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Abstract 

The present area of European wetlands is only a fraction of their area before the start of large-

scale human colonization of Europe. Many European wetlands have been exploited and/or 

managed for various purposes. Large wetland areas have been drained and reclaimed mainly 

for agriculture and establishment of human settlements. These threats to European wetlands 

persist.  

The main responses of European wetland to ongoing climate changes will vary 

according to wetland type and geographical location. Sea level rise will probably be the 

decisive factor affecting coastal wetlands especially along the Atlantic coast. In the boreal 

part of Europe, increased temperatures will probably lead to lowered annual 

evapotranspiration and lowered organic matter accumulation in soil. The role of vast boreal 

wetlands as carbon sinks may thus be suppressed. In central and western Europe, the risk of 

floods may support the political will for ecosystem-unfriendly flood defence measures, which 

may threaten the hydrology of existing wetlands.  Southern Europe will probably suffer most 
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from water shortage, which may stregthen the competition for water resources between 

agriculture, industry and settlements on the one hand and nature conservancy, including 

wetland conservation, on the other.  

 

 

Keywords. Wetlands; carbon sequestration; hydrology; biodiversity; climate stabilization; 

ecosystem services 
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Introduction 

 

The area of the European continent is about 10
7
 km

2
 including the European part of Russia. 

Excluding Russia and marine areas, the area is about 6 710 000 km
2
. The climate of Europe is 

characterized by marked climatic gradients (from the cold climate in the polar regions in the 

north to the dry and warm Mediterranean climate in the south, and from the oceanic climate in 

the west to the continental climate in the east). Europe is a densely populated continent (67 

inhabitants per km
2
) but with a high heterogeneity in the distribution of the human population. 

More densely inhabited areas are located in central-west Europe, especially in urban areas 

where 400 inhabitants per km
2
 is frequent. In all the other zones of Europe, large areas remain 

with a rather low human population density (e.g., less than 10 inhabitants per km
2
 in parts of 

Finland, Spain, Greece or Poland). Much of the area of Europe has been settled at least since 

the beginning of the Middle Ages (i.e., for about 1500 years).  

While the formation and original distribution of wetlands is largely due to climatic and 

edaphic factors of habitats, their further fate in Europe is closely connected with the human 

settlement and the associated history of landscape changes as well as their intensity. Within 

these changes, large wetland areas have been lost by their drainage for various purposes. Few 

wetland complexes have remained untouched or reasonably well preserved, while many of the 

remaining wetland sites have been fragmented into isolated bio-geographical islands. The 

total area of European wetlands included in the last wetland inventory is estimated at about 

500 000 km
2
 (excluding the European part of Russia). This represents about 7 % of the land 

area considered (Nivet and Frazier 2004, Table 1).  

 

Wetland types 

 

The varied climatic characteristics, together with variation in other site characteristics 

such as hydrology and bedrock type, account for a great variety of wetland types. Numerous 

classifications of wetlands have been proposed that can be applied also to European wetlands 

(Cowardin and Golet 1995; Gopal et al. 1990; Orme 1990; Hejný et al. 1998; Keddy 2000; 

www.ramsar.org). In addition, there is a European classification of wetlands with the 

CORINE system developed for the purpose of EU legislation (European Commission 1991). 

In this paper, we employ a highly simple wetland classification. According to the existence of 

contact with the sea, we distinguish between coastal wetlands and inland wetlands, both of 
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different types. For the sake of simplicity, river deltas, which are transitional between coastal 

and inland wetlands, are included among the inland wetlands. Within the category of inland 

wetlands, we pay most attention to palustrine, lacustrine and riverine wetlands. In addition, 

we treat separately human-made wetlands. In Europe, freshwater wetlands prevail among the 

inland wetlands, but salt marshes and both permanent and temporary oligo- to hyperhaline 

shallow lakes and other standing water bodies must not be neglected. Examples of wetland 

areas, notable because of their large area or conservation value, are given in Fig. 1. The 

structure and functioning of biotic components of all wetland types has been thoroughly 

treated by Gopal and Masing (1990). 

Nivet and Frazier (2004) have reported on the most recent inventory of European 

wetlands. The area of coastal wetlands is currently estimated at about 46 000 km
2
, which is 

about 2 % of the total area of European wetlands including Russia. With their total area of 

2486000 km
2
, inland wetlands comprise the largest proportion of the total wetland area. The 

reported area of human-made wetlands is about 20000 km
2
 or 1% of the total wetland area. 

However, there still seems to be large uncertainty in these estimates because not all national 

inventories are complete, different national inventories use different definitions of wetland 

types and, last but not least, some of the areas reported as wetlands apparently also comprise 

former wetlands that have been drained.  

 

Coastal wetlands 

Despite its relatively small geographic size, Europe has a very long coastline, approximating 

326 000 km (Pruet and Cimino 2000). The European coastline comprises the main marine 

regions of the northeast Atlantic, part of the Arctic, the Baltic Sea, the North Sea, the 

Mediterranean Sea and the Black Sea. Much of the European coastline consists of a chain of 

extensive estuaries, lagoons and intertidal bays interspersed through stretches of rocky shore 

and sandy beaches. These areas support various wetland types. Airoldi and Beck (2007) 

distinguish macroalgal beds,  seagrass meadows, biogenic reefs, sedimentary habitats 

(mudflats, sandflats and subtidal soft bottoms) and emergent coastal wetlands including salt 

marshes.  

In addition to climate, the occurrence of various wetland types is determined mainly 

by local geomorphological features and tidal range. The tidal range is up to several meters 

along the Atlantic coast (including the North Sea). Along the North Adriatic Sea the tide 

range can be 1 m, both diurnal and semidiurnal (depending on the Moon phase) while it is 

much narrower to negligible (usually several centimeters) along the remaining European 
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coasts. In strongly tidal areas of the Atlantic and the North Sea, the seaward zone of gently 

sloping shores is occupied by soft-sediment habitats emerging at low tide. Muddy habitats 

usually occur in sheltered areas, such as sea lochs, enclosed bays and estuaries, whereas 

sandflats and coarser sediments tend to occur in more exposed situations on the open coast. 

Salt marshes are developed on suitable more elevated sites all along the European coast, often 

bordering on estuaries.  A wide tidal range is responsible for the occurrence of tides even 

within predominantly freshwater wetlands fringing the estuaries of rivers or streams flowing 

into the Atlantic or the North Sea.  This is the case even for the flat parts of the Mediterranean 

coast with an average maximum tide of 0.20 m.  Long wave based phenomena caused by 

barometric changes (seiches) can be reflected on the coasts as 2 m wide changes of sea level 

in a few hours (Ranwell 1972).  

 

Palustrine wetlands (peatlands) 

The first group of natural inland wetlands occurs in habitats characterized by the presence of 

organic soils, waterlogged or saturated with water, with fairly narrow annual water-table 

fluctuations (peatlands). Definitions vary to some extent among countries, but peat thickness 

usually needs to be at least 30 cm for a site to be classified as peatland. Mires represent a 

subset of peatlands. Mires are living ecosystems, where peat is being formed and 

accumulated.  In addition, peatlands also comprise drained sites e.g., in agricultural use, 

where a peat layer is still present (e.g., Joosten and Clarke 2002). According to Joosten and 

Clarke, the original peatland area in Europe (excluding Russia) had been about 374 500 km
2
, 

that is around 6% of total land area; more than 50% of the original area has ceased to 

accumulate peat due to human exploitation, and almost 20% has ceased to exist as peatlands. 

Lappalainen (1996), on the other hand, has estimated that peatlands cover about 960 000 km
2
, 

that is about 20 % (!), of the land area of Europe.  

 Peatlands are essentially either ombrotrophic (bogs), fed predominantly with rain 

water, or minerotrophic (fens), fed additionally with ground water, or surface runoff. Bogs 

(Fig. 2b) may develop where there is a positive rainwater balance (precipitation > evaporation 

+ runoff). Raised bogs are or were common in North-West Europe (southern Fennoscandia, 

the British Isles, Germany, the Baltic states, Poland, Russia) as well as in subalpine regions 

further south. Most of these peatland complexes started as minerotrophic, and developed 

towards ombrotrophy during millennia. They characteristically involve a minerotrophic lagg 

and a raised ombrotrophic part. In regions with very high precipitation, such as western 

Ireland and Scotland, another type of bogs is found: the blanket bogs. In northern 
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Fennoscandia and Russia, as well as the lowlands in southern Europe, fens predominate. The 

northern aapa mires (Fig. 2a) are sustained by ample snow-melt waters. 

 

Lacustrine wetlands 

The lacustrine wetlands have developed mostly in the littoral zones of both shallow and deep 

standing waters, mainly natural lakes, and also on gently sloping shores of reservoirs and 

fishponds (Fig. 3a; Dykyjová and Květ 1978; Jörgensen and Löffler 1990; O´Sullivan and 

Reynolds 2005). These wetlands thus form ecotones between the respective water bodies and 

surrounding land (Holland et al. 1991; Gopal et al. 1993; Hillbricht-Ilkowska and Pieczyńska 

1993; Lachavanne and Juge 1997) Apart from the climatic conditions and the shore slope, it is 

the water-level fluctuations and their timing (Hejný 1957, 1971; Hejný et al. 1998) as well as 

the granulometric composition and chemical composition of the wetland sediments that are 

decisive for the development of various types of lacustrine wetlands (Mitsch and Gosselink 

2000). Usually, these wetlands show a distinct zonation according to the ecophases (sensu 

Hejný et al. 1998) prevailing at each particular site in the littoral ecotone. Hydric phase (or 

hydrophase), littoral, limosal and terrestrial ecophases can be distinguished, with the water 

table at more than about 1 m, less than that, more or less at, and below the ground level, 

respectively. For an illustration and characteristics of various zonations of lacustrine wetlands 

see, e.g., Hejný et al. (1998). The amplitude of these water-level fluctuations is relatively 

narrow in oceanic and sub-oceanic regions of Europe with frequent rain- and snowfall. By 

contrast, prolonged dry periods occur either regularly or frequently in areas of Europe with a 

Mediterranean or continental climate. Consequently, wide amplitudes of water-level 

fluctuations characterize their lacustrine wetlands. 

