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Abstract 
 

The research focuses on testing a series of material-sensitive robotic training methods 
that flexibly extend the range of subtractive manufacturing processes available to 
designers based on the integration of manufacturing knowledge at an early design 
stage. In current design practices, the lack of feedback information between the 
different steps of linear design workflows forces designers to engage with only a 
limited range of standard materials and manufacturing techniques, leading to 
wasteful and inefficient solutions. With a specific focus on timber subtractive 
manufacturing, the work presented in this thesis addresses the main issue hindering 
the utilisation of non-standard tools and heterogeneous materials in design processes 
which is the significant deviation between what is prescribed in the digital design 
environment and the respective fabrication outcome. 

To begin, it has been demonstrated the extent to which the heterogeneous properties 
of timber affect the outcome of the robotic carving process beyond the acceptable 
tolerance thresholds for design purposes. Resting on this premise, the devised 
strategy to address such a material variance involved capturing, transferring, 
augmenting and integrating manufacturing knowledge through the collection of real-
world fabrication data, both by human experts and robotic sessions, and training of 
machine learning models (i.e. Artificial Neural Networks) to achieve an accurate 
simulation of the robotic manufacturing task informed by specific sets of tools 
affordances and material behaviours. The results of the training process have 
demonstrated that it is possible to accurately simulate the carving process to a degree 
sufficient for design applications, anticipating the influence of material and tool 
properties on the carved geometry.  

The collaborations with the industry partners of the project, ROK Architects (Zürich) 
and BIG (Copenhagen), provided the opportunity to assess the different practical uses 
and related implications of the tools in a real-world scenario following an open-ended 
and explorative approach based on several iterations of the full design-to-production 
cycle. The findings have shown that the devised strategy supports decision-making 
procedures at an early stage of the design process and enables the exploration of 
novel, previously unavailable, solutions informed by material and tool affordances.  
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1 Introduction 
 

1.1 Problem Definition 
Despite the increasing accessibility of digital fabrication technologies (Kolarevic, 2004), 
manufacturing and material knowledge are only rarely integrated within the 
established workflows of design practices whose main task is the production of 
instructions sets, such as drawings, digital models or technical reports (Hauck, Bergin 
and Bernstein, 2017). As a result, whereas skilled human craftsmen are able to cope 
with the uncertainty of the making process thanks to their skills and knowledge, 
continually adjusting their action in a dialogue with the materials and tools (Ingold, 
2013), standard digital fabrication processes are currently unable to deal with such 
variance. While the term “digital craftsmanship” has become popular in the literature 
(Scheurer, 2012; Stary, 2015; Jacobs et al., 2016), the cognitive abilities of human 
craftsmen remain a critical aspect unmatched by the digital counterpart, enabling 
learning and knowledge creation through experience.  

Within a conventional design process driven by drawings and notations, 
“materialisation” processes are still regarded as the last stage of linear design-to-
manufacturing workflows, in which materials are considered as passive receivers of a 
previously generated ideal form stored in a CAD model (De Landa, 2002). This linear 
progression from the design intention to its materialisation entails a lack of feedback 
between the different stages of the process and forces design practices to engage only 
with a limited range of standard manufacturing methods. The main criterion for any 
manufacturing task is the resemblance of the fabricated outcome to its digital or 
analogue specification. Nevertheless, only highly constrained and standardised 
fabrication processes can successfully achieve this without collecting actual 
fabrication feedback for adjustments at the production stage. As a consequence, 
standard design-to-fabrication strategies require the use of a narrow range of 
industrially-graded materials whose composition is homogeneous and behaviour is 
characterised in specification reports.  

This approach is particularly detrimental for a natural, heterogeneous, material such 
as timber as it needs to be homogenised before becoming suitable for a conventional 
manufacturing environment, requiring heavy industrial processing and material 
waste. As the material is set to play a crucial role in the future of the design and 
construction industry due to its excellent technical performance and sustainable 
qualities (Sathre, 2007), it seems critical devising strategies to take advantage of its 
natural properties. The transformation from sawn log into an “engineered timber” 
product (e.g. a plywood panel) begins with chopping down the material into smaller 
elements (e.g. thin layers) to a size at which they could be considered homogeneous, 
discarding a significant amount of material in the process of removing all its natural 
“defects” (e.g. knots, coloured stains). Subsequently, these elements are reassembled 
into a specific arrangement (e.g. for plywood each layer is orthogonal to the next) using 
strong adhesives and industrial jigs or presses, obtaining a final product in which the 
heterogeneous properties of the natural material have been mostly eliminated. As 
part of such standardisation process, only a limited range of tools are utilised in CNC 
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manufacturing systems for timber, excluding a variety of techniques which have been 
widely used before industrialisation to take advantage of its heterogeneous qualities 
(Schindler, 2007). 

Focusing on natural solid timber, the thesis addresses the main issue hindering the 
utilisation of heterogeneous materials in current design-to-manufacturing workflows 
which is the difficulty of specifying their properties and behaviour in response to the 
fabrication tools, necessary to deliver consistent information along the design process 
and comply to the established quality standards. The bottleneck of digital fabrication 
processes then becomes the significant deviation between what is prescribed in the 
digital design environment and the respective operation outcome, precluding the 
utilisation of heterogeneous materials and non-standard manufacturing methods 
from most of the design applications. For instance, fabrication tools such as carving 
gouges and chisels are not able to eliminate the variance determined by the material 
behaviour and the final geometry results from a complex negotiation between design 
intentions and fabrication affordances. For manufacturers, the lack of full control over 
the process outcome at the agreed level of precision, to which they are contractually 
bound through its notational form, is not a viable business model beyond the 
prototyping stage. For designers, the lack of access to manufacturing and material 
knowledge leads at an early stage to blindly guess about the manufacturability of a 
project which is both challenging and economically risky.  

 

1.2 Research Proposition 
The approach proposed in the research seeks to encapsulate manufacturing 
knowledge specific to the material properties of timber into a transmissible form and 
make it available to designers at an early stage of the design process. In this way, 
design-to-manufacture workflows can advance through a series of decisions directly 
informed by manufacturing and material feedback across the full range of solutions 
available within a given process. The precise definition of parameter boundaries and 
constraints from the beginning is intended to prevent inefficient and costly 
operations. 

Operating in the field of robotic subtractive manufacturing, the novelty of the 
approach is in capturing, transferring, augmenting and integrating manufacturing 
knowledge through the collection of real-world fabrication data, both by human 
experts and robotic sessions, and training of machine learning models (i.e. Artificial 
Neural Networks) to achieve an accurate simulation of the manufacturing task 
informed by specific sets of tools affordances and material behaviours. Such a 
knowledge base can be used to inform any fabrication task without the need for the 
designer to explicitly define each fabrication parameter necessary to achieve an 
intended design outcome. Furthermore, the integration of instrumental knowledge 
within a design interface represents an opportunity to extend the range of 
manufacturing processes and materials available to designers as the system can be 
iteratively tuned to a particular set of fabrication conditions. The processing and 
reconstruction of such specific features move beyond the industrial concept of 
“standard” and material “defects”, integrating into the design tools a granular level of 
material understanding, unthinkable only a few decades ago (Sabin and Carpo, 2017). 
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Manufacturing processes could be then devised as moments of design exploration, 
where the digital model is directly informed by fabrication affordances and designers 
are able to curate their custom design-to-manufacturing workflow, integrating real-
world material behaviours to make better-informed design decisions, rather than 
working within a standard CAM framework, in which geometry only is represented, 
and material ignored. With the integration of manufacturing knowledge at an early 
design stage, the potential impact of the research lies in devising a series of training 
methods that flexibly extend the range of subtractive manufacturing processes 
available to designers and provide an accurate prediction of non-standard operations 
on timber. Access to the same knowledge resources can be used to establish a fruitful 
dialogue between designers and manufacturers and develop a custom design-to-
manufacturing workflow informed by feedback information along each stage of the 
process, avoiding inefficient solutions and material waste. 

 

1.3 Research Design & Methodology 
The research design and methodological frameworks have been strongly influenced 
by the Innochain Research Network context, within which this research has taken 
place, based on a fruitful collaboration between leading academic institutions and 
industry partners across Europe. 

The dual nature of the project is reflected in the structure of this research which is 
based on two complementary components focused, on one hand, on the 
technological development of the design simulation and fabrication framework, and 
the other, on their testing within the workflows of design practices. 

The first two research hypotheses belong to the technology-led component and 
concern the relationship between material and end product, testing the degree to 
which the fabrication system can successfully encapsulate manufacturing and 
material knowledge into a transmissible form that can be accessed during the design 
process. 

While conventional CAM (Computer-Aided Manufacturing) simulation frameworks do 
not consider timber material behaviour, Hypothesis A claims that: 

The heterogeneous qualities of natural materials such as timber substantially affect the 
outcome of operations performed with different carving tools, hindering their utilisation 
within current design workflows.  

To address this, it means establishing a series of methods to record, measure, process 
and compare the variance of robotic carving operations performed under different 
material and fabrication conditions. The acquisition of data will need to be structured 
within rigorous and statistically valid recording sessions using a combination of sensor 
devices that will accurately reconstruct the fabrication task and store its key features 
into a dataset. This first hypothesis seeks to find which are the relevant parameters 
affecting the operation outcome and demonstrate that such a variance is above the 
acceptable threshold of production tolerances for design purposes. 

Based on these premises, Hypothesis B states the following:  
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Given input parameters of (a) measurable properties of the given material, such as wood 
grain structure and density, and (b) tool affordances, a prediction can be made of (c) the 
geometrical outcome of the fabrication procedure to a level of accuracy sufficient for design 
purposes. 

The integration of material and fabrication knowledge implies the possibility of 
modelling it in a form that can be accessed and queried during the design process. 
The strategy adopted in this research will focus on a series of predictive methods 
based on sensor data and machine learning models which will be used to investigate 
to what extent it is possible to encapsulate such knowledge as part of a simulation 
environment. The aim is to prove that the devised strategy can anticipate the variance 
occurring in the fabrication outcome to a degree of accuracy within the acceptable 
threshold of tolerance, therefore demonstrating that is possible to use the fabrication 
system for design applications. 

The design-led component of the research, driven by Research Question C, rests on 
the validity of Hypothesis A and B to test the integration of the devised strategy 
within the established workflow of real-world design firms: 

How does the integration of manufacturing and material knowledge at an early stage of 
the design process affect the exploration and evaluation of design solutions for robotic 
carving operations? 

While the first two hypotheses face a technical challenge addressed through the 
collection of quantitative experimental data, Research Question C investigates the 
broader implications that the integration of manufacturing and material knowledge 
could have over the design process and the role of designers. 

Overall, the research adopted the methodological framework of the living laboratory 
as a strategy for refining complex solutions based on an early engagement with the 
potential users driven by experiments, as tangible artefacts, taking place within a real-
world setting (Almirall and Wareham, 2011; Guzmán et al., 2013). 

The investigation of such a research question was structured using a case study 
methodology based on the opportunity of engaging in a series of industry 
collaborations established within the context of the Innochain project. 

The critical aspect behind such a methodological choice lies in the necessity of 
covering the contextual conditions within which the tools would find applications (Yin, 
2017), moving beyond a purely academic context and adopting an exploratory 
approach based on a series of open-ended experiments in the shape of full design-to-
production cycles. 

As discussed by Baxter and Jack (2008), it is critical to ensure the convergence of the 
different type of collected data in an attempt to understand, and later discuss, the 
overall case rather than treat it in its separate components. Direct observation, voiced 
opinions and annotated accounts abouth the use of the devised system by the 
different teams of designers involved in the case studies represent the qualitative 
component of the research. This is further combined with the collection of 
quantitative data related to the training sessions and choices that informed the series 
of design explorations. 
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1.4 Thesis Outline 
The central part of the work is presented in Chapter 3, 4 and 5 along two main strands 
which entail the technological developments and design applications of the research. 
In Chapter 6, the findings from these two components are woven together to discuss 
how they relate to the body of work presented in the Literature Review (Chapter 2) 
and their further outlook. Finally, Chapter 7 directly addresses the research 
hypotheses put forward in this chapter and summarises the key contributions of the 
research. 

02. Literature Review: The perspectives of design practices, traditional crafts and 
industrial manufacturing are tied together around the central role of knowledge 
across different domains, evaluating the established methods for capturing, 
manipulating, extending and integrating it as part of design-to-manufacturing 
workflows. The review is structured in three main parts: i) Material Agency, ii) Making 
Knowledge and iii) Learning Systems. In the first section, the role of material agency 
and feedback information within design practices, traditional crafts, and industrial 
production is assessed together with its potential of linking digital practices to physical 
fabrication processes to radically reconfiguring the exploration of design solutions. 
The body of work discussed in the second section deals with the study of cognitive 
processes and methodological strategies linking design and making in traditional 
craftsmanship and compare them to the acquisition of knowledge in industrial 
manufacturing and its formalisation within simulation frameworks. In the third section 
are presented a series of strategies aiming to synthesise instrumental and material 
knowledge using machine learning models to inform the action of automated means 
of production, supporting decision-making procedures based on the affordances 
provided by specific sets of fabrication and material affordances. 

03. Knowledge Acquisition:  Hypothesis A is addressed through the discussion of a 
series of relevant findings demonstrating that the material variance of timber 
substantially affects the outcome of carving operations, supporting the need of a 
strategy to control such uncertainty for design applications. The focus of the chapter 
is on the first stage of the training workflow which concerns the acquisition of real-
world fabrication and material data collected through different sensor devices, its 
subsequent processing and storing into a library of fabrication datasets. Two different 
data acquisition methods, based on human demonstration and robotic sessions, are 
presented and compared to identify how these affect the overall training process. 
Finally, the extent to which the material variance of timber influences the carving 
operations is assessed through a series of recording sessions based on a Design of 
Experiment (DOE) strategy which is a statistically valid method to efficiently investigate 
which combinations of factors and their respective values (or levels) generate 
variations in the collected information. 

04. Knowledge Synthesis: The validity of Hypothesis B has been demonstrated 
utilising a combination of machine learning strategies to identify relevant correlations 
in the collected fabrication data and establish a simulation model for robotic carving 
operations, supporting key design decisions before moving to the production stage. 
Besides the validation process after the training of each model, the discussed methods 
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are assessed in the simulation of a series of carving operations produced with 
different fabrication parameters, measuring the deviation of the prediction from the 
actual fabricated outcomes. Following this, a comparative analysis of multiple 
simulation models trained with different sets of fabrication affordances is presented 
to demonstrate the versatility of the system and its ability to model the variance 
determined by various combinations of material properties, wood species and carving 
tools. 

