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Abstract

This thesis is about modelling the in-play football betting market. Our

aim is to apply and extend financial mathematical concepts and models to

value and risk-manage in-play football bets. We also apply machine learning

methods to predict the outcome of the game using in-play indicators.

In-play football betting provides a unique opportunity to observe the in-

terplay between a clearly defined fundamental process, that is the game itself

and a market on top of this process, the in-play betting market. This is in

contrast with classical finance where the relationship between the fundamen-

tals and the market is often indirect or unclear due to lack of direct con-

nection, lack of information and infrequency or delay of information. What

makes football betting unique is that the physical fundamentals are well ob-

servable because of the existence of rich high frequency data sets, the games

have a limited time horizon of usually 90 minutes which avoids the buildup

of long term expectations and finally the payoff of the traded products is

directly linked to the fundamentals.

In the first part of the thesis we show that a number of results in financial

mathematics that have been developed for financial derivatives can be applied

to value and risk manage in-play football bets. In the second part we develop

models to predict the outcomes of football games using in-play data.

First, we show that the concepts of risk-neutral measure, arbitrage free-

ness and completeness can also be applied to in-play football betting. This is

achieved by assuming a model where the scores of the two teams follow stan-

dard Poisson processes with constant intensities. We note that this model is

analogous to the Black-Scholes model in many ways.
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Second, we observe that an implied intensity smile does exist in football

betting and we propose the so-called Local Intensity model. This is moti-

vated by the local volatility model from finance which was the answer to the

problem of the implied volatility smile. We show that the counterparts of

the Dupire formulae [31] can also be derived in this setting.

Third, we propose a Microscopic Model to describe not only the number

of goals scored by the two teams, but also two additional variables: the

position of the ball and the team holding the ball. We start from a general

model where the model parameters are multi-variate functions of all the state

variables. Then we characterise the general parameter surfaces using in-play

game data and arrive to a simplified model of 13 scalar parameters only. We

then show that a semi-analytic method can be used to solve the model. We

use the model to predict scoring intensities for various time intervals in the

future and find that the initial ball position and team holding the ball is

relevant for time intervals of under 30 seconds.

Fourth, we consider in-play indicators observed at the end of the first half

to predict the number of goals scored during the second half, we refer to this

model as the First Half Indicators Model. We use various feature selection

methods to identify relevant indicators and use different machine learning

models to predict goal intensities for the second half. In our setting a linear

model with Elastic Net regularisation had the best performance.

Fifth, we compare the predictive powers of the Microscopic Model and

the First Half Indicators Model and we find that the Microscopic Model

outperforms the First Half Indicators Model for delays of under 30 seconds

because this is the time frame where the initial team having the ball and the

initial position of the ball is relevant.
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Chapter 1

Introduction

Football betting provides a unique opportunity to observe the interaction

between a fundamental process, that is a football game and a market on top

of this process, the betting market.

1.0.1 Overview of the In-Play betting market

In-play bets are traded during the live game, their price fluctuate rapidly as

the teams score goals. This is similar to financial markets where the price of

an option changes according to the fluctuations of the underlying instrument.

In traditional football betting, also known as pre-game or fixed odds

betting, bets are placed before the beginning of the game. In-play football

betting enables bettors to place bets on the outcome of a game during the

live game. The main difference is that during in-play betting, as the game

progresses and as the teams score goals, the chances of certain outcomes

change dynamically and so do the odds of the bets. With the proliferation of

mobile devices, in-play betting became increasingly popular in recent years.

For instance, [33] recently reported that for one particular bookmaker (Uni-

bet) in-play betting revenues exceeded pre-game betting revenues by 2013Q2

1
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Figure 1.1: Revenue distribution of one particular bookmaker’s (Unibet) football
betting revenues between In-Play and Pre-Game football betting.

as shown on Figure 1.1.

There are two main styles of in-play betting: odds betting and spread

betting. In odds betting, the events offered are similar to digital options in

the sense that the bettor wins a certain amount if the event happens and

looses a certain amount otherwise. Typical odds bets are whether one team

wins the game, whether the total number of goals is above a certain number

or whether the next goal is scored by the home team. In spread betting, the

bets offered are such that the bettor can win or loose an arbitrary amount. A

typical example is a bet called “total goal minutes” which pays the bettor the

sum of the minute time of each goal. In this thesis we focus on odds betting,

but most of the results can also be applied to spread betting. A study of

spread betting containing analytical pricing formulae for various spread bets

was published by [17].
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In-play betting offers various types of events such as total goals, home

and away goals, individual player goals, cards, corners, injuries and other

events. In this thesis we focus on bets related to goal events only.

Throughout this thesis we refer to the value Xt of a bet as the price at

which the bet can be bought or sold at time t assuming that the bet pays a

fixed amount of 1 unit in case it wins and zero otherwise. This is a convenient

notation from a mathematical point of view, however it is worth noting that

different conventions are used for price indication in actual betting. The two

most popular conventions are called fractional odds and decimal odds. Both

of these conventions rely on the assumption that the bettor wagers a fixed

stake when the bet is placed and enjoys a payoff in case the bet wins or no

payoff in case it looses. Fractional odds is the net payoff of the bet in case

the bet wins (that is, payoff minus stake), divided by the stake. Decimal

odds is the total payoff of the bet in case the bet wins, divided by the stake.

Therefore, the value of a bet Xt is always equal to the reciprocal of the

decimal odds which is equal to the reciprocal of fractional odds plus one,

formally:

Xt =
1

Dt

=
1

Ft + 1
, (1.1)

where Dt denotes decimal and Ft denotes fractional odds. Most of the mar-

ket data we used was originally represented as decimal odds, but they were

converted to bet values using the above formula for all the charts and for the

underlying calculations in this thesis.

It is also worth noting that bets can be bought or sold freely during

the game. This includes going short which is referred to as lay betting.

Mathematically this means that the amount held of a bet can be any real

number.

In-play odds bets can either be purchased from a retail bookmaker at a
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price offered by the bookmaker (for example Bet365, Paddy Power, William

Hill, Ladbrokes, Unibet and others), but can also be traded on centralized

marketplaces (operated for example by Betfair, Betdaq, Smarkets and others)

where participants trade with each other through a limit order book, much

like stocks are traded on exchanges.

1.1 Research objectives

The research objectives of this thesis are the following:

1. Football betting offers a unique insight into the interplay between a

fundamental process, that is the football game itself and a market

driven by the fundamental process, that is the betting market because

both gameplay data and market data are widely available. This is in

contrast with most situations in financial markets where the underlying

fundamental processeses are usually hard to uncover and in some cases

completely hidden. Therefore understanding how the football betting

market is driven by the underlying fundamental process might yield

useful insight into the interplay between financial fundamentals and

asset prices.

2. To apply models, tools and results from financial mathematics and

derivatives pricing to value, hedge and risk manage in-play football

bets. Either apply existing theorems on a football betting setup or

create new models specifically for football betting that are inspired by

existing derivative pricing models.

3. Use the large amount of in-play data available on football games and

build machine learning models to find relevant indicators and to predict
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the future evolution and the outcome of the game.

1.2 Data description

I used two data sets. Data set 1 contains market prices of in-play bets while

data set 2 contains high resolution gameplay data.

1.2.1 Data Set 1: Market Prices

Data set 1 contains market prices of in-play bets that are traded during the

game. The time resolution of the data set is 1 second and it consists of a

series of different types of bet prices covering 30 games of the 2012 UEFA

European Championship. The types of the bets covered by the data set are:

• Match odds - which team will win the game, one of HOME, AWAY or

DRAW

• Over/Under - whether the total number of goals scored by both teams

is over or under a given value

• Correct score - correct number of goals scored by each team

• Next Goal - which team will score the next goal

I use this data in Chapters 3 and 4.

1.2.2 Data Set 2: Gameplay Data

Data set 2 contains high resolution in-play information from 2940 games in

7 leagues of the of the 2013/14 Season shown in Table 1.1. This data set

contains sub-second resolution events for each game. Each event contains

the following fields:
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• The team and player associated with the event

• Sub-second resolution tine of the event during the game

• Location of the event on the field

• Type of the event

The types of events are one of:

• Pass, along with whether the pass was successful or not

• Goal scored

• Goal attempt saved

• Missed goal attempt

• Ball goes out of the field

• Corner awarded

• Card awarded, along with the type of card

• Clearance, which is when a player kicks the ball away from the goal

they are defending

This data set is used in Chapters 5, 6 and 7.

1.3 Thesis structure

The structure of this thesis is the following.

Chapter 2 contains an overview of the relevant literature, theoretical

background and methods used in the thesis.
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Season League Game count
2013/14 English Football League Championship 562
2013/14 Spanish Segunda Division 412
2013/14 Brazilian Série A 508
2013/14 English Barclays Premier League 374
2013/14 French Ligue 1 386
2013/14 Italian Serie A 356
2013/14 Spanish La Liga 342

TOTAL 2940

Table 1.1: List of the 7 Leagues of the 2013/2014 Season containing a total of
2940 games that the data set consists of.

In Chapter 3 I introduce the Constant Intensity Model which is a risk-

neutral valuation framework for pricing and hedging in-play football bets

based on modelling scores by independent homogeneous Poisson processes

with constant intensities. This model is in many sense the Black-Scholes

model of football betting. The Fundamental Theorems of Asset Pricing are

extended to this set up which enables us to derive arbitrage-free valuation

formulae for contracts traded in the market.

In Chapter 4 I present the Local Intensity Model which is an extension

of the Constant Intensity Model by allowing for intensities that depend on

the number of goals and time. I show that this model is in many respects

similar to the Local Volatility model which is widely used in finance for option

pricing. Borrowing the terminology from finance, I am referring to the model

as the Local Intensity model and to the state and time dependent intensity

function as the local intensity function. I am deriving formulae which are

similar to Dupire’s formula in the Local Volatility model. Calibration on real

market data is also demonstrated.

In Chapter 5 I introduce the Microscopic Model to describe the evolution

of a football game. The model is an extension of the Local Intensity Model
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Table 1.2: A high level overview of the assumptions and data sets used by the
different models and chapters.

by taking into account the position of the ball and the team holding the

ball besides the number of goals scored and time. The model describes the

evolution of these state parameters through a drift and diffusion coefficient

for the ball position, a ball losing intensity for the team holding the ball and

a usual goal intensity for the goals scored.

In Chapter 6 I introduce the First Half Indicators Model which is the

result of the study of various Machine Learning methods applied to football

game data. The input of the model is an 18-dimensional indicator vector

that is observed at the end of the first half of the game and the output of the

model are goal intensities for the two teams that are assumed to be constant

during the second half of the game.

In Chapter 7 I use the Microscopic Model and the First Half Indica-

tors Model to predict goal intensities in the second half of the game and I

compared the predictive powers of the two models.

Table 1.2 summarizes the assumptions and data sets used in the different

chapters and models. It is also worth noting that the purpose of the Constant

Intensity and Local Intensity models are pricing and hedging in the risk-

neutral measure where as the purpose of the Microscopic Model and the

First Half Indicators Model is prediction in the physical measure.
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1.4 Publication

Chapter 3 of this thesis has been submitted to the journal of Applied Math-

ematical Finance, it was reviewed, has been re-submitted and is currently

awaiting the outcome of the second round of review. We are also planning

to submit chapters 5 and 6 for publication by the final viva.



Chapter 2

Literature Review and

Theoretical Background

This chapter contains an overview of the relevant literature, theorems and

methods that are used throughout the subsequent chapters of the thesis.

2.1 Literature on Football Betting

The literature on football betting can be split into two main groups. The

first group contains articles that study and model the distribution of the

goals scored by the two teams at the end of the game, that is with no regard

to the dynamics of the goal process during the game. The second group of

articles study not only the full-time score distribution, but also the dynamics

during the play which is referred to as in-play.

2.1.1 Full-time Score Distribution

One of the first articles studying the distribution of football scores is [4] which

found that an independent Poisson distribution gives a reasonably accurate

10
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description of football scores. It achieved further improvements by applying a

bivariate Poisson distribution and it has been showed that it provides a better

fit than the Poisson distribution. They found that the correlation coefficient

between the scores of the home and away teams to be approximately equal

to 0.2.

The Negative Binomial distribution has been used by [1] who found that

it provides a better fit than the Poisson distribution. This has been confirmed

by [2, 3] who studied a set of ball games including football games between

1954 and 1969 and also found that the Negative Binomial distribution pro-

vides a reasonably good fit.

The distribution of total scores as well as home and away scores has been

studied by [49] in football games from 169 countries between 1999 and 2001.

They found that the distributions do not follow the thin-tailed Poisson, nor

the negative binomial distributions beyond the low scores, but heavy-tailed

extremal distributions provide a better fit. In particular, the best fit of total

scores was found to have a tail distribution with Gumbel α of 1, home and

away scores were found to have a tail distribution with Fréchet α of 1.04 and

1.1, respectively.

The distribution of full time results of 6629 games between 1992 and 1995

has been studied by [5] and they suggested a modified Poisson distribution

that accounts for the fact that the home and away scores are not independent.

In particular, the proposed distribution function of the full time home and

away scores is:

fT (n1, n2) = τ (n1, n2)
e−Λ1Λn1

1

n1!

e−Λ2Λn2
2

n2!
, (2.1)

where n1 and n2 are the full time scores of the home and away teams, Λ1

and Λ2 are the average number of goals scored by he home and away teams
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during the game and the function τ (n1, n2) is responsible for the dependency

between the scores of the two teams:

τ (n1, n2) =



1− Λ1Λ2ρ if n1 = n2 = 0,

1 + Λ1ρ if n1 = 0, n2 = 1,

1 + Λ2ρ if n1 = 1, n2 = 0,

1− ρ if n1 = 1, n2 = 1,

1 otherwise

(2.2)

2.1.2 In-Play Score Dynamics

The distribution of in-play scores during the 90 minute interval of 4012 games

between 1993 and 1996 has been studied by [23]. They found that goal scoring

intensities depend on the game time with intensity increasing steadily as the

game progresses. They also found that scoring intensities also depend on the

current score. Therefore they proposed a model in which the goals scored by

the two teams follow two Poisson processes with intensities that are functions

of the current number of goals and time:

dN i
t = dN λi

(
N1

t ,N
2
t ,t

)
t , i ∈ {1, 2} , (2.3)

where i = 1 refers to the home and i = 2 refers to the away team, N i
t

denotes the number of goals scored by team i, N λ
t denotes a Poisson process

of intensity λ and λi (N
1
t , N

2
t , t) denotes the intensity function of team i

which is a function of the current number of goals (N1
t , N

2
t ) and time t. The

authors suggest a number of different functional forms for the intensities and

find that the model can be applied both to explain the distribution of final

scores and also to valuing in-play spread bets.
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The standard homogeneous Poisson process has been applied by [17] to

develop analytical valuation formulae for in-play spread bets on goals and

also on corners.

A hierarchy of models suitable for in-play football betting has been stud-

ied by [42], starting from a homogeneous Poisson process with constant in-

tensity, then introducing time-dependent intensities, finally introducing de-

pendency on the current number of goals. He derived a valuation formula

for in-play football bets in the general case when the intensity function is

homogeneous in time:

λi (n1, n2, t) = ρi (n1, n2) ξ (t) , i ∈ {1, 2} (2.4)

where ρi (n1, n2) is the score-dependent component and ξ (t) is the time-

dependent component.

The introduction of stochastic intensities has been suggested by [42] where

the goal scoring intensities of the two teams depend not only on time and

current score, but also on an independent Brownian driving process. In

particular, he studied the case of the Cox-Ingerson-Ross process:

dxt = α (θ − xt) dt+ σ
√
xtdWt, (2.5)

where dWt is a standard Brownian motion, α is the speed of mean rever-

sion parameter, θ is the value of the mean that the process is reverting to

and σ is the volatility parameter. A number of valuation formulae for in-play

football bets have been derived within the stochastic intensity model.

Market rationality has been tested by [41] on the point spread betting

market using match data for 1246 National Football League games between

1980 and 1985. They concluded that statistical tests cannot reject market
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rationality while economic tests do reject market rationality. This implies

that the betting market is reasonably efficient.

An efficiency test of point spread betting markets has been conducted by

[39] using match data from 4219 NFL games between 1976 and 1994. They

concluded that market inefficiencies are present, but they tend to dissipate

over time.

2.2 Fundamental Theorems of Asset Pricing

The Fundamental Theorems of Asset Pricing form the basis of the risk-

neutral framework of financial mathematics and derivative pricing. These

theorems are relevant for pricing football bets because the bets are assets

that are actually traded on markets and also because there are multiple

kinds and forms of bets on the same underlying game in which sense the bets

behave similar to derivative contracts.

The first Fundamental Theorem states that a market is arbitrage free if

and only if there exists a probability measure under which the underlying

asset prices are martingales. The second fundamental theorem states that

the market is complete, (that is, any derivative product of the underlying

assets can be dynamically replicated) if and only if the martingale measure

is unique. These theorems have been developed by several authors, including

[8], [10], [11], [35], [36], [37] and [12].

2.3 Overview of the Local Volatility model

Up until the crash of 1987, Black-Scholes implied volatilities of European op-

tions were constant across all strikes and maturities because the markets ac-
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cepted the constant volatility assumption of the Black-Scholes model, where

log-returns are assumed to follow the thin-tailed normal distribution. How-

ever, this changed after the crash of 1987 (see for example [19]), when the

implied volatility surface became non-constant and the volatility smile ap-

peared because markets dropped the log-normality assumption and started

to use heavy-tailed distributions to price options. This became a problem

because the Black-Scholes model suddenly became inconsistent with the mar-

ket.

One of the solutions proposed was the introduction of the local volatility

model by [31] and [45] which is still widely used today. The local volatil-

ity model allows the robust calibration of a stochastic process to any given

implied volatility surface, and is therefore consistent with the whole range

of European options prices. The fundamental assumption of the model is

that volatility is a function of price and time. Formally, the price follows the

following SDE:

dSt = StσLV (St, t) dWt + Strdt, (2.6)

where σLV (St, t) is the local volatility function and r is the risk-free rate.

One of the reasons for the popularity of the model is, that given a set of

European option prices or Black-Scholes implied volatilities at the continuum

of all strikes and maturities, the local volatility function can be determined in

a straightforward way using the so-called Dupire formulas. The first formula

describes the local volatility as a function of the European option prices:

σ2
LV (K,T ) =

∂C

∂T

[
1

2
K2 ∂

2C

∂K2
− (r − γ)K

∂C

∂K
− γC

]−1

, (2.7)

where C (K,T ) is the price of a European option of strike K and maturity
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T . The second formula connects the Black-Scholes implied volatlility surface

with the local volatility surface:

σ2
LV (K,T ) =

∂w

∂T

[
1− k

w

∂w

∂k
+

1

4

(
−1

4
− 1

w
+
k2

w2

)(
∂w

∂k

)2

+
1

2

∂2w

∂k2

]−1

,

(2.8)

where w (K,T ) = σ2
BS (K,T )T , σBS (K,T ) is the Black-Scholes implied

volatility of a European option of strikeK and maturity T and k = ln
(
e−rT K

S

)
is the log-strike.

These formulas can be derived using the Black-Scholes formula, the Kol-

mogorov forward equation and a widely used result from [48] which states

that the second derivative of undiscounted European call prices with respect

to strike equal the marginal risk-neutral density function of the price. See

for example [46] for details.

In order for these formulas to work, option prices or Black-Scholes implied

volatilities are required for a continuum of strikes and maturities. However,

prices are only quoted at a selected set of finite strikes (usually in the range

of 5 to 20 quotes per maturity) and maturities (usually around 10 maturities

starting from about 1 week up to a few years). This problem is solved in prac-

tice by fitting a parametric curve to the Black-Scholes implied volatility smile

at each maturity and then interpolating these slices between maturities and

thereby constructing the continuous Black-Scholes implied volatility surface.

Dupire’s formulas in Equations 2.7 or 2.8 can be used directly to compute

the local volatility surface. Once the local volatility function is available, it

can be used in equation 2.6 to generate a stochastic process which is consis-

tent with all European option prices or Black-Scholes implied volatlities that

were used in the calibration and at the same it time can also be used to price
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exotic options with an arbitrary path dependent payoff.

2.4 Numerical methods for solving partial dif-

ferential equations

A quick overview of the standard numerical method for solving partial dif-

ferential equations is provided below which is used to solve the Microscopic

Model in Chapter 5.

Numerical solution of partial differential equations is discussed by [51],

[52] and [53] among others. For our purposes we are interested in parabolic

equations of the following form which describe the time evolution of a marginal

probability density function f (x, t):

∂

∂t
f (x, t) = − ∂

∂x
[µ (x) f (x, t)] +

1

2

∂2

∂x2
[
σ2 (x) f (x, t)

]
(2.9)

where x ∈ [xmin, xmax] is the space variable and t ∈ [0, T ] is the time

variable. The initial condition in time is a Dirac delta at an initial state x0:

f (x, t = 0) = δ (x− x0) (2.10)

The boundary conditions in space are reflective.

2.4.1 Gradient descent method

The gradient descent method has been introduced by [80] among others. It

is an iterative method for finding the minimum of a differentiable multivari-

ate function F (x), starting from an initial approximation x0. The method

consists of computing the sequence
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xn+1 = xn − γ∇F (xn) (2.11)

where ∇F (xn) is the gradient of the function F (x) and γ is a step size

which is a parameter of the method. Besides ease of implementation and

numerical stability, the advantage of the method lies in the fact that it doesn’t

involve costly computation of inverse Hessian matrices, like for example in

case of Newton’s method, therefore it is applicable for problems with high

dimensions where inverse matrix computation would be unfeasible.

2.4.2 Finite difference operators and boundary condi-

tions

In the finite difference method space is discretized by choosing a grid size ∆x

and setting xi = xmin + i∆x with i ∈ [0, N − 1] where N = xmax−xmin

∆x
is the

number of grid points.

The first derivative d
dx

is approximated by the following finite difference

operator ∆
∆x

:

df (xi)

dx
≈ ∆f (xi)

∆x
=

1

∆x


f (xi+1)− f (xi) if i ∈ [1 ,N − 2 ]

f (xi+1) if i = 0

−f (xi) if i = N − 1

(2.12)

where the cases for the boundary values i = 0, i = N−1 are coming from

the reflective boundary condition f (xmin) = f (xmax) = 0 in case of the first

derivative.

The second derivative d2

dx2 is approximated by the following finite differ-
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ence operator ∆2

∆x2 :

d2f (xi)

dx2
≈ ∆2f (xi)

∆x2
=

1

∆x2


f (xi+1)− 2f (xi) + f (xi−1) if i ∈ [1 ,N − 2 ]

f (xi+1)− f (xi) if i = 0

−f (xi) + f (xi−1) if i = N − 1

(2.13)

where the cases for the boundary values i = 0, i = N−1 are coming from

the reflective boundary condition df
dx

∣∣
x=xmin

= df
dx

∣∣
x=xmax

= 0 in case of the

second derivative.

Time is discretized similarly to space by introducing a time step size of

∆t and setting tj = j∆t with j ∈ [0,M − 1] where M = T
∆t

is the number of

time steps.