According to the shore exposure to wave action one can distinguish either 

accumulation or erosion littoral habitats. The former ones occur in sheltered situations where 

ample accumulation of detritus-derived autochthonous sediments rich in organic matter takes 

place. The latter habitats occur in wind- and wave exposed situations where most of the plant 

litter and detritus is washed away into the adjacent water body, and the underlying mineral 

layer consists of sand, gravel or withered bedrock. One can add sedimentary wetland habitats 

with the deposition of allochthonous sediments at the mouths of running waters entering 

standing water bodies. The granulometric composition of these sediments depends on the 

inflow velocity at each site while their chemical composition reflects that of soils in the 

catchment areas of the inflowing streams or rivers. For more details on the formation of lake 

sediments see, e.g., Bloesch (2004). 
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Marginal wetlands, in which the terrestrial ecophase prevails for most of an average 

year (Květ et al. 2002), often reach to long distances from the shoreline in areas that have not 

been artificially drained. These marginal lacustrine wetlands are very similar to palustrine 

wetlands. At eu- to mesotrophic sites, they are fen-like and colonized either by shrubby or 

forest vegetation dominated by hygrophytic woody plants (typically Salix or Alnus), or by 

both natural and human-made wet grassland dominated by hygrophytic grasses and sedges. At 

oligotrophic sites, the character of the marginal lacustrine wetlands resembles that of 

transition mires or even bogs and the water stored and flowing out of them is more or less 

dystrophic.  

The functional interaction between the lacustrine wetlands and the adjacent water body 

or land depends, naturally, on the width of the littoral zone which, in turn is determined by the 

shore slope. Only rather wide littoral belts, like that of lake Neusiedlersee/Fertö in 

Austria/Hungary (Löffler 1974; Löffler and Gunatilaka 1994), possess structural and 

functional features of ecosystems showing a high degree of independence of their adjacent 

biomes. Narrower littoral wetlands strongly interact with adjacent both land and water. 

Nevertheless, the predominance of the detritus-bases food web is characteristic of all 

lacustrine littoral wetlands dependent mainly on the primary production by macrophytes, 

while the grazing-predatory food chain predominates in the food web in open-water (pelagial) 

habitats dependent mainly on the primary production by phytoplankton (Straškraba 1963, 

1968; Straškraba et al. 1967; Gopal et al. 1993; Hillbricht-Ilkowska and Pieczyńska 1993).  

Inland salt marshes and saline lakes (Fig. 2e) occur predominantly in south-western 

and south-eastern Europe (e.g., in Spain, Hungary, Balkan countries), on sites where summer 

evaporation is intense and brings about capillary rise of soil water rich in salts (sulphates 

and/or chlorides) from the subsoil. This provides a unique type of wetland ecosystem for the 

European ecodiversity, which is more abundant in other continents (Comín and Alonso 1988; 

Comín and Williams 1993). Even elsewhere in Europe, small inland salt marshes can be 

found around mineral springs. 

 

Riverine wetlands  

Diverse and highly dynamic systems of habitats are associated with riverine wetlands, i.e., 

those fed with running water – from springs and small streams through preserved segments of 

floodplains to both freshwater and brackish habitats of large river deltas (e.g., Purseglove 

1988; Junk and Welcomme 1990; Prach et al. 1996; Middleton 2002; Haslam 2008). The 

hydrological régime is decisive for the structure and functioning of the riverine wetlands 
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(Duever 1990; Mitch and Gosselink 2000). It varies according to the climatic zones and 

geomorphological features of the respective river and stream headwater as well as remaining 

catchment areas. At high altitudes it is only on mountain plateaux or gentle slopes that smaller 

or larger floodplains develop around springs and along slowly flowing and often winding 

streams. In many of them, smooth transitions can be observed to peat-forming wetland 

systems, i.e., mires. In steep mountains, on the other hand, there is often hardly any place for 

the formation of a floodplain of an appreciable size along swiftly running streams or rivers, 

often squeezed into narrow gorges or ravines.  

In the foothills, where the water flow slows down, relatively large floodplains can be 

formed, which are differentiated into a shifting and meandering river or stream bed, leaving 

behind partly or fully cut-off backwaters, oxbow lakes and high-water whirlpools, whose 

natural land-filling can be checked by disturbances during higher floods (Fig. 3b); they revert 

these habitats to or near to their initial stages. In spite of a common strong water flow 

regulation by dams and canals, high spring floods occur especially in floodplains of both 

small and large rivers fed with water from thawing snow in spring. Examples of such rivers 

are the Danube, Rhine, Rhone or Ebro. High spring floods occur especially in floodplains of 

both small and large rivers fed with water from thawing snow in spring. Examples of such 

rivers are the Danube, Rhine or Rhone. For the lower reaches and delta of the Danube, for 

example, the high-water period can extend into the summer months when the water from 

thawing snow combines with water from heavy June or July precipitations in the Danube 

catchment area, especially in the Alps and Carpathians. Such heavy floods occurred, e.g., in 

June and July 1966 and August 2002. 

Generally less dynamic (with notable exceptions such as the floods in England in 

1997) is the hydrological régime of rivers and streams with completely or prevailingly 

lowland catchment areas with little or no snow accumulating during winter. Here, it is the 

actual precipitation in the catchment areas that controls the water table and flow velocity. As a 

result, the fluctuations of these hydrological parametres are less regular here than in 

watercourses fed with water from abundant snow in the mountains. Nevertheless, the resulting 

diversification of the floodplains of predominantly lowland watercourses is similar to that of 

the previous type of floodplains. Both sharp boundaries between land and water and smooth 

ecotones between them are abundant in natural floodplains (Naiman and Décamps 1990). 

Specific for floodplains of watercourses in the Mediterranean parts of Europe is a regular 

alternation of relatively high-water periods in the rainy winter and low-water periods in the 

dry summer (Britton and Criveli 1993).  
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Highly dynamic and exposed to frequent disturbances is the herbaceous and shrub 

vegetation fringing river and stream banks (Prach et al. 1996, 2003). Sites exposed to more or 

less frequent disturbances by the flood water are colonized by a mosaic of temporary stages of 

a hydrarch succession of wetland herbaceous vegetation, from submerged and floating-leaved 

hydrophytes (Fig. 2f) through helophytes (e.g., Phalaris arundinacea or Glyceria maxima) to 

marsh plants such as sedges (Carex spp.) (Fig. 2c). Calmer floodplain sites are occupied, as a 

rule, by forest vegetation (Penka et al. 1985, 1991). In eutrophic habitats, they are dominated 

by softwood trees (e.g., Salix, Populus) at low elevations above the normal water table, while 

hardwood trees (e.g., Fraxinus, Ulmus, Quercus) dominate at higher elevations (Fig. 2d). In 

oligotrophic habitats, the dominant softwood trees tend to be Alnus and Salix. Over large 

areas of all European floodplains, alluvial forest has been forced to give way to plantations of 

fast-growing trees (e.g., introduced cultivars of Populus or Eucalyptus), or to more or less 

intensely managed alluvial grassland. Local drainage has even enabled crop cultivation at 

places. Large areas of floodplain forests are still preserved in various European floodplains 

(e.g., the Rhine in Alsace, the Danube near Vienna, the Morava/March and Dyje/Thaya rivers 

in southern Moravia, western Slovakia and Lower Austria, the Drava and Sava rivers in 

Slavonia). Diverse algal vegetation as well as species-rich assemblages of fish and 

amphibians occur in the still preserved alluvial backwaters, oxbow lakes and pools (e.g., 

Pechar et al. 1996; Prach et al. 2003). 

 Unfortunately, only few floodplains or their segments have preserved their natural or 

semi-natural structure and dynamics, as a result of large-scale straightening and 

channelization not only of larger rivers, but also of small watercourses all over Europe during 

the last 200 years (Purseglove 1988; Haslam 2008). As to large European rivers, segments of 

natural or near-natural floodplains remain, e.g., along the Danube, Rhine, Elbe and Loire and 

some of their tributaries. On some sites, attempts have been made to restore the natural 

floodplain dynamics, e.g., on the Rhine in Alsace (France), on the Morava river in the Czech 

Republic, Austria and Slovakia or on the Elbe river in Germany.  

The deltas and estuaries of large European rivers represent highly complex systems of 

habitats characteristic of floodplains, also with sand bars, tidal mudflats and lagoons with 

water that shows a gradient of salinity depending on the ratio between the freshwater and 

saltwater inputs to each particular zone or site of the delta or estuary at particular phases of 

the hydrological régime of the respective river and of the tidal régime of the respective sea 

(e.g., Rodewald-Rudescu 1974). This variation of environmental conditions is reflected in a 

high biodiversity of the deltas and estuaries, unless they have been heavily modified by water 
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engineering. The largest and relatively well preserved European deltas are those of the 

Danube and Volga, but valuable wetlands are also found in the Rhone and Ebro deltas or in 

the estuaries of the Rhone, Elbe, Oder or Loire. 

 

Human-made wetlands 

Human-made wetlands comprise diverse types of human-made biotopes created for various 

purposes. For instance, drainage or irrigation ditches may constitute the last remnants of 

formerly large wetland areas.  Paddy rice fields can be found in southern Europe where most 

of them occupy former natural wetlands.  Buffer zones involving natural wetlands, wetlands 

created for capturing agricultural runoff, and constructed wetlands designed for wastewater 

treatment, have received increasing attention since the 1980s from both the technological and 

scientific points of view and presently occur in most European countries (Vymazal et al. 

