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Abstract 

Transcriptomics and proteomics approaches give a unique perspective for understanding 

brain and hippocampal functions but also pose unique challenges because of the 

singular complexity of the nervous system. The proliferation of genome-wide 

expression studies during the last decade has provided important insight into the 

molecular underpinnings of brain anatomy, neural plasticity and neurological diseases. 

Microarray technology has dominated transcriptomics research, but this situation is 

rapidly changing with the recent technological advances in high-throughput sequencing. 

The full potential of transcriptomics in the neurosciences will be achieved as a result of 

its integration with other “-omics” disciplines as well as the development of novel 

analytical bioinformatics and systems biology tools for meta-analysis. Here we review 

some of the most relevant advances in the gene profiling of the hippocampus, its 

relationship with proteomics approaches, and the promising perspectives for the future. 
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Introduction 

An array of ‘omics’ terms has bloomed in the biomedical jargon in the last decade, 

including genomics, epigenomics, transcriptomics, proteomics, phenomics and 

metabolomics to name a few examples. The impact of the ‘omics’ era is noticeable in 

almost every research field, and the neurosciences are not an exception. Neuroscientists 

are starting to implement global strategies to answer traditional but still far from well-

understood questions, such as how neuronal circuits are formed during embryonic 

development, how a memory is formed at the molecular and cellular levels, how a 

neurodegenerative process is ignited in the neuron, or how the environment can 

predispose an individual to behave in a particular manner. The focus on individual 

genes has provided enormous success in the past and still represents the main stream of 

research, but it is also now showing its limitations. Physiologists long ago reached the 

conclusion that the brain cannot be explained in terms of individual cells but, rather, in 

terms of neuronal circuits and cellular ensembles. Similarly, molecular biologists during 

the last decade have started to address molecular processes as a whole rather than focus 

on specific genes, leading to the prominent emergence of systems biology. Not a single 

gene product but a complex gene program accounts for the response to a particular 

environmental stimulus or intracellular condition. In consequence, the need for global 

approaches to define the molecular mechanisms involved in brain processes is 

becoming more widely acknowledged. Such approaches permit the interrogation of any 

specific experimental perturbation with the maximum possible coverage and minimal 

researcher’s bias. A prime manifestation of this shift is the growing relevance of a 

relatively new trend in molecular research, as part of systems biology, called functional 

genomics, which attempts to describe the global dynamics of gene expression and 

protein networks (Geschwind and Konopka, 2009). In this review, we will give a brief 
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overview of transcriptomics and functional genomics studies conducted in the 

hippocampus, and we will discuss the main strategies for interpreting the resulting lists 

of genes.  

 

Tackling the neural transcriptome 

Similar to the molecular biology revolution of a few decades ago, the neurosciences 

have been lagging behind other biomedical areas, such as cancer biology, in the 

adoption of transcriptomics and functional genomics approaches (Figure 1A). Some 

reasons for this are the extreme cellular heterogeneity and complexity of the neural 

tissue; the difficulty, in the case of human studies, in accessing non-fixed brain tissue in 

the appropriate developmental or disease stage; the general preference of neuroscientists 

for hypothesis-driven rather than discovery-based approaches; and the relative lower 

funding that may have in the past delayed the early access to these novel technologies 

(see reviews by (Geschwind and Konopka, 2009; Nisenbaum, 2002). Still, the ability to 

monitor in parallel the expression of tens of thousands genes is extremely attractive and 

neuroscientists have now widely adopted these powerful technologies.  

Diverse methods have been used for transcriptomic profiling in the brain. 

Microarray technology, compared with other transcriptomics technologies (Figure 1B), 

is by far the most popular approach because of its early automation and commercial 

availability at an affordable cost. The early reports indicating poorly overlapping results 

between different microarray platforms and research groups (Kothapalli et al., 2002; 

Kuo et al., 2002; Tan et al., 2003), have been largely surmounted by constant 

improvements in the design of array platforms (de Reynies et al., 2006). The most 

reliable platforms dominate the market, the public repositories of gene expression 

profiles are exponentially growing (Table 1), and we have entered a new phase of 
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reduction in costs and customization. Thousands of experiments have demonstrated 

good general agreement with alternative measurements of transcript levels using single-

gene techniques, like in situ hybridization (ISH) and quantitative RT-PCR (see (de 

Reynies et al., 2006; Mieczkowski et al., 2010) for specifically designed comparative 

studies). 