05. Knowledge Integration: The findings from the industry collaborations with ROK 
Architects (Zürich) and BIG (Copenhagen) are presented and discussed to address 
Research Question C, demonstrating how the devised strategy has been applied to 
explore a range of design solutions previously unavailable to the designers. The 
extended catalogue of digital design iterations and several robotically fabricated 
pieces is organised as a  series of case studies presented and discussed in three main 
sections: i) Separation Between Design and Making, ii) Fabrication as Design Curation 
Practice and iii) Design Negotiation Platform: Top-Down Decisions vs Bottom-Up 
Affordances. 

06. Discussion: The findings from the previous chapters are woven together and their 
relevance is discussed in relation to the current literature along three main sections. 
i) Embracing Material Variance: discusses the modelling and integration of the agency 
of materials as a key component to enable holistic design feedback and support 
decision-making processes. ii) Learning Tools: presents the vision of designer curating 
her/his custom design-to-production process in dialogue with a tool which can be 
iteratively trained and optimised to accomplish tasks. iii) Knowledge Exchange: 
discusses the generation, transfer and augmentation of manufacturing knowledge 
between machines and human experts in the context of automation. 

07. Conclusions:  The contribution of the research lies in testing a series of material-
sensitive robotic training methods that flexibly extend the range of subtractive 
manufacturing processes available to designers based on the integration of 
manufacturing knowledge at an early design stage. It has been demonstrated that the 
heterogeneous properties of timber significantly affect the outcome of the robotic 
carving process, hindering the adoption of the manufacturing method into design 
workflows. As a strategy to address such a material variance, the training of the 
fabrication system, based on collected sensor data and machine learning models, 
demonstrated that is possible to accurately simulate the carving process to a degree 
sufficient for design application. Following the training validation, the tool has been 
tested in a series of industry collaborations to assess its practical use and implications 
in a real-world scenario. The results have shown that the devised strategy supports 
decision-making procedures at an early stage of design-to-production workflows and 
enables the exploration of novel, previously unavailable, design solutions informed by 
material and tool affordances. 
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2 Literature Review 
 

This chapter provides an overview of the critical terms, relevant methods and case 
studies around the synthesis and integration of material knowledge in design-to-
manufacturing workflows. The literature review ties together the perspectives of 
design practices, traditional crafts and industrial manufacturing around the central 
role of knowledge as a strategy to identify opportunities across a wide breadth of 
disciplinary fields revolving around the design and making of physical artefacts. The 
analysis is structured in three main parts: i) Material Agency, ii) Making Knowledge 
and iii) Learning Systems. 

The first section presents the separation between the stages of design and fabrication 
in current design practices based on the lack of feedback information and discusses 
its consequences on design workflows. The role of the material agency is assessed 
together with its potential of linking digital practices to physical fabrication processes 
to radically reconfigure the exploration of design solutions. The body of work 
discussed in the second section deals with the study of cognitive processes linking 
design and making in traditional craftsmanship and compare them to the acquisition 
of knowledge in industrial manufacturing and its formalisation within simulation 
frameworks. In the third section are presented a series of strategies aiming to 
synthesise instrumental and material knowledge using machine learning models to 
inform the action of automated means of production, supporting decisions making 
based on the affordances provided by specific sets of fabrication tools and materials. 
Finally, a summary of the trends and opportunities identified by the review is provided 
at the end of the chapter. 

 

2.1 Material Agency 
2.1.1 Timber as a Heterogeneous Material 
Timber has been one of the first materials adopted for the production of artefacts in 
human history and it has been widely used for centuries across different civilisations, 
leading to rich building cultures and technological developments, evolving from hand-
driven tools to information-driven ones (Schindler, 2007). The demand for timber as a 
construction material has been growing over the last years due to recent 
advancements in the timber processing industry and, perhaps more importantly, 
sustainability concerns regarding non-renewable resources consumption and CO2 
production throughout the AEC industry (Alcorn, 1996; Sathre, 2007; Kolb, 2008).  

Timber is a natural, grown, composite material made of strands of tightly-packed 
cellulose fibres embedded in a lignin matrix whose parallel arrangement determines 
its anisotropic behaviour, meaning that it responds differently to mechanical stresses 
applied along different directions. In the specific, its structural stiffness is higher along 
the grain direction which is usually described as “the direction of the dominant 
longitudinal cells in a tree” (Hoadley, 2000) while is much weaker along the transversal 
plane of the grain (Dinwoodie, 2000) (Fig. 2.1). 
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Figure 2.1 “Effect of grain angle on the tensile, bending and compression strength of 
timber. (After R. Baumann, 1922)” - Source: Dinwoodie, 2000. 

Besides its structural behaviour, the grain direction plays a crucial role also in the 
processing and machining of timber. There are two fundamental types of cutting 
actions: i) orthogonal cutting, where “the cutting edge of the tool is more or less 
perpendicular to its direction of motion” and ii) peripheral milling where a rotary cutter 
is intermittently put in contact with the material and removes a certain amount of it 
at each rotation (Dinwoodie, 2000). 

While the methods developed in this research are potentially valuable for both 
techniques, the focus of this thesis is on i) orthogonal cutting (Fig. 2.2) performed with 
tools such as chisels, gouges, knives, planers and axes. The main reason for this choice 
is that this family of techniques receive a more significant impact from the material 
than ii) peripheral milling, showing a higher variance in the fabrication outcome and 
yielding to clearest results in the experiments. 

 

 

Figure 2.2 “Idealized cutting action. Energy is consumed in severing the wood to form the 
chip, in deforming or rotating the chip, and in friction of the tool face against both the 
chip and the workpiece” - Source: Hoadley, 2000. 



 
30 

 

McKenzie (1961) identified two main parameters for this technique which are the 
angles between the grain direction and i) the cutting edge and ii) the carving direction. 
The interaction between the tool and material with respect to those parameters 
significantly affects the outcome of the operation. For instance, carving along the main 
grain direction will produce cuts with a smoother surface, while moving against the 
grain will tear the workpiece. Similarly, a small cutting angle will transmit a 
compression force mostly along the parallel direction of the grain while it would be 
desirable to have a diagonal transmission depending on the geometry of the tool itself 
(Fig. 2.3). 

 

Figure 2.3 Cases of Interaction of orthogonal cutting tools and different grain directions - 
Source: Adapted from Hoadley, 2000. 

Despite several studies in this field (Kivimaa, 1950; McKenzie, 1961; Koch, 1964, 
Axelsson et al., 1993; Scholz et al., 2009; Eyma et al. 2004; Chuchala et al., 2013) aiming 
to identify the correct selection of tools and related parameters to improve the 
efficiency and accuracy of the process, the analysis and modelling of wood cutting 
behaviour still represent a challenging task due to its heterogeneous structure 
(Cristóvão, 2013). As a natural material, the makeup of its internal arrangement can 
vary significantly according to intrinsic (e.g. tree species) and external (e.g. 
environment) conditions (Fig. 2.4).  

 

 

Figure 2.4 Wood cells structure in different tree species - Source: Hoadley, 2000 (Photos by 
W. Cote). 
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Besides technical considerations, the heterogeneity of timber has wider economic and 
environmental implications. Tree logs, or parts of them, could be considered flawed 
and discarded if they do not respond to the requirement defined by the commercial 
grading specifications (Hensel, 2009). Weston (2012) argues that the whole history of 
architectural materials has been guided by a “hostility toward the natural tendencies of 
materials as found in nature”. This is particularly valid for timber as heavy industrial 
processing is utilised to transform the material as found in nature into a broader range 
of engineered and standardised products such as plywood (Fig. 2.5). 

 

Figure 2.5 Comparison between plywood and natural timber - Sources: 
plywoodmaster.com (left), Lee Rentz (right). 

Over the last century, there have been significant efforts in the timber industry to 
correct the so-called defects of the material determined by its anisotropic 
characteristics. This is still reflected in the range of commercially available software 
for subtractive manufacturing tasks, completely neglecting the complex role played by 
the grain arrangement and replacing it with a homogeneous block of generic matter 
(DeLanda, 2002; Fure, 2011). Nevertheless, the recent developments in computational 
design strategies, sensor data acquisition and robotic manufacturing which will be 
discussed in the next sections have the potential to radically reconsider the role of 
timber as part of design processes to take advantage of the heterogeneous nature of 
the material (Menges, 2009; Menges, Schwinn and Krieg, 2016). 

2.1.2 Properties, Qualities, Capacities and Affordances 
The distinction between the terms “property”, “quality”, “capacity” and “affordance” is 
particularly relevant for this research as it directly depends on the role played by 
different types of knowledge in relation to the material medium. 

For the design theorist and craftsman David Pye (1968), properties are objective and 
measurable, while qualities are subjective and depending on the individual’s 
knowledge and sensibility. Because scientifically measurable, properties can be used 
to compile characterisation of industrial materials. Steel is an example of an industrial 
material which comes in a series of standardised shapes and whose properties are 
specified into a series of readily available tables. Interestingly, the current approach in 
the engineering of complex materials, such as fibre composites, is not based on the 
definition of “typical” properties but rather on the fine-tuning of their behaviour using 
a performance-driven approach (Gordon, 1988; DeLanda 2002). Similarly, in the field 
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of additive manufacturing, there have been several attempts to develop highly-
detailed digital representation models of functionally graded materials exhibiting 
complex, heterogeneous, properties achieved through multi-material 3d-printing 
(Jackson, 2000; Bader et al., 2016). 

Menges and Reichert (2012) describe the hygroscopic-driven actuation of engineered 
wood veneers as an intrinsic capacity immanent in the material itself which is 
expressed through the interaction of the component with the surrounding 
environment and its humidity level. According to De Landa (2005), while properties 
imply possession, capacities are always relational: “a knife may possess the property of 
being sharp and this may give it the capacity to cut, but the latter can only be exercised 
with respect to another object that has the capacity of being cut”. The relational aspect 
plays a crucial role also in the definition of the term “affordance” given by the by the 
perceptual psychologist James Gibson in his seminal book The Ecological Approach to 
Visual Perception (1979) which he describes as the set of actions that a system or 
environment allows being performed by an actor (e.g. an animal). As this always entails 
a mutual interaction, the existing affordances and their qualities are dependent on 
the respective structures of the two systems (Maier and Fadel, 2007). 

The shift from isolated attributes to system thinking introduced with the term 
“affordance” provides a useful framework for the modelling of manufacturing 
processes as it could be argued that the outcome geometry generated by a subtractive 
operation does not depend exclusively from a specific individual property (e.g. wood 
grain density) of one of the two systems but rather from the reciprocal interaction of 
the cutting tools with the wooden workpiece. While for Gibson the affordances 
provided by a system are independent of perception, i.e. they are present regardless 
of the ability of an animal to perceive them, Norman (1990), introducing the concept 
in the field of Human-Machine Interaction (HMI), suggests that these are contingent 
and “dependent on the experiences of the perceiver within some cultural framework” 
(Mateas, 2003). This latter position implies that the knowledge and experience of a 
designer, programmer or craftsman play a key role within such relational capacities. 
According to McCollough (1996), our perception of the world is defined by “what we 
can do with it”, namely what sorts of affordances we are able to identify based on our 
senses, experience and knowledge. The medium is defined as the substance that 
receives the work of the tools and provides a locus for skills. A medium is a range of 
possibilities which once identified by the craftsman turn to affordances. He further 
argues that the affordances of a medium, such as timber, need to be discovered as 
they are not obvious as, for instance, the affordances of an industrial design product 
whose shape suggests possible uses. As affordances are necessarily limited, they are 
strictly related to the concept of constraint which defines the range of formal 
possibilities. Craftsmen seeking to explore the landscape of affordances offered by a 
medium asks themselves “What can this medium do?” as much as “What do I wish to do 
with this medium?”. Therefore, an artefact is not a representation of an abstract model, 
but rather its final appearance is defined by the properties of the medium itself 
(McCollough, 1996). 

What follows is that the identification and formalisation of instrumental and material 
affordances represents a critical aspect for manufacturing processes and human 
making in general, as only those affordances which have been identified become 



 
33 

 

accessible and usable. One of the key propositions of this research is to establish a 
series of methods to make explicit the range of affordances available to support 
designers navigating through multiple design iterations. In the field of product 
engineering, the identification and design of the affordances that an object would 
create in relation to its user have been widely addressed in the literature (Galvao and 
Sato, 2006; Maier, Sandel and Fadel, 2008; Cormier and Lewis, 2015). While most of 
these relate to functional aspects of objects (e.g. a handle provides the affordance of 
being held to a cup), these methods could potentially be extended as well for the 
identification and specification of material and fabrication affordances. Among the 
strategies proposed by Maier and Fadel (2007), the Direct Experimentation and 
Automated Identification strategies seem to be the most promising for this research. 
One of the advantages of manufacturing processes is that the artefact necessary to 
experiment upon already exist, for instance, an aluminium block to be machined, 
therefore is possible to apply the Direct Experimentation method to determine via 
heuristics the affordances of the system. Moving one step further, the Automated 
Identification method implies the creation of a database where the affordances 
knowledge, or expert knowledge, identified through Direct Experimentation could be 
stored and integrated into a CAD environment to automatically assist future design 
endeavours (Fig. 2.6). 

 

 

Figure 2.6 “Schematic of affordance identifying database system” - Source: Maier and 
Fadel, 2007. 

The advantage of this method is the opportunity of exploring the potential provided 
by different affordances without relying exclusively on limited personal knowledge, 
fostering the exploration of a broader range of solutions. As the main limitation of 
such automated system is the impossibility of registering all the possible affordances 
into a database, designers are then asked to play an active in the identification and 
curation of their own specific set of affordances according to the assigned task. Using 
a similar approach, Kim (2015) suggests the creation of curated features repositories 
that could be retrieved based on the specific problem assigned and used to design 
new affordances through analogical reasoning (Fig. 2.7). As the collection of features 
defines the boundaries of the solution search, it seems evident that in these design 
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frameworks based on affordances, the moment of design starts already from the 
creation or adoption of a specific feature database or repository. 

 

 

Figure 2.7 “Design for affordance framework” – Source: Kim, 2015. 