1998). Artificial lakes of all sizes have been created for various reasons in river floodplains. 

Provided they are in a good ecological state, their littoral zones have the potential to host 

littoral and submerged vegetation which is very similar to that of natural lakes.  

In terms of area, shallow lakes created for fish rearing, or fishponds, probably 

represent the largest proportion of artificial wetlands in Europe. They have been constructed 

since the Middle Ages in countries of Central Europe as well as France, Serbia or Ukraine. In 

the Czech Republic, which does not have large natural lakes, the fishponds represent about 50 

% (or 560 km
2
) of the country‘s total wetland area. Although the fishponds were constructed 

mostly for fish rearing in the course of history (Šusta 1898), they have successively become 

harmonious parts of the surrounding landscapes and have evolved into ecosystems in many 

respects similar to natural shallow lakes (Dykyjová and Květ, 1978; Kořínek et al. 1987; 

Kubů et al. 1994; Pechar et al. 2002). In addition to fish production, they have provided 

numerous additional ecosystem goods and services such as flood control, water retention, 

modification of local climate and enhancement of biodiversity (Hejný et al. 2002; Pechar et 

al. 2002). These benefits were the main reasons for declaring the well preserved fishpond-rich 

landscape of the Třeboň Basin (Czech Republic) a biosphere reserve by UNESCO (Květ et al. 

2002). 

 

Other inland wetlands 

Temporary freshwater pools, ponds and marshes (both natural and human-made) are also 

abundant and represent, together with rice fields, a well recognized type of habitats and 

ecosystems (European Commission 1991) as they contain a diverse and distinguished flora 
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and fauna. Particularly valuable plant species, often with a short life cycle, occur on emerged 

bottoms, shores or banks of both standing and running waters.  When inundated, their 

propagules can survive long periods in a dormant state (see, e.g., Hejný 1960, 1969; Hejný et 

al. 1998, for weeds of rice fields and temporary vegetation of emerged fishpond bottoms and 

shores in Central Europe). In areas with a continental climate and salt-rich subsoils, the 

temporary wetlands exhibit a slight to medium salinity (e.g., Löffler 1982 for the so-called 

―Lacken‖ in the Seewinkel near Lake Neusiedlersee). 

 

Wetland research and university teaching of wetlands ecology 

 

Wetland research has a relatively long tradition in Europe. It has developed simultaneously at 

several scientific centres of marine and coastal ecology, limnology, telmatology (i.e., peatland 

science) and aquatic botany or zoology, especially since the times of the IBP (International 

Biological Programme, 1965 – 1974, see Westlake et al. 1998). Research centres where 

wetlands are studied can be found in most European countries. The level of wetland research 

(both fundamental and applied) is generally high at these centres although the emphasis on 

various aspects of wetland ecology varies among them. European authors have either written, 

edited or significantly contributed to several textbooks or handbooks devoted to wetlands 

ecology and management (e.g., Moore and Bellamy 1974; Gore 1983a,b; Moore 1984; 

Whigham et al. 1993; Paavilainen and Päivänen 1995; Fustec and Lefeuvre 2000; Vymazal 

1995, 1998, 2006; Westlake et al. 1998; Charman 2002; Jeglum and Rydin 2006; Haslam 

2007). University education in wetlands ecology is carried out within the curricula of a 

number of European universities, albeit not always in courses so entitled. Quite often, for 

example, the courses of limnology deal also with wetlands. 

The Society of Wetland Scientists has relatively recently (in 2004) established its 

European chapter whose annual meetings (since 2006) aim at becoming a representative 

forum of European wetland scientists. The Wetlands Working Group of INTECOL has a 

broad base of collborating wetland scientists who gather at International Conferences on 

Wetlands every four years. Three out of eight of these Conferences held so far took place at 

the European wetland research centres at Třeboň (Czechoslovakia), Rennes (France) and 

Utrecht (The Netherlands). 
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Wetland uses 

 

Wetlands have been exploited and/or traditionally managed for various purposes since the 

very beginning of the human settlement in the area (Haslam et al. 1998; Löffler 1990 and 

another ten chapters (17 to 26) in Patten 1990, 1994). Many of the traditional uses such as 

fishery, harvesting of reed, mowing of wet grasslands, hunting and floodplain forestry have 

locally been preserved till today. These uses are considered sustainable provided their extent 

and technology comply with the carrying capacity of the ecosystems (Verhoeven et al. 2006). 

The same applies to one of the recent wetland uses by modern society, i.e., soft tourism. The 

intensity of research also has to be adjusted to the ecological sensitivity and resilience of each 

wetland studied.  

Along with the above-mentioned (potentially sustainable) uses, various types of 

unsustainable wetland uses occur (Williams 1990). They cover peat and sand or gravel 

extraction and drainage for agricultural or forestry use. Although these uses have occurred all 

through the history of the human settlement in Europe, both their extent and impact have 

dramatically increased since the middle of the 19
th

 century.  

In many densely inhabited regions, most nutrient-rich waterlogged sites with mineral 

soil as well as fens were drained for agriculture quite early (alluvial sites along the River Po in 

Italy are among the earliest documented). All uses involving drainage lead to decreased beta-

diversity in the flora and fauna (e.g., Laine et al. 1995; Vasander et al. 1997). Agricultural use 

also has lead to the loss of the carbon sink function – subsidence and a gradual loss of soil 

organic matter. Agricultural use involving both drainage and nutrient enrichment affects the 

sites with organic soils differently from those with mineral soils. While sites with mineral 

soils rapidly respond by changes in plant diversity, on sites with organic soils the peat or 

humus mineralisation enhances the CO2 efflux from the soil. Forestry use is somewhat less 

aggressive, since a plant cover with new C inputs into the soil is maintained for most of the 

time. The effect of forestry use on the C sink function varies with wetland type and climate, 

often leading to C loss from the soil, but in some relatively poor peatland types in 

Fennoscandia, a C sink may be maintained. Forested drained sites are somewhat easier to 

restore than the more disturbed agricultural sites. 

Extraction of peat is always linked with a lowering of the water table on the respective 

sites. Thus, apart from direct loss of the peat, another type of loss comes into question, 

namely that due to mineralization of the peat, which leads to further subsidence of the 
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extracted mire surface. The speed of this subsidence varies from place to place according to 

both climatic and soil factors. It may also be substantial in peatlands used for intensive 

agriculture. The most striking examples of peat subsidence originate from regions where 

peatlands were drained in the late middle ages or soon afterwards (the Netherlands, East 

Anglia). In the Netherlands, subsidence mainly through oxidisation and compaction occurred 

at a rate of about 0.3 m per hundred years.  Consequently, the main embanked rivers were 

soon flowing some 1.5 to 2 m above the general level of the peat, a difference that has now 

increased to 3.5-4 m (Williams 1990).  

Both riverine and lacustrine wetlands occurring in Europe tend to be affected by large-

scale eutrophication (e.g., Phillips 2005) occurring under the impact of agricultural and 

forestry management of their catchments, effluents from human settlements, feedlots and 

industrial plants, and atmospheric deposition, especially of nitrogen compounds. Most 

European wetland restoration projects aim at mitigating the effects of eutrophication of 

various types of wetlands – from floodplains and shallow lakes to wet grassland – on their 

ecosystem structure and functioning. Most successful are such projects that succeed in 

reducing the input of organic pollutants and mineral nutrients from whole catchments, also 

including the most important point sources of these substances or intentional fertilization of 

wetland habitats (Jörgensen and Löffler 1990; Eiseltová 1996; Eiseltová and Biggs 1995; 

O´Sullivan and Reynolds 2004, 2005; Verhoeven 2006).   

Other threats include land filling, building of navigation canals, accelerated water 

discharge caused by straightening of watercourses, permanent inundation by reservoirs, 

fragmentation of residual wetland biotopes, pollution. In addition, an unproved assumption 

that all wetlands are important sources of greenhouse gases (especially CH4) and therefore 

speed up the climate change, may be misused as an argument for further drainage of wetlands. 

 

Wetland conservation and restoration 

 

In spite of many destructive uses of wetlands in Europe, important activities exist there, 

whose aim is to protect or even restore wetlands. At the international level, the European 

Union has signed international conventions aimed at nature protection, including the Ramsar 

Convention on the Conservation of Wetlands (www.ramsar.org), the Bonn Convention on 

Migratory Species (www.cms.int), and the Rio Convention on Biological Diversity 

(www.biodiv.org/convention/default.shtml). To date, the Ramsar Convention is the primary 
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basis for the conservation of most valuable wetlands in Europe.  There are 47 contracting 

parties to the Ramsar Convention in Europe (of the world‘s total of 160), which have 

designated 898 European wetlands of international importance. These 898 sites represent 

about 50% of the total number of all Ramsar sites worldwide. However, these sites occupy 

only 14% of the area of all Ramsar sites of the world. This fact reflects the fragmentation of 

the still existing wetlands but, at the same time, also a fairly strong public awareness of the 

wetlands values. The Montreux record, listing Ramsar sites exposed to actual or potenrial 

unfavourable changes in the past, present or future times, comprises 23 European Ramsar 

sites. 

Other administrative and legislative tools have strengthened or enlarged the impact 

and extent of wetlands conservation and wise use at the EU level and in its particular member 

countries. At the European level, the Bern Convention (www.coe.int/T/E/Cultural_Co-

operation/Environment/Nature_and_biological_diversity/ Nature_protection/) has led the 

development of policy and action in nature conservation in Europe. It lists protected species 

and requires its parties to prevent the disappearance of endangered natural habitats including 

wetlands. Within EU legislation, the Birds Directive (79/409/EEC) and the Habitats Directive 

(92/43/EEC) have been promoted to rectify or reduce damage to European natural habitats 

and associated species. The Birds Directive is aimed at the protection of endangered bird 

species through designation of areas where these species are given special protection. 