This does not mean that transcriptomics does not have important challenges 

ahead. Microarray technology still confronts some technical issues, like cross-

hybridization and the use of fluorescent/luminescent dyes that influence the dynamic 

range of detection. Other important concerns, not directly related to the technology 

itself, are the frequently poor descriptions of experimental and analytical procedures and 

the limited open access to raw datasets and analytical proceedings, which hamper 

repeatability (Ioannidis et al., 2009). Additionally, the strong dependence on valid gene 

annotation in databases limits transcriptome surveys (Asmann et al., 2008). Until 

recently, most commercial arrays for mammalian samples only interrogated a fraction of 

the transcriptome, frequently excluding many neuronally specific expressed genes, as a 

consequence of a bias in public databases toward more abundant genes for which more 

information has been compiled. Indeed, the need to detect less abundant neuronal 

transcripts has fueled the use of alternative technologies (Asmann et al., 2009; Li et al., 

2004). The new generations of arrays can detect rare transcripts and even alternatively 

spliced mRNA isoforms and non-coding RNAs, permitting a more comprehensive 

analysis of the brain transcriptome. This is particularly important because breakthrough 

discoveries in the last decade have revealed that the transcriptome world is much more 

complex than expected (Carninci et al., 2005; Fejes-Toth et al., 2009; Kim et al., 

2010a).  
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Although microarrays have dominated the field since 2000, the situation may be 

changing. Technological advances in the last few years have allowed the strong re-

emergence of sequencing-based technologies. Although the first attempts to tackle the 

neural transcriptome were based on large-scale sequencing, they required laborious 

cDNA library construction and systematic clone sequencing, and in practical terms they 

were expensive, time-consuming and often accessible only to a few research groups 

(e.g., serial analysis of gene expression (SAGE), sequencing of subtraction libraries, 

and massive parallel sequencing (MPSS); for a brief description see (Ginsberg and 

Mirnics, 2006; Valor and Grant, 2007)). In contrast, the novel next-generation 

sequencing platforms allow sequencing of hundreds of millions of base pairs in a single 

reaction within a few hours at accessible cost (Mardis, 2008). For instance, the 

development of RNA-seq (Mortazavi et al., 2008) makes it possible to directly sequence 

a pool of pre-processed cDNA fragments using little starting material for a few 

thousand dollars, and it is reasonable to assume that the costs will be reduced even more 

in the near future. RNA-seq technology presents two important advances compared with 

microarrays: 1) it does not require previous knowledge of the transcriptome and allows 

a fully unbiased survey, and 2) it produces a digital count of transcript abundance rather 

than an analogue non-linear luminescent or fluorescent dye signal. Sequencing-based 

technologies also open up other interesting methods of investigation into the regulation 

of the transcriptome that were previously unavailable, such as sequencing-based 

methylation analysis and ChIP-seq (chromatin immunoprecipitation high-throughput 

sequencing) (see “Linking transcriptomics with proteomics” section).  

We believe that after nearly 15 years, through the work of many authors, 

transcriptomic techniques have achieved their promise of becoming an essential tool in 

the neurosciences (Dougherty and Geschwind, 2005). The hippocampus represents a 
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prime example of the early pitfalls and limitations as well as the current potential for 

transcriptomics studies in the nervous system. The simultaneous analysis of the 

expression of tens of thousands of genes can offer access to issues of great complexity, 

such as the molecular determinants of hippocampal cell identity, the specification of 

hippocampal circuits and their modification by experience, and the molecular alterations 

determining the onset and progression of neurological diseases that affect this brain 

region. In the next sections, we will review some representative experiments and 

discuss the most recent advances on these questions. 

 

Gene profiling in the hippocampus: from gene catalogues to functional genomics 

1. From atlas of expression to circuit ontogeny and evolution 

The elaboration of a comprehensive atlas of brain gene expression, including the 

hippocampus, would represent an important advance toward understanding brain 

physiology and connectivity. Two main strategies have been used in the construction of 

such an atlas: (a) high-throughput in situ hybridization (ISH) and (b) microarray 

analysis of different brain areas (Figure 2).  

The first approach is not affordable for a single laboratory. Either a consortium 

or a dedicated institution is needed to generate such a volume of anatomical data and to 

create and maintain a public database that could provide access to this dataset. At the 

moment there are several public repositories, such as the Allen Brain Atlas, or ABA 

(Jones et al., 2009; Lein et al., 2007), GenePaint (Visel et al., 2004), Brain Gene 

Expression Map, or BGEM (Magdaleno et al., 2006), Gene Expression Nervous System 

Atlas, or GENSAT (Gong et al., 2003), in which ISH images for several thousand 

transcripts can be inspected and downloaded (Table 1). With the exception of BGEM, 

these databases do not use radioactive riboprobes, which provide better linearity in the 
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signal than colorimetric-based probes (Carter et al., 2010), and therefore most of these 

ISH data are qualitative or at best semi-quantitative. Despite this limitation, high-

throughput ISH is extraordinarily useful in understanding the connectivity between 

brain areas since it provides detailed spatial information. As a proof of principle, ABA 

data have been recently used to identify functional subdomains in the hippocampus and 

the molecular determinants of their differential connectivity to other brain areas (Dong 

et al., 2009; Thompson et al., 2008). It should be noted, however, that because of the 

very high cell density in the hippocampus, many neuronal genes seem more highly 

expressed in this area than in other brain regions (Figure 2A). This can make the semi-

quantitative comparison of gene expression levels in colorimetric ISH unreliable.  