2.1.3 Material Agency and Craftsmanship 
Current design-to-manufacturing workflows are structured around a series of linear 
steps, from the definition of objects within a digital modelling environment to their 
faithful transposition into physical entities through a variety of materialisation 
technologies which are becoming increasingly available to designers (Kolarevic, 2004; 
Brandt, 2012). The process of imposing an ideal form onto a material substratum, 
intended as a passive receptacle, is defined in literature with the term hylomorphism, 
a compound of the Greek words hyle (matter) and morphe (form). Since its first 
philosophical formulation by Aristotle (Witt, 1987), the hylomorphic approach on 
design and making has profoundly permeated the Western culture and have emerged 
as the dominant paradigm for current design practices. 

This view has been strongly opposed in more recent times by scholars advocating for 
the agency of materials and its crucial role in design and making processes. In his 
criticism of the hylomorphic model, Bryant (2012) argues that the creation of physical 
artefacts is much closer to a negotiation process and, since it is not possible to know 
in advance the outcome of any negotiation, its final outcome could not be considered 
exclusively as the result of previously defined form. Putting forward the example of a 
sculptor working with marble, he describes as the initial idea that starts the carving 
process is constantly redefined by the encounter of unique material features in the 
grain and veins structure as if the marble “wants to become something else” (Bryant, 
2012).  

The body of work of contemporary philosopher Manuel De Landa focuses on the 
emerging of a new materiality in which materials are active participants in the genesis 
of form and designers must consider their agency as an integral part of their design 
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process (De Landa 1997; 2002; 2005). Such position not only implies that materials 
have something to say within the design process, but they also have the potential of 
bringing value to it through their variable properties, heterogeneity and complexity. 
To the hylomorphic approach of current design practices, he opposes craftsmen’s 
approach to materiality, who “did not impose a shape but rather teased out a form from 
the material, acting more as triggers for spontaneous behaviours and as facilitators of 
spontaneous processes than as commanders imposing their desires from above” (De 
Landa, 2002). 

Along the same line of thought, Ingold (2013) proposes to envision the process of 
making as a process of growth, where the maker joins as a participant in a process 
driven by active materials which are already ongoing and determine the forms of the 
world as we know it. The critical point is that even if the maker joins such process with 
a form in mind, this is not what creates the work but rather the engagement with 
materials. Artists like Constantin Brancusi expressed similar attention to the agency 
of materials, arguing that not only materials have their own life but that we need to 
reach a point where we can speak their unique language rather than impose ours 
(Dudley, 1927). 

The work of Gilles Deleuze and Felix Guattari presented in their book A Thousand 
Plateaus: Capitalism and Schizophrenia (1980), of seminal importance for De Landa and 
what he defines as the “inherent shape-generating capabilities of matter” (De Landa, 
2002), put forward the ability of active materials to lead human’s action: 

 “It is a question of surrendering to the wood, then following where it leads by 
connecting operations to a materiality, such as the variable undulations and 
torsions of the fibres guiding the operation of splitting wood, instead of imposing 
a form upon a matter” (Deleuze and Guattari, 1980) 

The ability of establishing a dialogue with the material through an exchange of 
feedback information to adjust her or his actions is what distinguishes a craftsman, 
who “can compensate for differences in the qualities of his materials, for he can adjust the 
precise strength and pattern of application of this to the material’s local vagaries” in 
contrast the standardisation enforced by industrial machines (Stanley Smith, 1992). 
Within this dialogue, Pallasmaa (2009) argues that tools gradually evolve through the 
affordances they need to address until becoming completely embodied in the 
cognitive process of craftsmen who look at them as new external organs able to 
dissolve the boundary between their working hands and the material. 

Interestingly, while craft practices might have been seen as nostalgic or antiquate 
concepts, novel technological developments are leading toward a radical revaluation 
of the concept of “craftsmanship” described by Sennett (2008) as a methodological 
approach between “concrete practice and making”, which played a key role in our 
modern history and is becoming more and more prominent in our contemporary 
society. 

2.1.4 Digital Materiality and Robotics 
Current notational systems available to designers, such as drawings or digital models, 
mostly encode and transmit only geometrical information, causing what the historian 
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Mario Carpo (2011) defines as a notational bottleneck: “what can be built, it is 
determined by what can be drawn”.  

These strategies for encapsulating design information seem incompatible with the 
experiential nature of material agency, which could only be discovered, as seen in the 
previous section, through direct engagement with the process and based on 
subjective knowledge and intuition. For this reason, the difficulty of transmitting non-
geometrical information could be seen as the main factor determining its exclusion 
from the design process, pushing designers further away from the realm of 
production to focus on the creation of instructions sets in the form of drawings. At the 
same time, designers relying exclusively on drawings are necessarily removed from 
directly experiencing the properties of materials and unable to construct a personal, 
intuitive, knowledge of these. While craftsmen establish a dialogue with the process 
and material through the concurrent exchange of feedback information, designers, 
who do not have access to such type of knowledge, are forced to operate within a 
hylomorphic model, where the matter is considered as inert receptacles of the shapes 
defined in their digital models. 

Despite such dominant paradigm, Koralevic (2008) argues that the increasing 
adoption of digital manufacturing technologies is leading towards a radical 
transformation of the design industry, where the design intention is closely coupled 
with its production. Drawing a parallel with crafts practices, he argues for the figure of 
architects as craftsmen and the adoption of such technologies as enablers of the 
cyclical exploration, rather than linear, of novel design solutions driven by material 
properties and manufacturing affordances, such as precision, speed and scalability. In 
the light of what described in the previous section, such claim sounds, perhaps, overly 
optimistic on the current state of technologies available to the vast majority of 
designers, and while they exert a positive force in bringing the stage of design and 
making closer together, the results are still far away from the concurrent exchange of 
feedback information and “design through making” paradigm at the foundation of 
crafts practices.  

In this regard, Fure (2011) argues that digital fabrication technologies operate within 
the same notational bottleneck of previous production methods, having as a goal the 
production of an artefact which resembles as close as possible the original digital 
model, measured against tolerances leaving no room for any fabrication and material 
agency. While recognising the current limits of technologies, Menges (2015) advocates 
not only for the integration of material information within CAD models but as active 
drivers for the whole process through the integration of computational models able 
to tap latent design potential of material systems, moving beyond the idea of 
standardised building elements. The aim of the design process is shifted towards the 
creation of the computational interfaces that enable to link the stages of design and 
making rather than the individual formal outcome. Along the same line of thought, 
Gramazio and Kohler (2008) have previously indicated with the term digital materiality 
the interplay between digital and material processes enabled by controlling 
manufacturing processes through design data. Designers are not asked to devise 
static forms but material processes, giving up geometric notations and focusing on a 
performative-driven approach. The focus is shifted from blueprints to dynamic sets of 
rules which determines material behaviours with the advantage of creating an open-
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ended framework allowing interventions throughout the different stages of the 
process.  

The enabling technology that connects the digital realm of computers with the 
physical world of production is represented by robotic manufacturing. While industrial 
robots have been already around for a few decades, more recently there has been a 
renovated interested in their application in the design and construction industry. 
Bechtold (2010) discusses how a first attempt to integrate such technologies in highly 
automated on-site factories for the construction of buildings has already taken place 
in the 1980s in Japan. The main issue back then was that the robots were highly-
specialised and expensive machines performing standardised tasks without adding 
value to the overall process, whereas today's robots can perform a wide range of 
diverse tasks which would be challenging for a human to perform with similar speed 
and precision. 

The industrial robotic arms are generic manipulator which can be programmed to a 
large variety of skills based on the application of task-specific end-effectors and 
sensors. Maxwell and Pigram (2012) compare the flexibility of industrial robotic arms 
to the generalist abilities of preindustrial craftsmen, in contrast with specialised 
industrial machines, which can perform only a very limited range of tasks. This is made 
possible through the combination of the robotic actuation with the collection of sensor 
data, effectively creating an interface between the digital and physical realms and 
enabling different modes of interaction between the human designer and the 
fabrication machine (Dörfler, Rist and Rust, 2012)(Fig. 2.8).  The inherent adaptability 
of robots allows counteracting conservative tendencies such as the commitment to 
inert and industrially-homogenised materials to make sure the manufacturability of a 
large batch of products. Coupling industrial robotic arms with algorithmic design 
methodologies enable “an explicit and bidirectional traversing of the modern division 
between design and making, establishing novel pathways and feedback between mind, 
hand, and machine” (Maxwell and Pigram, 2012). 

 

 

Figure 2.8 “Actuators and sensors as intermediaries between the digital and physical 
model” – Source: Dörfler, Rist and Rust, 2012. 
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2.1.5 Simulation Feedback 
While craftsmen directly interact with materials, designers, detached from the process 
of making, need to find alternative ways of accessing knowledge and query the 
materials to receive feedback information and make informed design decisions. 
Design-to-manufacturing interfaces focused around process-driven models, rather 
than only geometrical notation, need to provide explicit feedback on material and 
fabrication constraints throughout the whole process, from the conceptual stage to 
the machine instruction code (Maxwell and Pigram, 2012). 

A possible strategy to access such knowledge is through the creation of design 
hypotheses in the form of digital models which are tested within a simulation 
environment providing an understanding of performances before moving to the 
physical realm. While a static model, such as geometrical blueprints, can only 
represent a system at rest, simulation is necessary to investigate dynamic models 
concerned with processes, such as robotic fabrication, considered as “a time-ordered 
sequence of states a system takes in a given time period ” (Guala, 2002). 

As digital simulations are necessarily simplified and abstract models of reality, the aim 
is not to recreate a perfect reconstruction of materials but rather to provide a 
framework where designers could interact with their behaviours to explore design 
solutions that evolve accordingly to the affordances provided by the medium 
(Nicholas, 2012). While design problems are intrinsically ill-defined, simulation models 
are not used to predict future events but rather to identify a meaningful structure in 
the system explored (e.g. the robotic carving tool and the timber workpiece) that allow 
the investigation of a stable region of the system itself as part of the design process 
(Hanna, 2010). In the context of simulation as an abstract and partial proxy for reality 
(Turkle et al., 2009), Brandt (2005; 2012) proposes to iteratively validate the model, 
which he defines as “isomodel”, based on real-time feedback collected by sensors that 
can continuously provide information about the uncertainties occurring during the 
construction stage, closing the gap between the digital and physical realm. The main 
disadvantage of this simulation approach is that validation arrives only after the 
design stage and, therefore, adjustments are limited and expensive. 

Conventional CAD environments embedding solid modelling procedures present to 
the user a simulation of operations performed on matter in its crystallised state. 
Subtractive operations based on Boolean operations are informed by a hylomorphic 
logic where the material volumes used are completely inert (DeLanda, 2002). As the 
characterisation of homogeneous materials, such as steel, is industrially defined, the 
integration of their mechanical behaviour within a simulation framework is relatively 
straightforward at the resolution needed for design purposes. Material 
standardisation means assuming that all the industrially-graded steel beams of the 
same type behave in the same way. In more complex materials such as synthetic fibre 
composites (e.g. carbon fibre), the layup is specified based on the performance 
requirements and, therefore, their behaviour is known from the design stage. In 
“found”, heterogeneous, materials such as timber, however, this information is not 
readily available and generalisations are only partially possible due to the material 
variance occurring even in trees from the same species because of a combination of 
both internal and external factors. While there is variability across specific grades of 
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steel as reported in their specification tables, the characterisation of timber 
components shows a much greater variance partly because these are treated like 
homogeneous elements. Reducing such a variance implies considering the material in 
its heterogeneous nature and including relevant additional parameters that can be 
used to construct a more accurate simulation of its behaviour. 

For this reason, establishing and evaluating a simulation model for timber 
manufacturing operations requires gathering as much information as possible 
regarding the specific piece of timber which is going to be utilised at the fabrication 
stage.  A first approach consists in collecting this information before production and 
compile it into a simulation framework that allows exploration without the need of 
physically engaging with the material. In the timber processing industry, Computed 
Tomography (CT) is used for the commercial grading of raw material and identification 
of “defects” such as knots which are detrimental for the homogeneity of the material, 
decreasing its value (Wei, Leblon and La Rocque, 2011; Fredriksson, 2014). The level of 
information about the tree’s internal structure obtained with this method is highly 
detailed (Fig. 2.9), however, because of its high operational costs and complexity, this 
is rarely used in the timber manufacturing industry after the log leaves the sawmill 
(Menges, Schwinn and Krieg, 2016). A second approach, closer to how craftsmen 
operate, is to gradually develop an understanding of materials through direct 
engagement, where each operation performed brings further knowledge that can be 
used to adjust the overall process.  

 

 

Figure 2.9 “Log computer tomography: advanced wood scanning techniques include (a) 
computer tomography, (b) which results in comprehensive, three-dimensional anatomic 
datasets of the log - Udo Sauter, FVA Freiburg” – Source: Menges, Schwinn and Krieg, 2016. 
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An example of this is found in the work of the artist Giuseppe Penone who created 
several art pieces starting from a solid trunk and carving out material following the 
tree’s internal structure (Fig. 2.10) to reveal how the tree looked like at an early stage 
of its growth (Basualdo, 2019).  

Carpo (2015) draws a parallel between the search of design solutions of pre-industrial 
craftsmen to iterative digital simulations as both based on heuristics and trial-and-
error procedures. The advantage of simulation over physical making is that designers 
can make and break in few hours way more full-size trials of a design than a craftsman 
would be able to physically test in her or his entire life. Bringing these considerations 
a step further in the field of big data and learning systems, he argues that digitally-
simulated models can be used to create a database of precedents if the experiments 
or design task has no previous comparable body of work from which gathering 
information, such as the robotically-wounded fibre Research Pavilion 2012 by the ICD 
and ITKE Institute at the University of Stuttgart (Waimer et al., 2013).  

 

 

Figure 2.10 Artist Giuseppe Penone carves a tree to reveal its inner structure – Source: 
Celant et al., 2013. 

Nevertheless, if there are no comparable precedents in literature and there is no 
access to physical tests of the system explored, the main issue is to retrieve the 
knowledge necessary to validate the results of the digital simulation (e.g. Finite 
Element Analysis). This issue is addressed by Turkle et al. (2013) using a peculiar case 
study which is the simulation strategies adopted by the US in the field of nuclear 
weapons. The ban of nuclear testing in 1992 created a generational divide between 
those scientists who had experienced first-hand the explosion tests and a younger 
generation who could engage with such events only through a simulation based on 
the knowledge formalised by the first group. Given the complexity of the event, the 
veracity of the simulation is nearly impossible to be tested and, even in that case, there 
is no way of validating it with actual proofs. As simulations grew increasingly opaque, 
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undermining trust in scientific findings, it has been necessary to avoid losing the 
personal knowledge of older scientists about to retire through the creation of a 
videotaped interview collection, organising an oral history of nuclear testing that could 
support the creation of simulation models.  