Following the same principle, the Habitats Directive is aimed at the conservation of wild 

fauna and flora on the European territory on the basis of protection of their natural habitats. 

Following the criteria set out in the directives, each Member State must draw up a list of sites 

hosting the wild species of fauna and flora and put in place a special management plan to 

protect them, combining long-term preservation with economic and social activities, as part of 

a sustainable development strategy. Special Protection Areas for Birds (SPAs) and Special 

Areas of Conservation (SACs) are designated according to the Birds Directive and the 

Habitats Directive, respectively, and approved by the European Union to become part of a 

European Ecological Network called Natura 2000. By December 2008, 24 831 sites belonging 

to 27 European State Members covering 859 411 km
2
 are included in this Network 

(http://ec.europa.eu/environment/nature/natura2000), which represents 17% of the whole 

European territory. Wetlands are particularly important in the Natura 2000 network.  

Indirect protection to a variety of habitats also comes from EU Directives that regulate 

water quality, especially the Water Framework Directive (2000/60/EC). Additional policies 

concern coastal and marine areas (Airoldi and Beck 2007). 
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The European Directive (2007/60/EC) on the assessment and management of flood 

risks has recently been established to reduce adverse consequences associated with floods on 

the human health, the environment, cultural heritage and economic activity. For this, the 

European member countries ought to establish flood risk management plans based on flood 

hazard maps and flood risk maps at the scale of river basin by 22 December 2015. This 

European law clearly states that a preliminary flood risk should be assessed by December 

2013 considering potential impacts of climate change, or to use already existing management 

plans on the occurrence of floods and the role of floodplains with respect to this risk, both in 

inland (river and lake floodplains) and coastal areas. While the objective of preventing and 

buffering damages to human health and economic activity may be encouraged, an adequate 

integration conservation of floodplains with their role as valuable natural ecosystems is not 

assured (Comín et al. 2008). 

 Of the Europe-based organisations taking care of the scientific basis for wetlands 

management, conservation and restoration, one should mention Wetlands International 

(www.wetlands.org) as a global science-based non-profit organisation dedicated solely to 

wetland conservation and sustainabloe development. Wetlands International, whose office is 

in Ede, The Netherlands, closely cooperates with the Ramsar Secretariat at Gland, 

Switzerland. 

The basic principles of wetland conservation, restoration and creation are described, 

e.g., by Bobbink et al. (2006). There are numerous examples of successful conservation and 

restoration measures in European wetlands of all types (e.g., Gilman 1994; Janda and Ševčík 

2002; Bragg et al. 2003; Farrel and Doyle 2003; Vasander et al. 2003). They are based largely 

(though not solely, see Sliva and Pfadenhauer 2003, Gorham and Rochefort 2003) on the 

successful conservation or restoration of the respective wetland‘s hydrological regime. New 

wetlands have spontaneously developed or have been created, e.g., in the littoral zones of 

artificial lakes (e.g., Rajchard et al. 2008) or in association with reclaimed Dutch polders, 

such as Wolderwijd en Nuldernauw adjacent to South Flevoland polder (Anonymous 2003). 

The European Comission promoted the long-term programme Life-Nature which included 

many cases of wetland restoration during the last 15 years (D.G. Environment-EC 2007). This 

programme was responsible for the restoration of coastal and inland wetlands all around 

Europe and elsewhere as it involved also neighbouring countries. It is still operating, active 

and stimulating the cooperation of managers, stakeholders, scientists and landowners. 

International and national legislation primarily aimed at improving the quality of surface 

waters (e.g., the Convention on the Protection of the Rhine (http://www.iksr.org), Convention 
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on the International Commission for the Protection of the Elbe (http://www.ikse-mkol.org), 

the Danube River Protection Convention (http://www.icpdr.org) as well as various river and 

floodplain restoration projects have indirectly contributed to the conservation of existing 

wetlands. 

As 60-90% of the European wetland area disappeared during the last century (Mitsch 

and Gosselink 2000), there is an important deficit of wetlands with respect to earlier times and 

also to potential wetlands recovery. A practical limit to the official approach to wetland 

protection in Europe is prioritising between wetland protection and restoration on the one 

hand and agriculture and tourism exploitation on the other. Frequently immediate economic 

profit prevails over interests of nature conservation and restoration. The recent incorporation 

of further countries into the European Union could be an opportunity to integrate these 

wetland activities into the socio-economic development of these countries. 

 

Climate change 

 

Sea level rise 

It is generally accepted that the global climate change will bring about a rise of water level in 

all seas. IPCC models estimate the global average rise at about 3 to 4 mm per year. The 

highest sea level rise is expected in the Arctic region, thus affecting also the northern coast of 

Europe (Scandinavian countries and Russia) (Meehl et al. 2007). The local sea level rise will 

further be modified by vertical land movement. Taking vertical land movement into account 

gives slightly larger sea level rise projections relative to the land in the more southern parts of 

the UK where land is subsiding, and somewhat lower increases in relative sea level for the 

north. We have, for example, derived projected relative sea level increases for 1990–2095 of 

approximately 21–68 cm for London and 7–54 cm for Edinburgh (5th to 95th percentile for 

the medium emissions scenario) (Lowe 2009). The sea level rise will bring about also 

increased frequency and amplitude of extreme sea level events. This increase is also 

determined by the atmospheric storm intensity and movement and coastal geometry. Within 

Europe, increases in extreme sea level events are to be expected along the continental North 

Sea coast (Christensen et al. 2007), thus affecting costal areas of all countries from Denmark 

in the North to northern France in the South. 

 

Temperature and precipitation 
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According to most regional climate change models, the annual mean temperatures are likely 

to increase more in Europe than is the global mean increment. In addition, spatial and 

temporal differences in the intensity of the warming will be substantial.  In winter, the largest 

warming is likely to take place in northern Europe. In summer, on the other hand, the 

maximum temperatures are likely to increase most in southern Europe (Christensen et al. 

2007). 

Annual precipitation is expected to increase in northern Europe but decrease in most of 

southern Europe. The seasonal patterns may, however, be more important than average annual 

sums of precipitation. In northern Europe, the increased annual precipitation will be caused 

mainly by increased precipitation in the winter months. Nevertheless, water input from 

increased precipitation will be offset by the effects of higher temperatures: because of higher 

winter temperatures, the snowy season is likely to be shorter and the snow depth will probably 

decrease over much of northern Europe. Also, the increased evapotranspiration owing to 

higher summer temperatures is expected to override the increased summer precipitation. 

Consequently, summer drought will probably be the most important stressful effect of the 

changing climate on inland wetlands. Its risk will penetrate further northwards in comparison 

with the present-day situation. The frequency and intensity of summer droughts is most likely 

to increase from the north to the south.  

 

Meteorological extremes  

More frequent occurrence of extreme meteorological conditions (temperature, precipitation, 

air humidity) is envisaged and may be more important than the overall trends. Depending on 

the local and regional climate character, the resulting meteorological events may include 

strong winds, heavy rains possibly followed by floods, a greater frequency of extremely high 

temperatures for a given region, and longer periods without precipitation. Also, events of low 

frequency but intense ones (e.g., droughts) are important phenomena related with climate 

teleconnections (e.g., Atlantic and tropical air pressure oscillations such as El Niño Southern 

Oscilation) which regulate the dynamics of many inland wetlands all around Europe (Rodo et 

al. 1997; Rodo 2003). 

 

Anticipated effects of climate change on wetlands 
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One of the first assessments of possible climate change effects on wetlands can be found in 

Boer and de Groot (1990). Our considerations in further text are largely in agreement with 

their assumptions given on pages 41-46. The authors regard the sea-leve rise, changing air and 

water temperatures and evaporation to precipiration ratios as the main driving forces affecting 

wetlands.  

 

Sea level rise 

Among various impacts of the ongoing climate change, the sea level rise will probably be the 

most important factor affecting coastal wetlands (mainly mudflats and salt marshes) because 

of the strong dependence of these habitats on water-level fluctuations and tidal régimes. It has 

been suggested that the projected sea-level rise could cause the loss of up to half of the 

present European coastal wetlands, with some of the largest losses expected to occur around 

the Mediterranean and Baltic Seas (Airoldi and Beck 2007 and references therein). With a 

higher sea level, salt water will penetrate deeper into estuaries, converting a part of brackish 

aquatic and wetland ecosystems into saline ones. At the same time, some freshwater wetlands 

connected with the sea will become brackish. 

In a natural coastal zonation, the sea level rise would just cause a landward shift of all 

wetland zones. This is, however, unlikely to happen in the densely populated coastal areas of 

Europe, because most of the suitable upland areas are already used by people for various 

purposes. The coastal wetlands may therefore be sandwiched and squeezed between the 

shifting boundary of the shoreline on the seaward side and the fixed boundary given by the 

current land use on the landward side (Doody 2004). In some areas along the Atlantic coast 

(mainly in the Netherlands), the advance of sea water will be resisted by building new or 

strengthening the existing barriers. In these areas, the hydrology of the remaining wetlands 

would be fully controlled by the associated technical measures and the space left for wetlands 

will again depend on priorities of land use. Provided the coastal wetlands are given sufficient 

priority, their anticipated loss can theoretically be minimized or compensated for by political 

and socio-economic tools such as wise and timely land-use planning and consequent 

management measures. This will possibly happen in some large protected areas such as the 

Wadden Zee (Fig. 1), which has received a continued attention by both nature 

conservationists and national and local administrations (Hofstede 2003). Outside the strictly 

protected areas, we must fear that the area of coastal wetlands will be forced to shrink. 