In contrast, microarray technology provides precise quantitative data and makes 

genome-wide studies more accessible and cost affordable for individual laboratories. As 

a result, there have been several attempts to create gene expression maps based on this 

technology, either for the whole organism (Bono et al., 2003; Su et al., 2004; Zhang et 

al., 2004), the whole brain, or restricted to the hippocampus. Different sampling 

strategies have been used, from gross hippocampus dissection (Sandberg et al., 2000) to 

controlled microdissection (typically of CA1, CA3 and DG) (Datson et al., 2004; Lein 

et al., 2004; Zapala et al., 2005; Zhao et al., 2001), voxelation, which does not consider 

natural boundaries among brain areas (Brown et al., 2002), laser-capture 

microdissection (LCM) (Bonaventure et al., 2002; Kamme et al., 2003) and cell sorting 

of fluorescently labeled neurons (Lobo et al., 2006; Sugino et al., 2006). Overall, these 

studies show that an increase in sampling resolution is extremely important to properly 

discriminate cellular subpopulations and, in consequence, functional anatomical units. 

Electrophysiological recordings have demonstrated that even adjacent cells with similar 

morphologies can have remarkably different electrical properties. Thus, it is possible 
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that small, though biologically relevant, changes in gene expression in a specific 

neuronal population can be overlooked due to a dilution effect from the mRNA pool 

from the surrounding tissue. In the case of the nervous system, proper interpretation of 

the gene profiling results frequently requires validation by methods that provide cellular 

resolution to determine whether the changes affect specific cell types or subpopulations.  

Given the remarkable properties of the nervous system, the ultimate challenge 

would be to define the transcriptome of small neuronal ensembles or even single cells. 

A recent and elegant approach to address the issue of cellular heterogeneity in 

transcriptomic studies in the central nervous system (CNS) has been presented recently 

by Heintz’s team. They genetically labeled the ribosomes from specific neuronal 

populations with an antigenic tag that enables affinity purification of polysomal mRNAs 

for microarray experiments. Consequently, only the transcripts engaged in translation in 

the targeted cellular population were examined (Heiman et al., 2008). The utility of this 

approach, referred to as TRAP (translating ribosome affinity purification), was 

illustrated by the comparative analysis of 24 CNS cell populations, revealing hundreds 

of differentially expressed genes and identifying cell-specific and enriched transcripts 

for each population (Doyle et al., 2008). The improvement in the anatomical resolution 

of gene expression changes may result not only from refinements in the sampling 

procedure but also in data processing. Thus, a recent bioinformatics analysis of brain 

single-cell transcriptomes has been able to resolve two transcriptionally distinct 

mitochondrial modules, one enriched in neuronal processes and synapses and another 

one restricted to the cell body (Winden et al., 2009). 

A major conclusion from the analysis of regional brain transcriptomes is that 

gene expression differences between brain regions are generally relative (differential 

levels of transcripts) and not absolute (presence or absence of transcripts) (Gray et al., 
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2004; Sandberg et al., 2000; Zapala et al., 2005). This observation can explain why the 

intense initial search for highly specific promoters for different brain regions may have 

been less successful than expected. The identity of particular brain regions or neuronal 

circuits seems to be determined more by unique combinations of gene expression levels, 

defining a “regional-specific signature”, rather than by the expression of unique genes.  

After retrieving a catalogue of regionally expressed genes, the next step is to 

find a biological meaning for such regional variation. Interestingly, it is possible to 

establish correlations between anatomical patterns of expression with developmental 

and evolutionary histories. Thus, the expression atlas generated by Zapala and 

colleagues showed that adult expression profiles are a reflection of the embryonic origin 

of the tissue and revealed that developmental patterning genes, such as the Hox genes, 

were significantly enriched among the genes that exhibited strong expression 

differences between distinct brain areas (Zapala et al., 2005). The study by Sugino and 

colleagues found a high degree of heterogeneity among neuronal subpopulations 

affecting genes related to synaptic and carbohydrate metabolism functions. In this group 

of genes, there was an over-representation of paralog genes, suggesting that gene 

duplication may be a determinant for cell type diversification (Sugino et al., 2006). 

Another recent study explored the evolution of the synapse by merging data from 

proteomics and transcriptomics and concluded that the synaptic components with the 

most variable profiles among different brain areas correlated with a more recent history 

in evolution and were enriched in signaling pathway components (Emes et al., 2008). In 

conclusion, these studies suggest that evolution and ontogeny are primary forces in 

determining “regional-specific signatures” that could bring specific functionalities to 

each brain area.   
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2. From neuronal and synaptic markers to functional circuit assembly 

During the development of the nervous system, the coordinated and sequential 

activation of genetic programs related to cell proliferation and differentiation, and 

synapse formation and maturation leads to the formation of extremely complex and 

precise neural circuitries with hundreds of millions of synaptic connections. A better 

understanding of the development of the hippocampus may result from the examination 

of these genetic programs. Early reports of gene expression profiling during the 

development of the hippocampus either in vivo (Mody et al., 2001) or in culture models 

(Dabrowski et al., 2003) provided a first glance into the complexity of the process, 

revealing the activation of genetic programs related to synaptic transmission, energetic 

metabolism, signal transduction, and transcriptional regulation among other functions.  