The problem of acquiring knowledge, whether direct or indirect, to validate a 
simulation model is also central in the field of manufacturing where, in comparison to 
nuclear testing, data is abundant and readily available. Taking advantage of this, the 
approach explored in this thesis is to gradually build a knowledge base from the 
acquisition of sensor data with the aim of validating the simulation model through an 
inductive method. 

 

2.2 Making Knowledge  
2.2.1 Knowledge in Craftsmanship  
The integration of materiality in design and manufacturing processes is strongly 
dependent on knowledge and its different formalisations which make it accessible to 
the participating stakeholders. 

The process of deskilling refers to the progressive elimination of skilled labour 
determined by the increasing adoption of automated production systems within the 
manufacturing industry (Braverman, 1974). For Gordon (1988), the widespread use of 
steel as material is only partially due to technical reasons while is mostly dependent 
on its applicability within routinised design processes which relies on its 
standardisation to require the minimum amount of skills and knowledge. On the other 
hand, heterogeneous materials cannot be reduced to routines and require the 
integration of high-level knowledge which is difficult to formalise (De Landa 2002).  

One of the main concerns in the process of knowledge transfer from human workers 
to automated means of production regards the loss of know-how determined by the 
impossibility of fully transferring human personal knowledge to a machine. The 
concept of tacit knowledge has been introduced by the philosopher Michael Polanyi 
(1966) to refer to that portion of subjective and non-codified knowledge which we 
cannot fully articulate, opposing the generally accepted notion that knowledge must 
be necessarily explicit (Sorri, 1994). While explicit knowledge can be codified and 
transferred, tacit knowledge cannot be communicated as “we always know more that 
we can tell” (Polanyi, 1966) and its acquisition requires practical experience through 
observation and direct participation (Eraut, 2000).  

For Nonaka (1998), there are two dimensions to tacit knowledge: the first relates to 
the knowledge of skills, for instance riding a bike, and constitutes the personal “know-
how”, the second is the cognitive dimension composed of beliefs and mental models 
which shapes our perception of the world. Humans acquire new skills through 
experiential learning whereby “personally experienced events are stored in episodic 
memory and, over time, used to construct generalised knowledge structures in semantic 
memory” (Kolb, 1984). Such knowledge, posing the foundation of the personal know-
how of every skilled craftsman, does not become formalised despite being used in 
everyday practice. Rather than having a codified constitution, the understanding of 
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materials and processes is achieved through “workability and practice” (McCollough, 
1996). 

For each task approached by a craftsman, there are different evaluation criteria, for 
instance, aesthetic qualities, costs efficiency, technical procedures and material 
consideration involved that "operate as positive forces for action not determinants of 
outcome" (Keller and Keller, 1993). The experience knowledge of a craftsman, 
accumulated through years of practice, enable addressing these dimensions to create 
an original plan of action. However, as discussed by Sharif and Gentry (2015), this 
preconception only initiates the task, while the "the design concept evolves concurrent 
with the craftsman’s act of production and the received feedback from the evaluation of 
material and objective conditions of the work".  

Pye (1968) distinguishes between workmanship of risk and certainty to oppose 
traditional craftsmanship to industrial manufacturing. During the making process in 
crafts practice, the quality of the artefact is continuously at risk as it is based on the 
“judgement, dexterity and care” of the craftsman and the outcome is not 
predetermined. The uncertainty of the process, unfolding as the artefact is being 
made, determine its inherent fluidity and enable the exploration of solutions not 
available from the beginning. While designers utilise all their knowledge to codify 
information into a set of instruction drawings before the production stage, craftsmen 
are required to continuously utilise their knowledge at each step. Such distributed 
exertion of knowledge not only allows a constant adjustment of her or his action based 
on the contingencies of the process, but every bit of feedback information leads to 
reformulating the initial knowledge that initiated the task as assumptions are 
constantly questioned and evaluated.  

2.2.2 Capturing Tacit Knowledge in Manufacturing 
According to the SECI Model for knowledge transfer and conversion introduced by 
Nonaka and Takeuchi (1995), there are four main modes how tacit and explicit 
knowledge is created and shared within an organisation (Fig. 2.11).  

 

 

Figure 2.11 “Spiral Evolution of Knowledge Conversion and Self-transcending Process” – 
Source: Nonaka and Konno, 1998. 



 
43 

 

The first two deal with the transmission of tacit knowledge between individuals 
through imitation and observation (Socialization) and the attempt of its codification to 
turn it to explicit knowledge (Externalization). The second two are focused around 
explicit knowledge, which can be easily codified and combined to create new 
knowledge (Combination) and the assimilation of explicit knowledge and procedures 
into individual tacit resources (Internalization). One of the pioneering studies on 
recording human bodily motion within manufacturing environment conducted by 
Frank and Lillian Gilbreth led to the development of a recording and analysis 
technique named micromotion study (Gilbreth and Gilbreth, 1917). Recording with a 
camera the motion of humans performing the task with the help of light sources to 
track long sequences of operations (Fig. 2.12) enabled the creation of a scientific 
understanding of the task based on the approach chosen by the worker, introducing 
improvements based on scientifically-measured performances (Baumgart and 
Neuhauser, 2009). Furthermore, it could be used to expose other workers to such an 
improved understanding of the task (Socialization, SECI model) for training purposes. 

 

 

Figure 2.12 “Cyclegraphic Image of a Woman Working at a Gridded Table” - Source: 
Gainty, 2016. 

While a master craftsman transmits knowledge mostly through Socialization, the 
transmission of human know-how to a machine within a manufacturing context 
requires an Externalisation process to turn it, at least partially, explicit into a 
transmissible form that could be used to program a machine. According to the 
American historian David Noble (1984), the development of the Numerically 
Controlled (NC) system for the manufacturing of mechanical parts, developed in the 
US immediately after the WWII, required to develop i) a mechanism to translate 
electric power to controlled motion and ii) a medium on which information can be 
stored and read later by a machine. As further discussed by Callicott (2003), the 
earliest attempt to develop automated machine tools sought to codify into a 
numerical transcription the “dexterity, experience and intuition embodied in the skilled 
act” of experienced human machinists. The first solution proposed to address such 
challenge is represented by the Record/Playback system developed in 1946-47 by 
General Electric. The solution focused on recording on magnetic tape the totality of 
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operations and motions performed by a skilled machinist operating a modified lathe 
with the aim of using the numerical transcript to manufacture further identical parts 
(Noble, 1984). According to Callicott, this solution represents the attempt of 
distributing individual tacit knowledge to an automated system through its 
replacement with explicit rules, maintaining at the same time its link to the tacit 
identity of the maker. The NC system, developed in parallel at MIT and presented in 
1952, was specifically aimed to separate completely such reliance on the tacit 
dimension of individual skills of the workforce, circumventing “the role of the machinist 
as the source of the intelligence in the production” with the intent of shifting the control 
over the manufacturing process from the shop-floor to the managerial level (Noble, 
1984). With the definition of fabrication parameters into a software interface, the 
machinist is asked to externalize his tacit understanding of the task into an explicit 
form (Callicott, 2003). 

In the recent years, several studies in the field of manufacturing have argued for the 
transfer of human tacit knowledge as a necessary step to automate tasks which still 
requires a high level of dexterity and constant parameters adjustment based on 
feedback information. The following analysis of relevant precedent aimed to address 
a series of methodological questions faced by this research in the process of defining 
a strategy to capture and formalise the knowledge of skilled human experts 
performing carving operations on timber. 

- How is it possible to break down a manufacturing task and extract relevant 
knowledge at each stage? 

 

Figure 2.13 “6-step Digitisation Process” – Source: Prahbu et al. (2017) 

Prahbu et al. (2017) presented a method to acquire skills for fibre composites 
layup from human experts and transfer them to novices or automated 
manufacturing systems. The study started identifying the key components of the 
task, for instance, the ply manipulation technique and utilised 3D scanning 
technology (i.e. Microsoft Kinect) to digitise the interaction between the expert’s 
bodily motion and the workpiece.  Such information is formalised in a series of 
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discrete states and used in a Hidden Markov Model, a stochastic machine learning 
model to predict time series phenomena, with the aim of extracting 
manufacturing knowledge for each component of the overall manual layup task 
(Fig. 2.13). 

- What is the influence of expertise and subjective knowledge in the recording of 
human-based tasks?  

Another study in the field of fibre-reinforced composites by Kikuchi et al. (2014) 
compared two human workers with significantly different levels of expertise 
performing the task of spraying up a mould. Tool and human’s body motion 
were recorded using an optical motion capture camera system, while the 
tracking of the eye movement was capture with a goggle-like apparatus worn 
by the participants. The comparison between the data collected by recording 
the two workers made possible to identify key aspects of tacit knowledge 
developed by the more skilled craftsman in years of experience which allowed 
him to complete the task more efficiently and with better quality in the final 
product than the novice. Data generated by the skilled human demonstration 
could be then processed and translated to robotic movements, avoiding 
programming the task entirely from scratch. 

- Is it possible to inform a robotic fabrication task based on captured human 
knowledge and what are the main advantages? 

In-contact subtractive manufacturing tasks are complex and diverse processes 
which require several years of experience by a human operator to maintain 
control over a series of key parameters which defines the surface quality of 
the product. For manual grinding tasks, Ng et al. (2014) identify a series of Key 
Process Variables (KPVs) such as contact force, toolpath and feed rate, which 
are recorded and used to generate an analytical material removal model 
which encapsulate the surface finishing skills of the operators. The key 
advantage of the methods is to reduce the need for costly robotic Design of 
Experiment (DoE) trials to develop an empirical model of the task. Polishing 
operations are particularly relevant for some industries, such as aeronautics, 
as it significantly affects the performance of the final manufactured part. Kalt, 
Monfared and Jackson (2016) developed a device that facilitates the capturing 
of data during manual polishing operations. The tool consists of a combination 
of different sensors such as multi-axial force-torque sensor, an inertial 
measurement unit monitoring the orientation of the piece together with a 
measure of vibrations and a combination of reflective markers used within a 
motion capture cameras system to record the part movements and polishing 
patterns (Fig. 2.14). The recording of skilled operators in a series of 
experiments led to the identification of recurring patterns (e.g. constant 
pressure, linear translation and surface profiling) utilised to complete the task. 
The identification of the patterns, described by a combination of different 
sensor data, together with an understand of the type of required feedback, 
mostly visual and tactile, represents the foundations to develop a robotic 
polishing system.  
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Figure 2.14 “Design of the fixture to capture manual polishing” – Source: Kalt, Monfared 
and Jackson (2016) 

- What are the main parameters to consider in carving operations performed with 
chisels or gouges and how these can be recorded?  

Steinhagen et al. (2016) presented a series of methods for the recording of 
manual stone surface chiselling with the aim of informing a robotic fabrication 
system. Their analysis compares several manual traditional techniques 
measured with a high-speed camera system (i.e. GOM Pontos HS). The 
recording of the hammer’s movement and speed made possible to extract the 
kinetic energy utilised by the craftsman for each operation, while the same 
camera setup has been used to calibrate the robotic chiselling end-effector, 
ensuring the correct translation of the kinetic energy values across the two 
different domains (Fig. 2.15). The comparison of chiselling operations for 
different types of stones allowed the identification of the correlation between 
kinetic energy and material removal volume for each configuration, generating 
an understanding of how material properties influences the outcome of 
manual and automated subtractive techniques (Steinhagen and Kuhlenkötter, 
2015). 

 

 

Figure 2.15 “Setup of the camera system with camera and stone specimen for chiselling 
(left), Picture of a filmed chisel with the measured coordinates (right)” – Source: 
Steinhagen et al. (2016). 
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2.2.3 Computer-Aided Process Planning  
The integration of expert knowledge through the Combination (SECI Model) of rules, 
procedures and specifications for subtractive operations into software have been 
gradually implemented into design-to-manufacturing software under the term 
Computer-Aided Process Planning (CAPP).  

CAPP methods supported by a knowledge base seek to determine the sequence and 
parameters of manufacturing processes to efficiently produce a part (Ham and Lu, 
1988; Alting and Zhang, 1989) based on the domain expertise available to the planning 
system. Some of the typical aspects of CAPP are described by Park (2003) as 
“manufacturing features recognition, assigning machining operations to each machining 
feature, sequencing machining operations, set up and fixture, planning, and NC 
generation”.  

Automatic features recognition methods aim to break down a solid geometry into 
individual features and match each of them to a previously defined catalogue of 
geometries supported by the software (Verma and Rajotia, 2010). The concept of 
machining feature is particularly relevant in knowledge-driven processes as it 
represents a strategy to map a set of geometrical features to a set of manufacturing 
operations (Mawussi and Tapie, 2011), directly linking the stages of design and 
fabrication. 

The most pressing issue around such activities is the creation of a knowledge base 
that would reflect the experience of a domain expert. Imitating such intelligence is 
necessary to support the sequence of the decisions of the automated system: 

“…the solution space of process planning is too extensive for searching in an 
exhaustive manner, which is why the imitation of intelligence is necessary. No 
matter how extensive the solution space, a human expert can find a reasonably 
good solution in a feasible time by quickly decreasing the solution space.  The 
logical procedure for decreasing the solution space without losing reasonably good 
solutions involves the intelligence of domain experts.” - Park (2003) 

Referring to the SECI Model, the integration of domain expert knowledge within CAPP 
software could be structured in two main strategies: 

- Combination: The software provides access to an extensive database compiled 
by expert and collecting cutting data such as machining features strategies, 
tools and machine specifications or fabrication parameters. 

- Externalization: Integrating personal knowledge with the addition to the 
databases of the specificities of the shop floor. Preserving the machinist know-
how and expedite the programming of known machining procedures. Each 
machinist can create personalised templates for collection of operations to 
achieve predefined geometrical features. 

These methods could potentially provide the opportunity to constantly expand the 
capabilities of the system and refine the initial knowledge base. Nevertheless, despite 
their several advantages, the requirement of strictly organising knowledge by 
predefined categories, its description by a limited range of parameters and the 
compulsory use of standard machining techniques significantly reduce the 
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applicability of these tools. On the one hand, the link between geometric features and 
machining operations expedite the toolpath planning process and programming of 
operation but, on the other, it strictly determines the range of shapes available and 
their modelling requirements. As it is not possible to define all the possible geometric 
features and their possible combinations, these methods are often incomplete and 
require substantial adjustments by a skilled human operator (Kiritsis,1995; Marri, 
Gunasekaran and Grieve, 1998; Xu, Wang and Newman, 2011). 

