and the Hadamard quantizations

To demonstrate that the vacuum state definedgldg unitarily equivalent to an adiabatic vac-
uum state in the>-description, we will consider four steps. In the first one will extract the
Cauchy data for an adiabatic state (in particular of zeratien) for the fieldy. Next, we will
find (via the time dependent canonical transformation) threesponding Cauchy data in tipe
description. Then we will consider the Cauchy data thatipateze ourJy-state. And, finally, we
will compare the two sets of Cauchy data parameterizing ifierdnt states, concluding that they
are unitarily related.

Let us start by recalling the definition of adiabatic statBsa closed FRW spacetime, with
metric gap = —dradry + 8%(1)hap, Wherer denotes the cosmological time ahg stands for the

round metric of the 3-sphere, the dynamics of the field dictated by the dierential equation
144 a’ ’ 1
¢ + qus - gmp + Mg = 0. (33)

Here, the prime denotes the derivative with respeet tOne can perform a mode decomposition
of the field:

(%) = D [aa(mX) + g @] gn(rX) = QuOIun(D), (34)

n

" A precise characterization of adiabatic states can be fdonéhstance, in Ref. [42].
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where{Qn(x)} is a complete set of eigenfunctions of the LB operat@p,, = —n(n + 2)Q,, and

n denotes the tuple formed by the eigenvalue integer lalagld the degeneration labélandm,
standard for the harmonics on the 3-sphere (see, e.qg., &d). [The time dependent part of the
mode solutions,,, satisfies

nin+ 2)
a2

+ P (35)

a
7 ’ . _
un+3—aun+wﬁun:0, W =

In addition, the modes, are subject to the normalization conditios(u;,)’ — u;u;, = ia~3, coming
from the requirement that the corresponding field solutlmsormalized with respect to the KG
inner product and the fact that the eigenfunctig@g} are orthonormal on the 3-sphere.

At cosmological timery, the Cauchy data of the field modgsare

qn = un|‘ro? pn = a3u[,’]|7'0' (36)

In terms of the Cauchy datg andp,, the normalization condition readgp;, — g;pn = I.

Let us focus our attention on solutions of the form

un(7) = \/%Qn exp(—i fT_ ) Qn(%)d%). (37)

Substituting this formula in EqL(B5), we get that the pesifunctions2,, must satisfy

a

2a 2

3(a’)2 3a’ 3(9;)2_593' (38)

QP =w-> “n .
S | Qn 2Q,
We can try to solve this equation by an iterative process,hitivone obtains the-th (positive)

functionQ® from the preceding on@!™; namely,

"2 ” (N7\? QL
o) =i -3(2) 3L 3(ZT) 2B rew (@0 -w @)

In general, because of the arbitrariness of the scale factore cannot ensure the positivity of the
right-hand side in the first formula of Eq._(39), so that tlezation procedure may break down.
However, it can be shown that, for afBaiently largen, (Qﬂ*l))2 is always strictly positive in a
finite time interval [42]. Hence, the iteration procedure b& safely performed whenever a finite
time interval and an ultraviolet regime are considered.

An adiabatic vacuum state ofth order is a Fock state constructed from a solutipho EQ.

(38) with initial conditions at timer:
Un(70) = W (70),  Up(70) = Wi (0), (40)
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whereW"(r,) is given by

Wi (zo) = (41)

1 70
— exp(—i f Qﬂ)(%)d%).
J2asa® g
In particular, using2® = w, = [n(n + 2) + m?a?]/2/a one obtains the adiabatic solution of zeroth
order, W?. Then, from Eq.[{36), we get that the Cauchy data for the hevaler adiabatic state

at timerg are

m\ .
=W, p,=-22WO |« (1 + 2w2) +iaw,|. (42)

n

By using the mag = a¢, as well as the relationship between conformal and cosnbg

times, the corresponding Cauchy data in thdescription at, are given by,

Qn = aW?, P, = —aWo (;_n\; + iawn). (43)

h
It is straightforward to check th&,P;, — Q;P, = i.