This will be the case if a defensive short-term strategy (reactive strategy according to 

the Millenium Ecosystem Assessment, Finlayson et al 2005) is followed in order to avoid sea 
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water intrusion into the coastal zone. Such approach will be sustainable neither economically 

nor ecologically (with respect to the preservation of a healthy coastal zone). As an alternative, 

an adaptive long-term strategy (proactive strategy according to Finlayson et al  2005) can be 

adopted, which should include re-allocation of land uses and re-definition of services 

provided by the coastal zone ecosystem. A socio-economically acceptable compromise would 

probably be a mixed strategy, establishing defensive structural measures where important 

social assets are established and let the coast dynamics orientate future distribution of 

ecosystems and land uses. In the socio-economic context, one should consider that coastal 

wetlands provide a high value (Martinez et al. 2007) to the coastal zone inhabitants including 

protection against storms and other impacts of sea level rise induced by climate change. 

 

Temperature increase 

It is commonly accepted that the anticipated increase in temperatures will considerably affect 

both coastal and inland wetlands. The temperature increase will directly affect biological 

processes such as photosynthesis, respiration and transpiration. It will affect the biological 

processes also indirectly through changed physico-chemical properties of ecosystem 

components, such as changed solubility of various substances in water.  In addition, the 

increased evaporation to precipitation ratio is expected to lead to lowered water levels and/or 

increased probability of drought.  

The described climate development is generally unfriendly to inland wetlands, with 

increased summer dryness being the key factor.  It will translate into wider water level 

fluctuations (both seasonal and irregular) and a generally greater water shortage in most 

wetland types over much of Europe. Maintenance or restoration of a hydrological régime 

ensuring the continued existence of any wetland will gradually become more and more 

difficult as it will require water supply from larger catchments or infiltration areas.  

Boer and de Groot (1990) argue that the temperature rise and increased evaporation to 

precipitation ration could have a profound impact on inland wetlands because of internal 

eutrophication, salinization, dessication and invasion of thermophilous species. They 

conclude that the isolation of individual wetlands can increase because of the fragmentation of 

biocorridors as a result of water shortage.  

Riverine wetlands, including those in estuaries and river deltas, may be reduced in 

area, especially in the South European and inland East European regions, as a result of 

decreased water discharge in rivers and streams in the growing season. The same is true for 

wetlands associated with lakes and other standing waters, where the water shortage will be 
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associated with accelerated land-filling and a consequent establishment of terrestrial species 

of plants and animals. This development may eventually lead to a shift towards terrestrial 

ecosystems. The reduced water volume will also result in higher concentrations of dissolved 

nutrients and suspended solids in both running and standing waters. Additionally, higher 

temperatures will promote the mineralisation of soil organic matter resulting in an increased 

availability of nutrients in wetland soils. 

In peatlands (both bogs and fens), the anticipated water shortage in summer will lead 

to lowered water levels and, thus, oxic conditions in a deeper surface layer, but also 

increasing dryness of the surface peat. Oxic conditions allow for an increased rate of 

decomposition of the organic matter contained in peat or peaty soil. But if the water level falls 

deep enough, dryness may impede decomposition in the topmost layers (Lieffers 1988; Laiho 

et al. 2004). Many anticipated effects will depend on the range of water level fluctuations. If 

dry and wet years alternate, increasing the instability of water levels, the systems will enter a 

stage of "constant disturbance", with a limited number of plant species tolerating both 

extremely wet and extremely dry conditions, forming distinct community compositions 

(Laitinen et al. 2008). In such cases, C sequestration can cease, and extensive C loss from soil 

may take place, since the "best" C accumulators disappear from the plant community, and 

decomposition during dry periods may compensate and even exceed any accumulation during 

wet years. An essentially similar situation as has been found during dry years in contemporary 

mire ecosystems (e.g., Schreader et al. 1998; Alm et al. 1999a; Moore et al. 2002). Leaching 

of dissolved organic carbon and nutrients may be accelerated as in other wetland types. More 

or less permanently lowered water levels, on the other hand, will lead to a "forest succession" 

with increasing abundance of shrubs and trees (e.g., Laiho et al. 2003), except for bog sites so 

poor in nutrients or so cold that increased tree growth is not feasible (Vasander 1982). The 

succession will continue until a new equilibrium between the vegetation composition and the 

new water level régime has been achieved, which may take several decades. This 

development will lead to changes in the runoff patterns, and may eventually lead to decreased 

leaching of DOC and some elements such as K, whereas the leaching of other elements, such 

as Ca and Mg, may increase. The drier systems will become more acid. They will lose most of 

their specialized wetland vegetation, which will be replaced by common forest species. This 

change will lead to lowered beta-diversity (e.g., Laine et al. 1995; Vasander et al. 1997). In 

most cases, C loss from soil can still take place, even though its rate may slow down as the 

decomposition potential of the exposed peat decreases (Jaatinen et al. 2008). On the most 

productive bog sites with increased tree growth and, consequently, litter inputs, but still 
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relatively poor substrate quality, the C sink function may continue, at least at the higher 

latitudes. While C losses are likely to increase in the temperate and southern boreal regions, C 

sequestration may increase in the subarctic regions. The palsa mires (with local permafrost 

formations), specific for cold regions, may disappear, and permafrost melt in the northernmost 

Scandinavia and northern Russia, especially, may lead to yet partly unpredictable changes.  

As a result of temperature changes and the associated changes in water availability, the 

latitudinal zonation of different peatland types may change considerably. However, 

predictions differ according to the presumed driving forces.  Crawford (2008) stresses that the 

greater increase in winter temperatures than in summer ones will lead to an expansion of 

oceanic climate into northeastern Europe and Siberia.  This in turn may support a southward 

expansion of Sphagnum-dominated mires in spite of a northward expansion of boreal forest, 

as it has been commonly assumed.  

Prolonged dry periods which have been observed in southwestern Europe since the 

second half of the 20th century can change the spatial distribution of wetland habitats, 

particularly inland wetlands.  An example is Lake Gallocanta in Aragon, NE Spain, a playa 

lake in a closed endorheic basin. It serves as a climatic sensor with its water level mostly 

fluctuating in accordance with its climate regulated water balance. More frequent and 

prolonged dry periods have been observed in Lake Gallocanta in accordance with global 

climate change (Rodo et al. 1997). More frequent and prolonged dry periods will turn this 

temporary wetland, an area of high biodiversity at the European scale, into a dry salt pan 

(Comín et al. 1991). 

The fire hazard will increase especially in summer-dry Mediterranean wetlands as well 

as peatlands with a dried-out surface vegetation and peat layer. 

 

Further interacting effects 

There is still much controversy on the relative importance of the impacts of climate change 

versus current direct human global changes on wetlands ecology, as for other types of 

ecosystems and the Earth ecosystem (Vitousek et al. 1986, Fig. 4). However, in contrast with 

suggested impacts of the climate change, many negative impacts of changes in land use and 

land cover on European wetlands have  already been demonstrated and quantified (Anderson 

2008). So, the question may be on the interaction between climate change and other global 

changes rather than specifically on the impacts of temperature and rainfall changes on wetland 

functioning. And the response should discuss prioritization of objectives not to continue 
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wetland decline, which took place at high rate in the last century (Mitsch and Gosselink 

2000).  

 Land use and land cover may significantly affect climate at the regional and local 

scales. Recent modelling studies also show that in some instances these effects can extend 

beyond the areas where the land cover changes occur, through the teleconnection processes. 

(Christensen et al. 2007). For the fate of wetlands in a changing climate, various interacting 

effects may become more decisive than the anticipated increased impact of the atmospheric 

greenhouse effect. Drainage of wetlands is a more potent driver of local climate change than 

the changed greenhouse gas balance. The reduced transformation of incoming solar radiation 

into latent heat of evaporation leads to increased overheating of dried surfaces. This holds not 

only for ―reclaimed‖ wetland areas, but for drained and urbanised areas in general (Denman et 

al 2007). An extreme situation is represented by urbanised areas, which create urban heat 

islands associated with considerable warming (Arnfield 2003). The rapid urbanization of the 

European landscapes (Antrop 2004) cannot leave the mostly fragmented European wetlands 

unaffected.  

Socioeconomic trends resulting from the public perception of climate change may 

singificantly interact with the direct impacts of the changing climate. The socio-economic 

priorities are likely to differ between regions exposed to different main impacts. Preservation 

of carbon storage is a key issue for the northern part of Europe, where large areas of peatlands 

occur. Extreme meteorological events and their consequences such as downpour rains 

followed by floods are likely to be perceived most sensitively in Central and Western Europe. 

They may promote public requirements for technological (hard) flood control measures 

resulting in faster water discharge, which would threaten the hydrology of existing wetlands. 

Continental and south European wetlands will probably suffer most from water shortage. 

Consequently, competition for water between agriculture and urban land use on the one hand 

and environmental protection on the other hand may substantially reduce the water supply to 

wetlands.  

 

Need for a change in the perception of wetland values 

 

In recent years, the scientific community has contributed to the formation of environmental 

policies by synthesising scientific knowledge in the form of background materials addressed 

to decision-makers. Apart from scientific knowledge, these documents incorporate the 
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elements of strategic considerations (scenarios, strategies), which facilitate the assessment of 

the limits and/or alternatives of future development (e.g., Finlayson et al 2005). The principles 

of nature and ecosystem conservation, which are generally accepted as social priorities, have, 

under European conditions, the chance to raise funds for maintaining the desirable state or 

restoration of valuable sites including wetlands. The financial means invested in this way 

have already brought visible results (http://ec.europa.eu/environment/life). 

Although there has been a considerable improvement in the human attitude toward 

wetlands over the last decades (especially in areas where most wetlands had previously been 

lost),  the fast climate changes and their anticipated impacts  call for further change in the 

human perception of wetlands. The impact of climate change on biodiversity has long been of 

widespread concern. In addition, however, it is worth considering that there is a feedback 

relationship between the wetland ecosystems (the same as any living systems) and their 

environment including climate. This becomes particularly important for large wetland areas 

such as boreal peatlands and deltas of large rives. This feedback relationship encompasses not 

only the greenhouse gas balance, which is in the focus of attention today, but also the climate 

stabilization through the airconditioning effect of evapotranspiration. In addition, the specific 

features of wetlands, such as their hydrology, predispose them for playing an important role in 

large landscape complexes, where their impact considerably surpasses their physical 

boundaries. This statement applies mainly to such hydrological functions of wetlands as water 

retention on the one hand and flood mitigation on the other. 