2.2.4 Design for Manufacturability Feedback 
A critical aspect of Knowledge-based CAPP systems is the formulation and 
communication of design feedback determined by manufacturability considerations. 
Design for Manufacturability (DFM) is defined as the process of designing products 
focusing on the optimisation of manufacturing functions, such as fabrication, 
assembly or testing, to ensure the lowest cost of production and highest quality of the 
final product (Anderson, 2014). 

As discussed by a number of scholars in the field of manufacturing (Gupta et al.,1997; 
Barnawal et al., 2015), the increasing specialisation and distribution of knowledge over 
large teams of professional hinder the communication between different functional 
teams involved in the design-to-manufacturing workflow. As design engineers do not 
necessarily possess manufacturing knowledge, the designed product might satisfy 
functional requirements while resulting not suitable for the production stage. For this 
reason, the design team relies on the manufacturability feedback given by the 
manufacturing engineers and the design evolves through multiple iterations of such a 
process which end up in a lengthy development stage and delays in the production.  
Furthermore, as decisions taken at an early design stage are critical as any change 
made at a later manufacturing stage results increasingly more and more expensive 
(Verhagen et al., 2012), it is necessary to provide designers with a DFM automated tool 
which enable them to receive feedback on a given manufacturing technique from the 
beginning of the design process and swiftly evaluate multiple solutions without 
delaying the development of the product (Fig. 2.16). 

 

Figure 2.16 “Product life-cycle cost, design knowledge and freedom related to design 
process” – Source: Verhagen et al. (2012) 
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In a “What-If” design development approach (Vaneker and van Houten, 2006), 
designers are supplied with continuous, automated, DFM feedback at every alteration 
of the design, making possible to evaluate the quality of the design instance provided 
and compare the effects of the applied changes further down the process. Feedback 
information can be formulated in many different forms such as text, 2D drawings or 
3D visualisations and could prompt the designer to check, for instance, the match 
between product’s shape and chosen material, geometrical adjustments based on 
process constraints or availability of the necessary production tools within the 
company’s supply chain. 

According to Gupta et al. who put together a comprehensive survey of the available 
DFM feedback systems (1997), the automated manufacturability problem is generally 
divided into three steps: i) Determine if the design is manufacturable; ii) If 
manufacturable, define its manufacturability rating which represents an evaluation of 
the difficulties of manufacturing the product; iii) If not manufacturable, identify what 
design attributes determine the issue and propose solution. Performing automated 
manufacturability analysis integrated into intelligent CAD systems allows designers to 
focus on the creative aspect of the process without having to memorise 
manufacturability checklist or material specifications (Ferrer, 2010; Verhagen et al., 
2012). 

In concurrent engineering, the design of a mechanical part in aluminium for the 
automotive industry, for instance, is fully integrated with DFM feedback, making 
possible to significantly increase the efficiency of the overall workflow. If a simplified 
version of the process is to be considered, in the first stage, manufacturability is 
defined according to a series of evaluations focused around parameters such as 
shape, bounding box dimensions, tools accessibility, tolerances and finishing 
requirements. Some of these parameters determine in a binary way whether the 
product is machinable or not. For instance, if its size exceeds the workable volume of 
the machine available, the design is not manufacturable. If the design passes the first 
stage, the design is deconstructed in the individual machining operations necessary 
to obtain the final geometry and an analysis of their complexity determine the 
difficulty of fabrication and costs approximation. If a design does not pass the first 
stage, the design attributes responsible for the failure are highlighted. For machined 
parts, typical issues are using right-angle corners for internal pockets, not considering 
the minimum tool radius diameter, or placing geometric features in areas not 
accessible by the tools due to specific machine limitations, for instance, a limited 
number of mechanical axes. The individual analysis of features of the second stage 
allows comparing individual production time and costs, prompting valid alternative 
and costs/benefits charts to the designer to support the decision-making process. 

The formulation of DFM feedback for specific manufacturing process with standard 
materials, such as metal machining, has been developed throughout decades of 
applied research with an increasing crystallisation of the range of analytical 
procedures available. While these could undoubtedly have a significant impact in 
reducing production time and costs, the rigidity of the protocols necessary to establish 
for benefitting from this approach (e.g. definition of a codified range of design 
features) hinders the adoption of similar methods within design practices dealing with 
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more open-ended and explorative design strategies using non-standard materials and 
tool affordances.  

2.2.5 Instrumental Knowledge in Design Practices 
From the perspective of design practices, the early access to instrumental knowledge, 
defined by Witt (2010) as an understanding of the set of procedures necessary to 
operate a technological mean toward an intended outcome, through DFM feedback 
represents the opportunity of linking the design and manufacturing stage within an 
integrated production process. This type of knowledge enables the creation of 
“systems of interrelated technologies intended to facilitate the aims of design” and its 
encapsulation into a design/fabrication/construction system allows making it “easily 
accessible, communicable, repeatable, hackable and transformable” (Witt 2010). One of 
the examples he proposes, referencing Lynn (1999), is the encapsulation of calculus-
based mathematics which makes possible for designers to operate with NURBS curves 
in a 3D modelling software without really having to explicitly acquire that type of 
mathematical understanding.  

The integration of knowledge within an interface allows the designer/user to 
continuously query it and have in return a validated design simulation directly 
informed by operative constraints encapsulated in the tool itself. Access to knowledge 
does not necessarily imply an understanding of it by the final user: the knowledge 
could only be possessed by the tool-maker, e.g. the software developer, yet support 
any design endeavour if appropriately integrated into the tools available to the 
designer. Eventually, as discussed in Chapter 6, neither the tool-maker and designer-
user might have a full understanding of the instrumental knowledge made available 
as this can be captured, transferred, augmented and integrated without necessarily 
becoming fully explicit during any step of the process. 

 

2.3 Learning Systems  
2.3.1 Machine Learning in Manufacturing 
One of the key challenges in manufacturing today is the management of risks due to 
the increasing complexity of technical aspects of production, processes organisation 
and business logistics (Wiendahl and Scholtissek, 1994). The acquisition of a large 
amount of data for monitoring, diagnostic, scheduling and optimisation of the 
production process has been increasingly adopted as one of the most compelling 
strategies to mitigate such risks (Monostori, 2002; Harding, Shahbaz and Kusiak, 2006; 
Larose and Larose, 2014).  

As manufacturing environments produces data in large amounts and different 
varieties, one of the inherent challenges of such a strategy is the ability and capacity 
of collecting, storing, parsing and ultimately making sense of such high load of 
information (Monostori, Márkus, Van Brussel, and Westkämpfer, 1996; Wuest et al., 
2016). 

The development of automation at an information level, such as Computer 
Numerically Controlled (CNC) systems, made possible to increase the efficiency of 
manufacturing processes, however, as discussed by Lu (1990), the necessary next step 
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of automation development should concern the knowledge level, where 
computational processes, supported by a large amount of data collected, will be used 
to “improve productivity of critical decision-making tasks in design and manufacturing”. 
The transition from information-intensive to knowledge-intensive systems implies the 
development of technologies which not only generate and retrieve information but 
also synthesise knowledge and its integration to support decision-making procedures. 

One of the key requirements for the synthesis of knowledge is the ability to continually 
adapt and reconfigure based on collected data to face the constantly evolving and 
rapidly changing condition of contemporary manufacturing environments. The 
definition of learning systems given by Simon (1983) addresses this specific 
requirement: ‘‘Learning denotes changes in the system that is adaptive in the sense that 
they enable the system to do the same task or tasks drawn from the same population more 
effectively the next time’’.  As argued by Winston (1980), the adaptability of learning 
systems is achieved through the creation of mental models which are gradually 
improved through observation and experience to generate an understanding of the 
environment which directly determines individual performances.  

Machine Learning (ML) models have emerged as promising candidates to achieve the 
transition from information-intense to knowledge-intense systems in manufacturing 
(Whitehall and Lu, 1991; Monostori, 2002; Hansson et al., 2016). ML consists in 
programming computational models to achieve an assigned task based on the 
collection of data and past experiences (Alpaydin, 2014). The advantage of using such 
an approach in manufacturing is the ability of such systems to find “highly complex and 
non-linear patterns in data of different types and sources and transform raw data to 
features spaces, so-called models, which are then applied for prediction, detection, 
classification, regression, or forecasting” (Lu, 1990). In this way, it is possible to identify 
implicit relationships within the dataset and access previously unavailable sources of 
knowledge. 

Inductive learning, based on the generation of generalised statements out of many 
examples provided to the system (Duffy, 1997), is particularly suited for all those tasks 
which are data-rich but knowledge-sparse, as usually it is the case for problems in 
engineering and manufacturing. Such an approach seeks to fill in the gaps of a specific 
knowledge domain and is compared by Lu (1990) to the synthesis task that engineers 
perform within decision-making processes. Michalski (1983) argues that a promising 
application of inductive learning is for the refinement of knowledge bases initially 
developed by human experts, where it could be used to “detect and rectify 
inconsistencies, to remove redundancies, to cover gaps, and to simplify expert-derived 
decision rules” (Michalski, 1983). 

One of the advantage of synthesising knowledge from manufacturing applications is 
that most of the collected data in production environment is already structured and 
labelled, which makes it suitable for a type of inductive learning defined as 
“supervised”, where the model learns “from examples provided by a knowledgeable 
supervisor” (Sutton and Barto, 2014) who provides, during the training, the pairing 
between input and output data. One of the most popular categories of models for 
supervised learning in manufacturing is called Artificial Neural Network (ANN) (Zhang 
and Huang, 1995; Monostori, 2002). 
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In the next section is presented a review of the advantages and disadvantages of ANNs 
in manufacturing applications through a series of case studies while a technical 
description of the algorithm is presented later in Chapter 4 to provide the reader with 
a more in-depth understanding of the learning mechanisms applied during the 
training workflow for robotic carving operations. 

2.3.2 Applications in Subtractive Fabrication Strategies 
One of the main challenges presented by subtractive processes, especially in metals 
machining, is the difficulty of creating a simulation framework that would make 
possible to increase the amount of control over a broad and diverse range of 
production techniques. In these regards, the main risk of using an analytical approach 
is using sets of simplified assumptions which are not able to fully describe the 
interplay of different factors involved in the production, rendering it unusable for real-
world applications. Luttervelt et al. (1998) argue that the only viable method to 
modelling is to adopt an empirical approach based on the collection of qualitative (e.g. 
machinist domain knowledge) and quantitative information (e.g. fabrication 
parameters data) during the performing of the machining process. 

While statistical regression techniques are widely used in the field of manufacturing, 
the key advantage of ANNs for subtractive applications is their ability of identifying 
complex non-linear relationship and patterns among large quantities of collected 
data, resulting in a significant improvement in the prediction accuracy rate of 
production parameters and qualities (Tsai, Chen and Lou, 1999). Another advantage 
of using ANNs is that the training does not require any preliminary assumption about 
the process or mechanism sought to be modelled and it is possible to expand the 
model, for instance with additional input parameters or collecting larger experimental 
datasets, without altering the structure of the model itself (Zain, Haron and Sharif, 
2009). 

Several studies have collated and compared ANNs applications for metal machining 
tasks, providing an understanding of the modelling strategies adopted across the 
industry (Pontes et al. 2010; Razak et al., 2010; Al-Zubaidi, Ghani and Haron, 2011). The 
main variables sought to be predicted are i) surface roughness, ii) tool wear, iii) 
cutting force and iv) material removal rate. The main features used in literature to 
predict those variables are a) cutting speed, b) feed, c) depth of cut (Fig. 2.17). 

These factors affect significantly the efficiency of the production process as they 
concern either the quality of the final product or the monitoring of the machine and 
tools used. The predictors, namely the fabrication parameters used for the prediction, 
are strictly dependent on the task, as their relevance might vary according to different 
techniques. Nevertheless, parameters such as cutting speed, feedrate, depth of cut 
are taken into consideration in most of the applications. 
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Figure 2.17 “Nature of predictors employed in model building” – Source: Pontes et al., 
2010. 

Other relevant parameters are related to specific sensor devices, such as vibration 
signature or cutting force components, or physical components and properties, such 
as material and size of the cutting tool, workpiece hardness and lubrication condition. 
While in the considered machining tasks the workpiece is devised as a homogenous 
block of matter, also reflected in the parameters chosen to describe each individual 
task (Fig. 2.17), this research proposes to include material-specific parameters that 
could describe the heterogeneous nature of the material and its impact on the 
fabrication process. According to the survey conducted by Pontes et al. (2010) on ANN-
based strategy for machining applications, the development of the model is generally 
structured in 5 stages (Fig. 2.18):  

 

Figure 2.18 “Forecasting process” - Source: Pontes et al., 2010 (adapted from Montgomery 
et al.2008) 

1) Problem Definition: Specification of the variable to predict, the predictors, 
namely the independent variable used for the prediction, and definition of the 
intended use of the trained model in the production environment. 

2) Data Collection: Definition of the techniques and devices (e.g. force-torque 
sensors, laser scanner) used to collect meaningful data for the description of 
the subtractive operation. 

3) Data Analysis: Series of processing steps to transform the collected data into 
useable information for the training process. 
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4) Model Selection and Training: Definition of the model topology (e.g. the 
number of layers and neurons), parameters and training process. 

5) Model Validation: Application of the trained model to predict a series of new 
cases, excluded from the training, to provide a performance measure and 
assess its quality. 

For instance, surface roughness is one of the parameters affecting the most 
manufacturing costs as it directly determines not only the aesthetic quality but also 
several mechanical properties such as friction ratio or resistance to corrosion (Stark 
and Moon, 1999). Bernardos and Vosniakos (2002) have identified the series of 
parameters which affects the surface quality (Fig. 2.19) and used them for its 
prediction for face milling operations on aluminium.  

 

 

Figure 2.19 “Fishbone diagram with the parameters that affect surface roughness” – 
Source: Bernardos and Vosniakos, 2012. 

A further set of applications of ANNs in subtractive strategies is focused on the 
prediction of manufacturing conditions for diagnostic and maintenance purposes. The 
prediction is structured as a binary classification task which aims to predict whether a 
specific event would occur given an input set of conditions such as fabrication 
parameters and relevant status descriptors. ANNs models have been applied in 
several studies (Li and Elbestawi, 1996; Chen and Jen, 2000; Dimla Sr. and Lister, 2000; 
Balazinski et al., 2002) to predict with high accuracy the status of the tool (i.e. wear 
level measure) and whether it would break during the machining operation. 