The first order time derivative is approximated with the same finite dif-

ference operator as space, except for the boundary conditions:

df (tj)

dt
≈ 1

∆t
f (tj+1)− f (tj) for t ∈ [0 ,M − 2 ] (2.14)

2.4.3 Explicit Euler method

Within the explicit Euler method, Equation 2.9 is discretized as follows:

∆

∆t
f (xi, tj) = − ∆

∆x
[µ (xi) f (xi, tj)] +

1

2

∆2

∆x2
[
σ2 (xi) f (xi, tj)

]
(2.15)

The advantage of the scheme is that the value of the function in the next

time step f (xi, tj+1) can be obtained simply by ordering the terms:
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f (xi, tj+1) = f (xi, tj)+∆t

{
− ∆

∆x
[µ (xi) f (xi, tj)] +

1

2

∆2

∆x2
[
σ2 (xi) f (xi, tj)

]}
(2.16)

However, a major disadvantage is that in order to keep the solution nu-

merically stable, the space and time step sizes must meet the following cri-

teria:

∆x ≤ σ2

2µ
(2.17)

∆t ≤ σ2

4µ2
(2.18)

In practice this might be a problem because for arbitrary values of σ and

µ the grid size might exceed the memory capacity of the computer.

2.4.4 Implicit Euler method

Within the implicit Euler method, Equation 2.9 is discretized as follows:

∆

∆t
f (xi, tj) = − ∆

∆x
[µ (xi) f (xi, tj+1)] +

1

2

∆2

∆x2
[
σ2 (xi) f (xi, tj+1)

]
(2.19)

Using this scheme the value of the function on the next time step f (xi, tj+1)

appears on both sides, and therefore cannot be solved by simple ordering of

terms but the equation must be solved instead as a numerical system. Our

method of preference is the gradient method as described in section 2.4.1

because of it’s ease of implementation. The main advantage of the implicit

method is that it is always stable numerically, regardless of the step sizes ∆t
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and ∆x.

2.5 Statistical Methods

The maximum likelihood method has been introduced by [82], a good overview

is also available in [81]. It is a generic method for the estimation of parame-

ters of a statistical model using observations. The method aims to find the

model parameters that maximise the value of the likelihood function given

the available observations. In practice it is usually advantageous to maximise

the logarithm of the likelihood function, that is the log-likelihood function.

In this section we summarise the log-likelihood functions of the Poisson dis-

tribution and the Poisson process.

2.5.1 Log-Likelihood of the Poisson Distribution

Proposition 1. The log-likelihood ratio of two Poisson distributions with

intensities λ0T , λ1T and outcome k is:

ln
P [k|λ1T ]
P [k|λ0T ]

= − (λ1 − λ0)T + k ln
λ1
λ0

(2.20)

Proof. This follows directly form the definition of the Poisson distribution:

P [k|λT ] = e−λT (λT )
k

k!
(2.21)

2.5.2 Log-Likelihood of the Poisson Process

Proposition 2. The log-likelihood ratio of two inhomogeneous Poisson pro-

cesses with intensity functions λ0 (t), λ1 (t) and with a realised path that on



22 Chapter 2. Literature Review and Theoretical Background

a time interval t ∈ [T0, T1] had a total of k jumps at times {ti}ki=1 is:

ln
P
[
{ti}ki=1 |λ1 (t)

]
P
[
{ti}ki=1 |λ0 (t)

] = −
∫ T1

T0

(λ1(t)− λ0(t)) dt+
k∑

i=1

ln
λ1(ti)

λ0(ti)
(2.22)

Proof. Sketch of proof Let us split the time interval [T0, T1] into small time

segments of length dt. The probability of no jump within a time segment

[t, t+ dt] is equal to exp
(
−
∫ t+dt

t
λ(t′)dt′

)
which in case dt is infinitesimally

small is equal to exp (−λ(t)dt). The probability of one or more jumps is there-

fore 1 − exp (−λ(t)dt) which again, in case dt is small is equal to −λ(t)dt.

The likelihood of the whole path which is the joint probability of the realised

events on the infinitesimal line segments is just the product of the probabil-

ities because the events are independent of each other. That is, for all seg-

ments where no jump happened we have a term
∏

t∈[T0,T1]\{ti}ni=1
exp (−λ(t)dt)

which is equal to exp
(
−
∫ T1

T0
λ(t)dt

)
where technically the integral shouldn’t

contain the times of jumps {ti}ni=1, but because those are a finite number of

points they have no effect on the value of the integral and can be omitted.

From the segments where a jump happened we have
∏n

i=1 λ(ti)dt. The final

result is the logarithm of the product of these two terms.

2.5.3 Akaike Information Criterion - AIC

When using different models with different number of parameters, usually

a model with a larger number of parameters provides a better fit, simply

because more parameters allow more flexibility. Therefore, when model se-

lection is performed, a penalty on the number of parameters is desirable in

order to avoid over-fitting. The Akaike Information Criterion (AIC) is a

commonly used estimator of the relative quality of a statistical model, see
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among others [64, 65, 66]. According to the AIC, the preferred model is the

one with the lowest AIC value which is defined as:

AIC = 2k − 2L, (2.23)

where k is the number of model parameters and L is the value of the

log-likelihood. The number of model parameters k acts as a penalty term

that discourages over-fitting.

2.5.4 Wilks’ Theorem

Wilks’ Theorem [67] states that the log-likelihood ratios of two nested models

follow a χ2 distribution. Let f(x, θ1, θ2, ...θh) denote the likelihood function of

the more generic model of h parameters and let f(x, θ01, θ02, ...θ0m, θm+1, ...θh)

denote the likelihood of the more specific model which is a special case of

the generic model by setting the first m parameters to the fixed values of

θ01, ...θ0m. The maximum log-likelihood ratio of the nested models is defined

as:

L =
maxθm+1,...θh f(x, θ01, θ02, ...θ0m, θm+1, ...θh)

maxθ1,...θh f(x, θ1, ...θh)
(2.24)

Wilks’ theorem states that if the sample size n → ∞ is large, then the

distribution of −2L is distributed like χ2 with h−m degrees of freedom.

2.6 Machine Learning

Machine learning is the study of a set of statistical models and algorithms

that are used to perform specific tasks, relying on inference and patterns,

rather than explicit instructions. Machine learning is classified in one of the

following categories:
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• Supervised learning methods are used in situations where both the

input and desired output data is available and models are trained to

produce the desired output on the given input.

Feature selection methods aim to select a subset of the input

variables that are most relevant in predicting or explaining the output

variables, thereby reducing the dimensionality of the problem.

Classification is the problem of identifying which category a an

item belongs to, given a set of observed variables about the item.

Regression is a set of statistical methods that aim to estimate the

relationship among a set of variables.

• Unsupervised learning methods are used when only the input data

is available and the method finds structure in the data.

• Reinforcement learning is concerned how a software agent makes

decisions in an environment over time such that a given reward is max-

imised.

In this thesis I use supervised learing methods.

2.6.1 Correlation

The Pearson correlation coefficient is defined as:

ρX,Y =
cov(X,Y )

σXσY
(2.25)

where cov is the covariance and σX , σY are the standard deviations of X

and Y .
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2.6.2 Random Forest of Trees

Decision trees are used for regression, classification and feature importance

selection. The construction of the tree involves splitting the data set in two

parts. The splitting is repeated in a recursive manner on both halves until

the number of data points in the remaining parts becomes smaller than a

pre-determined value at which point the tree is considered complete. The

training of the model involves the construction of decision rules at each of

the splits, according which the split will be performed. The decision rules

are such that first one of the components of the multi-dimensional indicator

vector xj is selected and then a threshold value θ is determined. The split is

performed so that data points with an indicator value less than the threshold,

that is xj < θ constitute one partition and xj ≥ θ constitute the other

partition. During training each of these decision rules, that is the selection

of the indicator component and the threshold value at each of the splits

are constructed such that the outcome values y in the resulting partitions

minimise a specific measure. A popular measure for discrete outcomes that

I also used is the Gini impurity [76]:

J∑
i=1

pi
∑
k 6=i

pk =
J∑

i=1

pi (1− pi) (2.26)

where J is the number of classes, that is the number of distinct values

of the outcome vector y and pi is the frequency of the i.th outcome in the

partition. Note that Gini impurity is essentially the sum of the binomial

variances of the class frequencies. Gini impurity will therefore prefer splits

where the different partitions have minimal variances.

Decision trees are prone to over-fitting. One way of tackling this problem

is by constructing multiple trees by using random subsets of the data and
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averaging out the results across the trees. I used the Extra-Trees method

[75] that goes one step further in introducing randomness by choosing the

splitting thresholds randomly from a set of candidates, rather than always

choosing the most discriminative threshold.

2.6.3 K-Nearest Neighbors

The K-Nearest Neighbour model has been introduced by [77]. The training

of the model doesn’t involve any optimisation, instead every X and Y point

of the data set is saved in a data structure. The output of the model for

an arbitrary input x is determined by selecting a certain number nneighbors of

nearest points from the data set that have the smallest distance ‖x−X‖q.

The output of the model is determined by taking the average of the values

of the nearest neighbor points, formally:

y (x) =
1

nneighbors

∑
j∈S(x)

Yj (2.27)

where S (x) is the set of indices j in the data set of the nearest neighbors,

that is those nneighbors points that have the smallest distance ‖x−Xj‖q where

q is the exponent of the distance measure, that is q = 2 for Euclidean distance

and q = 1 for L1 distance.

It is important to note that before applying this method, indicators need

to be scaled to zero mean and unit variance. This is necessary because

otherwise points along the dimension of an indicator that has lower variance

would appear closer and therefore the results would be more sensitive to

certain indicators simply due to their natural scaling.
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Name Function

Tanh tanh(x)

Sigmoid (1 + e−x)
−1

Softsign x
1+‖x‖

ReLU max(0, x)
Linear x

Table 2.1: List of commonly used activation functions for neural networks.

Figure 2.1: Overview of the Neural Network model.

2.6.4 Neural Networks

Feed-forward or non-recurrent Neural Networks consist of a set of layers

chained together in a way such that the subsequent layers take their input

from the output of previous layers with the input of the first layer being the

overall input and the output of the last layer being the overall output to the

model. Each layer consists of the following operations:
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1. multiply the input vector x by a weight matrix W

2. add a scalar bias term b

3. apply an element-wise non-linear activation function h (.)

Formally, the output of neuron j in layer i is equal to:

xji+1 = hi

(
bji +

∑
k

W j
i,kx

k
i

)
, (2.28)

where xki is the input from the k.th neuron of the previous layer, that is

the output of the k.th neuron in the i− 1.th layer. W j
i,k if the j.th row and

k.th column in the weight matrix of the i.th layer. bji is the bias term for the

j.th neuron of the i.th layer. hi is the activation function of the i.th layer.

xji+1 is the output of the j.th neuron in the i.th layer. A list of commonly

used activation functions is shown in Table 2.1.

Equation 2.28 can be written in vector form:

xi+1 = hi (bi +Wixi) , (2.29)

where xi is the output vector of the i − 1.th layer, Wi is the weight matrix

of the i.th layer, bi is the bias vector of the i.th layer and xi+1 is the output

vector of the i.th layer.

The overall output of a network that consists of n layers is therefore:

y = hn−1 (bn−1 +Wn−1hn−2 (. . . b1 +W1h0 (b0 +W0x))) (2.30)

where the input of the first layer is dented by x = x0 and the output of

the n.th layer is denoted by y = xn. An overview of the Neural Network

model’s architecture is shown in Figure 2.1
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2.6.4.1 Vanishing Gradients

Vanishing gradients is a common issue with neural networks. In case of a

sigmoid or tanh activation function, if the input value to the activation func-

tion is very low or very high and is outside of the nonlinearity of the function

then the function’s derivative drops to zero which slows down training be-

cause gradients will have little effect on the weights. One common heuristics

is to remedy the problem by initialising the weights using standard normal

random variables, but scaling with 1/
√
n where n is the number of neurons,

thereby resulting in a standard normal variable for the sum which is the

initial input to the activation function which is therefore not expected to

be either extremely low or high. This is the strategy that I chose, however

additional, more sophisticated methods are available, see for example [72].

2.6.5 Regularisation

The aim of regularisation methods is to solve ill-posed problems or to avoid

over-fitting of models. Two of the most widely used regularisation methods

are Lasso and Elastic Net.

2.6.5.1 Lasso Regularisation

Lasso regularisation has been introduced in [63]. It is essentially a linear

regression with an L1 penalty term on the regression coefficients. Formally,

the minimizes the following expression:

min
b,w

1

N

N∑
i=1

(Yi − b−XT
i w)

2 + α

p∑
j=1

|w| (2.31)

where Xi and Yi are the input and output vectors of the regression, w

is the vector or coefficients and b is the bias term. α is the main parameter
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that determines the strength of the regularisation. The Lasso regression is

also used as a feature selection method because the penalty term tends to

zero out the coefficients for terms that are less relevant.

2.6.5.2 Ridge Regression

Ridge regression, also known as Tikhonov regularisation is a linear regres-

sion with an L2 penalty term on the regression coefficients. Formally, the

minimizes the following expression:

min
b,w

1

N

N∑
i=1

(Yi − b−XT
i w)

2 + β

p∑
j=1

|w|2 (2.32)

where Xi and Yi are the input and output vectors of the regression, w

is the vector or coefficients and b is the bias term. β is the main parameter

that determines the strength of the regularisation.

2.6.5.3 Elastic Net Regularisation

Elastic Net regularisation is the combination of Lasso regularisation and

Ridge regression in the sense that it introduces both an L1 and an L2 penalty

term.

One way to avoid over-fitting is to use the Elastic Net method which

adds both an L1 and an L2 penalty term to the log-likelihood. The objective

function to minimise becomes:

min
b,w

1

n

n∑
i=1

(Yi − b−XT
i w)

2 + α|w|1 + β|w|2 (2.33)

where α is the factor controlling the strength of the L1 penalty term and

β is the factor for the L2 term. The benefits of also using an L2 penalty

term besides an L1 penalty term are that an L1 term alone tends to select
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only one component from a set of highly correlated components. Most of the

time this is desirable, however there might be cases where several of a highly

correlated subset of components carry useful information in which case there

is no way for an L1 regularisation alone to select more than one component,

however with an additional L2 term this can be controlled with the parameter

β. Furthermore, if the number of parameters p is higher than the number of

samples n, Lasso selects only at most n coefficients before it saturates - this

is not the case with Elastic Net.



Chapter 3

The Constant Intensity Model

In this chapter a risk-neutral valuation framework is developed for pricing

and hedging in-play football bets based on modelling scores by independent

homogeneous Poisson processes with constant intensities. The Fundamental

Theorems of Asset Pricing are extended to this set up which enables us to de-

rive arbitrage-free valuation formulae for contracts traded in the market. It is

also described how to calibrate the model to the market and how transactions

can be replicated and hedged. In order to refine the model two extensions

are suggested to account for the non-constant nature of the Poisson intensi-

ties observed in the market: local intensity models, and stochastic intensity

models.

3.1 Introduction

In this chapter we use independent homogeneous Poisson processes to model

the scores of the two teams. We postulate a market of three underlying assets

and show that within this model a unique martingale measure exists and

therefore the market of in-play football bets is arbitrage-free and complete.

32
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Homogeneous Poisson processes have been used before to model in-play

football bets. However, to our knowledge it hasn’t been shown before that

the fundamental theorems of asset pricing apply to this setup and that the

model results in an arbitrage-free and complete market that can be used to

risk-manage and replicate a portfolio of bets.

3.2 An example game

In order to demonstrate our results let us here select the Portugal vs. Nether-

lands game from the UEFA Euro 2012 Championship which was played on

the 22nd of June 2012. The reason for selecting this particular game is that

the game had a rather complex unfolding with Netherlands scoring the first

goal, but then Portugal taking the lead in the second half and finally winning

the game. This made the odds fluctuate wildly during the game which makes

it a good candidate to demonstrate how the model performs in an extreme

situation. The number of goals as a function of game time is shown on Figure

3.1.

Figures 3.2 and 3.3 show historical market values of two bet types traded

on a betting market called Betfair: Match Odds and Over-Under. Match

Odds contains three bets: home team winning the game, away team winning

the game and the draw. Over-Under contains bets on the total number of

goals where Under X.5 is a bet that pays off if the total number of goals is

equal or less than X. The dashed lines show the best buy and sell offers on

the market while the continuous lines show the calibrated model values (see

Section 3.5).

In case of Match Odds, the value of the bet for Netherlands winning

the game jumped after Netherlands scored the first goal. When the scores
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Figure 3.1: Scores of the two teams during the Portugal vs. Netherlands game
on the 22nd of June, 2012. The half time results were 1-1 and the
final results were a 2-1 win for Portugal.

became even after Portugal scored a goal, the value of the Draw bet jumped

up and when Portugal took the lead by scoring the third goal, the value of

the bet for Portugal winning the game jumped up. Finally, by the end of the

game the value of the bet for Portugal winning the game converged to 1 and

the value of the other bets went to zero.

In case of the Over-Under bets, trading ceased for the Under 0.5 bet after

the first goal because this bet became worthless. By the end of the game,

the value of the Under 3.5, 4.5, 5.5, 6.5 and 7.5 bets converged to 1 because

the total number of goals was actually 3 and the values of the Under 0.5, 1.5

and 2.5 bets went to zero.



3.3. Mathematical framework 35

Figure 3.2: Values of the three Match Odds bets during the game: Draw (black),
Portugal Win (red), Netherlands Win (blue). Dashed lines represent
the best market buy and sell offers while the continuous lines repre-
sent the calibrated model values. Note hat the value of the Nether-
lands Win bet jumps up after the first goal because the chance for
Netherlands winning the game suddenly increased. It jumped down
for similar reasons when Portugal scored it’s first goal and at the
same time the value of the Portugal Win and Draw bets jumped up.
By the end of the game, because Portugal actually won the game,
the value of the Portugal Win bet reached 1 while both other bets
became worthless.

3.3 Mathematical framework

In this section a risk-neutral valuation model for in-play football betting is

presented. To do so, I follow the standard financial mathematical approach

in which I start by assuming a probability space, then identify a market of

tradable underlying assets and postulate a model for the dynamics of these

assets. I show that the first and second fundamental theorems of asset pricing
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Figure 3.3: Values of Over/Under bets during the game. Under X.5 is a bet that
pays off in case the total number of goals by the end of the game
is below or equal to X. Marked lines represent the calibrated model
prices while the grey bands show the best market buy and sell offers.
Note that after the first goal trading in the Under 0.5 bet ceased and
it became worthless. By the end of the game when the total number
of goals was 3, all the bets up until Under 2.5 became worthless while
the Under 3.5 and higher bets reached a value of 1.

apply to this market, that is the market is arbitrage-free and complete which

means that all derivatives can be replicated by taking a dynamic position in

the underlying assets.

In classical finance, the distinction between the underlying asset (which

is usually a stock) and a derivative (which is usually an option on the stock)

is natural. However, in football betting there is no such clear distinction be-

cause all bets are made on the scores, which is not a tradable asset. Therefore,

in order to make the model work, I need to introduce two underlying assets,

which at the end of the game have values equal to the number of goals scored
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by the home and away teams. These assets are not among the most liquidly

traded bets, therefore the choice might seem unusual. However, it is conve-

nient from a mathematical point of view and towards the end of the section I

will show that completeness applies in an extended sense in which a bet can

not only be replicated from these artificial underlying assets, but also from

any two linearly independent bets.

3.3.1 Setup

Let us consider a probability space (Ω,F , ) that carries two independent

Poisson processes N1
t , N2

t with respective intensities µ1, µ2 and the filtration

(Ft)t∈[0,T ] generated by these processes. Let time t = 0 denote the beginning

and t = T the end of the game. The Poisson processes represent the number

of goals scored by the teams, the superscript 1 refers to the home and 2

refers to the away team. This notation is used throughout, the distinction

between superscripts and exponents will always be clear from the context.

The probability measure P is the real-world or physical probability measure.

I assume that there exists a liquid market where three assets can be traded

continuously with no transaction costs or any restrictions on short selling or

borrowing. The first asset Bt is a risk-free bond that bears no interests, an

assumption that is motivated by the relatively short time frame of a football

game. The second and third assets S1
t and S2

t are such that their values at

the end of the game are equal to the number of goals scored by the home

and away teams, respectively.

Definition 3. (model) The model is defined by the following asset dynam-

ics:



38 Chapter 3. The Constant Intensity Model

Bt = 1

S1
t = N1

t + λ1 (T − t) (3.1)

S2
t = N2

t + λ2 (T − t)

where λ1 and λ2 are known real constants.

3.3.2 Risk-neutral pricing of bets

Definition 4. (trading strategy) A trading strategy is an Ft-predictable

vector process φt = (φ0
t , φ

1
t , φ

2
t ) that satisfies

∫ t

0
|φi

s| ds < ∞ for i ∈ {0, 1, 2}.

The associated value process is denoted by

V φ
t = φ0

tBt + φ1
tS

1
t + φ2

tS
2
t . (3.2)

The trading strategy is self-financing if

V φ
t = V φ

0 +

∫ t

0

φ1
sdS

1
s +

∫ t

0

φ2
sdS

2
s . (3.3)

where
∫ t

0
φi
sdS

i
s, i ∈ {1, 2} is a Lebesgue Stieltjes integral which is well

defined according to Proposition 2.3.2 on p17 of [27].

Definition 5. (arbitrage-freeness) The model is arbitrage-free if no self-

financing trading strategy φt exist such that P
[
V φ
t − V φ

0 ≥ 0
]

= 1 and

P
[
V φ
t − V φ

0 > 0
]
> 0.

Definition 6. (bet) A bet (also referred to as a contingent claim or deriva-

tive) is an FT -measurable random variable XT .
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Remark 7. In practical terms this means that the value of a bet is revealed

at the end of the game.

Definition 8. (completeness) The model is complete if for every bet XT

there exists a self-financing trading strategy φt such that XT = V φ
T . In this

case it is said that the bet XT is replicated by the trading strategy φt.

Theorem 9. (risk-neutral measure) There exists a probability measure Q

referred to as the risk-neutral equivalent martingale measure such that:

(a) The asset processes Bt, S1
t , S2

t are Q-martingales.

(b) The goal processes N1
t and N2

t in measure Q are standard Poisson

processes with intensities λ1 and λ2 respectively (which are in general different

from the P-intensities of µ1 and µ2).

(c) Q is an equivalent measure to P, that is the set of events having zero

probability is the same for both measures.

(d) Q is unique.

Proof. The proof relies on Girsanov’s theorem for point processes (see Theo-

rem 2 on p.165 and Theorem 3 on page 166 in [27]) which states that N1
t and

N2
t are Poisson processes with intensities λ1 and λ2 under the probability

measure Q which is defined by the Radon-Nikodym-derivative

dQ
dP

= Lt, (3.4)

where

Lt =
2∏

i=1

(
λi
µi

)N i
t

exp [(µi − λi) t] . (3.5)

Then uniqueness follows from Theorem 8 on p.64 in [27] which states

that if two measures have the same set of intensities, then the two measures

must coincide. The Integration Theorem on p.27 of [27] states that N i
t − λit
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are Q-martingales, therefore the assets Si
t are also Q-martingales for i ∈

{1, 2}. Proposition 9.5 of [26] claims that P and Q are equivalent probability

measures. The process of the bond asset Bt is a trivial martingale in every

measure because it’s a deterministic constant which therefore doesn’t depend

on the measure.