 Primary cultures of hippocampal neurons have been demonstrated to be a 

particularly accessible model to study synaptogenesis. These studies have taken 

different forms. For example, gene expression profiling studies have been used to 

identify novel proteins involved in synaptogenesis. After an initial screen using 

transcriptome-wide techniques, a functional test should be carried out to properly assign 

a specific role for the differentially expressed transcripts in the development of the 

synapse. Such functional assays can even take a large-scale approach. Thus, Paradis and 

colleagues coupled a microarray analysis of synapse development in postnatal 

hippocampus with an RNAi screening in hippocampal cultures (Paradis et al., 2007). By 

correlating changes in gene expression with effects on the postsynaptic density, the 

authors enlarged the list of synaptogenic proteins with five novel proteins, most of them 

belonging to the cadherin and semaphorin families.   

Another viable strategy is to undertake a systems biology approach by 

integrating transcriptomics with information from other sources. As an example, the 
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study by Valor et al. combined transcriptional profiling using microarrays with 

electrophysiological recordings using multi-electrode arrays and morphological analysis 

using conventional immunocytochemistry techniques (Valor et al., 2007). The aim of 

this work was not to identify novel synaptogenic genes but to correlate transcriptional 

profiles with other properties of hippocampal cultures, such as network firing activity 

and synapse maturation. Nearly 20% of the core components of the synaptic machinery, 

as previously defined by mass spectrometry studies (Collins et al., 2006), exhibited 

prominent changes in transcription that preceded the coupling of pre- and postsynaptic 

markers and the onset of spiking activity. Continued expression was followed by 

maturation of morphology and electrical neuronal networks. Notably, only mature 

cultures exhibited activity-dependent gene expression, suggesting that the initial genetic 

program for synapse formation is independent of firing activity.  

 

3. From immediate-early genes to transcriptome-driven neural remodeling 

Arguably the most characteristic and remarkable feature of the nervous system is its 

plasticity. External stimuli can modify the membrane properties, intracellular signaling 

cascades and gene expression in individual neurons to modulate the responses to 

subsequent stimuli, changing the properties of the neuronal circuits in a durable manner. 

It is well-known that long-term synaptic plasticity requires de novo synthesis of both 

RNAs and proteins (Steward and Schuman, 2001). The classical description of the 

succession of events underlying long-term plasticity considers two waves of gene 

expression that can be dissected by biochemical means (Platenik et al., 2000). 

Immediately after stimulation, there is a first wave of expression consisting of the 

induction of so-called immediate early genes (IEGs), a diverse group of genes that were 

first identified by subtractive hybridization methods preceding the development of 
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microarray technology (Loebrich and Nedivi, 2009). Several of these IEGs are 

transcription factors and can therefore play an active role in the initiation of the second 

wave of gene expression. The effector molecules, responsible for the rearrangement of 

synaptic connectivity in response to experience, are produced as part of this complex 

transcriptional response (see (Abraham and Williams, 2008; Flavell and Greenberg, 

2008; Loebrich and Nedivi, 2009). These events are thought to critically contribute to 

the acquisition and consolidation of hippocampus-dependent memory (Collingridge and 

Bliss, 1995). More than 20 years after the first reports on neuronal activity-driven 

transcription, a comprehensive and complete picture of the process in molecular terms is 

still lacking. How the external signal is propagated from the membrane (through the 

activation of receptors and channels) to the nucleus and how the nuclear activity in turn 

alters the future synaptic responses remain major outstanding questions in neurobiology. 

To gain a global view of the activity-dependent genetic program, several studies 

have been conducted to generate genome-wide datasets of transcripts induced by 

different protocols of neuronal stimulation, such as the use of specific receptor agonists 

or antagonists, electrical stimulation, seizure induction or training in different learning 

tasks (Altar et al., 2004; Cavallaro et al., 2002; Coba et al., 2008; French et al., 2001; 

Havik et al., 2007; Hunsberger et al., 2005; Leil et al., 2002; Leil et al., 2003; Levenson 

et al., 2004; Matsuo et al., 1998; Pegoraro et al., 2010; Ploski et al., 2010; Ryan et al., 

2010; Wibrand et al., 2006; Zhang et al., 2007). A glimpse of the compiled data 

indicates that dozens to hundreds of genes belonging to a vast variety of functional 

categories are affected (see for example (Cavallaro et al., 2002; Havik et al., 2007; 

Hong et al., 2004; Li et al., 2004; Zhang et al., 2009). Moreover, gene expression 

analysis demonstrates that the transcriptional response to a particular stimulus is highly 

dependent on its characteristics, including duration, drug administration or animal 
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training protocols, time of sampling, etc. These procedural differences could explain the 

apparent low concordance observed in some studies (Wang et al., 2009). 