Together with the several advantages of ANNs described above, Zain, Haron and 
Sharif (2009) argues that the main limitation of such modelling approach for 
machining applications consist in the necessary collection of empirical data which 
could be costly and time-consuming as the amount of data provided to the system 
directly affect the prediction performances. Furthermore, as ANNs are based on 
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stochastic procedures, the repeatability of the training parameters across different 
version of the model is not assured. 

2.3.3 Machine Learning as Design Tool 
In machining applications, machine learning models are used for the optimisation of 
task to reduce costs and time, and it involves the fine-tuning of production parameters 
or physical configurations of the machine, the cutting tool or blank of material. As such 
process takes place only at the fabrication stage, the solution proposed by the trained 
system never involves alterations of the design of the object to be manufactured, 
significantly limiting the range of solutions available. Nevertheless, since the synthesis 
of design solutions directly depends on the knowledge of the designer, it would be 
beneficial to support crucial early-stage design decisions with an automated system 
that can provide knowledge acquired through induction from previous examples 
relevant for the specific task (Potter et al., 2011). 

As already argued by Negroponte (1975), learning systems could have a significant 
impact if integrated within the design process as designers, especially architects, 
cannot handle large-scale problems because too complex or small-scale ones as they 
are too individual and specific. As such systems could gain experience over time, the 
aspiration is to establish a dialogue and partnership between two intelligent systems, 
the learning machine and the human designer: 

“Imagine a machine that can follow your design methodology and at the same time 
discern and assimilate your conversational idiosyncrasy. The same machine, after 
observing your behavior, could build a predictive model of your conversational 
performance. Such a machine could then reinforce the dialogue by using a 
predictive model to respond to you in a manner that is in rhythm with your 
personal behavior and conversational idiosyncrasies.”  

— Nicholas Negroponte, 1970. 

With the greater availability of data and computational power, machine learning 
models are becoming increasingly integrated within design-to-manufacturing 
workflow as they can provide precious insight on the overall process and guide the 
exploration of solutions, otherwise unavailable, through the simulation of scenarios 
based on different type of analysis such as structural, environmental, functional or 
material-based considerations.   

According to Duffy (1997), a design system not able to learn provide a static source of 
knowledge to the designer which is destined to become obsolete if not continuously 
updated by further knowledge and identifies machine learning as an effective strategy 
to aid the synthesis of design solutions and provide guidance supported by relevant 
domain expertise.  

Hanna (2007) utilises inductive machine learning (i.e. Support Vector Machine) to 
optimise the design of modular lattice structures to evaluate decisions based on a 
structural performance analysis of previously generated structural examples, deriving 
a function that directly maps between an assigned load condition and an optimal 
lattice configuration. Using a similar approach, Wilkinson, Bradbury and Hanna (2014) 
presented a method to approximate wind pressure on tall buildings based on local 
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geometric features for generative design explorations and optimisation (Fig. 2.20). The 
machine learning model (i.e. ANN) has been trained using a large dataset of 
computational fluid dynamics data generated with the analysis of 600 procedurally 
generated tall buildings. 

For both studies, the key advantage of such an approach is the significantly increase 
in computational speed in comparison to time-consuming physics-based simulation 
models. This allows the integration of the trained system within a design workflow for 
the rapid evaluation of multiple solutions supported by structural or environmental 
considerations. The drawback of spending time in generating the initial training 
dataset is justified for those cases where similar optimisation tasks are required for 
several design instances and the trained system could be utilised multiple times, 
guiding each design iteration. 

 

 

Figure 2.20 “Case 1 – (left) simulation; (centre) prediction; (right) error” – Source: 
Wilkinson, Bradbury and Hanna, 2014. 

ML models, such as Self-Organising Maps (SOM), have also been integrated within 
design-to-manufacturing workflow for their ability to convert high-dimensional data 
to a lower-dimensional space. In this way, designers can systematically explore 
solutions entailing a combination of several parameters conveniently arranged in a 2-
dimensional space (Harding, 2016).  

Simulation of material behaviour based on heuristics is one key advantage for 
designer dealing with techniques and materials which have not been formalised at an 
industrial level or whose behaviour is too complex to be modelled with an analytical, 
rule-based, approach. Zwierzycki, Nicholas and Ramsgaard Thomsen (2018) proposes 
the use of a supervised machine learning model (i.e. ANN) to predict the spring-back 
of thin metal sheets in robotic incremental forming processes. The learning process 
maps between local geometric features of size 5x5 cm encoded as 2-dimensional 
image-based heightfield (10x10 pixels), together with distance value from the 
supporting frame, and the depth value of each incrementally-formed point of the 
panel, acquired via 3d scanning. Such mapping aims to provide a simulation tool 
evaluating how the material behaviour is influenced by shape-based features and 
compensating the fabrication process to obtain a product closer to the original design 
intention described in the digital model (Fig. 2.21). 
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Figure 2.21 “The comparison of different input-output training sets and the achieved 
accuracy. Top row “forward” prediction, bottom row “reversed” prediction” – Source: 
Zwierzycki, Nicholas and Ramsgaard Thomsen, 2018. 

 

2.4 Summary  
The increasing integration of digital fabrication technologies within design practices is 
challenging the separation between design and making in current production 
workflows. A new sensibility toward materials and tool technologies have become a 
central part of the architectural discourse where designers are asked to envision 
performance-driven processes bridging between the digital and physical realms 
rather than focusing on the creation of static forms. Simulation tools and robotic 
fabrication technologies are regarded as enabling frameworks to establish 
information feedback loops driving the design and making of artefacts. Moving 
beyond the hylomorphic models requires the development of interfaces which enable 
designers to seamlessly engage with production processes, providing instrumental 
knowledge at an early design stage to explore novel solutions based on tools and 
material affordances. 

The degree to which such a knowledge integration is possible, specifically for carving 
operations on timber, is central to Hypothesis A and B and it has been addressed in 
the literature review analysing and comparing different strategies from the 
manufacturing industry, traditional crafts and design practices. 

In human making, the design of an artefact evolves through direct engagement with 
the process and is driven by individual sensibility, experience and knowledge. The 
“design through making” (Ingold, 2013) approach at the foundation of traditional crafts 
practices based on what Sennett (2008) describes as “a dialogue between concrete 
practices and thinking”, provides a compelling alternative to the notation-based 
paradigm defining the current separation between design and making in design 
practices. In the field of manufacturing, the automation of fabrication processes based 
on the integration of human knowledge, both tacit and explicit, has proved to be an 
efficient method for its applicability to a large variety of non-trivial tasks which 
requires a combination of dexterity, high-level understanding of the process and 
constant adjustments based on sensor feedback.   
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The development of sensor devices to record and reconstruct manufacturing tasks 
has led to the adoption of machine learning models able to synthesise and integrate 
knowledge to support decision-making procedures based on the processing of large 
datasets. Artificial Neural Networks (ANN) have been identified as particularly suited 
to address this task because of their ability to identify complex non-linear patterns 
among large quantities of data, enabling the optimisation of individual fabrication 
parameters in relation to the physical output of the task, increasing the overall 
efficiency of the production process. While most of machine learning applications in 
the field of subtractive manufacturing processing are related to metal machining 
tasks, in which the material is considered as homogeneous, there is a lack of 
precedence concerning natural materials such as timber. The inclusion of material-
specific parameters that could describe the heterogeneous nature of the material and 
anticipate its impact on the fabrication process appears as a valuable approach to 
reduce the variance of the fabrication outcomes and develop a design-to-production 
system whose training and performance are tested in the following chapters. 

From the designer’s point of view, which is the perspective adopted for Hypothesis C, 
the encapsulation of manufacturing knowledge within a design engineering interface 
enables better-informed decision making and provides direct feedback at an early 
stage about the manufacturability of a part based on time, costs and functional 
parameters. The creation of knowledge bases from human expertise and 
manufacturing data accumulated over decades of developments made possible 
defining precise, rule-based, analytical models for a range of subtractive 
manufacturing techniques. However, currently available CAPP interfaces present two 
main disadvantages: i) The manufacturability evaluation of components forces 
industrial designers to work within a highly-constrained environment based on the 
identification and creation of a limited set of geometric features which could be then 
easily translated for the generation of machine’s instruction. ii) The design and making 
processes are still considered within a linear workflow, restricting the availability of 
knowledge to a limited range of highly codified techniques and industrially-graded 
homogenous materials which directly hinders the exploration of novel design 
solutions. While the knowledge integrated in these tools is limited and destined to 
become obsolete if not continuously updated, the integration of machine learning 
models as part of design processes represents a promising strategy increasingly 
adopted in the design industry to flexibly extend the range of design solutions 
available and support their synthesis supported by relevant domain expertise, 
potentially based on fabrication and material considerations.  
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3 Knowledge Acquisition 
 

The core of the research, structured around the three hypotheses presented in 
Chapter 1, is concerned with the acquisition of data (Chapter 3) for the synthesis of 
material and instrumental knowledge (Chapter 4) to be integrated at an early stage 
of design-to-manufacturing workflows (Chapter 5). Such knowledge base directly 
supports decision-making procedures which could have a significant impact if 
considered from the beginning of the design process. These evaluations concern the 
affordances provided by specific sets of fabrication tools and material systems and 
their influence on the original design intention expressed through a digital notation 
before the fabrication stage. 

This chapter addresses Hypothesis A, claiming that the heterogeneous qualities of 
materials such as timber substantially affect the outcome of operations performed with 
different carving tools, hindering their utilisation within current design workflows. The 
focus of the chapter is on the first stage of the training workflow which concerns the 
acquisition of real-world fabrication and material data collected through different 
sensor devices, its subsequent processing and storing into a library of fabrication 
datasets. Two different data acquisition methods, based on human demonstration 
and robotic recording, are presented and compared to identify how these differently 
affect the overall training process. Finally, the extent to which the material variance of 
timber affects the carving operations is assessed through a series of recording 
sessions based on a Design of Experiment (DOE) strategy which is a statistically valid 
method to efficiently investigate which combinations of factors and their respective 
values (or levels) generate variations in the collected information. 

 

3.1 Training Workflow and Instrumentation 
The design-to-manufacturing workflow developed in the research specifically 
addressed subtractive fabrication tasks performed on timber, a highly heterogeneous 
composite material, with different sets of carving tools such as chisels and gouges. 
Such operations require a high-level understanding of the complex interaction 
between the fabrication tool and the local properties of the material being cut. Given 
the high variance in the outcomes determined by the combination of multiple timber 
properties, species and carving techniques, there is not a comprehensive analytical 
model able to provide an accurate simulation of such family of subtractive operations. 

Rather than proposing a universal simulation model, this thesis sought to establish a 
flexible workflow to train a design system towards a specific set of fabrication 
affordances through the collection of real-world sensor data based on the constraints 
and resources available. The developed strategy aims to capture, transfer, augment 
and integrate the instrumental knowledge necessary to perform those tasks into a 
design-to-manufacturing interface, enabling its access to designers without prior 
understanding of manufacturing processes or material behaviours.  

The access to such knowledge extends the range of tools and manufacturing methods 
available to designers for the exploration of previously unavailable design solutions. 



 
60 

 

Furthermore, the lack of precedence in robotic manufacturing for the examined 
carving techniques made possible to radically reconsider from first principles how 
fabrication systems could be trained to perform operations which are not part of 
standard manufacturing environments.  

The training process is based on a sequence of three main stages (Fig. 3.1):  

• Recording: The acquisition of fabrication data is structured through a series 
of carving sessions aimed to collect into a dataset the combination of 
fabrication parameters driving the carving operation (i.e. Tool/Surface Angle, 
Tool/Grain Direction Angle, Force Feedback, Input Cut Length, Input Cut 
Depth) and pair them with their respective outcomes measured as the Actual 
Length, Width, Depth of the cut and Total Removal Volume. Such information 
is captured, both in real-time and at a later stage, using an array of motion 
capture cameras (MOCAP) to track the position and orientation of the carving 
tools, a force feedback sensor to measure the intensity of the force applied by 
the craftsman and 3D photogrammetric techniques to reconstruct in a highly 
detailed mesh geometry the result obtained by the carving operations. 

• Learning: The collected datasets are used to train a supervised machine 
learning model, i.e. Artificial Neural Network (ANN), whose main learning 
objective is to predict the geometric outcome of a subtractive operation from 
a user-defined toolpath and the series of fabrication parameters described 
above, or conversely, generate a robotic toolpath out of a digitally carved 
geometry. Each robotic toolpath is a sequence of target frames which defines 
the position and orientation of the carving gouge along the cut. Given a 
sequence of target frames, the trained ANN predicts at each frame the 
geometric output parameters of the cut (i.e. Length, Width, Depth) considering 
the influence of material properties determined by differences in wood 
species (i.e. grain arrangement and density) and resulting angle of the carving 
operation with the principal grain direction. 

• Fabrication: The trained ANN represents a package of instrumental 
knowledge that can be transferred, re-used, extended and, most importantly, 
integrated within an interface to digitally evaluate multiple design solutions 
informed by tools and material properties before moving to the production 
stage. The chosen design solution, once robotically fabricated, is assessed 
through a deviation analysis which compares it to the predicted simulation.  

The training workflow should not be considered as a linear progression from the 
recording to the fabrication stage but rather as a knowledge platform that can 
continuously be remodelled through several cycles with new fabrication data, further 
trained to improve its prediction performance and applied to different sets of design 
tasks.  
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Figure 3.1 Robotic Training Workflow - Diagram. 
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3.1.1 Industrial Robotic Arm and Carving End Effector 
The main element of the manufacturing system is a 6-axis industrial robotic arm, an 
ABB IRB1600/1.45 model which has been used both for the several training sessions 
and following industry secondments projects.  

The robotic arm is considered as part of the medium-small category for industrial 
actuators with a working range, described as a spherical envelope, of radius 1450 mm 
(Fig. 3.2) and payload, i.e. how much the robot can carry without losing in accuracy or 
speed, of 10 kg. The system is composed of three main components: the industrial 
robotic arm, the teaching pendant, through which the user can interact with the 
system, and the controller itself, which is the computer that runs the system. The 
robotic arms run programs written in RAPID, ABB proprietary language. The ABB 
controller version is 5.0. 

 

 

Figure 3.2 ABB IRB 1600 Working Range – Source: ABB, Product Specification – IRB 
1600/1660 Manual, 2019. 