Remark 10. Changing the measure of a Poisson process changes the intensity

and leaves the drift unchanged. This is in contrast with the case of a Wiener

process where change of measure changes the drift and leaves the volatility

unchanged.

Theorem 11. (arbitrage-free) The model is arbitrage-free and complete.

Proof. This follows directly from the first and second fundamental theorems

of finance. To be more specific, arbitrage-freeness follows from theorem 1.1

of [22] which states that the existence of a risk-neutral measure implies a so-

called condition “no free lunch with vanishing risk” which implies arbitrage-

freeness. Completeness follows from theorem 3.36 of [11] which states that

the model is complete if the risk-neutral measure is unique. Alternatively

it also follows from theorem 3.35 which states that the model is complete if

the martingale representation theorem holds for all martingales which is the

case according to Theorem 17, p.76 of [27].

Corollary 12. The time-t value of a bet is equal to the risk-neutral expecta-

tion of its value at the end of the game, formally:

Xt = EQ [XT |Ft] . (3.6)

Proof. This follows directly from Proposition 3.31 of [11].
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Corollary 13. The time-t value of a bet is also equal to the value of the

associated self-financing trading strategy φt, formally:

Xt = V φ
t = V φ

0 +

∫ t

0

φ1
sdS

1
s +

∫ t

0

φ2
sdS

2
s . (3.7)

Proof. This follows directly from Proposition 3.32 of [11].

Definition 14. (linear independence) The bets Z1
T and Z2

T are linearly

independent if the self-financing trading strategy φ1
t = (φ10

t , φ
11
t , φ

12
t ) that

replicates Z1
T is P-almost surely linearly independent from the self-financing

trading strategy φ2
t = (φ20

t , φ
21
t , φ

22
t ) that replicates Z2

T . Formally, at any time

t ∈ [0, T ] and for any constants c1, c2 ∈ R

c1φ
1
t 6= c2φ

2
t P a.s . (3.8)

Theorem 15. (replication) Any bet XT can be replicated by taking a dynamic

position in any two linearly independent bets Z1
T and Z2

T , formally:

Xt = X0 +

∫ t

0

ψ1
sdZ

1
s +

∫ t

0

ψ2
sdZ

2
s , (3.9)

where the weights ψ1
t , ψ

2
t are equal to the solution of the following equation:

 φ11
t φ12

t

φ21
t φ22

t

 ψ1
t

ψ2
t

 =

 φ1
t

φ2
t

 (3.10)

where (φ11
t , φ

12
t ), (φ21

t , φ
22
t ) and (φ1

t , φ
2
t ) are the components of the trading

strategy that replicates Z1
T , Z2

T and XT , respectively. The integral
∫ t

0
ψ1
sdZ

1
s

is to be interpreted in the following sense:

∫ t

0

ψ1
sdZ

1
s =

∫ t

0

ψ1
sφ

11
s dS

1
s +

∫ t

0

ψ1
sφ

12
s dS

2
s (3.11)
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and similarly for
∫ t

0
ψ2
sdZ

2
s .

Proof. Substituting dZ1
t = φ11

t dS
1
t + φ21

t dS
2
t , dZ2

t = φ12
t dS

1
t + φ22

t dS
2
t and

Equation 3.7 into Equation 3.9 verifies the proposition.

3.3.3 European bets

Definition 16. (European bet) A European bet is a bet with a value

depending only on the final number of goals N1
T , N2

T , that is one of the form

XT = Π
(
N1

T , N
2
T

)
(3.12)

where Π is a known scalar function N× N → R.

Example 17. A typical example is a bet that pays out 1 if the home team

scores more goals than the away team (home wins) and pays nothing other-

wise, that is Π(N1
T , N

2
T ) = 1 (N1

T > N2
T ) where the function 1 (A) takes the

value of 1 if A is true and zero otherwise. Another example is a bet that pays

out 1 if the total number of goals is strictly higher than 2 and pays nothing

otherwise, that is Π(N1
T , N

2
T ) = 1 (N1

T +N2
T > 2).

Proposition 18. (pricing formula) The time-t value of a European bet is

given by the explicit formula

Xt =
∞∑

n1=Nt
1

∞∑
n2=Nt

2

Π(n1, n2)P
(
n1 −N1

t , λ1 (T − t)
)
P
(
n2 −N2

t , λ2 (T − t)
)
,

(3.13)

where P (N,Λ) is the Poisson probability, that is P (N,Λ) = e−Λ

N !
ΛN if

N ≥ 0 and P (N,Λ) = 0 otherwise.

Proof. This follows directly form Proposition 12 and Definition 16.
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As it has been shown, the price of a European bet is a function of the

time t and the number of goals (N1
t , N

2
t ) and intensities (λ1, λ2). There-

fore, from now on I will denote this function by Xt = Xt (N
1
t , N

2
t ) or Xt =

Xt (t, N
1
t , N

2
t , λ1, λ2), depending on whether the context requires the explicit

dependence on intensities or not.

Definition 19. (greeks) The greeks are the values of the following forward

difference operators (δ1, δ2) and partial derivative operator applied to the

bet value:

δ1Xt

(
N1

t , N
2
t

)
= Xt

(
N1

t + 1, N2
t

)
−Xt

(
N1

t , N
2
t

)
(3.14)

δ2Xt

(
N1

t , N
2
t

)
= Xt

(
N1

t , N
2
t + 1

)
−Xt

(
N1

t , N
2
t

)
(3.15)

∂tXt

(
N1

t , N
2
t

)
= lim

dt→0

1

dt

[
Xt+dt

(
N1

t , N
2
t

)
−Xt

(
N1

t , N
2
t

)]
(3.16)

Remark. The forward difference operators δ1, δ2 play the role of Delta and

the partial derivative operator ∂t plays the role of Theta in the Black-Scholes

framework.

Theorem 20. (Kolmogorov forward equation) The value of a European

bet X (t, N1
t , N

2
t ) with a payoff function Π(N1

T , N
2
T ) satisfies the following

Feynman-Kac representation on the time interval t ∈ [0, T ] which is also

known as the Kolmogorov forward equation:

∂tX
(
t, N1

t , N
2
t

)
= −λ1δ1X

(
t, N1

t , N
2
t

)
− λ2δ2X

(
t, N1

t , N
2
t

)
(3.17)

with

XT

(
T,N1

T , N
2
T

)
= Π

(
N1

T , N
2
T

)
.
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Proof. The proposition can be easily verified using the closed form formula

from Proposition 18. Furthermore, several proofs are available in the litera-

ture, see for example Proposition 12.6 in [26], Theorem 6.2 in [25] or Equation

13 in [24].

Remark 21. Equation 3.17 also has the consequence that any portfolio of

European bets that changes no value if either team scores a goal (Delta-

neutral) does not change value between goals either (Theta-neutral). It is

noted without a proof, that this holds for all bets in general.

Corollary 22. The value of a European bet X (t, N1
t , N

2
t , λ1, λ2) satisfies the

following:

∂

∂λi
Xt = (T − t) δiXt (3.18)

where i ∈ {1, 2}.

Proof. This follows directly from Proposition 18.

Proposition 23. (portfolio weights) The components (φ1
t , φ

2
t ) of the trading

strategy that replicates a European bet XT are equal to the forward difference

operators (δ1, δ2) of the bet, formally:

φ1
t = δ1X

(
t, N1

t , N
2
t

)
(3.19)

φ2
t = δ2X

(
t, N1

t , N
2
t

)
. (3.20)

Proof. Recall that according to Proposition 13, the time-t value of a bet is

equal to Xt = X0+
∑2

i=1

∫ t

0
φi
sdS

i
s, which after substituting dSi

t = dN i
t −λidt
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becomes

Xt = X0 +

∫ t

0

(
φ1
sλ1 + φ2

sλ2
)
ds

+

N1
t∑

k=0

φ1
t1k
+

N2
t∑

k=0

φ2
t2k
, (3.21)

where I used
∫ t

0
φi
sdN

i
s =

∑N i
t

k=0 φ
i
t1k

where 0 ≤ tik ≤ t is the time of the k.th

jump (goal) of the process N i
t for i ∈ {1, 2}.

On the other hand, using Ito’s formula for jump processes (Proposition

8.15, [26]), which applies because the closed form formula in Proposition 18

is infinitely differentiable, the value of a European bet is equal to

Xt = X0 +

∫ t

0

∂sX
(
s,N1

s , N
2
s

)
ds

+

N1
t∑

k=0

δ1X
(
t1k, N

1
t1k−
, N2

t1k−

)
+

N2
t∑

k=0

δ2X
(
t2k, N

1
t2k−
, N2

t2k−

)
, (3.22)

where tik− refers to the fact that the value of the processes is to be taken

before the jump.

Because the equality between Equations 3.21 and 3.22 hold for every

possible jump times, the terms behind the sums are equal which proves the

proposition.

3.4 Valuation Formulae

This section summarises a list of analytical formulae for the values of some

of the most common in-play football bets. In the first sub-section I consider

European bets, while the second sub-section contains non-European bets.
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Bet type Payoff Π(N1
T , N

2
T ) Bet value Xt (N

1
t , N

2
t , λ1, λ2)

Home win 1 (N1
T > N2

T )
∑

k1>k2

∏2
i=1 P (ki −N i

t ,Λi)

Away win 1 (N1
T < N2

T )
∑

k1<k2

∏2
i=1 P (ki −N i

t ,Λi)

Draw 1 (N1
T = N2

T )
∑

k1=k2

∏2
i=1 P (ki −N i

t ,Λi)

Correct
Score 1 (N1

T = K1, N
2
T = K2)

∏2
i=1 P (Ki −N i

t ,Λi)

Over K 1 (N1
T +N2

T > K)
∑∞

k=K+1 P (k −N1
t −N2

t , (Λ1 + Λ2))

Under K 1 (N1
T +N2

T < K)
∑K−1

k=0 P (k −N1
t −N2

t , (Λ1 + Λ2))
Odd 1 (N1

T +N2
T = 1 mod 2) exp [− (Λ1 + Λ2)] cosh [(Λ1 + Λ2)]

Even 1 (N1
T +N2

T = 0 mod 2) exp [− (Λ1 + Λ2)] sinh [(Λ1 + Λ2)]

Winning
Margin 1 (N1

T −N2
T = K) exp [− (Λ1 + Λ2)]

(
Λ1

Λ2

)K−N1
t +N2

t
2

·B∣∣K−N1
t +N2

t

∣∣ (2√Λ1Λ2

)
Table 3.1: Valuation formulae for some of the most common types of in-play

football bets. Π
(
N1

T , N
2
T

)
denotes the payoff function, that is the

value of the European bet at the end of the game. P (k,Λ) denotes the
Poisson distribution, that is P (k,Λ) = 1

k!e
−ΛΛk and Λi = λi (T − t)

with i ∈ {1, 2} for the home and the away team, respectively.

3.4.1 European Bets

The value of a European bet at the end of the game only depends on the

final scores. The formulae of this section follow directly from Proposition

18. Table 3.1 summarises the payoffs and the values of the most common

European bets.

Home and Away win bets win is the home or the away team scores more

goals than the other. The Draw bet wins if the scores of the two teams are

equal. Correct Score K1-K2 wins if the final result is K1-K2. Over K and

Under K bets win if the total number of goals is over or under K. Odd and

Even bets win if the total number of goals is an odd or even number.

The Winning Margin K bet wins if the difference between the home

and away scores is equal to K. The value of this bet follows the Skellam

distribution and Bk (z) is the modified Bessel function of the first kind.
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3.4.2 Non-European Bets

Bets in this category have a value at the end of the game that depends not

only on the final score, but also on the score before the end of the game or

the order of scores. We consider two popular bets in this category: Next

Goal and Half Time / Full Time bets. Valuation of these bets follows from

Corollary 12.

3.4.2.1 Next Goal

The Next Goal Home bet wins if the home team scores the next goal. The

value of this bet is

Xt =
λ1

λ1 + λ2

[
1− e−(λ1+λ2)(T−t)

]
. (3.23)

Similarly, the value of the Next Goal Away bet is equal to

Xt =
λ2

λ1 + λ2

[
1− e−(λ1+λ2)(T−t)

]
. (3.24)

3.4.2.2 Half Time / Full Time

Half Time / Full Time bets win if the half time and the full time is won by

the predicted team or is a draw. Given that there are 3 outcomes in each

halves, there are 9 bets in this category. For example, the value of the Half

Time Home / Full Time Draw bet before the end of the first half is equal to:

Xt =
∑

k1>k2

∑
l1=l2

P
(
k1 −N1

t , λ1

(
T 1

2
− t
))

P
(
k2 −N2

t , λ2

(
T 1

2
− t
))

×P
(
l1 − k1, λ1

(
T − T 1

2

))
P
(
l2 − k2, λ2

(
T − T 1

2

))
.(3.25)
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In the second half, this bet either becomes worthless if the first half was

not won by the home team or otherwise becomes equal to the Draw bet.

3.5 Model Calibration

In this section I discuss how to calibrate the model on historical market

prices. I show that a unique equivalent martingale measure Q exists, that is,

a set of intensities λ1, λ2 exist that are consistent with the prices observed

on the market (see Propositions 9 and 11).

I apply a least squares approach in which I consider market prices of a

set of bets and find model intensities that deliver model prices for these bets

that are as close as possible to the market prices. Specifically, I minimize

the sum of the square of the weighted differences between the model and

market mid prices as a function of model intensities, using market bid-ask

spreads as weights. The reason for choosing a bid-ask spread weighting is

that I would like to take into account bets with a lower bid-ask spread with

a higher weight because the price of these bets is more certain. Formally, the

following expression is minimised:

R
(
λ1t , λ

2
t

)
=

√√√√√ 1

n

n∑
i=1

X i,MID
t −X i

t (λ
1
t , λ

2
t , N

1
t , N

2
t )

1
2

(
X i,SELL

t −X i,BUY
t

)
2

, (3.26)

where n is the total number of bets used, X i,BUY
t and X i,SELL

t are the best

market buy and sell quotes of the i.th type of bet at time t, X i,MID
t is the

market mid price which is the average of the best buy and sell quotes,

X i
t (N

1
t , N

2
t , λ

1
t , λ

2
t ) is the model price of the i.th bet at time t, given the

current number of goals N1
t , N

2
t and model intensity parameters λ1t , λ2t , see
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Proposition 18. This minimization procedure is referred to as model calibra-

tion.

Calibration has been performed at a time step of 1 minute during the

game, independently of any previous calibrations. I used the three most

liquid groups of bets which in our case were Match Odds, Over / Under and

Correct Score with a total of 31 bet types in these three categories.

The continuous lines on Figures 3.2 and 3.3 show the calibrated model

prices while the dashed lines are the market buy and sell offers. It can be seen

that the calibrated values are close to the market quotes, although they are

not always within the bid-ask spread. As the measures of the goodness of the

fit I use the optimal value of the cost function of Equation 3.26, which is the

average distance of the calibrated values from the market mid prices in units

of bid-ask spread. Its value is shown in Figure 3.4. I performed calibration

for multiple games of the Euro 2012 Championship, the time average of

the calibration errors for each game is shown in Table 3.2. The mean and

standard deviation of the calibration errors across games is 1.57±0.27 which

is to be interpreted in units of bid-ask spread because of the weighting of the

error function in Equation 3.26. This means, that on average, the calibrated

values are outside of the bid-ask spread, but not significantly. Given that a

model of only 2 parameters has been calibrated to a total of 31 independent

market quotes, this is a reasonably good result.

Finally, the implied intensities, along with the estimated uncertainties of

the calibration using the bid-ask spreads are shown in Figure 3.5. Contrary

to our initial assumption, under which the intensities are constant, the actual

intensities fluctuate over time. There seems to be an increasing trend in the

goal intensities of both teams.

In order to better understand the nature of the implied intensity process,
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Game Model vs Mkt in
units of Bid-Ask

Denmark vs. Germany 1.65
Portugal vs. Netherlands 1.18
Spain vs. Italy 2.21
Sweden vs. England 1.58
Italy vs. Croatia 1.45
Germany vs. Italy 1.50
Germany vs. Greece 1.34
Netherlands vs. Germany 1.78
Spain vs. Rep of Ireland 1.64
Spain vs. France 1.40
Average 1.57
Standard deviation 0.27

Table 3.2: Average calibration errors as shown in Figure 3.4 have been calculated
for multiple games of the UEFA Euro 2012 Championship and are
shown in this table. Note that the mean of the averages is just 1.57
with a standard deviation of 0.27 which shows that the model fit is
reasonably good for all the games analyzed.

I assumed the logarithm of the sum of the intensities of the two teams to

follow a Wiener process of constant drift and volatility, that is:

d ln
(
λ1t + λ2t

)
= µdt+ σdWt (3.27)

where µ and σ are the drift and volatility of the process. Table 3.3 shows

the results of the estimation for multiple games. The mean and standard

deviation of the drift terms are µ = 0.55± 0.16 1/90min while the mean and

standard deviation of the volatility terms are σ = 0.51±0.19 1/
√
90min. The

fact that implied goal intensities are increasing during the game is consistent

with findings of [23] who found gradual increase of scoring rates by analyzing

goal times of 4012 matches between 1993 and 1996.
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Figure 3.4: Calibration error during the game. Calibration error is defined as
the average distance of all 31 calibrated bet values from the market
mid prices in units of bid-ask spread. A formal definition is given
by Equation 3.26. Note that the calibration error for this particular
game is usually between 1 and 2 bid-ask spreads which is a reason-
ably good result, given that the model has only 2 free parameters to
explain all 31 bet values.

3.6 Hedging

In this section I demonstrate market completeness and show that any bet

can be replicated by dynamically trading in two linearly independent bets.

Recall Theorem 15, according to which any European bet Xt can be

replicated by dynamically trading in two linearly independent instruments

Z1
t and Z2

t :

Xt = X0 +

∫ t

0

ψ1
sdZ

1
s +

∫ t

0

ψ2
sdZ

2
s (3.28)
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Figure 3.5: Calibrated model parameters, also referred to as implied intensities
during the game. Formally, this is equal to the minimizer λ1

t , λ
2
t of

Equation 3.26. The bands show the parameter uncertainties esti-
mated from the bid-ask spreads of the market values of the bets.
Note that the intensities appear to have an increasing trend and also
fluctuate over time.

where the portfolio weights ψ1
t , ψ

2
t are equal to the solution of the equation:

 δ1Z
1
t δ1Z

2
t

δ2Z
1
t δ2Z

2
t

 ψ1
t

ψ2
t

 =

 δ1Xt

δ2Xt

 (3.29)

where the values of the finite difference operators δ (Definition 19) can be

computed using Proposition 18 using the calibrated model intensities. Equa-

tion 3.29 tells us that the change in the replicating portfolio must match the

change of the bet value Xt in case either team scores a goal. This approach

is analogous to delta hedging in the Black Scholes framework.
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Game Drift [1/90min] Vol [1/
√
90min]

Denmark vs. Germany 0.36 0.28
Portugal vs. Netherlands 0.49 0.44
Spain vs. Italy 0.60 0.76
Sweden vs. England 0.58 0.59
Italy vs. Croatia 0.82 0.60
Germany vs. Italy 0.76 0.39
Germany vs. Greece 0.65 0.66
Netherlands vs. Germany 0.43 0.32
Spain vs. Rep of Ireland 0.32 0.78
Spain vs. France 0.48 0.25
Average 0.55 0.51
Standard deviation 0.16 0.19

Table 3.3: Average drift and volatility of total log-intensities estimated for multi-
ple games of the UEFA Euro 2012 Championship. Note that the drift
term is positive for all games which is consistent with the empirical
observation of increasing goal frequencies as the game progresses.

The two bets that I use as replicating instruments are the bet for the

home team winning the game (Z1
t ) and the bet for the away team winning

the game (Z2
t ). The reason for this choice is that these are usually among

the most liquidly traded bets with the lowest bid-ask spreads and are always

linearly independent (see Definition 14).

It must be noted that if the scores become uneven and the game is close

to finishing, the leading team is almost certain to win the game. In this

case the values of these bets become insensitive to additional goals, because

another goal does not significantly change the probabilities of winning. In this

case the finite differences δiZj
t , i, j ∈ {1, 2} become small. If the contract

Xt that is being replicated is still sensitive to additional goals, then the

portfolio weights ψi
t can become very high which leads to instabilities in the

replication. This is similar to the problem of hedging a digital option with

the underlying stock when the stock price is close to strike and the option is
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close to maturity. In order to avoid this problem, I perform replication only

in those cases when the absolute number of any of the replicating instruments

we need to hold in the portfolio is less than 50.

In case of the Correct Score 2-2 bet (Xt), the value of the bet along with

the value of the replicating portfolio is shown in Figure 3.6. When computing

the value of the replicating portfolios, I assumed no transaction costs, that

is I assumed that the replicating instruments are traded on the market mid

price. It can be seen that the value of the replicating portfolio matches the

value of the original bet reasonably well. It seems that the main source of

error is the difference of jump sizes at times when a goal is scored.

Figure 3.7 shows the jumps of contract values against the jumps of repli-

cating portfolio values when a goal is scored. This plot contains all contracts

and all goals of the Portugal - Netherlands game. It can be seen that the

jumps of the original contract values are in line with the jumps of the repli-

cating portfolio values with a correlation of 89%. Table 3.4 shows these

correlations for multiple games. It can be seen that the correlations are rea-

sonably high for all games with an average of 80% and a standard deviation

of 19%.

3.7 Summary

In this chapter I have shown that the Fundamental Theorems of Asset Pricing

apply to the market of in-play football bets if the scores are assumed to follow

independent Poisson processes of constant intensities. I developed general

formulae for pricing and replication. I have shown that the model of only 2

parameters calibrates to 31 different bets with an error of less than 2 bid-

ask spreads. Furthermore I have shown that the model can also be used for
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Figure 3.6: Values of the Correct Score 2-2 bet (red) and the replicating portfolio
(blue). Note that since the final result of this game was 2-1, the value
of this contract dropped to zero at the end of the game.

replication and hedging. Overall I obtained good agreement between actual

contract values and the values of the corresponding replicating portfolios,

however I point out that hedging errors can sometimes be significant due to

the fact the implied intensities are in fact not constant. In order to account

for this effect, two potential extensions of the model could be considered:

local intensity models where intensities are deterministic functions of the

state and stochastic intensity models where intensities change randomly.
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Figure 3.7: Changes of actual contract values (horizontal axis) and changes of
values of the corresponding replicating portfolios (vertical axis) dur-
ing times of goals. The changes are computed between the last traded
price before a goal and the first traded price after a goal, for all goals.
The figure contains all contracts that have been replicated. Note that
the value changes of the replicating portfolios corresponds relatively
well to the value changes of the original contracts because the blue
points are lying close to the slope-1 black line.
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Game Correlation
Denmark vs. Germany 79%
Portugal vs. Netherlands 89%
Spain vs. Italy 97%
Italy vs. Croatia 47%
Spain vs. France 86%
Germany vs. Italy 99%
Germany vs. Greece 60%
Netherlands vs. Germany 93%
Spain vs. Rep of Ireland 98%
Sweden vs. England 50%
Average 80%
Standard deviation 19%

Table 3.4: Correlation between the jumps of bet values and jumps of replicating
portfolios at times of goals for all bets of a game.