A successful strategy to extract more meaningful information from these sorts of 

transcriptomics data is to explore the role of specific upstream transcription factors in 

gene induction. Despite the high rate of false positives and false negatives, in silico 

prediction of transcription factors binding sites (TFBS) can provide interesting clues. It 

is possible to implement algorithms for TFBS predictions in the regulatory regions of 

the list of altered genes. Levenson and colleagues have applied this approach in the case 

of differentially expressed genes during memory consolidation in the hippocampus and 

have found an overrepresentation of binding motifs in their promoters for several 

transcription factors, including c-Rel (a member of the NF-κB family) whose 

association with memory consolidation was novel (Levenson et al., 2004). Further 

experiments in knockout mice confirmed the role of this transcription factor in 

hippocampus-dependent memory (Ahn et al., 2008) A recent microarray-based screen 

for long-term potentiation (LTP)-related genes in freely moving rats went further in its 

use of bioinformatics tools. Both TFBS prediction and network analysis of functionally 

related genes and chromosomal clustering of co-expressed genes were used to predict 

central roles for NF-κB, SRF, CREB and EGR1 in the stabilization of the LTP response. 

The analysis also revealed potential links with the MAPK signaling pathway, chromatin 

remodeling, local protein synthesis machinery and neurogenesis (Ryan et al., 2010).  

A comparison with previous datasets accessible in public databases can also 

contribute to extracting additional meaningful information from genome-wide 

experiments. For example, Park and colleagues conducted a microarray study to 

determine the temporal gene expression profile in the mouse dentate gyrus in response 

to LTP induction in hippocampal slices and identified a few hundred genes that 
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responded to stimulation. The chromosomal location of these genes, which encoded 

proteins involved in various cellular processes including the structure and function of 

the synapse, revealed that they were grouped in highly conserved clusters, suggesting 

that genes located in the same cluster might be regulated by the same transcription 

factors. To support this hypothesis, the authors used the dataset on genome-wide CREB 

occupancy in response to activity generated using the serial analysis of chromatin 

occupancy (SACO) technique (Impey et al., 2004) and identified clusters of activity-

regulated genes that were potentially regulated by CREB.  

Transcription factors can act as integrative elements for upstream transduction 

signals originating in the postsynaptic membrane. A less explored approach to 

investigate activity-driven gene expression is to bypass the stimulus and try to identify 

directly the target genes of activity-regulated transcription factors (West et al., 2002), 

using loss- or gain-of-function approaches. Among the examined transcription factors, 

we can find CREB (Barco et al., 2005; Jancic et al., 2009; Lemberger et al., 2008; Valor 

et al., 2010), SRF (Etkin et al., 2006; Stritt et al., 2009), Npas4 (Lin et al., 2008) and 

MEF2 (Flavell et al., 2006; Flavell et al., 2008). However, using this approach, it is 

difficult to distinguish between direct and indirect targets because the genetic 

manipulation is generally chronic and may allow emergency of compensatory 

transcriptional effects that mask the direct effects of the inhibition, depletion or 

overexpression of the transcription factor. Novel techniques based on chromatin 

immunoprecipitation (ChIP) can provide a solution to these issues by precise genome-

wide mapping of the binding sites for these transcription factors (Kim et al., 2010b; 

Tanis et al., 2008) (see “Linking transcriptomics with proteomics” section). 
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4. From markers of neuropathology to the molecular etiology of neurological and 

psychiatric diseases 

Transcriptomics technology, led by microarray platforms, has the potential for 

commanding personalized medicine. In cancer research, gene expression profiling has 

been very successful for molecular diagnosis and prognosis because the presence of 

certain gene signatures (“disease signatures”) can predict particular clinical outcomes 

(Strauss, 2006). Translated to the brain, transcriptome profiling can also represent an 

important asset in neuropathology studies given its potential to unveil the complex 

genetic and environmental interactions that contribute to neurological or psychiatric 

diseases and determine their progression (see extensive reviews by (Altar et al., 2009; 

Mufson et al., 2006) for specific references on transcripomics studies related to 

Alzheimer’s disease (AD), schizophrenia, bipolar disorder, aging, etc). The ability to 

monitor whole transcriptomes has already allowed the identification of new biomarkers 

of disease in brain samples from patients and provided testable hypotheses for further 

study. Hypothesis-generating research is particularly important in this field because the 

etiology of many neural diseases remains elusive and appears multifaceted. Moreover, 

the discovery of most psychiatric drugs has been the result of serendipitous clinical 

observations and the empirical validation of their efficacy, but their molecular 

mechanisms of action remain largely unknown. 