An end effector, or End-of-Arm Tooling (EOAT), is the device attached at the end of the 
industrial robotic arm used to perform actions and interact with the fabrication 
environment. Since traditional carving tools have been excluded from standard 
industrial fabrication environments, it has been necessary to develop a custom end-
effector to use such a toolset within a robotic manufacturing process. The main 
component of the end effector is an electric reciprocating carving tool developed by a 
third-party company and mostly used by human craftsman to perform more 
efficiently carving operations, reducing the daily work fatigue and obtaining more 
consistent results. The motor powering the tool is a single-phase electric motor which 
generates a power of 0.25 kW. The main advantages of including such mechanism are: 
i) Increase of speed and consistency of the cut, ii) Possibility of easily swapping 
different chisels and gouges with their standard fit, iii) The reciprocating mechanism 
works in relation to the material resistance, providing higher frequency vibration with 
harder type of wood, and lower frequency with softer ones. 

The main body of the reciprocating tool is inserted into a mounting fixture which does 
not allow any translation. The carving gouge is mounted on a cart that can slide linearly 
on a rail to maintain intact the reciprocating function (Fig. 3.3). As more resistance is 
found during the cut, the more the carving gouge slide back into the electric tool and 
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more current is drawn to generate higher frequency vibrations, allowing the cutting 
operation to be performed more smoothly. 

The gouges and chisels utilised in the experiments are standard traditional carving 
tools made by Stubai, an Austrian tooling company, used by human craftsman and 
fitted with a custom handle adaptor to insert them in the electric tool (Fig. 3.4). 

 

 

Figure 3.3 Robotic Carving Effector - Diagram. 

 

 

Figure 3.4 Robotic Carving Effector. 
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3.1.2 Sensing Systems 
Testing Hypothesis A implies identifying those parameters (e.g. the angle between the 
grain direction and the tool’s cutting edge) which affect the operation outcome and 
measuring whether such a variance is so significant to hinder the design process. To 
achieve this, in the recording stage a series of methods have been tested with the aim 
of collecting a sufficiently large and comprehensive amount of data which is necessary 
to describe the observed fabrication task and its respective outcome. 

Such a task presents a series of methodological challenges that need to be addressed 
in the definition of the sensing strategy as they might prevent the collection of 
statistically valid information necessary to support or refute what is claimed in the first 
hypothesis of this research: 

- Noise: Data collected from physical environments, such as manufacturing 
settings, are extremely noisy, namely, they carry a large amount of 
meaningless information. If the noise is higher than the signal generated by 
the sensors, the collected data are unusable. 

- Relevance: Identification of the relevant parameters necessary to reconstruct 
the fabrication process. While collecting the largest as possible amount of data 
is theoretically advisable, as even secondary conditions could play a role in the 
system being recorded, limited time and resources required to estimate the 
“vital-few” parameters which most significantly affect the outcome of the task 
and discard the “trivial-many” (i.e. Pareto Principle). In this regard, previous 
knowledge of the fabrication task might lead to a biased selection and this 
could be mitigated through careful planning the design of the experiment, 
ensuring its statistical validity. 

- Scale: A manufacturing task can be analysed at different resolutions, leading 
to a different description of the same process. It is necessary to define what is 
the relevant scale to consider during the recording based on the type of 
knowledge integration which should be made later available during the design 
stage. For instance, the same carving operations could be defined as part of a 
carved texture, as an individual cut or as a collection of multiple timeframes, 
each with specific local parameters values. 

- Time: Evaluation of the timing of the data acquisition in relation to the 
performing of the operation. For instance, it might be necessary to record 
tools position and trajectories in real-time simultaneously with the carving 
process or limit the recording to the reconstruction of the carved outcome on 
the wooden board after the task has been completed. 

Based on these considerations, the devised sensing strategy for the recording of 
carving operations makes use of two main scanning techniques: 1) Motion Capture 
Cameras (Fig. 3.5) and 2) Photogrammetric Reconstruction (Fig. 3.6). 

Motion Capture Cameras (MOCAP) is a sensor technology based on the recording of 
the movement of objects in space. It has a wide variety of application in different fields 
such as the movie industry, sports or computer vision for robotics. An array of 
cameras arranged around a recording area are used to track with a high degree of 
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precision (≅	0.1 to 0.2 mm)	the position of spherical reflective markers. The calibration 
of the system is performed with a calibration wand which presents a cluster of 
markers in a known position which is measured by the cameras while the user moves 
the wand in different orientations through the recording space. 

The MOCAP system used for the recording stage is composed of 6 x Flex 13 cameras 
by Optitrack and their proprietary recording software Motive (v. 1.9). Each camera has 
a resolution of 1.3 Megapixels, a Field-Of-View (FOV) of 56° and a record at a Frame 
Rate per Second (FPS) of 120. The data is streamed in real-time from the Motive 
interface to the 3D modelling design environment (Rhino3D/Grasshopper) through a 
custom script component. This utilises the NatNet client/server architecture to share 
motion tracking data, both as single markers and clusters (i.e. rigid bodies), to third-
party applications through a standard local network interface. 

Photogrammetry reconstruction technique consists in reconstructing 3D objects 
based on a collection of photographs of the same object taken from different points 
of view. The reconstruction accuracy depends on the circumstances of the captured 
images and the object itself. The collection of pictures was taken with a Sony Alpha 
6000 camera and was processed for compensating any lens distortion. For each 
board, a collection of about 100 pictures was generated with each picture shoot from 
30 to 50 cm in a controlled light environment. The reconstruction was performed with 
the software Recap Photo by Autodesk which has the advantage of running the 
computation on its cloud-based service rather than relying on the local hardware 
specifications. This reduced the processing time to a range between 30 to 60 min with 
the final output consisting of highly detailed textured meshes. The reconstruction 
process does not provide an indication of the actual dimensions, therefore, it has been 
necessary to scale the resulting mesh according to manual measurements of the 
physical board to obtain a reconstruction with the correct size. 

 

 

Figure 3.5 Motion capture cameras used in the Recording stage to track the tools and 
reconstruct the carving operation. 
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Figure 3.6 Photogrammetric reconstruction of a robotically-carved wooden board. 

3.2 Recording Stage 
Knowledge acquisition is described by Lucas (1991) as the “process of collecting and 
structuring knowledge in a problem domain”. The creation of a knowledge base begins 
with consulting multiple knowledge sources such as human experts, textbooks, and 
databases with the aim of gathering relevant information which can be encoded into 
a valid knowledge representation. 

The Recording stage is the first part of the workflow addressed in the thesis as it 
focuses on the collection of real-world fabrication data which will be used to 
synthesise and integrate the instrumental and material knowledge necessary to 
perform carving operations on timber. 

To achieve this, two different knowledge sources are considered for the data 
collection: i) Carving demonstrations performed by human experts, ii) Structured 
robotic carving session. 

At this stage, the selection of materials and carving tools has significant implications 
over the use of the trained simulation interface in terms of solution space available to 
the designer. These will be discussed in detail in Chapter 5 through a series of design 
case studies.  

The chosen medium to collect fabrication data has been a series of wooden boards 
carved with a set of carving gouges. In each dataset are stored the cuts obtained with 
one carving tool on the same wood species and fabricated during the same session. 
The boards have a uniform size of 300x250 mm and both sides have been used. Each 
side counts between 20 to 35 operations, depending on the different configurations 
of fabrication parameters. Several training boards are used in one recording session, 
generating a collection of cuts between 180 and 300 samples.  

One of the key steps in the data acquisition is the abstraction of the carving outcomes 
into a series of quantifiable measures which could be used to describe the selected 
family of subtractive fabrication operations. The photogrammetric reconstruction of 
the training boards makes it possible to store and analyse the outcome of each 
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operation which is decomposed in its main geometrical components and 
subsequently processed into a series of features information to be used in the 
Learning stage. The selected measures are the depth, width, length of the cut and the 
estimation of the total removal volume. 

The operations have been analysed at two different scales, each providing a different 
description of the process and respective different type of datasets. In the first 
recording strategy, individual operations have been decomposed in a sequence of 
keyframes of fixed number with each attached a set of fabrication information for that 
specific local instance, generating a refined description of the operation and variation 
of key parameters along the cut. The focus of the analysis is then shifted from the 
results of the overall cut to the changes between each keyframe. At the same time, 
global measures could be derived from local information considering the whole 
sequence, for instance, the sum of length measurements for each frame could be 
used to obtain the total length of the cut. The second approach focuses specifically at 
this global scale with every single cut considered as the result of a single operation 
and described with global descriptors such as maximum depth or width of the cut, 
total length or feed rate. Different dataset resolutions of the same operations allow 
setting up a combination of predictive processes, presented in the next chapter, to 
significantly increase the efficiency of the overall fabrication task. 

For the robot-based dataset, it is always possible to compare between digital input 
and physical output and the learning objective is to define a function able to map 
between the two with a reasonable degree of error. For the human-based dataset, 
however, it is not possible to compare between the two, as the cognitive functions that 
drive the action of the human reside inside the brain. What it is possible to capture 
then, it is not the design intention itself but rather what are the effect of such on the 
fabrication parameters, or features, devised to describe the carving process. For this 
reason, the recording of skilled human demonstration requires a different approach 
which aims to devise, from the accurate photogrammetric description of the cuts, how 
the skilled craftsman physically steered the tools to obtain that specific result.   

To achieve this, human-based recording requires a more complex sensing strategy in 
which data are collected both simultaneously to the carving operation with MOCAP 
and at a later stage through photogrammetric reconstruction. At the same time, robot-
based recording sessions, which are technically more straightforward to implement, 
are presented with the challenge of capturing instrumental knowledge without a 
previously formalised understanding of the task available. The definition of fabrication 
parameters is then based on the indirect intuition of the programmer who does not 
engage directly with the fabrication process and materials. As a result, this approach 
requires a series of expensive, both in terms of resources and time, trial-and-error 
sessions for parameters tuning which lead to the following considerations: 

i) The parameter space necessary to consider is usually significantly large and 
the relationship between fabrication parameters is not necessarily linear. 
Therefore, generating a mapping of such space is either highly inefficient as it 
requires time and material waste, or not comprehensive, as the data points 
are too sparse to synthesise usable knowledge. 
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ii) More efficient methods for parameters space explorations, such as 
Reinforcement Learning (RL) strategies, are still based on physical tests with 
an error-reward system which, in a manufacturing context, could lead to 
dangerous situation determining the damaging of the industrial arm, the 
effector or the material. The strength of the RL approach based on millions of 
attempts performed in a digital environment is not applicable in this case, as 
producing an accurate simulation of the carving task is the end goal of the 
training process and, as such, it is not available ahead. 

As time and resources for the training session are limited, it is necessary to put in 
place a strategy to define a subset of the fabrication parameters space that is worth 
exploring in relation to the assigned design brief. However, without an understanding 
of the task based on a direct experience of the manufacturing process, the 
relationship between parameters is unknown. For instance, what values should be 
assigned to the Tool/Surface Angle parameters given a user-defined set of cut 
lengths? How do these change from the beginning to the end of the cut? How the 
depth profile of the cut should be matched accordingly?  

The proposed approach is to collect this information from an initial human 
demonstration of the task and combine it with a further extended robotic search of 
the refined parameter space. 

3.2.1 Human Expert Demonstration 
The issue of exploring a large fabrication parameters space is addressed through the 
discussion of the methods that enable the recording of human experts demonstrating 
the fabrication task and the analysis of an example dataset. 

The goal is to provide guidance for efficiently setting up the series of robotic training 
sessions, narrowing down the search space through the definition of domain 
boundaries for the selected features rather than arbitrarily assigning them.  

Each robot operation has been defined following these steps: 

i. Definition of the position and orientation of the cut in respect to the wood 
grain direction and its length. This implies arranging in the digital design 
environment a series of straight lines on the reconstructed model of the 
board. 

ii. From the straight line, generation of the arc describing the operation, defining 
its depth. 

iii. Definition of the orientation of the tool and its variation along the cut, focusing 
specifically on the angle between the cutting profile of the gouge and 
workpiece surface. 

While the parameters of the first point are directly defined by the user based on 
geometrical considerations, e.g. number of operations that can fit on a board, the 
second and third point require an operational understanding of the interaction of the 
tool with the material. 

The human demonstration is not intended as a definitive and extensive formalisation 
of the task but rather as a safe starting point which could be used to orient the 
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subsequent robotic exploration towards a more specific direction. On the other hand, 
the modelling of the task based on skilled craftsmen presents two main limitations: i) 
Human tacit knowledge is subjective and based on individual experience. ii) Its record 
is always partial and biased by the point of view of the observer and chosen measuring 
devices. Therefore, the main difference with recording a human expert in comparison 
to a machine is that the cognitive intention driving the action is not measurable and 
remains as part of craftsman tacit knowledge. The lack of access to such requires 
measuring, instead, the action of the craftsman as she or he performs the operation 
and use this as an expression of the intended action although mediated by the 
physical world. For this reason, the aim of the sensing strategy is to capture in real-
time, as the craftsman carves the wooden board, all the relevant fabrication 
parameters which makes it possible to create a specific carved geometry. This 
information is processed and compiled simultaneously into a dataset. 

The real-time updating reconstruction of the tool in the digital interface is performed 
with the MOCAP through the application of 3d-printed custom markers to the carving 
tool (Fig. 3.7). Through this method, it has been possible to record the cartesian 
coordinates (XYZ) of the tool and its orientation along the three principal axes (ABC). 
From such information is then possible to extract a series of relevant fabrication 
parameters such as the angle between the tool and the carving surface or its angle in 
relation to the main grain direction. As the data collected through the human 
demonstration are further extended and used to guide the robotic recording sessions, 
it is important that the two sets of operations are performed with the same tools and 
wood species. The sensor data collected by the human are processed through a series 
of steps to extract useful information that can be used to inform the subsequent 
robotic training session. A demonstration of such process is presented below through 
the analysis of an example dataset generated by a novice craftsman using a traditional 
carving gouge on a series of lime wood boards, counting 155 operations in total.  

 

Figure 3.7 Custom tracking markers are applied to the carving tools to reconstruct in real-
time their position and orientation in the digital recording environment. 
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Besides the collection of sensor data concurrently with the actual carving session, the 
training boards have also been recorded through photogrammetric reconstruction to 
keep a precise measure of the outcomes of carving operations (Fig. 3.8). 

 

Figure 3.8 Photogrammetric reconstruction of a series of training boards carved by a 
human expert. 

A first step in the extraction of instrumental knowledge from the human 
demonstration is the definition of the domain boundaries of the recorded fabrication 
parameters values and their related distribution. This significantly narrows down the 
following robotic training session to a range of parameters that are known to be 
generating a successful carving operation. For instance, the values of Tool/Surface 
angle at the beginning and end of the cut are contained within relatively small 
domains, between 48° to 37° and 30° to 20° respectively (Fig. 3.9). 