Next, let us consider the mode solutions of the figlssociated with the complex structuke
We will call v,(t) the time dependent part of these solutions. At the refereoaformal timey,
the Cauchy data of, defining (and defined by) the field decomposition dictateddogre
. 1 1/4

B B n(n + 2)
Qn = Vn|to = —[4n(n n 2)]1/4,

4

Pn = antO = _I

(44)

Clearly, this pair of data satisfies the normalization ctadiQ,P: — Q:P, = i.
The zeroth order adiabatic state, parametrized by the Gailatia (43) obtained by “dragging”
the state to the-description, is related to the vacuum state charactetigeithe datal(44) via a

Bogoliubov transformation of the form:

Qn= a’nQ_n +ﬁn6;, Pn = a’nFTn +,8n|5;, (45)

where
@n = I(PaQ = QuP2), B = i(QuPn — QuPy). (46)

The equivalence of the considered states depends on whie¢hemtilinear part of the Bogoliubov
transformation defines a square summable sequence; naiédy|> < oo, where we have already
taken into account th#, depends om only. Since each eigenspace of the LB operatoBdhas

dimensiong, = (n + 1)?, the square summability condition reafl§ g.|3n> < c. That is, the

8 The two times are related hyt) = fadt Besides, we choogg such thatrg = 7(tp).
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states will be unitarily related if and only if this sum is fmi To elucidate whether this is the
case or not, we will analyze the asymptotic behaviogptnd prove that the answer is in the
positive. Therefore, the unique (up to unitary equivalg¢t@damard vacuum state gives, in the
p-description, a state which is in fact unitarily equivalemthe vacuum determined k.

From Egs.[(483) and (44), it is straightforward to see that

aw®
[4n(n + 2)]V/4

[ (awn — /n(n+ 2)) + ;anv]\z/?n

Substituting in this equation the expressiorVdf’, and writingn(n + 2) = a’wi(1 - x3), where

Qn I:_)n - Q_n Pn = . 47)

Xn = Mm/w,, we get

e 1 , at | irw
QnPn_QnPn—Z(l_—sz])l/‘l[l(l—1[1—Xﬁ)+mle I . (48)
Thus, in the asymptotic limit >> 1 (i.e., whenx, << 1) the ultraviolet behavior g8, is
 [im?a? 1\] .
S T O(E)l e (49)

Therefore/g,8, ~ O(1/n), a fact that implies thgt+/g,8,} is square summable. So, the analyzed
states are equivalent. In conclusion, the Fock quantizat@ected by the criterion of a unitary
evolution (together with the invariance under the spaatmetries) defines a representation of
the CCR’s which is unitarily equivalent to the one deterrdibg the Hadamard criterion when the
latter is translated to the-description.

On the one hand, the fact that the two approaches, namely ddarriard criterion and the
unitary one, select the same unitary equivalence clasgpofsentations —in the spatially compact
case and using the-description— is probably not completely unexpected,esimath approaches
rely on related dynamical aspects. However, the two petisesare, at least priori, intrinsically
different. In the unitary approach, what is imposed is only th&emxce of unitary transformations
implementing the evolution between any two (regular) instgeparated by a finite (nioifinitesi-
mal) interval of time, with no further requirement regardingntiauity with respect to time, or any
pre-established local form of the vacuum state. On the dthed, in the Hadamard approach a
seemingly stronger condition, fixing the local singulastsucture of the vacuum state, is imposed,
which is strong enough to ensure the regularization of tresstenergy tensor. It seems far from
obvious whether these two approaches should lead to eqoivaliantizations. If one adopts the
point of view, as we do, that preserving unitarity of the dymes is a desirable aspect in quantum

physics, the fact that the two perspectives actually leajtovalent quantum theories appears by
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itself as an interesting and reassuring result. It is alsdiwdhile mentioning that the Hadamard
condition essentially translates the information aboetdhusal structure of the classical back-
ground into the local structure of the quantum states. Thef course what one wants when the
classical background has a true physical meaning, butdtargless clear when the background is
only an dfective or an auxiliary one. In particular, when part or altlod degrees of freedom are
gravitational, the true causal structure is a dynamicatyewith possibly little or no relation with
the causal structure of the auxiliary background where dgaks of freedom are represented as
scalar fields. This happens e.g., in the case of Gowdy moddlsnathe treatment of cosmolog-
ical perturbations [13, 17]. Similarly, when quantum cotiens are partially incorporated in the
spacetime where the scalar field propagates, its causatigteus only an ffective concept. In
such cases, we find it important that one can take advantagéerfa which do not make explicit
use of the causal structure of the background as a fundahestiity. Finally, let us emphasize
that the established relation between the Hadamard onitand the unitarity criterion applies just
to thep-description, while it is exclusively the latter of thesé@ema (together with the invariance

under the spatial symmetries) which picks out that desongs a privileged one.