However, brain samples are much more difficult to obtain than tumor samples, 

given the difficult access to the diseased neural tissue. Post mortem brains represent the 

main source of samples, but their preservation conditions generally compromise RNA 

quality. Moreover, given the delay between diagnosis and death in many neural 

diseases, it is hard to evaluate whether the changes in gene expression observed in 

patients are related to the etiology of the disease, to its side effects or even to its 
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prolonged treatment. Although this issue severely constrains the clinical use of 

microarray technology in neurological and psychiatric diseases, modest success has 

been achieved using gene profiling of peripheral blood in Alzheimer’s and Huntington’s 

diseases, Tourette’s syndrome, tuberous sclerosis and others (reviewed in (Sharp et al., 

2006). These seminal studies suggest that bringing transcriptomics technologies to 

clinical labs in hospitals might allow neurologists and psychiatrists in the future to base 

diagnoses and prognoses on the comparison of expression profiles in samples from 

patients with defined “disease signatures”, similar to what it is now possible in cancer 

research (Hadd et al., 2005). 

An alternative and powerful approach to tackling neurological disorders is to 

investigate the transcriptional changes in animal models, which permit gene expression 

profiling in healthy, presymptomatic and terminal individuals. Such analyses lead to a 

description of the dynamics of the diseased transcriptomes that can be correlated with 

other distinctive features of the disease (cell loss, morphological changes, aberrant 

protein inclusions, altered behavior). The availability of an animal model also allows 

the rapid assessment of the efficacy of new therapeutic approaches for the treatment of 

the condition. An additional value of transcriptomics studies in animal models is the 

complementation of genome-wide association studies (GWAS) in creating the new 

discipline of integrative genomics. GWAS examine DNA variation in large human 

populations to discover genetic loci that influence the onset and/or the progression of 

the disease, but their results show poor correlation with gene expression changes (see 

reviews by (Le-Niculescu et al., 2007; Schadt, 2009). Animal models have the 

advantage of controlled genetic and environmental conditions (unlike human 

populations) that minimize the sources of gene expression noise and can provide 
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sufficient information to prioritize candidate targets to be extrapolated to patients (Le-

Niculescu et al., 2007; Le-Niculescu et al., 2008).  

Similar to the studies discussed in previous sections, further inspection of the 

expression profiles using bioinformatics tools can provide functional meaning and 

testable hypotheses. For example, a novel algorithm that assumes that co-expressed 

genes are functionally related (Weighted Gene Coexpression Network Analysis, or 

WGCNA) was applied to microarray data of the hippocampal CA1 subfield from AD 

patients. The algorithm was not only able to confirm a number of known key genes in 

AD but also identified novel ones as putative hubs (i.e., central and highly 

interconnected gene products that are predicted to be essential in a molecular network 

system). The study also organized the data into functional categories that pointed to 

mitochondrial and synaptic disruption as relevant events in the pathophysiology of the 

disease (Miller et al., 2008). More recently, a similar approach was used to compare the 

transcriptional network profiles of the human and the mouse brain, including 

hippocampal tissue, resulting in the definition of modules of gene co-expression that 

were preserved between the two species. Interestingly, the study identified among the 

transcriptional divergences a human-specific correlation of presenilin 1 with 

oligodendrocyte markers, and a human-specific module that strongly correlated with 

AD progression and contained several poorly characterized genes likely related to this 

disease (Miller et al., 2010). Such network modeling can be useful to clarify the 

complexities of the molecular dynamics in disease and to identify the most relevant 

targets for therapeutics in the molecular network. 

 

Linking transcriptomics with proteomics: Toward a systems biology of the 

hippocampus 
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Despite the great advances in the field of high-throughput proteomics (reviewed in 

(Bayes and Grant, 2009; Chen and Yates, 2007; Deutsch et al., 2008; Kline et al., 2009), 

the generalized use of these techniques has been limited primarily due to the large 

dynamic range of protein abundance that makes quantification and time course analysis 

technically difficult (Deutsch et al., 2008; Kline et al., 2009), particularly if compared 

with microarray experiments. For most genes, there is a good correlation between 

transcript and protein levels (Cardozo et al., 2003; Chin et al., 2007; Kislinger et al., 

2006; Mijalski et al., 2005). Moreover, interacting proteins or functionally related 

proteins tend to be co-expressed at the transcript level (Bhardwaj and Lu, 2005; Jansen 

et al., 2002; Oldham et al., 2006; Oldham et al., 2008; Winden et al., 2009), suggesting 

a coordinated regulation of certain processes at the transcriptional level. Consequently, 

most researchers have taken advantage of the larger accessibility of transcriptomics 

techniques to make reasonable inferences about the protein world by analyzing 

transcriptional profiling upon different experimental conditions.  

Although transcriptomics and proteomics techniques frequently complement 

each other, there are unique applications for both approaches. Thus, whereas 

transcriptomics techniques have the important feature of examining non-coding RNAs, 

proteomics is required to investigate, in a global manner, the posttranslational 

modifications of pre-existing proteins that control many aspects of neuronal physiology. 