It must be taken into account that a wetland function can be performed if the 

ecosystem is well established and that long-term water retention and flood mitigation in 

floodplains requires a dynamic floodplain (Comín et al. 2009). Otherwise, the negative 

impacts of artificially created infrastructures for water retention can override the water 

retention function and eliminate it in the long term.  

 

Biodiversity 

Biodiversity support is commonly listed as one of the important wetlands values (Mitsch and 

Gosselink 2000; Gopal et al. 2000, 2001). Under biodiveristy we do not undestand only a 

weighted variety of species, but also that of their life forms, habitats and niches occupied by 

them.  In this respect, European wetlands are highly diverse ranging from acidic and nutrient 

poor bogs on the one hand to highly fertile and productive wetlands in estuaries, salt marshes 

and freshwater littoral or riparian wetlands on the other.  Some wetlands (such as many mires 

and springs) are island ecosystems sensu MacArthur and Wilson (1967). They serve as 
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refuges of rare and relic species and their relative isolation in the landscape may promote 

microevolution of specialized phenotypes. Ecotonal wetlands (such as littoral reed belts or 

riparian wetlands) host species both from the adjacent larger-scale ecosystems and species 

which are confined only to the ecotone itself (Naiman and Décamps 1990). The biodiversity 

has also a time dimension associated with water level fluctuations (Hejný 1957; Hejný et al. 

1998). When the water table sinks to or below the ground surface, specialized plant species 

often appear, which can survive long-term flooding in the bank of dormant propagules. 

Examples are the communities of emerged shores or bottoms of lakes, pools and ponds (e.g., 

Hejný and Husák 1978; Rejmánek and Velasquez 1978; Hroudová 1981; Prach et al. 1987; 

Šumberová et al. 2005, 2006). Their preservation in European landscapes is enabled by 

harmonising the water level fluctuations with the species requirements during their life cycle
1
.  

Rajchard et al. (2008) have suggested that littoral zones of quarries and sandpits 

formed by surface mining provide oligotrophic habitats for wetland species that are 

endangered and disappearing from the surrounding eutrophicated wetlands in intensely 

managed areas. In reality, the fulfilment of this potential depends on other factors such as 

shore morphology and intensity of recreational use).  

                                                 
1
 This is true, e.g., for Coleanthus subtilis (Tratt.) Seidl, a tiny (3 to 11 cm tall) annual grass which occurs on the 

bare or almost bare soils of emerged lake or pond bottoms and shores after its dormant caryopses have survived a 

long-term flooding of the biotope. The life cycle of the shoots of this grass lasts only 4 to 6 weeks, and the plants 

usually flower and fruit in June and July. The reproduction and hence also survival of  C. subtilis at each 

particular site of its occurrence is ensured by a periodical drawdown of the water table at that time of year. One 

plant can produce over one thousand ripe caryopses. In Europe, its geographical range of occurrence is narrow, 

covering only Central Europe and within it especially the basin of Třeboň and adjacent areas in the Czech 

Republic and Lower Austria. C. subtilis has thus become one of the 434 plant species protected within the EU 

―Natura 2000‖ framework (Habitat Directive 92/43, Annex 2). It is also listed in the Red List of threatened 

plants of the Czech Republic and in the IUCN List of Threatened Plants. The central area of its European 

occurrence lacks natural lakes, but is rich in artificial fishponds where the water table can be set at a certain level 

at any time. For securing permanent occurrence of C. subtilis within this area, agreements have therefore to be 

made with the fishpond owners as to the occasional maintenance of a low water table in the respective fishponds 

at the optimum of this species´ seasonal development. Such an arrangement can result in a certain loss of the fish 

crop in a fishpond whose water area is temporarily diminished by the drawdown (summer drainage is not any 

more a regular part of the fishpond management in Central Europe), and provisions have to be made for a 

financial compensation of this loss. The obtaining of reliable data on the occurrence of C. subtilis on a certain 

territory thus requires a period as long as several years. It is advantageous that the protection of C. subtilis at any 

site brings with itself the protection of the whole rather rare plant community colonizing the emerged pond 

bottom or shore. For a thorough treatment of the biology and ecology of C. subtilis see, e.g., Hejný (1969). 
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To date, beta diversity of wetlands seems to be broadly accepted by the European 

population. Since it is reflected by both national and EU legislations, it frequently provides 

the most powerful argument for protecting a particular wetland site. This argument will 

become even stronger in the near future as a result of the implementation of the EU Habitat 

Directive (NATURA 2000). Because of the administrative feasibility of this approach, 

biodiversity is used in advocating protection of wetland sites whose other values (see the text 

below) are obvious but are not protected by legislative tools. Such substitute arguments for 

wetlands conservation are often only unwillingly accepted by the predominantly 

technocratically oriented decision-makers. Development of complementary legislative and 

administrative tools, based on the assessment of all wetland functions in the landscape, is a 

pre-requisite of establishing a more balanced basis for sustainable decision-making 

concerning wetlands. 

 

Greenhouse gas balance 

The greenhouse gas balance is currently in the centre of attention of both the scientific 

community and the general public because it is considered to be one of the main causes of the 

global climate change (Janssens et al. 2005). In contrast with terrestrial ecosystems, wetlands 

emit methane as an important component of their greenhouse gas budget (Segers 1998, LeMer 

and Roger 2001). The greenhouse gas balance of a wetland is the outcome of the rate of net 

CO2 uptake (CO2 sequestration) on the one hand and the rates of CH4 and N2O efflux 

(greenhouse gas emissions) on the other hand. This outcome, expressed as radiative forcing, 

may be either positive or negative depending on the rates of the processes involved. The 

dynamics of greenhouse gas exchange is largely determined by specific site conditions 

including hydrological conditions, soil type, vegetation, and management and meteorological 

and climatic conditions. Depending on meteorological conditions, wetlands (the same as other 

ecosystems) may act as CO2 sinks in some periods and as sources in others. The emissions of 

CH4 and N2O from wetlands are similarly variable in time. 

Compared to other terrestrial ecosystems of Europe, especially forests (Janssens et al. 

2005), less information is available on the greenhouse gas balance of wetlands. Among 

wetland types, Phragmites-dominated wetlands are understood relatively well (Brix et al. 

2001). Case studies have been published for boreal sedge fens (Aurela et al. 2004; 2007), 

temperate wet grasslands (Hendriks et al. 2007, Dušek et al. 2009) and constructed wetlands 

for wastewater treatment (Picek et al. 2007). Special attention has been paid to the 
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determinants of methane dynamics (Kaki et al. 2001; Kankaala et al. 2003; 2004; Rinne et al. 

2007).   

There is insufficient information as yet needed to provide simple guidelines for 

management aimed at achieving a positive balance of greenhouse gases in the existing variety 

of wetland types. Yet, the current knowledge provides a basis for some important 

generalizations. Of all natural wetland types, peatlands are by far the most important 

ecosystems affecting the global balance of greenhouse gases. Peatlands globally represent a 

highly important store of carbon, sink for carbon dioxide and a significant source (from the 

point of view of its importance for the greenhouse effect) of atmospheric methane. In general, 

nitrous oxide (N2O) emissions are small in natural peatlands (Joosten and Clarke 2002). In 

addition to live peatlands (mires), littoral wetlands with abundant plant cover, such as reed 

(Phragmites australis) dominated marshes in Central and North Europe, can be important 

sinks for carbon (Brix et al. 2001). Floodplains can play an important role by accumulating 

organic matter and carbon if floods are maintained and the river-floodplain connectivity lets 

the plant communities (especially riparian woodlands) develop at an integrated 

ecohydrological rhythm (Cabezas et al., 2009).  

Two types of impact considerably affect the greenhouse gas balance of wetlands: 

changed hydrology and nutrient enrichment.  More frequent summer droughts increase the 

frequency of situations under which wetlands, especially peatlands, act as sources of CO2. At 

the same time, the CH4 emissions decrease. There is also evidence that peatlands ―reclaimed‖ 

for agricultural use are releasing significant amounts of nitrous oxide (N2O) because they 

have become enriched with mineral nutrients including nitrogen. Long-term nutrient 

enrichment of wetlands with organic soils can also promote CO2 efflux. (Zemanová et al. 

2008). Eutrophication of permanent wetlands associated with standing waters can promote 

anaerobic decomposition processes including methane production.  

Generally, it is important to consider that wetlands have been both taking up and 

releasing greenhouse gases continuously since their formation and thus their influence on the 

atmosphere must be modelled over time. When this is considered, the sequestration of CO2 in 

peat outweighs the CH4 emissions. In terms of greenhouse gas management, the maintenance 

of large carbon stores in undisturbed peatlands should be a priority, as recently pointed out by 

Joosten and Clarke (2002).  

 

Climate stabilization 
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The air-conditioning effect of the water cycle has been recognised as one of positive functions 

of vegetated areas sufficiently supplied with water such as most wetlands (Mitsch and 

Gosselink 2000). Its importance has been demonstrated by a negative practical experience: 

drainage associated with changed land use has been recognised as one cause of climate 

change at local and regional scales (Christensen 2007, Denman 2007). Yet, no information 

exists as yer about its importance for asssociated changes in energy fluxes at the global scale.  

Evapotranspiration of water from vegetated surfaces not only increases air humidity, 

but also cools surfaces from which water vapour evaporates by the amount of energy needed 

for vaporisation (latent heat). The evaporated water vapour then condenses in cool air or on 

cool surfaces, which thereby receive the energy of the released latent heat. In this manner, the 

evaporation and condensation processes have a double air-conditioning function - plant stands 

are cooled in the evapotranspiration process while heated are places where the water vapour 

precipitates. Evapotranspiration possesses a huge capacity to equalize temperature differences 

in time and space. This air-conditioning effect is associated with enormous energy fluxes
2
. 