VIl. CONCLUSIONS

As we have discussed, a major problem in the quantizatiosaadr) fields in nonstationary
scenarios is the ambiguity that generically appears ingleeton of a Fock quantum description.
On the one hand, the possibility of absorbing part of the fstolution in the time dependence of
the spacetime where the propagation takes pl&eeta the choice of a canonical pair for the field,
as well as the dynamics of the system that we want to quar@zéhe other hand, even if a specific
pair is picked out, among all those related by time depenldezdr canonical transformations, it
is well known that there exists an infinite number of unitaiitequivalent representations for
the corresponding CCR'’s and, therefore, of physicalfjedgent quantum theories, each of them
leading to dfferent results. In this situation, it is clear that the quanmjpredictions have doubtful
significance, because if they are falsified one can alwaysgradio another inequivalent Fock
guantization in the infinite collection at hand. This prables especially relevant in cosmology,
a context where the setting is naturally nonstationary, iangb both because the window for
guantum €fects seems to be narrow and because one cannot falsify théuquahysics by an

unlimited number of repeated measurements, but rather greing the Universe in which we
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live. In these circumstances, determining an unambiguaastigation whose predictions can be
trusted is essential if one wants to develop a realisticqamgof quantum cosmology.

We recently proved that, when the field dynamics can be piigridrm of that of a KG field in
a static spacetime but with a time varying mass, there egrseseasonable criteria which allow
one to select a unique unitary class of equivalence of Fqulesentations, and hence one reaches
uniqueness in the Fock quantization. These criteria aréntragiance of the vacuum under the
spatial symmetries of the field equations and the unitaryl@mpntation of the field dynamics.
This uniqueness result is valid for fields definedamy compact spatial manifold in three or less
dimensions|[35]. In other words, in less than five spacetimeedsions, the spatial topology is
not relevant as far as compactness is guaranteed. In noacbicgses, the infrared divergences
play an important role and generically prevent the extansiche result. Even so, in cosmology
for instance, one can appeal to the physical irrelevancargélscales beyond a causal radius to
justify that the results obtained with the assumption of paatness should still be applicable.

In many practical situations, and in particular for field€osmological spacetimes, the above
field description, for which our uniqueness theorem had lpggewen, is reached indeed after a
suitable scaling of the field by a function of time. This seglican be considered, as we have
commented, part of a linear canonical transformation, alsly time dependent, in which the
momentum sfiers the inverse scaling. Besides, in this canonical tramefton, it is extremely
convenient to allow for a possible time dependent lineatrdaution of the field to the redefined
momentum.

In this work, we have analyzed théfect of this class of canonical transformations on the
guantization. Since the transformations are time depdnteey actually modify the dynamics
of the field, and hencefiect the restrictions imposed by our uniqueness criteriaghvimclude
the unitarity of the evolution. In consequence, these caabtransformations introduce a new
infinite ambiguity in the quantization of the system, prexdo the choice of Fock representation
once a particular field description is accepted. The mamltresthis work is to demonstrate that,
again forany compact spatial manifold in three or less dimensions, tbgigts no ambiguity in
the choice of field description if one insists in our critesfavacuum invariance under the spatial
symmetries and a unitary implementation of the dynamics.