These modifications refer primarily to phosphorylations (Collins et al., 2005), but recent 

studies have also highlighted the relevance of other posttranslational modifications 

(Scheschonka et al., 2007; Sharma, 2010). Proteomics approaches are also needed to 

investigate protein turnover and subcellular localization because proteins can be purified 

from specific subcellular organelles or macromolecular complexes using 

immunoprecipitation and fractionation procedures, providing essential information 
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about the molecular composition of subcellular compartments. Thus, proteomic studies 

have provided the first opportunity to study the molecular composition of the synapse 

from a global perspective (Collins et al., 2006). Combined mass spectrometry and 

peptide array technology have revealed the complex combinatorial phosphorylation 

patterns of postsynaptic proteins triggered by the synaptic activation of specific 

neuronal receptors (Coba et al., 2009).  

These studies have also demonstrated a high degree of interrelatedness between 

proteins of diverse functions, including different types of receptors, kinases, 

cytoskeletal components and scaffolding proteins among others. Hence, the activation 

of a particular receptor promotes the orchestrated modulation of a network of synaptic 

and extrasynaptic proteins that will initiate different downstream processes, including 

transcription (Pocklington et al., 2006). While the activation of the synaptic complexes 

triggers specific genetic programs in the cell nucleus, the molecular composition and 

activity of the complex itself would be, in turn, modulated by the activation of specific 

genetic programs, as discussed in previous sections. This dialogue between the synapses 

and the nucleus seems to be a fundamental mechanism underlying brain plasticity and 

cognitive functions and is a target of different disorders that affect the nervous system 

(Kandel, 2001; Valor and Grant, 2007). The combination of global transcriptomics and 

proteomics approaches is therefore essential for being able to listen to both parts of this 

dialogue and translate it into a meaningful interpretation of brain function.  

Novel technical developments may pave the way in this direction. Chromatin 

immunoprecipitation (ChIP) allows the recovery of DNA from chromatin after 

crosslinking and precipitation, using specific antibodies against the transcription factor 

or DNA-interacting protein of interest. This opens up the possibility of mapping DNA-

protein binding events in the genome accurately and quantitatively. The 
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immunoprecipitated DNA fragments can be analyzed in four ways: (1) by qPCR for 

single regulatory region studies (locus-specific ChIP assay), (2) by microarray 

technology to investigate the binding to a predetermined set of promoters displayed in 

the array (ChIP on chip), (3) by creating a library that can be sequenced (ChIP-SAGE or 

ChIP-SACO), and (4) by direct high-throughput sequencing (ChIP-seq), the latter being 

the most powerful approach to date (see (Schones and Zhao, 2008) for a detailed 

description of ChIP-related technologies). As an example of the power of this 

technique, a recent ChIP on chip analysis compared genome occupancy by total CREB 

and activated CREB (phosphoCREB) in different brain areas after electroconvulsive 

stimulation (Tanis et al., 2008). Whereas the number of promoters occupied by total 

CREB was similar in cortex, hippocampus and striatum, the number of loci occupied by 

phosphoCREB differed among regions, showing the lowest occupancy in striatum. 

Interestingly, phosphoCREB was bound to different promoters in the three regions, 

suggesting differential CREB functions throughout the brain.  

Combining genome-wide occupancy mapping using ChIP for specific 

transcription factors with transcriptomics analysis allows for correlating gene 

transcription with local changes in the chromatin of promoters or regulatory sequences, 

providing unprecedented insight into gene expression mechanisms and 

DNA/RNA/protein interactions (Karlic et al., 2010; Visel et al., 2009; Welboren et al., 

2009). A first attempt to apply this approach to the hippocampus has been recently 

reported (Peleg et al., 2010). In this study, the acquisition of contextual fear 

conditioning was correlated with an increase in the acetylation level of several histone 

residues and the induction of a complex gene expression program in the hippocampus. 

Importantly, the acquisition of the behavioral task was impaired in aged animals, which 
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also showed a dramatic attenuation of the acetylation of K12 in histone H4 in genes that 

were induced by the task in young animals, but not in the aged ones.  

The full integration of proteomics and transcriptomics would require a detailed 

description of the upstream signaling pathways that activate each transcription factor in 

a given condition, a challenging task given the complex cross-talk and the combinatorial 

contribution of multiple signaling pathways to protein phosphorylation and gene 

expression (Coba et al., 2009; Coba et al., 2008; Michaelevski et al., 2010). As a first 

approach, merging occupancy data for several transcription factors can provide a full 

landscape of genome-wide gene regulation (Barski et al., 2007). A recent study 

described, for the first time, such a landscape in cortical cultures after membrane 

depolarization. The genome-wide information on the neuronal activity transcriptome 

obtained by RNA-seq was correlated with the genome-wide mapping of chromatin 

binding for several proteins: activity-regulated transcription factors (CREB, SRF and 

NPAS4), the acetyltransferase CBP, the RNA polymerase II and several histone tags 

(Kim et al., 2010b). Such descriptions have an enormous potential for changing our 

current views regarding gene regulation and genome organization. As a proof, the 

aforementioned work led to the discovery of a novel and unexpected RNA species 

associated with regulatory enhancers (eRNA), which likely play an important role in 

activity-driven gene expression. 