Chapter 4

The Local Intensity Model

In this chapter I present a model which is an extension of the Constant In-

tensity Model discussed in Chapter 3 by introducing intensities that depend

on the number of goals and time. I show that this model is in many respects

similar to the Local Volatility model which is widely used in finance for option

pricing. Borrowing the terminology from finance, I am referring to the model

as the Local Intensity model and to the state and time dependent intensity

function as the local intensity function. The advantage of the Local Inten-

sity model over the homogeneous Poisson model is that if the local intensity

function is chosen appropriately, it can produce an arbitrary, not necessarily

poissonian marginal distribution. Therefore the model can be perfectly cali-

brated to any empirically observed set of bet prices on the final score. I am

deriving formulae that perform this perfect calibration which are similar to

Dupire’s formula in the Local Volatility model. Calibration on real market

data is also demonstrated.

58
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4.1 Local Intensity model in football betting

In this section I am considering the Local Intensity model for in-play football

betting which is an extension to the homogeneous Poisson model by allowing

for state and time dependent intensities. The necessity for the model comes

from the fact that neither the historical realised goal frequencies, nor the

market implied intensities are constant, the distribution of goals doesn’t fol-

low a homogeneous Poisson distribution but is more heavy-tailed. In fact, the

situation is very similar to option markets where the Black-Scholes implied

volatility is not constant, but depends on the option strike and therefore the

distribution assumed by the market is more fat-tailed than a log-normal dis-

tribution. This becomes a practical problem when we are attempting to price

an over-the-counter option or bet which is not traded on the market because

it’s unclear which implied volatility or intensity shall be used. The answer

is that the model needs to be extended in a way such that it is consistent

with all market observable prices, that is it is able to reprice the intensity

or volatility smile and produces the more heavy-tailed distributions. The

answer in finance was Dupire’s local volatility model ([31] and [45]) which

is an elegant extension of the Black-Scholes model: instead of assuming a

constant volatility, the local volatility model assumes that the volatility is a

function of spot and time, this function is referred to as the local volatility

surface. The model became popular because Dupire derived a simple calibra-

tion formula to determine the shape of the local volatility surface from both

the set of European call option prices and their smiling implied volatility

surface. Using the calibrated local volatility surface in a partial differential

equation (PDE) or Monte-Carlo simulation exactly reprices all European op-

tions and is widely used to price exotic options today across asset classes

that are not traded on exchanges but rather directly between two parties
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over the counter (OTC). Thereby the local volatility model can not only be

calibrated to option prices that are consistent with the log-normal distribu-

tion of the Black-Scholes model, but to the prices observed in actual markets

which are implied by more heavy-tailed distributions. In this chapter I show

that the implied intensity smile also exist in football betting, both in histor-

ical and market implied goal frequencies, that is the distribution of actual

scores is more heavy-tailed than the standard Poisson distribution (historical

frequencies) and that the market is aware of this fact (market implied inten-

sities). Then I introduce the local intensity model where the goal intensity

is not constant, but depends on the number of goals and time. I derive the

Dupire’s calibration formula for football betting that delivers a local intensity

surface from either bet prices or implied intensities. Finally I demonstrate

that the model does correctly reprice the market intensity smile and there-

fore can be calibrated to more heavy-tailed distributions than the standard

Poisson distribution. Throughout the chapter I remain in 1 dimension, that

is I consider one team only for simplicity, but extension to two teams should

be straightforward.

Formally, within the Local Intensity model, the number of goals follows

the following SDE:

dNt = dN λLoc(Nt,t)
t , (4.1)

where Nt denotes the total number of goals scored by the two teams up

to time t, N λLoc(Nt,t)
t is a Poisson process of intensity λLoc(Nt ,t) and λLoc(Nt ,t)

is the local intensity which is a function of the number of goals Nt and time

t.

The local intensity function can be defined as the jump intensity of the

process, conditional on the current number of goals and time:
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Definition 24. (Local intensity) function is defined by:

λLoc (K,T ) = lim
dt→0

1

dt
P [Nt+dt = Nt + 1|t = T,Nt = K] , (4.2)

where Nt is the number of goals at time t.

The time evolution of the marginal distribution is described by the Kol-

mogorov forward equation which in case of the process 4.1 takes the following

form:

∂

∂T
f (K,T ) = −λLoc (K,T ) f (K,T ) + λLoc (K − 1, T ) f (K − 1, T ) , (4.3)

where f (K,T ) = P [Nt = K, t = T ] is the marginal density function.

4.1.1 European Options vs. Football Bets

In finance, the most liquid options are European call and put options with a

payoff function of (ST −K)+ at maturity, which is the reason for the Dupire

formulae 2.7 and 2.8 being developed for these products. However, digital

options with a payoff of Θ(ST −K) (where Θ(x) is the Heaviside unit step

function) can also be used in theory, Black-Scholes volatilities can also be

implied from these products which are in general different from European

implied volatilities and similar formulae can also be developed. Finally, in

theory Arrow-Debreu or Dirac-like options with a payoff of δ (ST −K) (where

δ (x) is the Dirac delta) could also be used, but these products are not traded

in practice.

However, the situation is somewhat different in football betting. Euro-

pean bets with a payoff of (NT −K)+ are not traded in practice. However,

digital bets with a payoff of Θ(NT −K) have a liquid market and are called
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Over-Under bets, where “over” refers to digital calls and “under” refers to

digital puts. Arrow-Debreu-like bets with a payoff of δKNT
(where δji denotes

the Kronecker delta) are also traded in practice and are called Correct Score

bets. Because both of these classes of bets are traded, I am developing the

Dupire formulae for both classes.

4.1.2 Over-Under bets

The most liquidly traded bets on the total score are called Over-Under bets.

The payoff of these bets depends on the total number of goals NT at a specific

time of maturity T which is usually equal to either the half time or the full

time. The payoff is equal to 1 (that is, the bet wins) if NT ≤ K and 0

otherwise, where K is called the strike of the bet. Bets are available with

a range of different strikes usually up to 8 at full time. The value of an

Over-Under bet of strike K and maturity T is denoted by F (K,T ) and is

equal to the marginal cumulative distribution function of NT :

F (K,T ) = P [NT ≤ K] (4.4)

The implied intensity of this bet is equal to the intensity of a Poisson

distribution that has a cumulative distribution equal to the value of the bet.

Definition 25. (Implied intensity of an Over-Under) bet of strike K

and maturity T is defined by ΛOU
Impl (K,T ) that satisfies:

F (K,T ) = e−ΛOU
Impl (K,T )

K∑
k=0

(
ΛOU

Impl (K,T )
)k

k!
=

Γ
(
K + 1,ΛOU

Impl (K,T )
)

K!
,

(4.5)

where Γ (n, x) denotes the incomplete gamma function.
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Dupire’s calibration formulae 2.7 and 2.8 can be extended to the Local

Intensity model as follows.

Proposition 26. (Dupire’s formula for Over-Under bets) The local

intensity surface can be calibrated from prices of Over-Under bets using the

following formula:

λLoc (K,T ) = −
∂
∂T
F (K,T )

F (K,T )− F (K − 1, T )
(4.6)

Proof. The proposition can be proved by substituting Equation 4.6 directly

into the Kolmogorov forward equation 4.3 and using

F (K,T ) =
K∑
k=0

f (k, T ) , (4.7)

which relates the marginal cumulative density to the distribution func-

tion.

Proposition 27. (Dupire’s formula for Over-Under implied inten-

sities) The local intensity surface can be calibrated from the implied intensity

surface using the following formula:

λLoc (K,T ) = −
e−ΛOU

Impl (K,T )
(
ΛOU

Impl

)K
(K,T )

∂ΛOU
Impl (K,T )

∂T

Γ
(
K + 1,ΛOU

Impl (K,T )
)
−KΓ

(
K,ΛOU

Impl (K − 1, T )
) , (4.8)

Proof. The time derivative of the cumulative distribution in terms of implied

intensity is:

∂F (K,T )

∂T
= e−ΛOU

Impl (K,T )

(
ΛOU

Impl

)K
(K,T )

K!

∂ΛOU
Impl (K,T )

∂T
. (4.9)
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Plugging this back to Equation 4.6 along with Definition 25 of implied

intensity proves the formula.

Remark A first order expansion of the calibration formula if implied

intensity changes slowly with strike can be obtained as follows:

λLoc (K,T ) =
∂ΛOU

Impl (K,T )

∂T

[
1 +K

ΛOU
Impl (K − 1, T )− ΛOU

Impl (K,T )

ΛOU
Impl (K,T )

]−1

(4.10)

4.1.3 Correct Score bets

Correct Score bets are also known as Arrow-Debreu securities and are also

traded on the market, however the liquidity is somewhat less than the liq-

uidity of Over-Under bets. The payout of a Correct Score bet is equal to

1 if the number of goals at a future time T is equal to the strike K and 0

otherwise.

The value of a Correct Score bet is equal to the probability P [NT = K]:

f (K,T ) = P [NT = K] , (4.11)

Definition 28. (Implied intensity of a Correct Score bet) of strike K

and maturity T is ΛCS
Impl (K,T ) that satisfies

f (K,T ) = e−ΛCS
Impl (K,T )

(
ΛCS

Impl (K,T )
)K

K!
. (4.12)

Proposition 29. (Dupire’s formula for Correct Score bets) The local

intensity surface can be calibrated from prices of Correct Score bets using the
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following formula:

λLoc (K,T ) = −
∂
∂T

∑K
k=0 f (k, T )

f (K,T )
(4.13)

Proof. This follows directly from 4.3.

Proposition 30. (Dupire’s formula for Correct Score implied in-

tensities)

The Local Intensity surface can be expressed as a function of Correct Score

Implied Intensity surface as:

λLoc (K,T ) = eΛ
CS
Impl (K,T ) K!(

ΛCS
Impl (K,T )

)K K∑
k=0

e−ΛCS
Impl (k,T )

(
ΛCS

Impl (k, T )
)k

k!

×

[
1− k

ΛCS
Impl (k, T )

]
∂ΛCS

Impl (k, T )

∂T
(4.14)

Proof. This follows from substituting the following time derivative into 4.13:

∂f (K,T )

∂T
=
∂ΛCS

Impl (K,T )

∂T

[
K

ΛCS
Impl (K,T )

− 1

]
e−ΛCS

Impl (K,T )

(
ΛCS

Impl (K,T )
)K

K!

(4.15)

4.2 Empirical demonstration

4.2.1 Historical realised intensity smile

A quick overview of historical distribution of full time total scores confirms

the findings of [1, 3, 4, 49] that the distribution doesn’t follow the Poisson
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Total goals Number of Cumulative density Implied intensity
K games F (K,T ) λImpl (K,T )
0 1962 7.70% 0.0285
1 4454 25.20% 0.0298
2 6181 49.47% 0.0300
3 5467 70.94% 0.0302
4 3844 86.04% 0.0302
5 1932 93.62% 0.0309
6 1026 97.65% 0.0309
7 365 99.08% 0.0318
8 163 99.73% 0.0317
9 49 99.92% 0.0321
10 15 99.98% 0.0325
11 3 99.99% 0.0352
12 2 100.00% 0.0364

Table 4.1: Historical distribution of full time T = 90min total score in 25464 foot-
ball games between 1996 and 2013. The Implied intensity λImpl (K,T )
column shows the Poisson intensities consistent with the correspond-
ing Cumulative density F (K,T ). Note that implied intensities are not
constant and show an increasing trend as a function of score which
shows that score distribution is more heavy-tailed than the Poisson
distribution.

distribution, but is more heavy tailed. Table 4.1 shows the distribution of full

time T = 90min total score in 25464 football games between 1996 and 2013.

The cumulative density column F (K) shows the ratio of games with full

time total score less than or equal to the given score. Intensities λImpl (K)

have been implied using Definition 25 using a unit of [1/min]. Figure 4.1

shows the intensity values. Intensities are increasing with the number of

goals which confirms that the historical distribution of full time total scores

is more heavy-tailed than the Poisson distribution.
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Figure 4.1: Historical implied intensities λImpl (K,T ) as a function of strike K.
Intensities were implied from the historical cumulative distribution
F (K,T ) of the full time T = 90min distribution of 25464 football
games between 1996 and 2013. Note that implied intensities are not
constant and show an increasing trend as a function of score which
shows that score distribution is more heavy-tailed than the Poisson
distribution.

4.2.2 Market implied intensity smile

Betting markets seem to be aware of this fact. Table 4.2 shows in-play

market prices of Over-Under bets at the 0th minute and 41st second (the

time of the first market quote in the data set after the game started) of the

Spain vs. Italy game of the 2012 UEFA European Championship which took

place on the 10th of June 2012. The price columns show the bid and ask

prices of Over-Under bets that pay out 1 if the full time score is less than

or equal to the strike, that is NT ≤ K. The implied intensity columns show
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Strike Bid Price Ask Price Bid Intensity Ask Intensity
K FBid (K,T ) FAsk (K,T ) λBid

Impl (K,T ) λAsk
Impl (K,T )

0 12.82% 15.15% 0.0220 0.0202
1 36.31% 37.04% 0.0232 0.0229
2 62.96% 63.29% 0.0233 0.0232
3 81.97% 82.76% 0.0236 0.0231
4 92.31% 92.86% 0.0240 0.0235
5 97.09% 98.04% 0.0245 0.0223
6 99.01% 99.09% 0.0249 0.0245

Table 4.2: In-play market prices of Over-Under bets at the 0th minute and 41st
second of the Spain vs. Italy game of the 2012 UEFA European Cham-
pionship which took place on the 10th of June 2012. The price columns
show the bid and ask prices of Over-Under bets that pay out 1 if the
full time score is less than or equal to the strike, that is NT ≤ K. The
implied intensity columns show the corresponding Poisson implied in-
tensities from both the bid and the ask quotes in units of [1/min].
Note that implied intensities are not constant, but show an increasing
trend as a function of strike. This confirms that the market is pricing
these bets by assuming a distribution of final scores which is more
heavy-tailed than the Poisson distribution.

the corresponding Poisson implied intensities from both the bid and the ask

quotes in units of [1/min]. Figure 4.2 shows the implied intensities as a

function of strike. Note that implied intensities are not constant, but show

an increasing trend as a function of strike. This confirms that the market is

pricing these bets by assuming a distribution of final scores which is more

heavy-tailed than the Poisson distribution.

In order to demonstrate the method, I calibrated a local intensity surface

λLoc (K,T ) using the market implied volatility smile λImpl (K,T ) shown in

Figure 4.2. Because the implied volatilities are only available at a single

maturity T = 90min which corresponds to the full time of the game, the

first step is to interpolate the implied intensity smile to all maturities t < T

before the full time. For simplicity I used a constant interpolation per strike,

but if for example implied intensities at half time are also available, then a
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Figure 4.2: Implied intensity smile of bid and ask quotes of in-play Over-Under
bets at the 0th minute and 41st second of the Spain vs. Italy game
of the 2012 UEFA European Championship which took place on the
10th of June 2012. Note that implied intensities are not constant,
but show an increasing trend as a function of strike. This confirms
that the market is pricing these bets by assuming a distribution of
final scores which is more heavy-tailed than the Poisson distribution.

linear interpolation can also be used which matches the half time implied

intensities. The interpolated implied intensity surface is shown in Figure 4.3.

Using the calibration formula in Equation 4.8, the implied intensity sur-

face can be transformed to a local intensity surface which is shown in Figure

4.3

The local intensity function shown in Figure 4.4 can be used directly in a

Monte-Carlo method to generate paths according to the SDE 4.1. The gen-

erated Monte-Carlo paths are consistent with the original implied volatility
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Figure 4.3: Implied intensity surface generated from the implied intensity smile
shown on Figure 4.2 by applying a constant interpolation to all ma-
turities.

surface, that is, the values of all Over-Under bets within the Monte-Carlo

simulation are equal to the original values of these bets. Figure 4.5 shows

the implied intensity smile of the Over-Under bets which have been priced in

a Monte-Carlo simulation of 10000 paths using the calibrated local intensity

surface shown in Figure 4.4. Note that the repriced implied intensities match

the original implied intensities shown in Figure 4.2.

Figure 4.6 summarises the steps of the method.
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Figure 4.4: Local intensity surface generated from the implied intensity surface
shown on Figure 4.3 by applying the calibration formula 4.8.

4.3 Summary

In this chapter I introduced the Local Intensity model for pricing total goal

over-under bets in in-play football betting. The need for the model was mo-

tivated by the observation of the so-called ”intensity smile” effect, that is the

fact that implied intensities of different strikes are non-constant which contra-

dicts the Constant Intensity Model. This is similar to the ”volatility smile”

effect in option markets. The Local Intensity model itself was motivated by

Dupire’s Local Volatility model by the introduction of a local intensity sur-

face that is the function of time and the current number of goals. Dupire’s

calibration formulae have been extended to the Local Intensity model and

it has been demonstrated that the model can be perfectly calibrated to an
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Figure 4.5: Implied intensity smile of the Over-Under bets within the Monte-
Carlo simulation of 10000 paths using the calibrated local intensity
surface shown in Figure 4.4. Note that the repriced implied intensi-
ties match the original implied intensities shown in Figure 4.2.

arbitrary intensity smile.
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Market prices F ({Ki, Ti})

Implied intensities λImpl ({Ki, Ti})

Implied intensity sur-
face λImpl (K,T )

Model prices

Monte-Carlo simulation

Local intensity surface λLoc (K,T )

Figure 4.6: Summary of the steps involved in calibrating the Local Intensity
model. Market prices of Over-Under bets F ({Ki, Ti}) are first trans-
formed to implied intensities λImpl ({Ki, Ti}) which are then interpo-
lated into an implied intensity surface λImpl (K,T ). Local intensity
surface λLoc (K,T ) is constructed using the calibration formula 4.8
which in turn can be used to run a Monte-Carlo simulation to price
an arbitrary bet. The prices computed in this way are going to be
consistent with the original prices of Over-Under bets.



Chapter 5

Microscopic Model of Football

I propose a Microscopic Model to describe the evolution of a football game.

The model is an extension of the Local Intensity Model by taking into account

the position of the ball and the team holding the ball besides the number of goals

scored and time. The model describes the evolution of these state parameters

through a drift and diffusion coefficient for the ball position, a ball losing

intensity for the team holding the ball and a usual goal intensity for the goals

scored. I found that the initial ball position and the team holding the ball

has an effect on goal scoring intensities for about the first 30 seconds, beyond

the initial state becomes less relevant and scoring intensities approach their

stationary values.

5.1 Model definition

I propose a model for the microscopic dynamics of a football game. Formally,

the state of the game within the model is characterized by three random

variables: the position of the ball on the field, the team holding the ball

and the goals scored by the two teams. These quantities are assumed to

74
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be interdependent. I use standard stochastic processes to build the model.

Therefore, the position of the ball is driven by a 2-dimensional Brownian

motion characterized by a drift and volatility parameter. The two teams

are assumed to loose the control of the ball according to a Poisson point

process of a given intensity parameter. Finally, the goals scored by the two

teams are driven by two Poisson processes, one for each team with it’s own

intensity. These driving Brownian and Poisson processes are assumed to be

independent, however, all of their parameters are assumed to be dependent

on the current state and time, this dependence links the three processes.

5.1.1 Formal Model Definition

Definition 31. Within the model, the state variables evolve according to

the following stochastic difference equations:

dXt = µdt+ σdWt (5.1)

dUt = −2UtdN ν
t (5.2)

dNu
t = dN λu

t , (5.3)

where t denotes the time elapsed since the beginning of the game.

The state is described by three variables: Xt, Ut and Nu
t . Xt denotes the

2-dimensional coordinates of the ball at time t, with Xt ∈ [(0, 0), (100, 100)],

where the line (0, 0) − (0, 100) is the home team’s goal line and (100, 0) −

(100, 100) is the away team’s goal line. Ut ∈ {−1, 1} denotes the team owning

the ball at time t with 1 referring to the home team and −1 referring to the

away team, however depending on context sometimes I explicitly refer the

two teams by HOME and AWAY . Nu
t denotes the total number of goals
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awarded to team u at time t.

The driving stochastic processes dWt, dN ν
t and dN λu

t are all independent

of each other. dWt is a standard 2-dimensional Brownian process, dN ν
t is a

standard Poisson process of intensity ν and dN λu
t are two standard Poisson

processes of intensity λu for u ∈ {−1, 1}.

The model parameters are µ, σ, ν, λu, where µ is the 2-dimensional drift

vector of the ball, σ is the 2-by-2 upper triangular volatility matrix of the

ball, ν is the intensity of losing the ball to the opponent and λu are the

two team’s goal scoring intensities. In the general case, all of the model

parameters are functions of all of the state and time, that is (Xt, Ut, N
u
t , t).

This introduces the dependency between the state parameters.

The initial conditions intuitively follow from the rules of the football

game: X0 is equal to the middle of the field which is (50, 50), U0 is a Bernoulli

random variable with equal probabilities for the two teams and Nu
0 are both

equal to zero. The boundary conditions for the ball position Xt are reflective

at the boundaries of the field.

5.1.2 Effects not accounted for by the Microscopic Model

There are a few effects that are not considered by this model. First, in a real

football game, the ball is passed between several players, this model doesn’t

take the players into account, it only models the actual position of the ball

and assumes it to be a continuous diffusion process. Second, a real football

game is interrupted from time to time for several reasons, such as the ball

going out of the field for a throw-in, corner kick, injury, penalty cards and so

on; none of these events are modelled and the game is assumed to progress

continuously. Third, goals scored during free kicks and penalty kicks are

modelled the same way as goals scored during regular game play.
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t NAWAY
t NHOME

t Xx,t Xy,t Ut

13:9 0 0 66.9 37.7 HOME
13:10 0 0 70.5 52.2 HOME
13:11 0 0 69.7 35.8 HOME
13:13 0 0 72.8 8.1 HOME
13:16 0 0 67.2 36.7 HOME
13:18 0 0 71.2 39 HOME
13:21 0 0 98.2 37.3 HOME
13:22 0 0 92.3 47.2 HOME
14:20 0 1 50 49.7 AWAY
14:21 0 1 47 49.1 AWAY
14:23 0 1 65 65.2 AWAY
14:25 0 1 69.2 37.4 AWAY
14:27 0 1 61.7 7.9 AWAY
14:30 0 1 58.1 18.8 AWAY

Table 5.1: Example time series of the state variables t, Xt, Ut and Nt for the
Spain vs. Italy game of the 2012 UEFA European Championship.