More specifically, we have proven that no scaling of the fislgermitted with respect to the
description in which the propagation occurs apparently stagic background, if one wants to

reach a Fock representation in which the vacuum has theatpgtnmetries of the field equations
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and the corresponding dynamics is implemented as a uni@mgformation. This only leaves the
freedom of changing the momentum by adding a time dependetilcution that is linear in the
field. We have shown that there exist two possibilities. & HB operator, excluding the subspace
of zero modes, has an inverse that is not trace class (sdhatim ofg, /w2 diverges), then the
form of the momentum is totally fixed by our two requiremeritsacuum invariance and unitary
evolution. No freedom exists to add a linear contributiorina field. In this way, the field de-
scription of the system is completely determined by ouedat and the studied time dependent
canonical transformations are all precluded, except th@ltione. This is in fact the situation
encountered, e.g., in the caseTof topology [33] orS?2 topology [35]. The other possibility is
that, on the opposite, the inverse of the LB operator, orsckdtnel is removed, is indeed trace
class. Typically, this happens if the spatial manifold oncliithe field theory is defined is one
dimensional. The number of eigenstates of the LB operatthr @genvalue smaller or equal than
wn (i.e. Y XmGam) grows then at most likey,, and the eigenvalue itself should grow likelt

is then not dfficult to check that the sum @f,n/w? is finite. In this case, changes in the momen-
tum that add a term which is linear in the field, multiplied bydunction of time and properly
densitized, are allowed while respecting the existenceFafck representation which satisfies our
criteria in the field description with the new momentum. Heereall these field descriptions can
be obtained then directly from the original one, by a strdaiwvard implementation of the canon-
ical transformation. None of these descriptions admit akFepresentation that, while fulfilling
the criteria of vacuum invariance and unitary evolutiomnguout to be inequivalent to the repre-
sentation adopted in the original field description. In g8sse, the quantization is again unique.
These results confirm and extend those obtained for theifinstin the context of Gowdy cos-
mologies withT? topology [34], where thefective theory consists of a scalar field propagating
on the circle but with a specific time dependent mass. In,tetahave proven that, in three or less
spatial dimensions, there exists a unique Fock quantizéiothis kind of systems, up to unitary
transformations, if one demands a natural unitary implaatem of the spatial symmetries of the
field equations and a unitary implementation of the dynamilsis uniqueness result provides
the desired robustness to the quantization process, atsl tea quantum theory whose physical
predictions are, to the extent discussed in this work, wligdetermined. Finally, let us remark
that the Fock quantization selected by our criteria defimepeesentation which is unitarily equiv-
alent to that corresponding to the Hadamard quantizatiarkdd field in a closed FRW spacetime

provided, of course, that the latter is reformulated in ®whthe scaled fielgp. Although we

31



have proven this result only for the case in which the spagations are isomorphic to 3-spheres,
there seems to be no serious obstruction to extend it to rg@geavith any other compact spatial

topology.

Acknowledgements

This work was supported by the research grants MIGMNECO FIS2011-30145-C03-
02, MICINN FIS2008-06078-C03-03 and CPAN CSD2007-00042nfiISpain, DGAPA-UNAM
IN117012-3 from Mexico and CERNP/1163732010 from Portugal. J.O. acknowledges CSIC
by financial support under the grant JAE-RX&00791.

Appendix A: Nonzero limit of oscillatory functions

In Sec.[IM we made use of the fact that sipt), and more generally siagr + ®nn) (With
M fixed for eachn), cannot tend to zero in the limit - oo on any subsequence of the positive
integers for alt (or equivalently for all- = t — tg) in a given interval. We will prove this statement
in this appendix.

Let [a, b] be an interval of the real line with Lebesgue meadureb — a and
W = {w,; neN*} (A1)

be a monotonous and diverging sequence of positive real ersnbamelyw,,; > w, for all
n € N*, with w, being unbounded for large. In particular, W may be a subsequence of the

sequence of eigenvalu@s,; n € N*}. Besides, let
{6n(t);n € N7} (A2)

be a sequence of twiceftkrentiable phases, i.e., functions with valueRomodulo 2r. We also

require that there exist positive numb&tandY such that
Ol <X, 1Bl <Y, (A3)

for all n (greater than a certain nonnegative integgrand all timed € [a + to, b + tg].

Under these conditions, we will now show that
un(7) = Sir? [Wht + 6,(1)] (A4)
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cannot tend to zerdr < [a, b], which obviously implies that sim{,7 + 6,) cannot tend to the zero
function.

The functionau,(7) are clearly integrable, and a straightforward computesioows that

b L 1 (P
f Un(7)dr = 575 f COS [V, T — 204(T + tg)] dr. (A5)

In addition,

sin [2w,b — 26,(b + to)] _ sin [2wha — 26,(a + to)]
2W, — 26n(b + to) 2W, — 26(a + to)

b
f COS [2V,T — 205(T + to)] dr = (AB)

b
.2 f O SinPwr- 2+t dn (A7)
a (2w, + 20,)

and

X . .