Kravčík et al. (2008) explain the effect of drainage on temperature extremes and the role of 

water and wetlands in mitigation of climate change. 

As a consequence of the cooling effect of evapotranspiration, the vegetation cover well 

supplied with water is substantially cooler than adjacent dry surfaces (Pokorný 2001, Ripl 

2003, Brom and Pokorný 2009). This is conveniently documented by means of thermo-vision. 

While the surface temperature of vegetation well supplied with water is close to that of the 

ambient air, dry surfaces can be warmer by 10-30 
o
C (Fig. 5). On a larger scale, the effect of 

vegetation on temperature distribution can be shown by means of satellite pictures in the 

thermal IR spectrum (Fig. 6). The use of satellite pictures for evaluation of indicators of 

landscape ecological functions based on temperature, biomass and humidity is described by 

Hesslerová and Pokorný (2009).  

The predicted more frequent summer droughts are likely to bring about a general 

decrease of evapotranspiration from most vegetated areas: the heat balance will be shifted 

towards an increased sensible heat flux (thus to a higher Bowen ratio) more often than now. 

The value of wetlands, as ―oases‖ in dry landscapes, will therefore increase, provided they 

                                                 
2
 Let us consider an herbaceous wetland which evaporates 6 l of water per 1 m

2
 during a 

summer day.  The solar energy consumed in evapotranspiration of 6 litres is equal to 4.2 kWh 

(latent heat of 1 litre of water = 0.7 kWh, or 2.45 MJ). This amount of energy represents an 

average 24-h flux of about 180 W.m
-2

. Expressed per an area of 5 km
2
, the latent heat flux 

equals 900 MW, which is equivalent to the power output of a large electric power station. 
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remain saturated with water. This is particularly important in river and stream floodplains, 

where the water supply to wetlands can partly be subject to human control.   

 

Flood mitigation 

Flood mitigation has already obtained increasing public and scientific attention in 

connection with the extreme flood events in recent years. The risk of floods will become even 

more important in the near future because of the anticipated wider water-level fluctuations.  

This gives an opportunity to reconsider the hitherto only theoretically appreciated role of 

wetlands in flood mitigation. This consideration pertains especially to non-degraded peatlands 

and floodplains. The case study of the extreme summer flood in 2002 (Lhotský 2006, Fig. 7) 

demonstrates the potential of both natural and man-made wetlands for flood mitigation. In 

comparison with drained land, wetlands have a considerably greater ability to attenuate peak 

discharges (Procházka et al 2009, Fig. 8). 

 Large water-unsaturated peatlands can function as water stores and retain extreme 

rainfall. The retention capacity of peatland ecosystems is higher during the vegetation season 

than in winter because of the periodic sinking of the groundwater table due to 

evapotranspiration (Kolmanová et al. 1999, Fig. 9). If, however, a peatland ecosystem is 

strongly influenced by drainage and/or opencast peat mining, the surface peat layer is 

frequently dry and impermeable. Such a peat has a low capability to absorb the rainfall water. 

In such cases, all surplus water is quickly discharged from the area. Even partial drainage 

reduces the potential of the peatland area to attenuate discharges following downpour rains. A 

ditch network accelerates the discharge, affecting the timing and intensity of the peak flow 

downstream. 

 

Ecosystem services 

The concept of ecosystem services may change the perspective, which the wetlands are 

perceived from. By services we mean different benefits or goods, which wetlands (or any 

other ecosystems) provide to the human welfare. In the Millenium Ecosystem Assessment 

(Finlayson et al 2005), ecosystem services are defined as ―the benefits people obtain from 

ecosystems‖. Flood and drought mitigation, water purification, carbon sequestration, 

biodiversity refuge, production of commodities (fish, reed, wood etc.), mitigation of storm 

effects, coastal erosion, and recreation are examples of services provided by wetlands (Mitsch 

and Gosselink 2000; Costanza et al. 1989; Jeník et al. 2002). These services can be expressed 

also in monetary values (Turner et al. 2008), although the introduction of economic tools 
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would rise the level of complexity of these proposed ecological-economic systems. Financial 

evaluation of the services has at least three following consequences: (1) wetland values are 

more understandable to technically oriented decision-makers and the general public; (2) The 

values are additive, i.e., we can approach the overall value of  a wetland and compare it with 

other types of land uses – which should alter the decision-making process in land use towards 

wetland promotion; (3) The valuation of particular services will help to understand their 

importance from the perspective of contemporary human welfare. 

If the overall value of ecosystem services per unit area is compared among different 

world biomes, wetlands are quite valuable, especially river estuaries (first position) and 

floodplains (second position together with seagrasses, Costanza et al.1997). However, 

examples of complete calculation of wetland values are scarce. Successful practical solutions, 

based on the acknowledgement and application of this concept to the life of modern human 

society, remain rather a challenge for the future (Ruhl et al. 2007) than beeing succesfully 

applied in contemporary decision-making processes. The reason is the difficulty to connect a 

broad multidisciplinary ecological approach, encompassing the quantification of different 

processes (fluxes of water, carbon, nutrients, etc) as related to the ecosystem structure 

(biodiversity, land use), with the economic sphere (marketable and non-marketable services, 

values and prices, discount rates), which quite often results in an instinctive rejection of the 

environmental issues.  

The case study of the Luţnice river floodplain (Pithart et al., 2008) may serve as an 

example of calculation of selected ecosystem services in a Central European wetland (Table 

2).  The results show a relatively small contribution of the production of commodities to the 

overall ecosystem value. On the other hand, the values of flood mitigation and biodiversity 

refugium are quite high. This assessment shows that revitalisation of floodplain segments 

within previously chanellised river beds surrounded by arable land may increase their value 

tremendously, because the value of ecosystem services depends strongly on regular flooding, 

and biodiversity depends on connectivity between the river bed and adjacent wetland areas of 

differnet elevation. Other services of this site, which are not covered by this study, but 

apparently exist (groundwater dotation, climate regulation, water purification) would even 

more enhance this point of view.  

 

Conclusions  
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(1) Current status of wetlands 

(a) There is a strong deficit of wetland number and area compared to wetlands existing  in 

the early 20th century. Consequently, the ecological restoration of wetlands is still a 

major activity to be performed to obtain the benefits of wetlands functions all around 

Europe.  

(2) Response of wetlands to anticipated climate change 

(a) Sea level rise will be the main factor affecting coastal wetlands. It is also an 

opportunity for developing adaptive coastal management and recovering disappeared 

and degraded wetlands.  

(b) Wider water-level fluctuations will occur in most inland wetlands. 

(c) Human impact on wetlands (especially drainage) can strongly interact with or even 

prevail over the effects of climate change. 

(3) Socio-economic aspects  

(a) Preservation of carbon storage should be the priority in the northern part of Europe, 

where large areas of peatlands occur.  

(b) Extreme meteorological events and their consequences such as downpour rains 

followed by floods are likely to be perceived most sensitively in Central and Western 

Europe. They may promote public requirements for technological (hard) flood control 

measures resulting in faster water discharge from the respective catchments, which 

would threaten the hydrology of existing wetlands.  

(c) Continental and south European wetlands will probably suffer most from water 

shortage. Consequently, competition for water between agriculture and urban land use 

on the one hand and environmental protection on the other hand may substantially 

reduce the water supply to wetlands.  

(4) Need for a changed attitude toward wetlands:  

(a) The anticipated climate change imposes a threat to the current condition of European 

wetlands in addition to the historically existing and recently strongly increasing human 

impact.  

(b) At the same time, our facing the climate change encompasses an opportunity for 

developing adaptive wetland management and recovering disappeared and degraded 

wetlands.  

(c) Socio-economic appreciation of wetlands will be enhanced if the scientific community 

is able to develop a broadly accepted system of economic evaluation of wetland 
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ecosystem services such as carbon sequestration, climate stabilisation, or flood 

mitigation.  
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Table 1 Estimated wetland coverage in Europe as identified by the European inventory 

dataset (according to Nivet and Frazier 2004) 

 

Number of countries: 47 

Total land area of study Region (km
2
) (excluding marine areas; including 

Asian part of Russia, and Azerbaijan) (km
2
) 23703572 

Total area of wetlands identified (km
2
)  2667420 

% of land area (excluding marine areas) covered by these wetlands 11.3 

Land area of Region (km
2
), excluding Russia and marine areas:  6707772 

Total area of wetlands identified in this study, excluding Russian wetlands 

(km
2
):  491060 

% of land area, excluding Russia and marine areas, covered by these wetlands: 7.3 
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 Table 2 Quantification of selected ecosystem services for a natural segment of the Luţnice 

River Floodplain (South Bohemia, Czech Republic)
a
 

 

Service  Calculation Value 

(USD.ha
-1

.yr
-1

)  

Flood mitigation  Total retention volume 4.7 mil m
3
, per ha 10250 

m
3
 

11 788 

Biodiversity refuge Average point value 38, monetary value of one 

point per ha 8000 USD 

15 000 

Carbon sequestration Sequestration of 2029 t of C per ha, i.e. 7.54 t 

of CO2, market price of emission limit 20 USD 

per t.  