5.2 Estimation of model parameters

5.2.1 Historical football game data

Our data set consists of the state variables U , X andN recorded at irregularly

spaced discrete times t for all of the 31 games of the 2012 UEFA European

Championship. An example of the data set is shown in Table 5.1 which

reports the time around the first goal of the Spain vs. Italy game. The state

variables are recorded at a rate not more frequent than a second.

5.2.2 Estimation of model parameters from historical

data

In order to estimate the model parameter surfaces µ, σ, ν, λu that are each

functions of the state parameters (X,U,N, t), I am discretising the state

space, assuming that the parameter surfaces are constant within the discrete
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bins and estimating the values of the parameters in the bins.

To discretize the position X, I split the football field by a uniform 10-by-

10 grid to regions of equal size. Similarly, in order to discretize time t, I split

each game in 4 equal time intervals, such that both the first and the second

half consists of two equal intervals. The scores N and the team U don’t need

to be discretised because they are already discrete variables. In this way I

generated a total of 5167 discrete states for every possible state vector that

appears in any of the 31 games.

Because the parameters are assumed to be constant within the bins, Equa-

tions 5.1, 5.2 and 5.3 become independent. The maximum likelihood esti-

mates of the parameters in a single bin are:

µ =

∑n
i=1∆Xti∑n
i=1 ∆ti

(5.4)

σ2 =
1

n

n∑
i=1

∆Xti∆X
T
ti
∆ti − µµT 1

n

n∑
i=1

∆ti (5.5)

ν =

∑n
i=1∆Ui∑n
i=1∆ti

(5.6)

λu =

∑n
i=1∆N

u
i∑n

i=1∆ti
(5.7)

where the changes of state are simply the difference between two consec-

utive states:

(∆X,∆U,∆N,∆t)i = (X,U,N, t)i+1 − (X,U,N, t)i . (5.8)

Using these equations the parameters can be estimated in all of the dis-

crete state bins using the recorded state variables from all of the 31 games.

Because I did not differentiate between games and used all of the available
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data, this resulted in the parameter values for an “average” game.

5.2.3 Dependencies of model parameters on state vari-

ables

A priori I assumed that the model parameters depend on every state pa-

rameter. However, in order to understand whether this is really the case

or whether some parameters don’t depend strongly on some state variables

which might potentially allow for simplifications in the model, I show the es-

timated parameter values as a function of each state variable in the following

subsections. The first subsection shows the dependency on ball coordinate

X, the second subsection shows the dependency on game time t, the third

subsection shows the dependency on total goals NHOME + NAWAY and the

fourth subsection shows the dependency on goal difference NHOME −NAWAY .

The dependency on the team U is shown explicitly because the parameters

are shows for both teams in each subsection.

5.2.3.1 Model parameters as a function of ball coordinate

This subsection shows the dependency of the model parameters with respect

to the ball coordinate X and the team holding the ball U .

Figures 5.1, 5.2, 5.3 and 5.4 show the calibrated parameter surfaces as a

function of ball coordinate X and the team holding the ball U . The HOME

team’s gate is always on the left of the figures, that is x = 0 and the AWAY

team’s gate is at the right of the figures, that is x = 100. Dependencies on

the number of goals Nu and time t have been averaged on these figures.

Figure 5.1 shows the x and y component of the ball drift parameter µ as

a function of ball position X and the team holding the ball U . It can be seen

that µx is positive when the home team holds the ball and it is negative when



80 Chapter 5. Microscopic Model of Football

Figure 5.1: Ball drift µx and µy as a function of ball coordinate X and team
holding the ball U . The units are in [1% of the length of the football
field] per minute. Therefore a value of 100 means one football field
length per minute.

the away team hold the ball which corresponds to the fact that each team

tries to bring the ball closest to the opponent’s gate. It can also be seen that

the absolute value of mux decreases as the ball gets closer to the opponent’s

gate which can be explained by the opponent slowing down the ball as it gets

closest to it’s gate. The y component of the ball drift parameter µy is such

that the ball tries to stay at the middle of the field, regardless of which team

has the ball.

Figure 5.2 shows the xx, xy and yy components of the square of the

ball volatility parameter σ, that is the components of the variance matrix

as a function of ball position X and the team holding the ball U . It can be

seen that the xx components σx is higher towards the team’s own gate and

decreases gradually as the ball gets closer to the opponent’s gate. The ball

gets “frozen” in a way as it hits the defense. The yy term σy is more or less
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Figure 5.2: Components of the ball volatility matrix σxx, σyy and σxy as a func-
tion of ball coordinate X and team holding the ball U . The units are
in [1% of the length of the football field] per

√
minute. Therefore a

value of 100 corresponds to a standard deviation of one football field
over the course of one minute.

constant, however it also decreases somewhat towards the opponent’s gate.

The cross term σxy is close to zero.

Figure 5.3 shows the ball losing intensity ν as a function of ball position

X and the team holding the ball U . It shows the counter-intuitive result that

a team is more likely to loose the ball when it’s closer to it’s own gate.

Figure 5.4 show the goal scoring intensity λu as a function of ball position

X and the team holding the ball U . The top left figure shows the intensity

for the home team when it has the ball. It can be seen that intensity is zero

almost everywhere, except near to the away team’s gate. The same can be

seen on the bottom right figure that shows the goal scoring intensity for the

away team when it has the ball. The top right and bottom left figures show

the intensities of own goals, it can be seen that the values are significantly
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Figure 5.3: Ball losing intensity ν as a function of ball coordinate X and team
holding the ball U . The units are in 1 per minute. Therefore a value
of 2 means losing the ball twice a minute on average.

lower, but still non-zero.

Figure 5.5 shows the ball drift µ as arrows and the volatility σ as ellipses.

It can be seen that each team attempts to push the ball towards the opponent

along the x axis and towards the center of the field along the y. The drift

along the x axis towards the opponent’s gate becomes weaker as the ball gets

closer to the gate while the push towards the center along the y axis is roughly

the same regardless of the distance from the gate. The ball volatilities don’t

seem to depend heavily neither on the position, nor the direction or the team.

Figure 5.6 shows the goal scoring intensity λ as a function of ball position

on a Voronoi plot. Each registered ball position point is considered from

the data set and the set of points is split into two subsets: those where a

goal happened within 30 seconds and those where a goal didn’t happen. As

expected, most of the time no goal happened, therefore there are more points
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Figure 5.4: Goal scoring intensities λHOME and λAWAY as a function of ball coor-
dinate X and team holding the ball U . The units are in 1 per minute.
Therefore a value of 0.1 means scoring a goal every 10 minutes on av-
erage. Note that around the gates the goal scoring intensity reaches
about 1 per minute, which means that on average one goal happens
every minute, if the ball is close to the gate which is much higher
than the overall goal scoring intensity of a game, but most of the
time the ball is not close to the gate.

in the set with no goals. Using the set of points where a goal did happen, a

Voronoi tesselation has been constructed which constitutes the cells shown

in the image, with each cell belonging to one point that resulted in a goal

within 30 seconds. Then, the points that are in the same cell but haven’t

resulted in a goal have been counted for each cell. Given the fact that now

we are left with cells that each contain one point that resulted in a goal

and a variable number of no-goal points, we can assume that the probability

of a goal from a point within a given cell is equal to the reciprocal of the

number of points within the cell. Finally, this probability has been divided

by the 30 seconds time frame to come up with goal intensities for each cell.
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Figure 5.5: The arrows represent the drift parameter µ where the ellipses rep-
resent the volatility parameter σ as a function of ball coordinate X
and team holding the ball U .

As expected, scoring intensities are high around the opponent’s gate and are

negligible elsewhere.

5.2.3.2 Model parameters as a function of game time

This subsection shows the dependency of the model parameters with respect

to the game time t and the team holding the ball U .

Figures 5.7, 5.8, 5.9 and 5.10 show the parameter surfaces as a function of

game time t and the team holding the ball U . Dependencies on ball position

X and the number of goals N have been averaged on these figures.

Figures 5.7 shows the x and y component of the ball drift parameter µ

as a function of time t and the team holding the ball U . The away team’s

drift in the x direction decreases by around 10% during the game which can

be explained by the fact that players get more tired towards the end of the
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Figure 5.6: Goal scoring intensities of the HOME team λHOME as a function of
ball coordinate X. This image has been constructed by considering
each registered ball position in the data set. These set of ball position
points have been split into two subsets: those where a goal happened
within 30 seconds (A) and those where a goal didn’t happen (B).
Using the subset of points where a goal did happen (A), a Voronoi
tesselation has been constructed, these cells are shown in the image.
By the definition of Voronoi tesselation, each of the cells contains
exactly one points from subset A, that is from which a goal happened
within 30 seconds. These Voronoi cells also contain a variable number
of points from subset B, that is points where a goal didn’t happen
within 30 seconds. The reciprocal of the total number of points
within a cell can be assumed to be proportional to the goal scoring
probability from within a Voronoi cell because is the average number
of goals per point. This has been used to determine the color scale
of each cell.
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Figure 5.7: x and y components of the drift parameter µ as a function of game
time t and team holding the ball U . The units are in [1% of the
length of the football field] per minute. Therefore a value of 100
means one football field length per minute.

game. However, the home team’s drift in the x direction doesn’t change

significantly. Drifts in the y direction are not significantly different than

zero.

Figure 5.8 shows the xx, xy and yy components of the square of the

ball volatility parameter σ, that is the components of the variance matrix

as a function of time t and the team holding the ball U . Volatilities don’t

change significantly during the game, but there is a slight increase in the xx

component for both teams.

Figure 5.9 shows the ball losing intensity ν as a function of time t and the

team holding the ball U . Ball losing intensities are again relatively stable as

a function of game time with a slight decrease for both teams as time goes

by.

Figure 5.10 show the goal scoring intensity λu as a function of time t
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Figure 5.8: Components of the ball variance matrix σ2
xx, σ2

yy and σ2
xy as a func-

tion of game time t and team holding the ball U . The units are
in [1% of the length of the football field]2 per minute. Therefore a
value of 10000 corresponds to a standard deviation of one football
field over the course of one minute.

and the team holding the ball U . This parameter has the strongest time

dependence with the goal intensity of both teams steadily increasing during

the game by about 50% for the home team and about 100% for the away

team. The trends for own goals cannot be reliably determined from the data.

5.2.3.3 Model parameters as a function of total goals

This subsection shows the dependency of the model parameters with respect

to the total goals scored by the two teams NHOME + NAWAY and the team

holding the ball U .

Figures 5.11, 5.12, 5.13 and 5.14 show the parameter surfaces as a function

of total goals scored by the two teams NHOME+NAWAY and the team holding
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Figure 5.9: Ball losing intensity ν as a function of game time t and team holding
the ball U . The units are in 1 per minute. Therefore a value of 2
means losing the ball twice a minute on average.

the ball U . Dependencies on ball position X and time t have been averaged

on these figures.

Figures 5.11 shows the x and y component of the ball drift parameter µ

as a function of total goals NHOME +NAWAY and the team holding the ball

U . The results are similar as shown on Figure 5.7: the away team’s drift in

the x direction decreases during the game while the y component is close to

zero and the home team’s drift is stable.

Figure 5.12 shows the xx, xy and yy components of the square of the ball

volatility parameter σ, that is the components of the variance matrix as a

function of total goals NHOME + NAWAY and the team holding the ball U .

Volatilities don’t change significantly with the number of total goals.

Figure 5.13 shows the ball losing intensity ν as a function of total goals

NHOME + NAWAY and the team holding the ball U . Ball losing intensities
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Figure 5.10: Goal scoring intensities λHOME and λAWAY as a function of game
time t and team holding the ball U . The units are in 1 per minute.
Therefore a value of 0.1 means scoring a goal every 10 minutes on
average.

tend to decrease somewhat as the number of total goals increase.

Figure 5.14 show the goal scoring intensity λu as a function of total goals

NHOME + NAWAY and the team holding the ball U . The home team’s goal

scoring intensities tend to be unchanged as the number of goals increase, but

the away team’s goal scoring intensities are increasing.

The results are similar to the dependencies on game time shown on Fig-

ures 5.7, 5.8, 5.9 and 5.10 which can be explained by the fact that the number

of goals tend to increase as time goes by, therefore these two parameters have

a string positive correlation.
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Figure 5.11: x and y components of the drift parameter µ as a function of total
goals scored by both teams NHOME+NAWAY and team holding the
ball U . The units are in [1% of the length of the football field] per
minute. Therefore a value of 100 means one football field length
per minute.

5.2.3.4 Model parameters as a function of goal difference

This subsection shows the dependency of the model parameters with respect

to the total goals scored by the two teams NHOME − NAWAY and the team

holding the ball U .

Figures 5.18, 5.16, 5.17 and 5.15 show the parameter surfaces as a func-

tion of goal difference NHOME − NAWAY and the team holding the ball U .

Dependencies on ball position X and time t have been averaged on these

figures.

Figures 5.18 shows the x and y component of the ball drift parameter µ

as a function of goal difference NHOME − NAWAY and the team holding the

ball U . The x components of the drift depend on the goal difference such
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Figure 5.12: Components of the ball variance matrix σ2
xx, σ2

yy and σ2
xy as a func-

tion of total goals scored by both teams NHOME + NAWAY and
team holding the ball U . The units are in [1% of the length of the
football field]2 per minute. Therefore a value of 10000 corresponds
to a standard deviation of one football field over the course of one
minute.

that both teams tend to push the ball faster towards the opponent’s gate

when they are leading. The y components are not affected significantly.

Figure 5.16 shows the xx, xy and yy components of the square of the ball

volatility parameter σ, that is the components of the variance matrix as a

function of goal difference NHOME − NAWAY and the team holding the ball

U . The volatility in the x direction tends to increase for a team if that team

is leading and decrease otherwise. However, the volatility in the y direction

behaves in the opposite way: it tends to decrease when a team is leading.

The cross term xy is unaffected.

Figure 5.17 shows the ball losing intensity ν as a function of goal difference

NHOME − NAWAY and the team holding the ball U . Ball losing intensities
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Figure 5.13: Ball losing intensity ν as a function of total goals scored by both
teams NHOME + NAWAY and team holding the ball U . The units
are in 1 per minute. Therefore a value of 2 means losing the ball
twice a minute on average.

tend to increase for the leading team.

Figure 5.15 show the goal scoring intensity λu as a function of goal dif-

ference NHOME − NAWAY and the team holding the ball U . Goal scoring

intensities tend to increase for the leading team.

5.2.3.5 Summary of the model parameter dependencies on state

parameters

Table 5.2 shows a summary of the model parameter dependencies on the state

parameters. Empty cells mean no significant dependency. The ball drift in

the x direction µx is such that it pushes the ball towards the opponent’s gate

and is stronger when a team is leading. The ball drift in the y direction µy is

such that it pushes the ball towards the middle of the field. The ball volatility
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Figure 5.14: Goal scoring intensities λHOME and λAWAY as a function of total
goals scored by both teams NHOME + NAWAY and team holding
the ball U . The units are in 1 per minute. Therefore a value of 0.1
means scoring a goal every 10 minutes on average.

in the x direction σxx decreases towards the opponent’s gate and increases

if the team is leading. The ball volatility in the y direction σyy slightly

decreases if a team is leading. The ball volatility in the cross direction σxy is

not significant. The ball losing intensity ν increases towards the opponent’s

gate and increases if a team is leading. The goal scoring intensities are

nonzero around the opponent’s gate, increase if a team is leading and also

increase with time and with the total number of goals.

5.2.4 Time scaling properties of ball distance

In order to assess whether the calibrated model is in line with the statistical

features of the data set, I calculated the time scaling properties of the ball

distance empirically using the raw data set and also within the model, using
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Figure 5.15: x and y components of the drift parameter µ as a function of goal
difference NHOME−NAWAY and team holding the ball U . The units
are in [1% of the length of the football field] per minute. Therefore
a value of 100 means one football field length per minute.

the estimated model parameters. The results are shown in Figure 5.19.

From the empirical data set I selected situations where the ball was within

a 10 by 10 square at the center of the field (where the size of the whole field

is 100 by 100 units) and observed the time evolution of the ball coordinate

Xt for the next minute. There were a total of 494 such situations in all of

the 31 games. The red curve shows the mean distance from the center as the

function of time and the red bands show the 5% and 95% percentiles.

In order to generate the curve within the model, I performed the same

number of Monte-Carlo simulations as the number of samples in the empirical

data set, that is 494. In each simulation the ball started at the center of the

field and I used the model parameters calibrated from all of the 31 games.

The blue curve shows the mean distance from the center as the function of
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Figure 5.16: Components of the ball variance matrix σ2
xx, σ2

yy and σ2
xy as a func-

tion of goal difference NHOME −NAWAY and team holding the ball
U . The units are in [1% of the length of the football field]2 per
minute. Therefore a value of 10000 corresponds to a standard de-
viation of one football field over the course of one minute.

time and the blue bands show the 5% and 95% percentiles.

The empirical and the simulated curves are in reasonable agreement.

5.3 Simplifying the model

Using the findings in the previous section I am able to simplify the model

by introducing the following restrictions in the dependencies of the model

parameters on the state variables:

• The ball losing intensities ν only depend on the team U and are oth-

erwise constant.

• The ball drifts mux and muy only depend on position X and team
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Figure 5.17: Ball losing intensity ν as a function of goal difference NHOME −
NAWAY and team holding the ball U . The units are in 1 per minute.
Therefore a value of 2 means losing the ball twice a minute on
average.

U such that the ball is pushed towards the opponent’s gate in the x

direction and towards the middle to the field in the y direction.

• The ball volatilities σx and σy only depend on the team U and are

otherwise constant. The volatility in the cross direction σxy is zero.

• The goal intensities λu depend on the team U , position X and time

t, but don’t depend on the number of goals N . The dependency with

position X is Gaussian around the opponent’s gate with a standard

deviation of 15 units and the dependency in time is linear.

With these restrictions, the formal dependencies of the model parameters

on the state variables simplify to the following:
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Figure 5.18: Goal scoring intensities λHOME and λAWAY as a function of goal
difference NHOME − NAWAY and team holding the ball U . The
units are in 1 per minute. Therefore a value of 0.1 means scoring a
goal every 10 minutes on average.

ν (U) = νU (5.9)

µx (X,U) =

µ
U
x

100−Xx

100
if U = HOME

−µU
x

Xx

100
if U = AWAY

(5.10)

µy (X,U) = µU
y

50−Xy

100
(5.11)

σx (U) = σU
x (5.12)

σy (U) = σU
y (5.13)

σxy = 0 (5.14)

λU (X,U, t) = λU0 λ
U
X (X)λt (t) (5.15)

λUX (X) =

exp
[
− (Xx−100)2+(Xy−50)2

2·152

]
if U = HOME

exp
[
−X2

x+(Xy−50)2

2·152

]
if U = AWAY

(5.16)

λt (t) = 1 + λt
t

T
(5.17)

(5.18)
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Parameter Ball position and Team Total score
X and U NHOME +NAWAY

Ball losing
intensity ν Higher near to opponent’s gate Slight decrease
Ball drift µx Pushes ball towards opponent -
Ball drift µy Pushes ball towards the middle -
Ball volatility σx Decreases towards opponent’s gate Slight increase
Ball volatility σy - -
Ball volatility σxy - -
Scoring intensity λu Higher near to opponent’s gate. Increases

Parameter Score difference Game time
NHOME −NAWAY t

Ball losing
intensity ν Increases if team is leading Slight decrease
Ball drift µx Increases if team is leading -
Ball drift µy - -
Ball volatility σx Increases if team is leading Slight increase
Ball volatility σy Slight decrease if team is leading -
Ball volatility σxy - -
Scoring intensity λu Increases if team is leading Increase

Table 5.2: Summary of the dependencies of parameters µ, σ, ν and λu on the
state parameters X, U , N and t.

This parametrisation has a total of 13 scalar parameters. The values

of these parameters have been estimated using least squares such that the

simplified parameter surfaces are as close as possible to the estimated pa-

rameter surfaces in the discrete bins of the previous section. The list of the

parameters along with their estimated values are shows in Table 5.3.

5.4 Solving the simplified model

Using this parametrisation, the original Equations 5.1, 5.2 and 5.3 describing

the evolution of state within the model simplify to the following SDEs:
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Figure 5.19: Time scaling properties of the ball distance. The red curve shows
the mean distance of the ball from the center as a function of time
within the empirical data set, conditional on the ball being at the
center at time zero. The blue curve shows the same within the
calibrated model, using a Monte-Carlo simulation. The bands show
the 5% and 95% percentiles. The size of the whole field is 100 by
100.

Parameter Value
νHOME 3.02
νAWAY 3.15
µHOME
x 284.42
µAWAY
x 275.13
µHOME
y 261.39
µAWAY
y 252.30
σHOME
x 55.19
σAWAY
x 54.23
σHOME
y 53.75
σAWAY
y 53.81
λHOME
0 157.36
λAWAY
0 126.36
λt 0.32

Table 5.3: List of calibrated model parameters.
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dUt = −2UtdN ν(U)
t (5.19)

dXx,t = µx (Xx, U) dt+ σx (U) dWx,t (5.20)

dXy,t = µy (Xy, U) dt+ σy (U) dWy,t (5.21)

dNU
t = dN λU (X,U,t)

t , (5.22)

In this section I attempt to solve this set of equations analytically. Solving

Equation 5.19 is relatively easy because it’s a point process jumping between

two states with constant intensity. However, solving Equations 5.20 and 5.21

is more complicated. As it is pointed out in detail in section 5.4.2.1, these

equations are similar to the Ornstein-Uhlenbeck process. However, we have a

process for each team and these two processes are mixed together by the point

process jumping between the two teams which introduces a complication that

I was unable to find an analytical solution for. As a result I used standard

numerical techniques to solve these equations.

5.4.1 Distribution of the team Ut

Equation 5.19 describing the team dynamics becomes independent of the

other state parameters. The corresponding Kolmogorov forward equation is:

∂

∂t
fU (u, t) = −ν (u) fU (u, t) + ν (−u) fU (−u, t) , (5.23)

where fU (u, t) = P [Ut = u] is the marginal probability that the ball is

held by team u at time t. It can be seen that the solution to equation 5.23

is:
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f (u, t) = Ae−(ν(1)+ν(−1))t +
ν (−u)

ν (1) + ν (−1)
, (5.24)

where A is defined by the initial condition at t = 0 such that A = f (u, 0)−
ν(−u)

ν(1)+ν(−1)
. It can also be seen that in the stationary case the probability that

team u has the ball, or in other words the average ball possession of team u

is equal to:

f (u, t→ ∞) =
ν (−u)

ν (1) + ν (−1)
. (5.25)

5.4.2 Computing the marginal density of team Ut and

position Xt

According to Equations 5.20 and 5.21 the ball coordinates Xx and Xy become

independent of each other and only depend on themselves and U . Therefore

the distribution in the two spatial dimensions become independent of each

other and can be computed as two one-dimensional distributions, rather than

one two-dimensional distribution.