0 . 0

f ——— SN [2W,yT — 20n(7 + to)] de| < L max'—”'z‘. (A8)
a (2wn + 29n) ! (2wn + 2en)

Sincew, is a monotonous diverging sequence, it is now straightfoivi@ check that conditions

(A3) are stfficient to ensure that the integral ovex Ip] of cos [2w,7 — 20,(7 + tp)] tends to zero
whenn goes to infinity. Therefore, the sequence of integ@lsn(r)df converges ta./2.

Finally, let us suppose that the sequence of functig i) converges to the zero function on
[a,b]. Since the functiongu,(7)| are bounded from above by the constant unit function, we can
apply the Lebesgue dominated convergence thearem [2].thibdisem ensures that the sequence
of integralsfab u,(7)dr would converge indeed to the integral of the zero functiom, to zero.
But this is incompatible with the fact, demonstrated abdjvatfab un(7)dr converges td./2. This
contradiction shows that the valueswp{r) cannot converge to zero for all valueswof [a, b], as

we wanted to prove.

Appendix B: The phasesd, v

In this appendix, we show that expressibnl (24) can be regllageexpression (25) under the

assumption that,  does not tend to zero. For convenience, we repeat here thiag&xpression,

(f. = oM f2) Sin(wnt) + Yom f- cOSENT), (B1)

obtained with the hypothesis the},, +y2,, — 1 for largen. Recall also thaM is fixed for each

value of the positive integer, and that the function§(t) and f, (t) are strictly positive.
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Let us introduce the definitions

Pnm COSPRv] = fr—Xom i,

pam SIN@nm] = Yamf, (B2)
such that L
and

Pin = (Fo = Xam )2 +¥2 F2 (B4)

In particular,,oﬁM is bounded from below byf( — |f_|)2. Besides, sincg,y does not tend to zero,
there exists a subsequersef values ofn and a numbee > 0 such thaty,u| > e onS. Forn

taking values in the subsequergewe then conclude that
pam(® = (fi = 1f-)? + €12 = 0%(0). (BS)

We note that the lower bound defined above is strictly pasitv all values ot: if f_(t) # O then
0% > €2f2(t) > 0; whereas, iff_(t) = 0, we have thaf (t) = 1, and hencéd, (t) = 1, which implies
in turn thate? = 1.

Employing definitions(BR), expressidn (B1) reads:

pn’M sln[(,l)nT + ®n’M]. (BG)

A necessary condition for the unitary implementation ofdlggamics is that Eq[{B1), and there-
fore expressiorn (B6), tend to zero for all the possible v&hfé. In particular, the above expression
must tend to zero on the subsequeBcdut, on that subsequence, which is independeht thie
lower bound [(B5) is valid, leading to the conclusion that déany dynamics requires that the
sequence formed by sinfr + O, ] tend to zero orS at all timest, as claimed in Se€.1V.

Let us finally show that the first and second derivatives offtirections ®,, (t) constitute
uniformly bounded (sub)sequences $r{with respect to the variation af; recall in this sense
that the labeM is not free, but fixed for each value of. This result shows that the conditions
assumed in AppendIx]JA are actually satisfied.

It is straightforward to calculate the first and second tiragvatives of®, y:

5 Yo f

®n,M - pﬁ’M f’

. Yom (» 2 2ff

6 = 20 (1= - 2108, 2t -t )
pn,Mf pn,M
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Taking into account thal, + ¥, < 1 and thap? ,(t) is bounded from below by*(t) on S [see

the bound[(Bb)], we get that, for each valuet of

: 1|f

Ounl < 15 (88)
) 1 (. f2 2ff

Bunl < (1714 + 20t 1 180). (89)

Since bothf (t) ande?(t) are strictly positive continuous functions, the right tHade of the two
inequalities[(B8) and_(B9) are indeed bounded functionsaf any closed interval. Hence, for

any time interval §, b], there exist positive numbebsandY such that
Onaml <X, 1Onul <Y, (B10)

for all integersn belonging to the subsequensend all times. This concludes our proof.
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