 

Perspectives 

Global approaches represent an important complement to the traditional reductionist 

single-gene studies. Whereas single-gene studies are hypothesis-driven, global 

approaches are hypothesis-generating or discovery-based and therefore have the 

potential to yield novel insight into brain function and dysfunction. Current techniques 
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allow the relatively easy production of a large volume of transcriptomics and 

proteomics data. Continuous technical improvements in combination with a reduction of 

costs, the exponential growth of public databases that archive and organize this 

information, and the development of novel bioinformatics tools for the analysis of large 

biological datasets will ensure a new era of progress characterized by the application of 

interdisciplinary global approaches to the neurosciences (Figure 3).  

The major challenge for these global approaches is the proper interpretation and 

analysis of large descriptive datasets of candidate molecules. The lack of immediate 

experimental validation tools has frequently led to a crude description of genes 

catalogued by known function (Cao and Dulac, 2001). This is especially true for 

neurogenomic studies because public resources are strongly biased toward the most 

abundant gene products (overlooking the scarcely expressed neuronal genes), and 

functional annotations and pathway networks are biased toward extensively studied 

processes, such as cancer and cell cycle. As a symptom of the difficulty in data 

interpretation, many publications based on a genome-wide analysis first present a 

catalogue of altered transcripts or proteins and subsequently step down from the global 

to the single-gene level to describe in detail the role of one or a few molecules in the 

examined process or perturbation. Frequently, the selection of the gene for further study 

is based on previous knowledge, detracting therefore, at least partially, from the utility 

of the initial global approach. Fortunately, open access to global data may prevent the 

loss of disregarded information.  

 This situation has been changing in the last few years thanks to improvements 

both in the technology for the detection and quantification of changes in gene 

expression and in the bioinformatics tools available for their analysis. Transcriptomics 

studies can greatly benefit from data mining, meta-analyses and comparison with 
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datasets from other sources, especially from proteomics and single-protein studies, to 

formulate new hypotheses and discover emergent properties of the nervous system. Due 

to the prominent role of the hippocampus in cognition and disease and its relatively 

accessible structure, this brain region has become a prime target for systems biology-

based studies of the nervous system that combine proteomic, transcriptomic and other “-

omic” data toward the ambitious goal of understanding brain function. 
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Figures and Tables 

Figure 1: Citations of transcriptomics technologies in the literature from the year 

1995 to the year 2009. A. Comparison of all of the microarray citations in the PubMed 

database (white squares) with cancer (black triangles) and hippocampal (black circles) 

specific citations. For the hippocampus-specific literature, the term “hippocampal” was 

used because it produced more hits than “hippocampus”, probably because of the 

inclusion of neuronal culture studies. Citations of hippocampal studies have the same 

profile as the general publications but with a few years of delay, indicating the late 

implementation of this technology to research in the hippocampus compared to other 

fields. B. Search of the PubMed database using the terms indicated in the legend box. 

Only unequivocal terms were used, and reviews were excluded. In contrast to other 

transcriptomics technologies, the citations of microarray studies show an exponential 

profile. 

Figure 2: Examples of brain atlases. A search for the AMPA receptor subunit 

transcript Gria1 was performed in the Allen Brain Atlas (A) and in repositories of 

microarray data (B, GEO Profile using the GDS1490 series: mean ± s.d.; C, 

ArrayExpress Gene Expression Atlas using the E-GEOD-4734 experiment: direct 

output from the web site). The numbers in A correspond to the regions indicated in the 

x-axis of B. High-throughput ISH and microarray analyses are complementary: ISH 

data provide spatial information, whereas microarray data provide more precise 

quantification of transcript abundance. 

Figure 3: Gene profiling is key in systems biology studies of the hippocampus. 

Gene expression profiles are represented as heat maps of the genetic signatures for the 

connectome (full set of neural connections between different brain areas and over 

development), the proteome (full set of proteins and their interactions in networks), the 
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genome and epigenome (full set of genes and modifications of the chromatin) and the 

phenome (full set of phenotypes in an organism).  
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Table 1. Open access data repositories of gene expression profiles 
 
 

Name  Link Brief description 
GEO DataSets 
 
GEO Profiles 

http://www.ncbi.nlm.nih.gov/gds 
 
http://www.ncbi.nlm.nih.gov/sites/entrez?db=geo 
 

Depository of microarray and high-
throughput sequencing data. 
Search of gene profiles in 
deposited experiments 

ArrayExpress http://www.ebi.ac.uk/microarray-as/ae/ 
 

Depository of microarray and high-
throughput sequencing data. 
Search of gene profiles in 
deposited experiments 

BioGPS http://biogps.gnf.org/ Search of gene profiles for tissue 
and cell types in microarray data 

GENSAT http://www.ncbi.nlm.nih.gov/sites/entrez?db=gensat Search of gene profiles in ISH data  
Allen Brain Atlas http://www.brain-map.org/ Search of gene profiles in ISH data 
GenePaint http://www.genepaint.org/ Search of gene profiles in ISH data 
BGEM http://www.stjudebgem.org/web/mainPage/mainPage.php Search of gene profiles in ISH data 

 