5.4.2.1 Similarity with the Ornstein-Uhlenbeck process

Because of the choice of µx (Xx, U) and µy (Xy, U), the processes for Xx and

Xy are both special cases of the Ornstein Uhlenbeck process [57], also known

as the Vasicek model [59] which is defined by the following SDE:

dxt = κ(θ − xt) dt+ σ dWt (5.26)

One of the reasons for the popularity of the Ornstein-Uhlenbeck process

is that the marginal distribution has the following analytical closed form

solution (see for example [18] or [58]):
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f(x, t) =

√
κ

πσ2(1− e−2κt)
exp

{
−κ
σ2

[
(x− x0e

−κt)2

1− e−2κt

]}
(5.27)

which is valid for θ = 0 assuming that the process started at x0 at t = 0.

Our case differs in two significant ways. First, the boundaries at x = 0 and

x = 100 are reflective, both for Xx and Xy. Ornstein-Uhlenbeck processes

with reflective boundaries have been studied by [61], [62] and [60] among

others, therefore this obstacle could be solved. However, the second difficulty

in our case is that the parameters κ and θ depend on the team U and are

therefore randomly changing between two different values. I was unable to

find any treatment for this case in the literature, and unable to come up with

an analytical solution, therefore I reverted to classical numerical methods to

solve the equations.

5.4.2.2 Numerical solution

The Kolmogorov forward equations describing the time evolutions of the

marginal densities of the ball positions Xy and Xy are:

∂

∂t
fXx (xx, u, t) = − ∂

∂xx
[µx (xx, u) fXx (xx, u, t)] +

1

2

∂2

∂x2x

[
σ2
x (xx, u) fXx (xx, u, t)

]
−ν (u) fXx (xx, u, t) + ν (−u) fXx (xx,−u, t) (5.28)

∂

∂t
fXy (xy, u, t) = − ∂

∂xy

[
µy (xy, u) fXy (xy, u, t)

]
+

1

2

∂2

∂x2y

[
σ2
y (xy, u) fXy (xy, u, t)

]
−ν (u) fXy (xy, u, t) + ν (−u) fXy (xy,−u, t) (5.29)

where fXx (xx, u, t) is the joint marginal distribution of the x ball coordi-

nate and the team holding the ball, that is
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fXx (xx, u, t) = lim
dxx→0

1

dxx
P [Xx,t ∈ (xx, xx + dxx) , Ut = u] (5.30)

and fXy (xy, u, t) is similarly the joint marginal distribution of the y ball

coordinate and the team holding the ball.

The joint marginal distribution of the x and y ball coordinate along with

the team holding the ball is:

fX (xx, xy, u, t) =
fXx (xx, u, t) fXy (xy, u, t)

fU (u, t)
(5.31)

The partial differential equations 5.28 and 5.29 can be solved numerically

as discussed in Section 2.4. In order to assess the performances of both

the explicit and implicit methods, I solved for the marginal distribution of

the ball’s x coordinate at the end of the game for the home team, using

both methods. In the explicit method I needed to use 500,000 time steps to

avoid the stability issues. The implicit method was stable with an arbitrarily

low number of time steps, however if the number of time steps was below

15,000, then the solution didn’t converge to the explicit method’s solution.

Figure 5.20 shows the solutions obtained with both methods, using different

number of time steps in the implicit method. Because the solution became

stable from above 15,000 time steps in the implicit method, I decided to use

the implicit method with 20,000 time steps which corresponds to roughly 4

steps per second.

Figure 5.21 shows the time evolution of the marginal joint probabil-

ity density function of the ball coordinate and the team having the ball

fX (xx, xy, u, t). The figures on the left show the density given that the home

team has the ball, that is ft (X,U = HOME ) and the figures on the right
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Figure 5.20: Comparison of convergence of the marginal distribution of the X
ball coordinate between the Implicit and the Explicit methods with
various numbers of time steps. Note that the Implicit method con-
verges even if the number of time steps is very small, however with
very small number of time steps it doesn’t converge to the correct
distribution. Convergence to the correct distribution for the Im-
plicit method can be achieved by increasing the number of time
steps. The Explicit method on the other hand doesn’t converge at
all with small number of time steps. Convergence can only be be
achieved by increasing the number of time steps to extremely high
values in which case the solution converges to the correct solution.

show the density for the away team ft (X,U = AWAY ). Initially, at t = 0

the ball was at the center X0 = (50, 50) of the field and was held by the

U0 = HOME team, this is shown by the figures in the top row corresponding

to the first second in which case most of the density is on the left, around

the center. As time goes by, more and more density propagates to the away

team because of the non-zero ball losing intensity νHOME of the home team.

Because the drifts in the x direction µU
x are opposite for the two teams, each

team tries to push the ball towards the opponent’s gate which is shown in

the figures in the bottom row corresponding to 120 seconds. At this point



5.4. Solving the simplified model 105

Figure 5.21: Marginal distribution of the ball coordinate Xt as a function of
time, conditional on the home (left) or away (right) team holding
the ball such that at t = 0 the home team had the ball. The colors
represent the value of the probability density function, with red for
high probabilities and blue for low probabilities. It can be seen
that shortly after start almost all the probability is concentrated
to the middle of the field and HOME team still holding on to the
ball, however there is already a small probability for AWAY team
gaining possession. As time goes by, the probability distribution
approaches the stationary state in which the total probability is
roughly split equally between the two teams, however the ball has
a higher chance to being closer to the opponent’s gate, whichever
team is holding the ball.

the marginal distribution reached the stationary state.

5.4.3 Computing the goal intensity

Because the goal intensity in Equation 5.15 is independent of the number of

goals and only depends on the team, ball position and time, the expectation of

the goal intensity can be calculated given the marginal density fX (xx, xy, u, t)

by:
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λu (t|t0, x0, y0, u0) = E [λu (X,U, t) |U(t0) = u0, Xx(t0) = x0, Xy(t0) = y0]

= λu0λt (t)E [λuX (X) |U(t0) = u0, Xx(t0) = x0, Xy(t0) = y0]

= λu0λt (t)

∫
xx,xy

λuX (xx, xy, t) fX (xx, xy, u, t|x0, y0, u0, t0) dxxdxy (5.32)

Note that in terms of dimensions, the λ0 parameter is the only intensity-

like parameter in the sense that it’s dimension is reciprocal of time while the

other two parameters λt and λX are dimension-less.

Practically, all that needs to be done is to compute the dot product of the

position-dependent component λUX (X) in Equation 5.16 by fX (xx, xy, u, t)

and then multiply by the time-dependent component λt (t) in Equation 5.17

and the finally multiply by the team’s intensity parameter λU0 .

Figure 5.22 shows the goal scoring intensities for the two teams as a

function of time, given that initially the ball was held by the U = HOME

team and started from different Xx coordinates while the Xy = 50 coordinate

was always at the middle. The top figure shows the goal intensity of the home

team λHOME
t and the bottom figure shows the goal intensity of the away team

λAWAY
t . The home team’s gate is located at Xx = 0 and the away team’s gate

is located at Xx = 100. The purple lines show the intensities when the ball

started from right in front of the away team’s gate. It can be seen that the

home team’s goal scoring intensity is initially high and gradually decreases as

the distribution of the ball the ball drifts away from the gate or gets lost by

the home team. At the same time, the away team’s goal scoring intensity is

practically zero for about 20 seconds and starts to increase gradually. This is

because the away team needs time to gain the ball and bring it to the home

team’s gate at the opposite of the field before they have a chance to score the
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Figure 5.22: Home and away goal intensities λ (U, t) for different starting posi-
tions Xx,0, given that at t = 0 the ball was held by the home team.
Note that the home team’s goal intensity starts form a high value
in case Xx,0 = 100 because in this case the ball is starting from
right in front of the opponent’s gate. On the other hand, when
Xx,0 = 100, that is when the ball starts from the home team’s own
gate, the goal intensity is initially zero because the team needs time
to first bring the ball over to the opponent’s gate in order to have a
chance to score a goal. The away team’s goal intensity starts at zero
regardless of the initial position of the ball, because first they need
to gain possession in order to have a chance to score a goal. Then,
the away team’s goal intensity rises faster or slower, depending on
whether the ball started from right in front of the opponent’s gate
Xx,0 = 0, or their own gate Xx,0 = 100. In both cases the goal
intensities converge to a stationary average intensity, after about
two minutes which is the characteristic time during which the ball
position and the team holding the ball has an effect on the near
term goal intensity.
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goal. The red curve corresponds to the ball starting from the center to the

field. Both teams need time to increase their goal scoring intensity because

the ball needs to get to their opponent’s gate, however the away team needs

somewhat more time because they also need to gain the ball from the home

team. The blue curve corresponds to the ball starting from right in front of

the home team’s gate. Both team’s goal intensities start at zero. However,

the home team’s intensity increases slower than the away team’s intensity

because the home team needs more time to bring the ball to the away team’s

gate at the opposite of the field. The away team’s intensity increases faster

because the ball is already in front of the home team’s gate, all they need

is to gain possession. After about two minutes, the marginal probability

density of the ball position and the team having the ball ft (X,U) converges

to the stationary state which makes the goal scoring intensities of both teams

converge to the average value, which is independent of the initial condition.

This figure summarises the main difference between the constant intensity

model and the microscopic model that takes into account the ball position

and the team having the ball. It shows the ball position and the team having

the ball is relevant for roughly the first 30 seconds in terms of affecting the

goal scoring intensities. Beyond this time horizon the initial state dissipates

and the intensities reach their stationary values.

5.5 Comparison of the full and the simplified

model

In order to judge how well the simplified semi-analytic model performs com-

pared to the full model, I performed Monte-Carlo simulation on the full model

and estimated the time evolution of the marginal joint probability density
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Figure 5.23: Marginal distribution of the ball coordinate Xt as a function of
time, conditional on the home (left) or away (right) team hold-
ing the ball such that at t = 0 the home team had the ball, using
Monte-Carlo simulation on the full model with 1e6 paths as defined
in Section 5.1 and estimated in Section 5.2. The colors represent the
value of the probability density function, with red for high prob-
abilities and blue for low probabilities. It can be seen that the
marginal density estimated from the full model evolves in a simi-
lar fashion to that of the simplified model’s semi-analytic solution
shows in Figure 5.21 which is an indication that the assumptions
of the simplified model are reasonable.

function of the ball coordinate and the team having the ball fX (xx, xy, u, t)

which is shown in Figure 5.23. The full model was defined in Section 5.1

and the model parameters were estimated in Section 5.2. Because the model

is not analytically tractable I used Monte-Carlo simulation consisting of 1e6

paths to calculate the probability density function. It can be seen that the

marginal density estimated from the full model evolves in a similar fash-

ion to that of the simplified model’s semi-analytic solution shows in Figure

5.21 which is an indication that the assumptions of the simplified model are

reasonable.
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5.6 Summary

In this chapter I suggested a model for the in-play dynamic of not only the

number of goals scored (1), but also two additional features: the position of

the ball (2) and the team holding the ball (3). These three state variables are

driven by a set of stochastic differential equations, such that the scores and

the team holding the ball are driven by jump processes and the ball position

is driven by a Wiener process. In the first part of the chapter the parameters

of these processes were allowed to depend freely on all of the state variables

and after studying these generic parameter surfaces I was able to simplify

the model greatly by parametrising these dependencies using a model of just

13 scalar parameters. I then showed that this simplified model can be solved

using an efficient semi-analytic approach by solving the partial differential

equation numerically that discribes the distribution of the state parameters.

I found that goal scoring intensities change over time and depend on the

initial starting position of the ball and the initial team holding the ball. This

is in line with intuitive expectations: if a team manages to bring the ball

close to the opponent’s gate, then this team’s goal scoring intensity is high

in the near future while if the ball is far away from the opponent’s gate, the

goal scoring intensity is lower. Given an initial starting position, over time

the goal scoring intensities of both teams converge to stationary values. I

found that this convergence happens in about 30 seconds, this is the time

window in which the initial ball position is relevant and during which near

term goal intensities can be predicted. Outside of this window the initial

position has no predictive power and goal scoring intensities reach converge

to their average values.



Chapter 6

Predicting Second Half Scores

from First Half Features using

Machine Learning Methods

In this chapter I study an in-play football data set containing high resolu-

tion information about various events during the game, such as goals, goal

attempts, passes, ball position on the field, penalty cards, corners and so on.

I construct features observed in the first half of the game (X) and consider

the number of goals scored in the second half (Y ). I run a number of feature

selection methods to determine the most significant features. I then consider

various predictive models and perform model selection and validation. In line

with previous chapters, the goals are predicted in terms of Poisson intensities.

The main difference to previous chapters is that in this chapter I follow a

black box machine learning approach and consider a larger number of state

variables, instead of considering stochastic models of specific forms that are

driven by a lower number of parameters.

111
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Machine Learning Methods

6.1 Introduction

In this chapter I use a data set that contains high resolution in-play infor-

mation about various events, such as the location of the ball on the field,

passes, cards, corners, goal attempts, goals and so on. Using these events I

construct an 18-dimensional feature vector at the end of the first half of the

game denoted by the vector X that only contains events that happened dur-

ing the first half of the game. I use these features to to predict the two team’s

Poisson goal intensities λ in the second half of the game using a model that

is in general denoted by f(X, θ) with θ being the parameters of the model.

The Poisson goal intensities are same as defined in Chapter 3 apart from the

fact that in this section the intensity is scaled to the whole 45 minute inter-

val of the second half whereas in Chapter 3 intensity was quoted in units of

1/minute. The actual number of goals scored by the two teams in the second

half is denoted by a 2-vector Y and is assumed to follow independent Poisson

distributions with an intensity 2-vector of λ:

λ = f(X, θ) (6.1)

Y ∼ Poisson (λ) (6.2)

An overview of the chapter is reported in Figure 6.1.

6.2 Overview of the data set

The data set I used contains a total of 2940 games played in the 2013/2014

Season of the 7 Leagues described in Table 6.1.

The data for each single game consists of a set of game level information
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Figure 6.1: A high level overview of the chapter showing the different variables,
data sets, methods and performance measures used. A detailed de-
scription of all feature variables is shown in Table 6.2.
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League Number of games
English Football League Championship 526
Spanish Segunda Division 482
Brazilian Série A 386
English Barclays Premier League 410
French Ligue 1 408
Italian Serie A 416
Spanish La Liga 312

Table 6.1: List of the 7 Leagues of the 2013/2014 Season containing a total of
2940 games that the data set consists of.

such as the time of the game, the names of home and away teams and the list

of players in both teams. This is then followed by a list of relevant events that

happened during the game. Each event contains the millisecond resolution

timestamp of the event, the game time of the event, such as first or second

half, minutes and seconds, the relevant team and player associated with the

event, the 2-dimensional coordinates of the event on the field, the type of the

event and additional auxiliary information depending on the event type.

6.3 Constructing feature set and outcome vari-

ables

6.3.1 X - Feature Set - First Half Events

I constructed a total of 9x2 features for each game that consisted of the

number of the 9 types of events reported in Table 6.2 that occurred in the first

half of the game for the each of the two teams. These 9 event types as shown

in Table 6.2 covered all available events in the data set. GOAL is the number

of goals scored, PASS_OWN denotes the number of pass events in the team’s

own half, PASS_OPP denotes the number of pass events in the opponent’s
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Event Type Description
GOAL Goals scored by home / away teams
PASS_OWN Any successful or unsuccessful passes on

the team’s own half of the field
PASS_OPP Any successful or unsuccessful passes on

the opponent’s half of the field
ATTEMP_SAVED Shot by home / away teams towards the

goal of the opponent that were saved
MISS Shot by home / away teams that goes

wide or over the goal
CLEARANCE Player of home / away team under pressure

hits the ball clear of the defensive zone
or / and out of play

CORNER_AWARDED Corners awarded to home / away teams
CARD Red, yellow or 2nd yellow card obtained

by home / away teams
OUT Ball goes out for a throw-in or a goal kick

Table 6.2: Types of events that were used as features.

half, ATTEMP_SAVED denotes the number of opponent goal attempts that

were saved by the team, MISS denotes the number of missed shots that went

wide or over the goal, CLEARANCE is the number of times the team was

able to hit the ball away from it’s defensive zone, CORNER_AWARDED is

the number of corners awarded to the team, CARD is the number of cards

obtained by the team and OUT is the number of times the ball went out for

a throw-in or a goal kick. A summary of every feature is show in Table 6.2.

6.3.2 Y - Target Variables - Second Half Results

The outcome variables are a vector of 2 elements: the number of goals scored

by the HOME and AWAY teams, respectively in the second half of the game.
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6.4 Feature Selection

As a first step I ran a number of standard feature selection methods on the

training set to separate the relevant features from the irrelevant ones.

It is important to note that in all the tests, for both the X and Y variables

I constructed the differences between the HOME and the AWAY features.

That is, for example the PASS_OWN feature in this section is the difference

between the number of PASS_OWN events by the HOME team and the

AWAY team. Similarly, for the Y outcomes, GOAL means the difference

between the number of goals scored by the home and away teams in the

second half. The reason I use differences rather than just the bare values is

that in this way I can decrease the number of variables by a factor of two

while at the same time preserve the most important link between outcomes

and features. When I perform prediction in the next section I use the full

set of variables, not just the differences.

6.4.1 Correlation

As a first attempt to determine the predictive power of the features I calcu-

lated correlation (see Section 2.6.1) between the X feature and the Y outcome

variables.

The results are reported in Figure 6.2 and in Table 6.3.

Not surprisingly, PASS_OWN, PASS_OPP, CORNER_AWARDED, AT-

TEMPT_SAVED, MISS and GOAL events have a positive correlation. The

explanation for PASS events is that the team with more passes has a higher

ball possession, therefore more chance to score a goal. CORNER_AWARDED

has a positive correlation, because it’s easier to score a goal from a corner.

ATTEMPT_SAVED and MISS are saved / missed near-goal events assigned
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Corr(X,Y)
PASS_OPP 20%
CORNER_AWARDED 14%
PASS_OWN 12%
ATTEMPT_SAVED 11%
CLEARANCE -10%
MISS 10%
GOAL 10%
CARD -10%
OUT 1%

Table 6.3: Correlations between first half features and second half scores ordered
by decreasing absolute correlation.

to the attempting team, therefore the team with more attempts will eventu-

ally score more. GOALs in the first half naturally correlate positively with

GOALs in the second half. It is interesting to note that first half GOALs

have the lowest positive correlation with second half GOALs and PASS events

have the strongest positive correlation.

The correlation with OUT events is practically negligible, apparently it

is not relevant how many times the ball went off the field form any of the

teams.

CARD and CLEARANCE events have a negative correlation with the

simple explanations that a red or yellow CARD would decrease a team’s

chance to score a goal. The CLEARANCE event is assigned to the team

which is under pressure in the sense that it is in a situation where it is likely

to receive a goal, the more such situations are, the more likely it is that the

team will actually receive a goal.
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Figure 6.2: Correlations between first half HOME - AWAY feature differences
and second half HOME - AWAY score differences.

6.4.2 Lasso Regression

I also performed Lasso regression (see Section 2.6.5.2) to select relevant fea-

tures. By running the regression multiple times and increasing the value of

the L1 penalty factor α, the coefficient of the least relevant feature goes to

zero first while more relevant features keep a non-zero coefficient until the

value of α increases to the point where eventually all coefficients become zero.

Figure 6.3 shows the values of the estimated coefficients as a function of

the L1 penalty factor α. Note that the signs of the coefficients of the vari-

ous features are consistent with the signs of the correlations in the previous

section, that is all features have positive coefficients, except for CARD and

CLEARANCE.
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0.350.35
Figure 6.3: Values of Lasso coefficients of first half features as a function of L1

penalty factor α when regressing against second half scores. Note
that the least relevant feature’s coefficients go to zero first.

Figure 6.4 shows the values of α where each of the feature coefficients go

to zero, the same data is reported in Table 6.4.

6.4.3 Random Forest of Trees

I performed another feature selection by using Random Forest of Trees (see

Section 2.6.2). I created 250 random decision trees using Gini impurity. The

more significant an feature is the higher it appears in the tree, therefore

measuring the average height of each feature gives the feature importances

for this method. The results are reported in Figure 6.5 and in Table 6.5 and

are consistent with the results obtained with the other two methods.
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Figure 6.4: Lasso L1 penalty factor α values where the corresponding feature
coefficients dropped to zero. Features with the highest values are
the most relevant.

6.4.4 Overall Feature Rank

As we have seen, the three feature selection methods gave reasonably con-

sistent results. To come up with a final ranking of feature importances I

calculated the average of each feature’s rank across the different methods.

The overall rank of importances is PASS_OPP, CORNER_AWARDED,

PASS_OWN, GOAL, CARD, ATTEMPT_SAVED, CLEARANCE, MISS

and OUT. The overall feature ranks are reported in Table 6.6 which are

found to be consistent among the three methods.
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X ln(α)
PASS_OPP -1.3
CARD -2.1
CORNER_AWARDED -2.1
GOAL -2.1
PASS_OWN -2.9
MISS -3.3
CLEARANCE -5.2
OUT -6.8
ATTEMPT_SAVED -8.0

Table 6.4: Values of the log of Lasso L1 penalty factors α where the corresponding
feature coefficients dropped to zero. Features with the highest values
are the most relevant. The table shows ln(α) values because the range
of the α values varies greatly.

X Importance
PASS_OPP 0.14
CORNER_AWARDED 0.13
GOAL 0.13
CARD 0.12
PASS_OWN 0.11
ATTEMPT_SAVED 0.10
CLEARANCE 0.10
MISS 0.08
OUT 0.07

Table 6.5: Average heights of each feature in the Random Forest of Trees method
by building 250 random decision trees using Gini impurity measure.

6.5 Predicting Second Half Scores from First

Half In-Play Feature

In this section I use different methods to predict the number of goals in

the second half of the game based on features from the first half. Because

scores are inherently random, I am not trying to predict the exact number

of goals. Instead I make the same assumption as in Chapter 3, that is, that
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Figure 6.5: Average heights of each feature in the Random Forest of Trees
method by building 250 random decision trees using Gini impurity
measure.

the two team’s scores follow independent Poisson distributions. The main

assumption in this section is that the intensities are functions of the first half

features, formally:

λMi = fM(Xi, θ), (6.3)

where fM is the model function of model M , θ is the vector of model

parameters, Xi is the vector of first half features for game i and λi is the

predicted 2-vector of the home and away goal intensities for the second half

of game i.

The predicted probability for a certain number of goals Y in the second
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X Correlation Lasso Forest AVERAGE
PASS_OPP 1 1 1 1.0
CORNER_AWARDED 2 3 2 2.7
PASS_OWN 3 5 5 4.3
GOAL 7 4 3 4.6
CARD 8 2 4 4.6
ATTEMPT_SAVED 4 9 6 6.3
CLEARANCE 5 7 7 6.3
MISS 6 6 8 6.6
OUT 9 8 9 8.6

Table 6.6: Comparison of the feature importance ranks determined by different
methods.

half then follows the independent Poisson distribution which has the following

likelihood function:

P (Y, λ) = e−λH
λYH
H

YH !
e−λA

λYA
A

YA!
(6.4)

where the λ denotes second half intensities, Y denotes second half scores

and the superscripts H and A refer to the home and away teams, respectively.