144 

Fish production Catches: 3,4 t of fish in the area, 7,2 kg per ha, 

average price 5 USD per kg   

37 

Hay production  183 ha of cut medows with production of 20q 

of hay per ha, price 10 USD per q 

78 

Wood production Growth rate 5 m
3
.ha

-1
.year

-
1; 33 USD per m

3
 

and 61 ha of the floodplain forest 

21 

Total    27068 

  
a
 The 470 ha area of this floodplain segment has a well preserved hydrological régime and is fully adapted to 

periodical flooding including its agricultural and social aspects. The land cover is formed by a mosaic of water 

bodies, river bed, meadows, wetlands and floodplain forest.  Flood mitigation was estimated by calculation of 

the aboveground retention volume (digital elevation model). For the evaluation, the alternative cost of a cubic 

meter in a man-made construction was multiplied by the calculated retention volume. Carbon sequestration was 

based on annual measurement of CO2 fluxes between a local herbaceous wetland ecosystem and atmosphere by 

the eddy-covariance method. The amount of carbon sequestered per unit area per year was multiplied by the 

marketable price of emission limits in 2008. In order to assess the ecosystem value as biodiversity refugium, all 

major biotopes were mapped and their contributions to the total area of the study were calculated. Each biotope 

was given a value in points according to Seják et. al. (2003). Monetary value of one point was derived from the 

average cost of a revitalisation project bringing an increase in the point value. Fish production was estimated on 

the basis of the number of catches obtained from the Czech Angling Union. Local market prices of particular fish 

species were used for total price calculation. The hay and wood production and prices in 2008 were obtained 

from local farmers, the area of meadows and forest (without solitary trees and willow carrs) was calculated by 

GIS methods. All services were calculated for the whole area and related to one hectare of the floodplain. 
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Figure Captions 

 

Fig. 1  Map of selected wetlands of Europe: 1 – Peatlands of Ireland; 2 – Scottish peatlands – 

predominantly mires (blanket bogs) ; 3 – Peatlands of the Pennines; 4 – Estuary of the Rhine 

and Maas; 5 – Mudflats and coastal salt marshes and estuaries of the Waddenzee 

(Wattenmeer); 6 – Mountain peatlands and lake littoral wetlands of Scandinavia, incl. 

Finland; 7, 8, 9 – Estonian and Latvian peatlands, lake littoral marshes and coastal marshes; 

10 – The Pripyat and Polesie wetlands (mainly peatlands and floodplains) in Belarus and the 

Ukraine; 11, 12, 13 – Coastal marshes, lagoons and estuaries of the southern Baltic Sea; 14, 

15 – Floodplains of the lower Oder and Elbe rivers; 16, 17 – Peatlands of the Giant Mts. 

(Krkonoše) and Ore Mts. (Erzgebirge); 18 – Peatlands of the Bohemian and Bavarian Forest 

Mts.; 19 – Fishponds, peatlands and floodplains of southern Bohemia (basins of České 

Budějovice and Třeboň); 20 – Peatlands of the Black Forest (Schwarzwald) Mts.; 21 – 

Littoral wetlands of Lake Constance and Bavarian subalpine lakes; 22 – Floodplains of the 

Morava and Dyje (Thaya) rivers and of the Danube in the Czech Republic, Austria, Slovakia 

and northern Hungary; 23 – Lake Neusiedler See / Fertö littoral wetlands, saline lakes 

(Lacken) of the Seewinkel and fens of the Hanság in Austria and Hungary; 24, 25 – 

Floodplains of the middle Danube and of the Tisza, Drava and Sava rivers; 26 – Floodplain of 

the lower Danube and the Danube delta with adjacent coastal lagoons; 27 – Estuary of the 

Neretva river; 28 – Estuary of the Dniper river; 29 – Delta of the Po river and adjacent coastal 

lagoons and salt marshes; 30 – La Camargue – delta of the Rhone river; 31 – Delta of the 

Ebro river; 32 – Lake Gallocanta and adjacent inland saline lakes and salt marshes; 33 – 

Doňana – floodplain and estuary of the lower Quadalquivir  river; 34, 35 – Estuaries of the 

Garonne and Loire rivers; 36 – Coastal wetlands and mudflats of the Brittany and Normandy 

coasts. Note: Wherever lakes are shown in the map, littoral wetlands also occur on most 

gently sloping lake shores. 

The map has been compiled on the basis of the following sources: Gore (1983), Mitsch and 

Gosselink (2000), Airoldi and Beck (2007), map of European Ramsar sites 

(http://www.wetlands.org/reports/rammap/mapper.cfm#; 11.4.2010) and map of wetland 

concentration in Europe (http://www.eea.europa.eu/data-and-maps/figures/wetland-

concentration-in-europe-2000; 11.04.2010). 
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Fig. 2 Examples of European wetland habitats. (a) Mesotrophic fen (example of aapa mires) 

at Lompolojänkä in Finnish Lapland. Photo T. Penttilä. (b) Pristine ombrotrophic bog forest 

in southern Finland. Photo R. Laiho. (c) Mesotrophic fen in the floodplain of the Luţnice 

river, Czech Republic. Photo J. Ševčík. (d) Floodplain forest at the confluence of the Dyje and 

Morava rivers, Czech Republic. Photo Czech Ramsar Committee. (e) Example of an inland 

saline shallow lake with  its littoral wetlands: Lake Gallocanta, Spain. Photo J. Dušek. (f)  

Example of a Mediterranean estuary: Hutovo Blato in the estuary of the Neretva river, 

Croatia. Photo T. Kušík. 

 

Fig. 3 Aerial views of a riverine and a lacustrine wetland in Central Europe. (a) a bay of a 

human made shallow lake: Velký Tisý Fishpond, Czech Republic. Photo J. Ševčík. (b) a well 

preserved floodplain: the upper Luţnice River, Czech Republic. Photo P. Znachor.Both sites 

belong to wetlands of southern Bohemia, Czech Republic (area no. 19 in Fig. 1). 

 

Fig. 4 Network of the major relationships between the global processes causing global 

changes and global climate change in the industrial era. Modified from Vitousek (1994) 

 

Fig. 5 Temperature distribution in the town of Třeboň and surrounding Wet Meadows (South 

Bohemia, Czech Republic) visualised by an infra-red camera. Photo J. Brom 

 

Fig. 6 Comparison of temperature distribution in two differently treated areas of cultural 

landscape: the Most Basin and the Třeboň Basin, Czech Republic. a, b – Most Basin, coal 

mining area. c, d – Třeboň Basin, landscape with large areas of artificial lakes (fishponds). a, 

c – pictures in visible light spectrum. b, d – false colour spectrum indicating temperature 

differences, with the highest temperatures being yellow, orange, and red and lowest 

temperatures being blue and green (see the relative temperature scale, e). 1 – the Krušné hory 

mountains, 2 – Most city, 3 – Sokolov city, 4 – open-cast mines and unvegetated heaps, 5 – 

Roţmberk lake, 6 – Třeboň town. Large hot spots correspond mostly to mines and heap areas 

while cold areas correspond to the Krušné hory mountains in Fig. 6b and to lakes and forests 

in Fig. 6d. Landsat TM data (Most Basin: scene 192-025, acquisition date 1 July 1995; 

Třeboň Basin: scene 191-026, acquisition date 10.7.1995) 

a
a
Multispectral spaceborne data acquired by Landsat Thematic Mapper and Enhanced Thematic Mapper+ sensors 

were used to compare two types of cultural landscapes in the Czech Republic. The Most Basin has been largely 

influenced through the open mining of the tertiary lignite. Large areas have been drained and turned either into 
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deep and vast mines or spoil heaps. The Třeboň Basin Biosphere Reserve represents a contrasting example of a 

landscape which, although historically largely influenced by humans, has maintained high nature qualities. It is a 

rural landscape characterised by a frequent occurrence of human-made lakes (fishponds) which have been 

constructed since 15
th

 century and cover ca. 12% of the total area. Apart from the fishponds there are also other 

wetlands in the area such as floodplain segments and mires. The Třeboň Basin, generally well saturated with 

water, shows a substantially lower temperature variance with temperature extremes completely missing. 

 

Fig. 7 Discharges of three main tributaries to the Orlík Reservoir in South Bohemia, Czech 

Republic, during floods in August 2006. Dotted line – the Vltava at České Budějovice, dashed 

line – the Otava at Písek, solid line - the Luţnice at Bechyně. Modified from Lhotský (2006)
a
 

a
The extremely high precipitation values of August 2002 resulted in the largest flood ever reported in Central 

Europe. The water discharges were estimated as representing the 100-year to 500-year maxima in different 

catchments. The flood dynamics differed between the catchments in response to their hydrology. A notable 

example is provided by the Třeboň fishpond system, situated in the catchment of the upper Luţnice River. The 

Luţnice River has a well preserved natural floodplain connected with an elaborate system of artificial lakes 

(fishponds) of about 60 km
2
 in area. The Třeboň fishpond system retains 50 - 70 million m

3
 water during floods. 

In the extreme floods of summer 2002, the fispond system retained 110-114 million m
3
 of water.  As a result, 

flood culmination was delayed by 68 hours and the flood peak was substantially damped. 

 

Fig. 8 Average daily discharges from three small sub-mountain catchments (the Šumava 

mountains, Czech Republic). Solid grey line – drained catchment of the Mlýnský brook, 

covered with pastures and mown meadows, solid black line – unmanaged catchment of the 

Horský brook covered with forest and wetlands, dotted grey line – forested catchment of the 

Bukový brook. Modified from Procházka et al. (2009)
a
  

a
During douwnpour rains in August 2002, precipitation reached over 100 mm in a few days. Several times as 

high flow rates from a drained pasture (900 l.s
-1

) as from forested and wetland catchments (300 l.s
-1

) were 

recorded. This comparison illustrates the greater retention capacity of the wetland and the forest in comparison 

with the drained catchment, which is then translated in the attenuation of discharge peaks.  

 

Fig. 9 – Precipitation and water discharge as related to the groundwater level in the Red Bog 

(Červené Blato), the Třeboň Basin, Czech Republic. Open columns – precipitation, full 

squares – discharge from the bog, open circles – groundwater table in the bog-pine forest, full 

triangles – groundwater table in the regenerating part of the bog. Modified from Kolmanová 

et al. (1999). 
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