I use log-likelihood ratio over the Constant model (Section 6.5.1) as the

primary measure of goodness of model fit which according to Section 2.5.1

has the following form:

LM = ln
∏
i

P
(
Yi, λ

M
i

)
P (Yi, λConst)

(6.5)

=
∑
i

YH,i ln
λMH,i

λConst
H

−
(
λMH,i − λConst

H

)
(6.6)

+
∑
i

YA,i ln
λMA,i

λConst
A

−
(
λMA,i − λConst

A

)
(6.7)

(6.8)
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where the product index i goes through the set of games in the data set,

L is the value of the log-likelihood ratio and M refers to the model being

used. λMH,i and λMA,i are the second half home and away intensities predicted

by model M for game i. λConst
H and λConst

A are the constant intensities that

don’t depend on the game i. YH,i and YA,i are the number of goals scored in

the second half of game i.

The reason for using likelihood ratios over the Constant model is that in

this way I can use the Constant model as a base-line and quickly determine

whether a specific model is doing at least as good as the trivial Constant

model.

6.5.0.1 Table of Frequencies

Log-likelihoods are theoretically sound measures of model goodness and are

suitable to perform model fitting by maximising their value, see for example

[82] or [81]. However, the actual log-likelihood value is not very informative

in terms of how well the model fits. As an alternative measure of goodness

I decided to use so-called table of frequencies which here are only used to

check the results and not for any fitting or optimisation purposes.

A table of frequencies is, in some sense, similar to a stochastic confusion

matrix because it compares predicted probabilities of the possible outcomes

versus the actual frequency of each outcome. Outcomes in my case are the

number of goals scored by the two teams in the second half and the number

of the possible outcomes is therefore relatively high: considering only 0 to 4

possible goals for each team, the number of possible outcomes would be 25

and a 25-by-25 matrix would not be very informative. What I do instead

is that I decrease the number of possible outcomes by condensing them into

one of 3 possible outcomes depending on which team won the second half:
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HOME, if the home team scored more goals, AWAY if the away team did

score more goals and DRAW if the number of goals scored are equal. In this

way the table of frequencies becomes a 3-by-3 matrix.

The table is then constructed in the following way. Each game in the data

set has a certain second half outcome and also a probability predicted by the

model for each of the 3 possible outcomes. The games are grouped by their

actual outcomes in 3 groups, with each group corresponding to one column

of the table. Within each group, the average of the predicted probabilities

of the games are computed which results in a 3-vector that constitute the

rows of the table. For example, the cell in the HOME column and the

DRAW row of the table contains the average predicted probabilities of a

DRAW for all games that eventually had a HOME win outcome. In case of

a hypothetically perfect predictor that always predicts the actual outcome

with 100% probability, the table would be equal to an identity matrix. In

a practical case we expect that a good predictor gives higher chance for the

actual outcome, rather than to other outcomes.

6.5.0.2 Training set, Validation set, Parameter fitting, Hyper-

parameter tuning

The model parameters θ are split in two groups. The first group is referred to

as regular model parameters and denoted by θregular. For example in case of a

Neural Network the weights of the network constitute the regular parameters.

The second group is referred to as hyper-parameters and is denoted by θhyper.

For example in case of Neural Networks, these constitute the number of

neurons in each layer, the number of layers, the type of activation function

used and so on. An overview of the parameters and hyper-parameters for

each model are reported in Figure 6.1.
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At the same time, the data set is randomly split into two groups of equal

size: training set and validation set. These sets are fixed throughout the

chapter. There is actually a third independent set referred to as test set,

but the test set is not used for determining parameter values, but only as

an independent final check of the results in the Conclusions section. The

training and the validation sets contain 1470 games and the test set contains

1093 games.

In this way parameter fitting becomes a two stage process. First, for a

given value of the hyper-parameter θhyper, I determine the regular parameter

θregular by maximising the log-likelihood over the training set:

θregular (θhyper) = argmax
θregular

L(θhyper, θregular, Xi, Yi, i ∈ TRAIN) (6.9)

This maximisation is referred to as parameter fitting in the conventional

sense that involves a gradient-based optimisation of the parameter values.

The second step is to select the best performing hyper-parameter. This

is again a maximisation of the log-likelihood, but this time the maximisation

is performed on the validation set, instead of the training set:

θ = (θhyper, θregular (θhyper)) (6.10)

= argmax
θhyper

L(θhyper, θregular (θhyper) , Xi, Yi, i ∈ VALIDATE) (6.11)

An important difference between regular parameter fitting and hyper-

parameter selection is that log-likelihoods are usually not continuous as a

function of hyper-parameters, therefore gradient-base optimisation methods

cannot be employed and I therefore rather perform a simple maximum selec-
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tion over a set of possible values.

6.5.1 Constant Model - The Benchmark

I used the Constant Model as a benchmark which assumes that each game

behaves the same way in the sense that the goal intensities are constant

regardless of the values of the features. This is similar to the Constant

Intensity model introduced in Chapter 3 with the slight difference that in

Chapter 3 the constancy assumption is emphasized as a function of other

state variables of the same game where in this chapter the constancy is

across all games and as a function of all feature values. I used this model

as a baseline model to compare more sophisticated models in subsequent

sections. Formally, the model’s parameters are only the constant intensities

λConst which at the same time are the predicted intensities for all games,

regardless of the values of the feature vectors Xi:

fConst(Xi, θ = λConst) = λConst, (6.12)

The model estimation becomes a trivial task: the maximum likelihood

estimate of the constant Poisson intensity is the average of the number of

goals.

λConst =
1

ntrain

∑
i∈train

Yi (6.13)

where ntrain is the size of the whole training set. This can be easily verified

by differentiating Equation 6.4 wrt. a constant λ. For our training set, the

value of the constant intensities are:
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AWAY DRAW HOME

p_HOME 38.65% 38.65% 38.65%
p_DRAW 37.43% 37.43% 37.43%
p_AWAY 23.92% 23.92% 23.92%

Table 6.7: Table of frequencies for the constant model. Columns correspond to
the actual outcome in the training set and rows contain the average
predicted probabilities of those outcomes using the model parameters
calibrated on the training set which in case of the constant model
are the same constant intensities in Equation 6.15 for all games. As
expected, the predicted probabilities are the same for all outcomes.
Also, note that HOME win probabilities are overall higher than AWAY
win probabilities which is referred to as the ’home effect’.

λConst
H = 0.8363 (6.14)

λConst
A = 0.5890 (6.15)

where the superscript H refers to the HOME and A to the AWAY team.

Note that these intensities are the overall goal intensities for the second half

of the game, that is they are to be interpreted in terms of average number

of goals per 45 minutes.

Table 6.7 shows the table of frequencies for the constant model. The

values in each column are the same due to the fact that the constant model

predicts the same probabilities for all games, regardless of their feature values

or outcomes.

6.5.2 K-Nearest Neighbors

As a second, more sophisticated model I used the K-Nearest Neighbour model

introduced by [77]. Refer to section 2.6.3 for an overview of the model.
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It is important to note that before applying this method, features need to

be scaled to zero mean and unit variance. This is necessary because otherwise

points along the dimension of an feature that has lower variance would appear

closer and therefore the results would be more sensitive to certain features

simply due to their natural scaling. The scaling factors have been determined

on the training set and the same factors have been applied on the validation

set in order to make sure that all model parameters, including the scaling

factors are determined using the training set alone.

I fitted the model using two different distance measures: L1 and L2 (Eu-

clidean). I used a different number of nearest neighbors going up to the size

of the whole training data set which is 1460. I also used a different number of

features from 1 to 9, in the order of relevance as reported in Table 6.6 of the

previous section. The results are reported in Tables 6.8 and 6.9 for the L2

and L1 norms respectively. The best results are achieved by using 150 near-

est neighbors and 4 out of 9 features in both cases. Euclidean L2 distance

performs somewhat better, than the L1 distance. The table of frequencies

for the best results are reported in Tables 6.10 and 6.11.

6.5.3 Linear Model

Moving up in complexity I next used a linear model where the log-intensity is

a linear function of the features with the model parameters being the weights

and the biases of the model:

λLinear (X) = fLinear(X, θ = {wH , wA, bH , bA}) (6.16)

=

exp(XTwH + bH)

exp(XTwA + bA)

(6.17)
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Number of nearest neighbors
25 100 150 200 250 300 500 750 1000 1460

N
um

be
r

of
fe

at
ur

es

1 -15.7 27.8 28.9 31.9 30.4 30.1 31.4 24.6 18.9 0.0
2 -5.5 31.6 33.4 30.2 29.9 28.4 28.5 24.7 18.4 0.0
3 -6.6 28.2 29.6 29.2 30.7 31.7 29.2 24.7 18.4 0.0
4 -25.7 18.9 26.2 27.3 29.4 29.3 27.6 23.7 17.3 0.0
5 -13.7 20.6 25.5 26.3 29.1 27.8 27.9 25.7 19.4 0.0
6 -15.2 24.8 25.5 27.9 27.2 28.2 29.4 25.3 19.1 0.0
7 -15.9 27.7 24.6 27.2 29.0 28.4 25.8 23.4 18.1 0.0
8 -23.1 18.7 25.0 27.6 29.7 29.6 25.1 22.9 18.8 0.0
9 -30.8 19.9 22.2 22.4 26.1 25.0 22.0 21.9 16.9 0.0

Table 6.8: Log-likelihood ratio of the Nearest Neighbor model over the Constant
model on the validation set with L2 (Euclidean) distance. Columns
correspond to the number of nearest neighbors. Rows correspond to
the number of features used in the order reported in Table 6.6. Note
that the last columns corresponds to 1460 nearest neighbors which
is the complete data set and therefore is equivalent to the constant
model, hence the log-likelihood ratio in the last column is equal to
zero. The maximum value corresponds to 150 nearest neighbors and
2 out of 9 features.

where X is the column-vector of the features of an individual game,

wH , wA are the vectors of linear coefficients for the HOME and AWAY teams

and bH , bA are the scalar bias terms for the HOME and AWAY teams.

The model can be trained by maximising the log-likelihood on the training

set. It is important to note that the model is linear in the sense that log-

intensities are linear functions of the features. However, due to the fact that

intensities are not linear and also to the fact that the Poisson log-likelihood

function is also non-linear, this model is not an ordinary linear regression

and in order to maximise the log-likelihood a non-linear optimisation needs

to be performed. Maximising on the training set without applying any reg-

ularization would introduce over-fitting. I therefore apply both L1 and L2

regularisation on the weights as explained hereafter.
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Number of nearest neighbors
25 100 150 200 250 300 500 750 1000 1460

N
um

be
r

of
fe

at
ur

es

1 -15.7 27.8 28.9 31.9 30.4 30.1 31.4 24.6 18.9 0.0
2 -5.5 31.6 33.4 30.2 29.9 28.4 28.5 24.7 18.4 0.0
3 -6.6 28.2 29.6 29.2 30.7 31.7 29.2 24.7 18.4 0.0
4 -25.7 18.9 26.2 27.3 29.4 29.3 27.6 23.7 17.3 0.0
5 -13.7 20.6 25.5 26.3 29.1 27.8 27.9 25.7 19.4 0.0
6 -15.2 24.8 25.5 27.9 27.2 28.2 29.4 25.3 19.1 0.0
7 -15.9 27.7 24.6 27.2 29.0 28.4 25.8 23.4 18.1 0.0
8 -23.1 18.7 25.0 27.6 29.7 29.6 25.1 22.9 18.8 0.0
9 -30.8 19.9 22.2 22.4 26.1 25.0 22.0 21.9 16.9 0.0

Table 6.9: Log-likelihood ratio of the Nearest Neighbor model over the Constant
model on the validation set with L1 distance. Columns correspond to
the number of nearest neighbors. Rows correspond to the number of
features used in the order reported in Table 6.6. Note that the last
columns corresponds to 1460 nearest neighbors which is the complete
data set and therefore is equivalent to the constant model, hence the
log-likelihood ratio is equal to zero. The maximum value corresponds
to 150 nearest neighbors and 2 out of 9 features.

AWAY DRAW HOME

p_HOME 35.64% 38.32% 39.54%
p_DRAW 37.85% 37.54% 37.21%
p_AWAY 26.51% 24.14% 23.26%

Table 6.10: Table of frequencies of the Nearest Neighbour model with L2 (Eu-
clidean) distance using 150 nearest neighbors and 4 out of 9 features.

6.5.3.1 Elastic Net Regularization

I used the Elastic Net method which adds both an L1 and an L2 penalty

term to the log-likelihood and thereby can avoid over-fitting. The objective

function to minimise becomes:

LLinear (wH , wA) + α (‖wH‖1 + ‖wA‖1) + β (‖wH‖2 + ‖wA‖2) (6.18)
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AWAY DRAW HOME

p_HOME 35.55% 37.73% 38.83%
p_DRAW 38.02% 37.67% 37.35%
p_AWAY 26.42% 24.59% 23.82%

Table 6.11: Table of frequencies of the Nearest Neighbour model with L1 dis-
tance using 250 nearest neighbors and 2 out of 9 features.

The coefficients wk and the biases bk are determined by minimising the

objective function over the training set. The L1 and L2 regularization factors

α and β are determined by cross-validating against the validation set. That

is the maximisation is performed on the training set for multiple values of

the regularization factors and then the factors that result in the highest log-

likelihood on the validation set are chosen. The log-likelihood ratios on the

validation set are reported in Table 6.12 and in Figure 6.6. The optimal log-

likelihood ratio on the validation set was reached with α = 1000 and β = 0

with a log-likelihood ratio of 37.4. As the values of the regularization factors

increase, the value of the log-likelihood ratio goes to zero. This is because a

high enough regularization factor forces all weights to zero and only the bias

terms remain in which case the model degrades into the Constant model.

To demonstrate the effect of over-fitting and the necessity for hyper-

parameter tuning on the validation set, the log-likelihood ratios on the train-

ing set are shown in Table 6.13. As expected, the highest log-likelihood ratio

on the training set is achieved with zero regularization factors.

It is worth noting that the L1 and L2 regularizations have a similar effect

in the sense that a similar maximum log-likelihood ratio can be achieved by

using either one of the regularizations. However it is also worth noting that

using L2 only yields a slightly lower result of 36.5 than the optimum value

of 37.4 that was achieved by using L1 only.
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Figure 6.6: Log-likelihood ratios of the Linear model over the Constant model
as a function of the L1 regularization factor α with L2 regularization
factor of β = 0. Small values of the regularization factor correspond
to over-fitting, that is the training set has the highest log-likelihood
ratio, but the validation set performs poorly. By increasing the regu-
larization factor there is an optimum at which the validation set has
the maximum log-likelihood ratio and the training set still performs
reasonably well. Any further increase after this point will deteriorate
performance.
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L2 regularization factor β
0 10 100 1000 10000 100000 1000000

L1
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ct

or
α 0 21.4 21.4 22.0 26.5 36.5 16.8 2.3

100 25.8 25.9 26.3 29.7 36.7 16.2 2.2
178 28.7 28.8 29.2 31.8 36.7 15.6 2.1
316 33.0 32.9 33.0 34.9 36.4 14.7 2.0
562 36.6 36.1 36.2 37.2 34.7 12.9 1.7
1000 37.4 36.3 36.5 36.0 29.5 9.6 1.3
1778 27.0 29.0 28.2 24.3 19.2 5.4 0.7
3162 11.3 13.3 11.9 9.7 7.3 3.5 0.5
5623 3.3 3.3 1.1 2.2 3.1 1.8 0.1
10000 1.3 0.4 2.0 1.4 -0.0 1.2 -0.2

Table 6.12: Log-likelihood ratios of the Linear model over the Constant model
on the validation set. Rows and columns correspond to the values of
α and β, that is the L1 and L2 regularization factors, respectively.
The optimum value is achieved at α = 1000 and β = 0. Note that
sufficiently large regularization factors result in zero weights except
for the bias term, in which case the model becomes equivalent to the
Constant Model, hence the log-likelihood ratio is zero.

6.5.4 Neural Networks

Finally, the most complex model I consider are Neural Networks as intro-

duced in Section 2.6.4 to predict second half goal intensities. The net-

work’s input is the 2 x 9 dimensional feature vector X and the output is

the 2-dimensional intensity vector λNN. The last layer’s activation function

was always exponential in order to ensure positivity of the intensities. Then

the formal model definition according to Equation 2.30 is:

λNN (X) = fNN(X, θ = {Wi, bi, i ∈ [0, n− 1]})

= exp (bn−1 +Wn−1hn−2 (. . . b1 +W1h0 (b0 +W0X)))(6.19)

where the regular model parameters consist of the bias vectors bi and the
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L2 regularization factor β
0 10 100 1000 10000 100000 1000000

L1
re

gu
la

riz
at

io
n

fa
ct

or
α 0 71.3 71.3 71.3 70.9 59.9 21.5 2.9

100 70.7 70.7 70.7 69.8 58.2 20.5 2.7
178 69.8 69.9 69.8 68.7 56.8 19.7 2.6
316 67.8 67.7 67.5 66.4 54.0 18.3 2.4
562 62.9 62.6 62.7 61.5 48.6 15.9 2.1
1000 50.3 50.0 50.2 49.3 37.3 11.7 1.6
1778 32.8 33.7 33.1 29.7 22.1 6.9 0.9
3162 15.0 16.7 13.9 12.2 8.2 5.1 0.9
5623 4.5 3.5 2.3 2.1 3.0 2.7 0.1
10000 2.0 1.0 2.1 1.8 -0.4 1.5 -0.1

Table 6.13: Log-likelihood ratios of the Linear model over the Constant model
on the training set. Rows and columns correspond to the values
of α and β, that is the L1 and L2 regularization factors, respec-
tively. As expected, maximum log-likelihood ratio on the training
set is achieved with no regularization, but this is over-fitting which
is demonstrated by the fact that log-likelihood ratio on the valida-
tion set is sub-optimal with zero regularization factors as reported
in Table 6.12

AWAY DRAW HOME

p_HOME 36.60% 38.34% 39.77%
p_DRAW 37.68% 37.42% 37.01%
p_AWAY 25.72% 24.24% 23.22%

Table 6.14: Table of frequencies of the Linear model at the optimum fit of L1
factor α = 1000 and L2 factor β = 0.

weight matrices Wi of each layer and hi (.) denote the element-wise non-linear

activation functions.

The regular parameters of the model are the weights and the biases while

the hyper-parameters are the number of layers, the number of neurons in

each layer and the types of activation functions used.
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6.5.4.1 Over-fitting and Regularization

Because the number of parameters in a Neural Network is much higher than

in case of a Linear model, over-fitting is an even more serious issue and must

be addressed. There are several widely used methods, a few of which are early

stopping [68], dropout [69], noise injection [70] and L1 or L2 regularization

[71] that was already introduced in section 6.5.3.1.

I decided to use L1 regularization on the weights of the network that is

essentially the inclusion of a penalty term in the cost function:

LNN (W0,W1, . . .Wn−1) +
∑

i∈[0,n−1]

α ‖Wi‖1 (6.20)

Note that only the weights are regularized and the bias terms are allowed

to fit freely.

6.5.5 Results

I used the Tensorflow library [78] to train the network and used the built-in

Adam optimisation method [74] to maximise the log-likelihood values. As

usual, I trained on the training set and then checked the log-likelihood ratio

against the Constant model on the Validation set.

6.5.5.1 Learning Rate

Learning rate is one of the most important hyper-parameters, therefore I

decided to check it’s effect on the results first. I created a network consisting

of 1 hidden layer with 8 neurons in that layer, plus the input layer with 18

neurons and the output layer of 2 neurons. The activation function in the

hidden layer was tanh. The results are reported in Figure 6.8. Note that the

learning rate doesn’t have a significant effect on the log-likelihood ratio in
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Figure 6.7: Log-likelihood optimisation on the training set as a function of the
number of training steps. Because the optimisation library is only
able to perform minimisation and not maximisation, I was doing
minimisation of negative log-likelihoods which is the reason for the
values decreasing and not increasing as training progresses. Learning
rate is 0.001, L1 regularisation factor α is 200, 1 hidden layer with 8
neurons and the activation function is tanh.

the range α < 300, therefore I decided to use the value of 0.001 from here on.

Figure 6.7 shows the Log-likelihood optimisation during training as a function

of training steps with learning rate set to 0.001 and L1 regularisation factor

set to 200.

6.5.5.2 Number of Neurons

The effect of the number of neurons on the Log-likelihood ratio is reported

in Figure 6.9 using 1 hidden layer and a tanh activation function. It can be
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Figure 6.8: Log-likelihood ratios of the Neural Network model over the Constant
model as a function of the L1 regularization factor α using various
learning rates. There is 1 hidden layer with 8 neurons and the acti-
vation function is tanh. Note that the learning rate doesn’t seem to
significantly affect the log-likelihood ratio.

seen that the maximum is achieved in case of 16 neurons in the hidden layer

which together with the 18 neurons in the input layer and 2 neurons in the

output layer makes a total of 36 neurons in the network.

6.5.5.3 Number of Layers

I created networks consisting of multiple layers and ran the Log-likelihood

ratios using 1 to 4 layers, with 8 neurons in each layer. The results are

reported in Figure 6.10. The optimum is with 1 layer and adding more

layers actually degrades performance.
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Figure 6.9: Log-likelihood ratios of the Neural Network model over the Constant
model as a function of the L1 regularization factor α using different
number of neurons in the hidden layer. Learning rate is 0.001, there
is 1 hidden layer and the activation function is tanh.

6.5.5.4 Activation Function

I compared the effect of using various activation functions in the hidden

layer using 1 hidden layers with 8 neurons. The difference is not significant,

although tanh and ReLU seem to perform best. The results are reported in

Figure 6.11.

6.5.5.5 Best Architecture

The overall best performing architecture was able to reach a log-likelihood

ratio of 37.33 and consisted of 1 hidden layers with 16 neurons in the hidden
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Figure 6.10: Log-likelihood ratios of the Neural Network model on the validation
set as a function of the L1 regularization factor α using different
number of hidden layers. Learning rate is 0.001, there are 8 neurons
in each layer and the activation function is tanh.

AWAY DRAW HOME

p_HOME 36.32% 38.27% 39.73%
p_DRAW 37.69% 37.42% 36.92%
p_AWAY 25.99% 24.31% 23.35%

Table 6.15: Table of frequencies of the Neural Network model using the best
performing architecture.

layer using a tanh activation function with an L1 regularization factor of

α = 400.00. The corresponding table of frequencies is reported in Table

6.15.
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Figure 6.11: Log-likelihood ratios of the Neural Network model on the validation
set as a function of the L1 regularization factor α using various
activation functions. Learning rate is 0.001, there are 8 neurons in
1 hidden layer.

6.5.6 Summary

Table 6.16 shows the log-likelihood ratios achieved by the different models,

using the best performing hyper-parameter values in case of each model in

the L Validate row. All the models performed similarly with the Nearest

Neighbor model being the worst performing model achieving a log-likelihood

ratio of 33.44. The Linear model had a slightly higher log-likelihood ratio of

37.36 than the Neural Network model of 37.33. Although the difference is

very small and the Linear model seems performing only slightly better than

the Neural Network model. One explanation might be that my data sets
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were of size of 1460 games which may just be too small for training the 320

parameters of the network.

When I take into account the number of parameters and use the Akaike

Information Criterion (see Section 2.5.3) to decide between the Linear and

the Neural Network model, the Linear model is a clear winner because the

number of parameters k is much lower than that of the Neural Network

model. In case of the Nearest Neighbor model I assumed the number of

parameters k to be equal to 1, which is the number of nearest neighbors.

Table 6.16 also shows Wilks’ p-values according to Section 2.5.4. In my

case the base-line constant model has m = 2 parameters for the two team’s

constant intensities and the number of parameters of the alternative model

is denoted by h = k, therefore the degrees of freedom of the χ2 distribution

is simply equal to k − 2. The Nearest Neighbor and the Linear models have

high p values of close to 100% while the Neural Network model has a low p

value with close to 0% due to the large number of parameters.

Throughout the chapter the training and the validation set was fixed. In

order to avoid spurious results due to the specific choice of these sets, I created

5 additional training and validation sets which contain the same games and

are of the same size as the original sets, but are randomly re-shuffled. In this

way I created 5 cross-validation sets. I re-trained every model on the training

sets and then took the log-likelihood ratios from the validation sets for those

same hyper-parameters that were found to be best performing in the original

validation set. In this way I obtained 5 log-likelihood ratios corresponding

to the 5 cross-validation sets for each model. I calculated the minimums,

maximums and averages of these 5 log-likelihood ratio values for each model

and the results are reported in the L Cross-Validate Min, Max, Avg rows

of Table 6.16. By looking at the L Cross-Validate Avg row, it can be seen
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that the results are in line with the results found using the original set shown

in row L Validate: the Linear model performs the best followed closely by

the Neural Network model, followed by the K-Nearest Neighbor model. This

confirms that the original results are not due to the specific choice of the

original train and validation sets, but are robust to random changes in the

train and validation sets.

As a final check, I ran all the trained models against a test set that I never

used during training and hyper-parameter tuning in the earlier sections. The

test set consisted of a total of 1093 games from the 2013/2014 season of

the following championships: Dutch Eredivisie, German Bundesliga, Rus-

sian Premier League and Norwegian Tippeligaen. The log-likelihood ratios

over the constant model for the best performing architectures for the various

models are show in the L Test row of Table 6.16. The log-likelihood ratios

are somewhat lower than the ones achieved on the validation set. This is

indeed expected since those values correspond to the maximum across all

hyper-parameters considered, therefore those values are optimised whereas

the values on the test set are not. The differences are reasonably low so

that we can be confident that no serious over-fitting happened in the hyper-

parameter tuning phase.

There is a discrepancy in the table of frequencies (Tables 6.10, 6.11, 6.14

and 6.15), namely that all models perform poorly when predicting the DRAW

outcome in the sense that the predicted probability of a DRAW isn’t higher

for games that have a DRAW outcome than for games that have a HOME

or AWAY win outcome. This is an interesting discrepancy that can be ex-

plained through the limitations of the constant intensity model and the fitting

process. Recall Figures 4.1 and 4.2 that show that the goal distribution is

more heavy-tailed than the Poisson distribution, that is higher goal numbers
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K-Nearest Neighbor Linear Neural Network

L Validate 33.44 37.36 37.33
k 1 36 320
AIC 64.88 2.72 -565.34
Wilks’ p-value 100.00% 99.98% 0.00%
L Cross-Validate Min 29.11 35.52 34.71
L Cross-Validate Avg 35.18 37.28 36.63
L Cross-Validate Max 44.43 39.64 39.33
L Test 29.67 30.44 33.14

Table 6.16: The maximum log-likelihood ratios achieved by the different mod-
els on the Validation set, on the 5-fold Cross-Validation set and on
the final Test set along with the number of parameters k and the
corresponding AIC values and Wilks’ p-values.

have a higher chance than predicted by the constant Poisson model. How-

ever throughout this chapter we used a constant Poisson parametrization for

the goal distribution, that can be responsible for such discrepancies. Fur-

thermore, when fitting the models, we were maximising the log-likelihood

defined in Equation 6.5, instead of minimizing some kind of discrepancy in

the table of frequencies. In other words, the table of frequencies was never

a fititng target, it’s rather a side-effect kind of observation of goodness that

can have discrepancies. This can be seen by the fact that even when we

look at the simplest possible model, the constant model and we look at the

actual training set that was used for fitting, rather than the validation set,

even in this case the HOME, AWAY and DRAW probabilities predicted by

the model after the fit are slightly different than the emprical frequencies in

the dataset. In other words, the fit doesn’t reproduce the actual table of

frequencies because that wasn’t the fitting target. In this case the predicted

HOME, DRAW and AWAY probabilities were 38.65%, 37.43% and 23.92%

respectively as seen in Table 6.7. In contrast, the actual training set had

39.29% of games ending in a HOME win, 35.55% enidng in a DRAW and
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25.16% ending in an AWAY win. It can be seen that even in the simplest

case (constant model, fitting on the training set) the table of frequencies un-

derestimates the probability of a DRAW. This can explain the discrepancy

seen across all models of being a poor predictor of a DRAW outcome.

6.6 Conclusions

In this chapter I studied an in-play football data set containing high reso-

lution information regarding various events that happen during the game. I

constructed features from the first half of the game (X) and considered the

number of goals scored in the second half (Y ). First I ran various feature se-

lection methods to determine the most significant features which turned out

to be the number of passes on the opponent’s half, corners awarded, number

of passes in the team’s own half and number of goals scored in the first half.

Then I used maximum likelihood to quantify goodness of fit using various

models and to predict the Poisson goal intensity of the second half based

on the values of the features in the first half. I used the Constant intensity

model as a benchmark. The Linear model with Elastic Net regularization

turned out to perform the best in terms of likelihood on the validation set,

slightly outperforming both the K-Nearest Neighbor and the Neural Net-

work models. However, in terms of Akaike information criterion, the best

performing model turned out to be the K-Nearest Neighbor model followed

by the Linear model, followed by the Neural Network model. The reason

for this is that the K-Nearest Neighbour model had the lowest number of

parameters with k = 0. However this might be slightly misleading, because

although the model itself doesn’t have any parameters that were optimised,

the trained model contains a copy of the whole training set, therefore deter-
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mining the number of parameters k in case of the K-Nearest Neighbor model

is slightly ambiguous and therefore this result must be interpreted with care.

In terms of the Linear and Neural Network models there is no such ambiguity,

although the two models performed similarly in terms of log-likelihood, in

terms of Akaike Information criterion the Linear model clearly outperforms

the Neural Network model because it has much lower number of parameters.

In conclusion, the Linear Model together with parameter regularization

turned out to be the most effective method among the methods that were

investigated in this chapter.



Chapter 7

Comparing the Predictive

Powers of the Microscopic and

the First Half Indicators

Models

In this chapter I used the Microscopic Model introduced in Chapter 5 and the

First Half Indicators Model introduced in Chapter 6 to predict goal intensities

in the second half of the game and I compared the predictive powers of the

two models.

7.1 Data Set and Calibration

I perform prediction on the second halves of the same set of 30 games of the

UEFA Euro 2012 Championship that I used in Section 5.2.

147
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7.1.1 Microscopic Model

To calibrate the Microscopic Model, I use the data from the first halves of

the 30 games of the UEFA Euro 2012 Championship and perform the same

calibration procedure outlined in Section 5.3 with the only difference that

I only use data from the first halves of the games to determine the model

parameter values which I then use to predict the intensities in the second

half.

7.1.2 First Half Indicators

To fit the parameters of the First Half Indicators Model, I use the set of

the same 1470 games from Section 6 that were used to train the model. The

hyper-parameters are the ones of the best performing model according to Sec-

tion 6.5.6. Specifically, I use a Linear Model with Elastic Net Regularisation

with α = 1000 and β = 0.

7.2 Prediction

7.2.1 Microscopic Model

Recall Equation 5.32 according to which the predicted goal intensity for time

t, conditional on an initial state at time t0 is defined by

λu (t|t0, x0, y0, u0) = E [λu (X,U, t) |U(t0) = u0, Xx(t0) = x0, Xy(t0) = y0]

(7.1)

where x0, y0 and u0 are the initial positions of the ball and the team

initially holding the ball at time t0. Team u’s goal intensity at time t > t0 is
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the probability that the team scores a goal in the infinitesimal time interval

[t, t+ dt], divided by the length of the time interval dt. The intensity within

the model can be calculated using Equation 5.32 after calibrating the model

parameters using the first half of the game.

As time t0 goes by in the second half of the games, the initial values

x0, y0, u0 are updated continuously and on each update we are able to cal-

culate predicted goal intensities for all future times t > t0 of the game. As

illustrated in Figure 5.22, this prediction is expected to be more precise for

the near future, that is for t close to t0 than for times further away. Betting

markets are aware of this and therefore an in-play delay of about 8 seconds

is introduced depending on the market which is applied on all bets submit-

ted to the market. Therefore I introduced a delay parameter denoted by

∆t which is equal to the difference between the time t0 when the state of

the game was observed and the time t that the intensity was predicted for.

That is ∆t = t − t0. I kept this delay constant for the whole of the second

half, but ran the prediction with multiple different values. Ultimately, in

this way I was able to calculate the time series of predicted intensities for

the two teams defined in Equation 7.1 which from now on is denoted by the

short-hand notation λu∆t(t):

λu∆t(t) = λu (t+∆t|t,Xx(t), Xy(t), U(t)) (7.2)

where now t is the time when the state is observed and the prediction is

made, ∆t is the time delay that the prediction is made for in the future and

Xx, Xy, U denote the state of the game that is updated continuously as the

game progresses.
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7.2.2 First Half Indicators

The predicted goal intensities in the First Half Indicators model are constant

for the whole duration of the second halves of the games, depending on the

indicator values observed at the end of the first half.

7.3 Evaluation of the Predictive Power

Recall that the log-likelihood ratio of two Poisson Processes according to

Equation 2.22 in Section 2.5.2 is:

ln
P
[
{ti}ki=1 |λ1 (t)

]
P
[
{ti}ki=1 |λ0 (t)

] = −
∫ T1

T0

(λ1(t)− λ0(t)) dt+
k∑

i=1

ln
λ1(ti)

λ0(ti)
(7.3)

where λ1(t) is the Microscopic model’s predicted goal intensity coming

from Equation 7.2 and λ0(t) is the goal intensity coming from the First Half

Indicators Model which for a specific game is constant during the whole of

the second half.
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7.4 Results

The home team’s goal intensities predicted by the two models for the sec-

ond half of the Portugal - Netherlands game of the 2012 European UEFA

Championship using various delay values are shown in Figures 7.1, 7.2, 7.3,

7.4. As the delay values are increasing from 2 to 40 seconds, the variability

of the Microscopic Model intensities are decreasing because the initial state

is becoming less relevant.

Table 7.1 shows the log-likelihood ratios of the Microscopic Model with

various delay values over the First Half Indicators model for 30 games of the

UEFA Euro 2012 Championship. The log-likelihood ratios were calculated

using Equation 2.22. Figure 7.5 shows the average log-likelihood ratios across

all games as a function of delay along with the 10% - 90% confidence interval.

Note that smaller delay values result in a higher log-likelihood ratio and as the

delay approaches 30 seconds, the log-likelihood ratio value drops to close zero.

That is, for small delay values the Microscopic Model is able to outperform

the First Half Indicators model because the state of the game is still relevant

for the time the predictions are being made for. As the delay grows, the

initial state of the game becomes less relevant and the intensities approach

their stationary values, as also shown in Figure 5.22. In this regime the

Microscopic Model has no edge over the First Half Indicators model which is

the reason for the average log-likelihood ratios dropping to negative values.
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Figure 7.1: Predicted second half goal intensities for the HOME team of the
Portugal - Netherlands 2012 UEFA Championship game as a function
of time. Microscopic Model intensities were predicted with a delay
of 2 seconds. First Half Model intensities were predicted with the
best performing Elastic Net model using indicator values from the
first half of the game. Actual goal events are show with vertical red
lines.
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Figure 7.2: Predicted second half goal intensities for the HOME team of the
Portugal - Netherlands 2012 UEFA Championship game as a function
of time. Microscopic Model intensities were predicted with a delay
of 5 seconds. First Half Model intensities were predicted with the
best performing Elastic Net model using indicator values from the
first half of the game. Actual goal events are show with vertical red
lines.
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Figure 7.3: Predicted second half goal intensities for the HOME team of the
Portugal - Netherlands 2012 UEFA Championship game as a function
of time. Microscopic Model intensities were predicted with a delay
of 10 seconds. First Half Model intensities were predicted with the
best performing Elastic Net model using indicator values from the
first half of the game. Actual goal events are show with vertical red
lines.
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Figure 7.4: Predicted second half goal intensities for the HOME team of the
Portugal - Netherlands 2012 UEFA Championship game as a function
of time. Microscopic Model intensities were predicted with a delay
of 40 seconds. First Half Model intensities were predicted with the
best performing Elastic Net model using indicator values from the
first half of the game. Actual goal events are show with vertical red
lines.
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2 5 10 20 40 55

Euro 2012 - Poland v Greece 2.16 1.65 1.04 0.34 -0.34 -0.59
Euro 2012 - Russia v Czech Republic 5.39 4.76 3.85 2.64 1.25 0.67
Euro 2012 - Netherlands v Denmark 0.97 0.75 0.45 0.12 -0.15 -0.24
Euro 2012 - Germany v Portugal 3.10 2.61 2.06 1.42 0.73 0.46
Euro 2012 - Spain v Italy 4.27 3.66 2.91 1.97 0.96 0.56
Euro 2012 - Rep of Ireland v Croatia 3.11 2.60 2.02 1.32 0.62 0.35
Euro 2012 - France v England 1.35 1.11 0.81 0.49 0.23 0.14
Euro 2012 - Ukraine v Sweden 5.73 4.70 3.52 2.10 0.59 -0.01
Euro 2012 - Greece v Czech Republic 2.68 2.25 1.70 1.01 0.28 0.07
Euro 2012 - Poland v Russia 1.56 1.42 1.06 0.52 -0.08 -0.33
Euro 2012 - Denmark v Portugal 3.87 3.23 2.42 1.44 0.38 -0.04
Euro 2012 - Netherlands v Germany 2.08 1.82 1.43 0.91 0.31 0.06
Euro 2012 - Italy v Croatia 2.91 2.39 1.79 1.08 0.36 0.08
Euro 2012 - Spain v Rep of Ireland 5.51 4.70 3.66 2.37 0.95 0.40
Euro 2012 - Sweden v England 4.47 4.43 3.61 2.37 0.95 0.36
Euro 2012 - Ukraine v France 2.65 2.23 1.61 0.77 -0.23 -0.65
Euro 2012 - Greece v Russia 1.24 1.01 0.77 0.52 0.24 0.13
Euro 2012 - Czech Republic v Poland 2.15 1.72 1.20 0.55 -0.12 -0.37
Euro 2012 - Portugal v Netherlands 1.93 1.50 0.97 0.32 -0.37 -0.63
Euro 2012 - Denmark v Germany 2.80 2.38 1.83 1.13 0.43 0.16
Euro 2012 - Croatia v Spain 3.51 2.93 2.31 1.67 0.96 0.67
Euro 2012 - Sweden v France 4.32 3.61 2.80 1.86 0.82 0.39
Euro 2012 - England v Ukraine 3.94 3.40 2.82 2.15 1.45 1.19
Euro 2012 - Czech Republic v Portugal 3.32 2.83 2.24 1.54 0.80 0.52
Euro 2012 - Germany v Greece 7.82 6.46 4.84 2.91 0.74 -0.16
Euro 2012 - Spain v France 3.19 2.74 2.19 1.50 0.81 0.55
Euro 2012 - England v Italy 1.01 0.79 0.51 0.20 -0.10 -0.21
Euro 2012 - Portugal v Spain 1.12 0.92 0.63 0.23 -0.10 -0.19
Euro 2012 - Germany v Italy 2.65 2.16 1.59 0.95 0.28 0.06
Euro 2012 - Spain v Italy 4.17 3.56 2.83 1.94 0.95 0.56

Table 7.1: Log-likelihood ratios of the Microscopic Model with various delay
values in seconds (columns) over the First Half Indicators with the
best performing Elastic Net Model for various games of the UEFA
Euro 2012 Championship (rows).
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Figure 7.5: Average with 10% to 90% confidence intervals of the Log-likelihood
ratios of the Microscopic Model over the First Half Indicators with
the best performing Elastic Net Model for a total of 30 games of the
UEFA Euro 2012 Championship as a function of Microscopic Model
Delay. Note that in case of small delay the Microscopic Model clearly
outperforms the First Half Indicators Model because for small delays
the state of the game is relevant and this is only taken into account by
the Microscopic Model. As the delay increases, the state becomes less
relevant and the edge over the First Half Indicators model degrades.
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7.5 Summary

In this chapter I performed prediction using the Microscopic Model and the

First Half Indicators Model and compared the predictive powers of the two

models using log-likelihood ratios. In case of the Microscopic Model, the

initial state (number of goals, ball position, team holding the ball) was up-

dated continuously during the second half as the game progressed and the

gal intensity was predicted starting from the current initial state into a spe-

cific delay time ∆t into the future. On the other hand, in case of the First

Half Indicators model, the value of the 18-dimensional indicator vector was

observed once at the end of the first half, a goal intensity was predicted

and the same constant intensity was used during the whole of the second

half. Therefore, as expected, for small delay values, up to 30 seconds the

Microscopic Model did outperform the First Half Indicators Model. As the

delay increased above 30 seconds, the initial state became less relevant and

the predictive power of the Microscopic Model over the First Half Indicators

Model degraded.



Chapter 8

Conclusions and Further

Research

This chapter summarizes the main results of the thesis. The limitations

are also being discussed, followed by a set of possible improvements and

suggestions for future research.

8.1 Summary

This thesis applies financial mathematics and machine learning to develop

models for valuing and risk-managing in-play football bets and to predict the

outcomes of football games using in-play data.

Overall we were able to apply existing methods form financial mathemat-

ics and to develop new models inspired by existing models used for pricing

financial derivatives. We were also able to build predictive models using

machine-learning methods.

The findings of the thesis are the following:

The Constant Intensity Model in Chapter 3 provides a risk-neutral

159



160 Chapter 8. Conclusions and Further Research

hedging and pricing framework for in-play football bets. Two homogeneous

Poisson processes have been used to model the goals scored by the two teams.

It has been shown that the Fundamental Theorems of Asset Pricing can be

extended to this setting and that the market under this model is arbitrage free

and complete. Delta-hedging has been demonstrated using in-play market

data and was found to perform reasonably well.

The Local Intensity Model in Chapter 4 addresses the issue of the

so-called intensity smile. The Constant Intensity model prices all bets types

with the same intensity and in practice fails to reprice Over/Under bets of

different strikes because the implied intensity is not a constant, but rather

an increasing function of strike. This is very similar to the strike-dependent

nature of the Black-Scholes volatility, that is the volatility smile. I showed

that a similar approach that has been used in finance to deal with this effect

can also be used in in-play football betting. Specifically, taking Dupire’s local

volatility model I have shown that introducing a time and score dependent

local intensity surface, a consistent model can be constructed that is able to

reprice any implied intensity smiles. Dupire’s calibration formulae have been

derived for the local intensity model and calibration has been demonstrated

on in-play betting market data.

The Microscopic Model in Chapter 5 attempts to make the next step

by modelling the in-play dynamic of not only the goals scored, but two ad-

ditional and important features as well: the position of the ball and the

team holding the ball. These state variables are driven by a set of stochastic

differential equations, such that the scores and the team holding the ball

are driven by jump processes and the ball position is driven by a Wiener

process. In the first part of the chapter the parameters of these processes

were allowed to depend freely on all of the state variables and after studying
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these generic parameter surfaces I was able to simplify the model greatly by

using parametrisations and decrease the number of model parameters to just

13. I then showed that this simplified model can be solved using an efficient

semi-analytic approach so that the PDE describing the distribution of the

state parameters can be solved on a grid.

The First Half Indicators Model in Chapter 6 attempts to forecast

the results of the second half of the game using indicators observed at the

end of the first half. First I used feature selection methods to select relevant

features and the performed model selection to find the model from a set

of standard machine learning methods with the highest predictive power.

The best performing model was found to be a linear model with Elastic Net

regularisation.

In Chapter 7 I compared the predictive powers of the Microscopic Model

and the First Half Indicators Model and found that the Microscopic Model

is able to outperform the First Half Indicators Model, but only if the delay

is under 30 seconds because after this the initial position of the ball and the

team holding the ball becomes practically irrelevant.

8.2 Future Research

The thesis undeniably has a number of limitations and there is room for

further improvement. A list of potential directions of future research can be

summarised as:

• The Local Intensity model in Chapter 4 could be enhanced by:

– Consider alternative approaches to the constant interpolation of

implied intensities from T to all times t < T .
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– Extend from one dimension to two so that it can be used to price

bets sensitive to the goals scored by individual teams, not only to

bets on the total score.

• Consider Stochastic Intensity models where the intensity is driven by

a separate stochastic process, in the spirit of the Heston model, such

as for example the model suggested by [42].

• The Microscopic Model in Chapter 5 could be enhanced by:

– Improving the calibration of the model such that the calibration is

not a two-step process of first fitting non-parametric surfaces and

then fitting the model parameters on these surfaces but rather a

one step process that yields model parameters directly.

– Solving the model in a more efficient way. The current solution

is semi-analytic in the sense that some variables can be solved

analytically such as the team possessing the ball, but others are

solved on a grid using numerical PDE methods such as the dis-

tribution of the ball position. A fully analytical solution would

improve the computational performance dramatically and there-

fore would make calibration and solution more efficient, however

it is unclear whether this is possible.

• The First Half Indicators model in Chapter 6 could be enhanced by:

– Apply the classification model in a more dynamic way by using

more frequently updated data, for example once every minute,

rather than only training the model at the end of the first half.

– Constructing additional indicators that have potentially higher

predictive power.
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– Using alternative methods, for example support vector machines

or deep recurrent neural networks.

8.3 Closing Remarks

The sports betting industry becomes bigger and bigger every year. Bet-

ting providers are increasingly relying on quant skills and there is actually

movement between quant roles in the traditional financial sector and bet-

ting companies. Although the regulatory and legal framework for sports

betting and financial derivatives is vastly different, bets are in many sense si-

ilar to derivatives and the techniques developed for pricing and risk-managing

derivatives can be transferred and applied to the betting industry. This tech-

nology transfer is useful not only as a pure intellectual exercise, but can have

practical benefits by making the betting markets more efficient and thereby

serving both the betting companies and retail customers as well.

In this thesis we were able to show that a number of results from financial

mathematics and asset pricing can be transferred and applied to in-play

football bets. We were also able to developed predictive models based on

fundamental in-play data.

Overall, the in-play football betting market proved to be an interesting

research topic that provided a unique opportunity to observe the interplay

between the fundamental processes driving a market and the prices of trad-

able assets in the market.
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