 

Figure 3.9 Recorded features from the human-based carving session – Histograms. 

In the bar plots below (Fig. 3.10), the recorded operations are arranged in groups 
according to the length value within intervals of 5 mm each and analysed in relation 
to the respective width and depth of the cut. The analysis shows how the geometrical 
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features of the cuts performed by the human are positively correlated with each other, 
i.e. an increase in the length corresponds to a deeper and wider carved geometry. For 
instance, longer cuts allow the tool to cut through the wooden fibres more in-depth 
rather than shorter ones where the tool does not have enough space to perform the 
action.  

 

Figure 3.10 Plots showing the correlation between the geometric features (i.e. Length, 
Depth, Width) of the cuts created by the human expert. 

It is important to quantify such trends in a way that, for instance, during the robotic 
task, the depth of the cut that is achievable in a 8 cm long cut is not applied to one half 
of the length, leading to a potentially dangerous manufacturing condition. Based on 
such requirements, an arc profile was defined based on the human demonstration 
data for each group length. This profile not only is important to define the advisable 
maximum depth of the operation but also to define the geometric shape of the arc 
itself. The final curve is based on the average of all the operations within the same, 
relatively small, group, sharing similar values of length, depth and width (Fig. 3.11).  

In Fig. 3.12, the entire collection of 155 operations is plotted to show the overall trend 
followed by the Tool/Surface Angle parameter along the length of the cut. The dark 
grey points represent the individual target frames composing an operation, a 
collection of 20 units for each cut, while the red line is the 2nd order polynomial 
regression curve that describes the overall trend. The initial Tool/Surface Angle values 
range between 48° to 37° while at the end of the cuts the values decrease between 
30° to 20°. As shown in Fig. 3.13 using the same length intervals previously utilised, 
shorter cuts necessarily have less space to perform such variation between the 
beginning and the end of the operation, therefore, the change of the Tool/Surface 
Angle parameter from one robotic target frames to another is significantly larger. 
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Figure 3.11 Analysis of the depth “profile” of cuts across groups of different lengths. 

 

 

Figure 3.12 Tool/Surface Angle variation between the beginning and end of the cuts in the 
human-generated dataset. 
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Figure 3.13 Tool/Surface Angle variation between the beginning and end of the cuts across 
groups of cuts of different lengths. 

Finally, the dataset indicates that the structure of the wood grain affects the action of 
the human craftsman, steering the tool differently according to the carving direction. 
Cutting the wood fibres across the grain seems to afford the creation of wider and 
deeper cuts in comparison to operations performed along the main grain direction 
(Fig. 3.14). This is likely due to the counteracting action applied by the craftsman to 
avoid the tool cutting increasingly deeper and creating long splinters when carving 
along the main grain direction. 

 

 

Figure 3.14 Plots showing the correlation between the angle of the carving direction in 
relation to the wood grain and the geometric features of the resulting cuts. 
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3.2.2 Robotic Data Collection 
The robot-based dataset stores two main categories of information: i) Digitally-
defined fabrication parameters, ii) Measures of the physical outcomes of the 
operation on the material. The first is defined in the digital design environment and 
recorded before the actual fabrication stage, while the second is recorded 
immediately after the completion of the fabrication task. As the final goal is to map 
between the original desired outcome and the actual fabricated one, there is no need 
to record sensor data simultaneously with the carving operation itself.  

In the digital environment, each operation is initially described as a straight line of the 
desired length arranged, together with many others, on the training board. Once the 
position and orientation in respect of the main grain direction, the next step consists 
of assigning the desired overall length and the arc profile that will determine the depth 
of the cut. Length and depth of the cut are the primary descriptors for the intended 
outcome, as the width of the cut will be a function of the type of carving tool used in 
relation to the previous two parameters.  

The curve defining the operation is then broken down into multiple points and, for 
each of those, the position and orientation that the end effector will have to follow 
along the cut are defined through the generation of a plane. The main parameter is 
represented by the definition of the angle between the tool and the material surface 
and how this changes along the cut. Each plane is transformed into a robotic target 
frame defined by the 6-dimensional vector {X, Y, Z, A, B, C} defining position and 
orientation of the end effector based on the assigned robotic coordinates system. An 
ordered collection of robotic target frames fully describes the robotic task for each 
carving operation (Fig. 3.15). 

 

 

Figure 3.15 Robotic operations are defined digitally through a sequence of target frames 
storing local fabrication parameters and geometric features of the resulting cut. 

After the fabrication stage, the outcome generated by the robotic carving operation is 
measured digitally through the photogrammetric reconstruction of the training board. 
Each mesh is segmented down into the single operation and the curve defining the 
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cut is reconstructed. As for the digital input, the output curve is subdivided into a 
collection of equally spaced planes to extract local information about the length, depth 
and width of the cut for each frame. As the number of frames is the same between 
the input and output curves, it is then possible to compare the two sets and 
understand the influence of the fabrication process on the original digital design and, 
ideally, adjust the process accordingly to the correct combination of fabrication 
parameters. 

3.2.3 Tolerance Threshold  
In CNC metal machining, geometric tolerances are essential information necessary for 
the manufacturing of any mechanical part as they determine the time and resource 
necessary to complete the production cycle. Different levels of precision are required 
according to the industry, application, material and manufacturing technique as 
specified through internationally-accepted tolerance grades (i.e. ISO 2768). 

The definition of tolerance in timber manufacturing is more challenging, at least at the 
level of precision of metal machining, and there is no universally accepted 
specification of tolerance grades across the industry. The main difficulty is due to its 
inherent variance as a natural material across different species, geographical areas, 
environmental conditions and unique individual features. Furthermore, the material 
shows a complex behaviour of shrinkage and expansion based on its moisture 
content, increasing the difficulty of measuring the precision of individual features as 
they go through constant geometrical deformation. 

Nevertheless, for specific categories of engineered timber products, it has been 
possible in some countries to adopt a standard code defining a precision threshold 
necessary to maintain for a given use. For timber elements used for structural 
applications in the UK, for instance, there are permissible cross-sectional deviations 
(detailed in BS EN 336:2013) that need to be respected in construction projects (e.g. 
for sections of machined timber with side length < 100 mm, the accepted tolerance is 
± 1mm, while for side length > 100 mm, the tolerance is ± 1.5 mm).  

While the use of engineered timber partially mitigates the issue of dimensional 
consistency, the definition of tolerances level for solid timber in its natural state is 
more challenging due to its variability. Craftsmen know how to deal with its 
heterogeneous properties and complex behaviour through years of experience and 
learn how to steer their action in relation to the affordances provided by the material 
to achieve the desired level of precision. 

For this reason, it is important to define from the beginning the threshold within which 
this variance due to timber heterogeneous properties is acceptable in respect of the 
chosen resolution for the design process, mostly depending on the function and field 
of application of the artefact being produced. For instance, timber joinery in a 
furniture piece would require a higher level of precision (with tolerance around ± 1 
mm), while particular surface textures might require lower tolerances (± 2-5 mm). 
Besides its function, there is another critical aspect to consider in the definition of the 
desired tolerance threshold: the deviation error between the prescribed digital model 
(or as if it were manufactured on a completely homogeneous, dull, material) as 
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prescribed by the designer and the fabricated outcome on that specific piece of 
timber. 

In the context of this chapter, in which are considered only individual carving 
operations producing a linear cut, a deviation of 5 mm on a 20 mm length cut is more 
significant than the same deviation on a cut with length 50 mm, as it would represent 
a deviation of 25% against 10% between the digital notation and physical outcome.  
For this reason, the analysis of the fabricated cuts is measured against a threshold 
based on a percentage measure between deviation and total size of the feature (e.g. 
Length, Depth, Width of the cut). The variance measure in the next section has been 
conducted against different tolerance thresholds of 2%, 5% and 10%. Such a measure, 
together with the functional requirements determined by the specific application of 
the produced artefacts, should provide designers with a valuable indication, only 
partially subject to personal judgement, on what is the precision level required to 
engage with the design process.  

 

3.3 Design of Experiments 
The central assumption, claimed in Hypothesis A, at the base of this research is that 
properties of timber, such as grain density and direction, substantially affect the 
interaction of the carving tool with the material and produce a variance in the 
fabrication outcome. 

For this reason, it is necessary to identify a) whether such variance occurs across 
different material conditions and to what extent, b) what are the relevant parameters 
that determine such variations, c) how the recording sessions should be structured to 
efficiently acquire data with the recording methods previously described, d) whether 
the variance level is suitable for design purposes based on an accepted tolerance 
threshold. 

To achieve this, it has been necessary to establish an initial set of experiments aimed 
to collect robotic fabrication data performing a range of carving operations with 
different configurations of fabrication parameters and material conditions. The 
methodology used to perform these is described as Design-Of-Experiments (DOE) which 
is “the name given to the techniques used for guiding the choice of the experiments to be 
performed in an efficient way” to test the hypothesis and explain the sources of 
variation in the collected information (Cavazzuti, 2013). According to the survey on the 
application of ANNs in subtractive fabrication process by Pontes et al. (2010), over one-
third of the examined studies made use of DOE methods to build the Training dataset. 

One common approach in the manufacturing industry is to perform a set of 
experiments where only one factor is changed at a time (OFAT) with all the other 
variables fixed. While such method is relatively easy to perform, it presents the main 
disadvantage of failing to consider the interaction between factors, namely “the failure 
of one factor to produce the same effect on the response at different levels of another 
factor” (Montgomery 2017). As the thesis revolves around the interaction of the tool 
with different material properties, such a strategy is inadequate to understand the 
variability involved across different fabrication tasks. 
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An alternative DOE technique able to deal with multiple factors varied at the same 
time is known as factorial experiments. As demonstrated by Czitrom (1999), such a 
method not only makes possible to estimate the interactions between factors but it 
also a) requires fewer resources (i.e. time, material, experiments), b) it is more precise 
than OFAT, c) the collected experimental information concerns a larger region of the 
factor space. 

Full-factorial experiments consist of all the possible combinations of factors and 
respective levels considered to test the hypothesis (Antony 2014). One the main risks 
for these experiments is known as “combinatorial explosion” (Schuster, 2000), where 
the number of combinations of parameters considered determines a level of 
complexity which rapidly exceeds the resources available to address the hypothesis. 
Such issue is particularly valid in the field of manufacturing, where performing 
multiple production tests come with a high cost in terms of time and waste of material. 

As the collection of a larger, rather than sparse, amount of fabrication data would be 
beneficial for the subsequent stages of the training workflow, the strategy adopted 
has been to perform a full factorial experiment set yet mitigating the risk of 
combinatorial explosion through the information acquired by the human 
demonstration. The advantage of using the recording of skilled human experts 
performing a series of carving operation is to start the robotic experiments with an 
initial understanding of the task grounded on real-world fabrication data acquired 
efficiently in terms time and material resources.  

For setting up such experiments, it is necessary to define which are the factors that 
hypothetically determine the variations in the outcome of the fabrication task and 
their respective levels, or values, which determine both the resolution and extension 
of the experiments search space. The Factors-Levels combinations have been defined 
based a) on the human data analysis presented in Section 3.2.1, b) the domain of 
design applications of the tool once successfully trained, c) the resources available 
and related costs, d) the physical constraints of the fabrication setup. This information 
allowed a significant reduction of the search space considered and focus on a targeted 
range of parameters and material conditions. 

The selected factors and respective levels are presented below in Table 3.1. As the 
chosen methodology is a Full Factorial DOE, this implies a total of 144 (i.e. 3x4x3x4) 
operations to be performed by the robot, combining the variation of all level values. 

 

Table 3.1 Factors and levels examined in the Full Factorial DOE.  
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The key response value measured in the experiment has been the deviation between 
the Input Cut Length and the Actual Cut Length of the carved operation throughout 
the different Factors-Levels. Since the experiment considers three levels for the Input 
Cut Length factors, the percentage of every single deviation in relation to the 
respective nominal length has been considered rather than using its absolute 
measure. The deviation value = 0.0 indicates no deviation between Input and Actual, 
while deviation value = 1.0 indicates a deviation corresponding to the full Input Length 
of the cut. As we consider cuts with length between 35 and 55 mm, with a deviation 
threshold of 10% the accepted tolerances for the cut length are between ±3.5 and ±5.5 
mm, which it is quite high and suited to a limited number of applications, while, with 
a higher threshold of 2%, the accepted tolerances range from ±0.7 to ±1.1 mm. 

An analysis of the cut length deviation across the different combinations of factors 
considered is presented below in Fig. 3.16.    

 

 

Figure 3.16 Analysis of the deviation error (%) in the length parameter of carving 
operations performed with different fabrication and material configurations. 

The results of the analysis indicate the following: 

- Material properties such as grain arrangement and density (i.e. Wood Species) 
and grain direction (i.e. Tool/Grain Angle) substantially affect the outcome of 
the carving operations and determine a deviation between the intended 
length of the cut and the actual physical result of the operation. In most of the 
cases, the percentage deviation error goes way above even the highest 
acceptable deviation threshold of 10%, with some combinations of factors (e.g. 
the leftmost column in plots collection with Tool/Surface Angle = 25°) with a 
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deviation error of 100% due to the failing of the operation in removing any 
material. 

- The influence of different material properties has different effects on the 
fabrication results. For instance, the same operations (i.e. Tool Angle Start = 
40°) performed in Tulip and Oak present deviation values significantly 
different. 

- There are sets of factors levels which determine a significantly lower cut length 
deviation. For this reason, these could be considered optimal, however, in 
relation to the next stages of the training workflow, this is not particularly 
significant as the trained system needs to be able to predict any operation 
regardless of its deviation value from its input condition. 

- The Tool/Surface Angle factor has been confirmed as a key input fabrication 
parameter which substantially affects the result of carving operations.  

The Full-Factorial DOE supported Hypothesis A as the measured variance in robotic 
carving operations with timber is above the acceptable threshold for design purposes, 
even in respect to the conservative one of 10% deviation error, confirming the 
necessity of developing a strategy to accurately map between the digital input and 
fabrication outcome of carving operations. For each recording session, the acquisition 
of fabrication data has been structured, based on the results stated above, through 
sets of robotic operations.  

Before the recording session, it is necessary to establish the two key meta-parameters 
of the selected wood species and carving tools. Following this, the three key 
parameters variated for each cut of the sessions are the Tool/Surface Angle, 
Tool/Grain Angle, and the Input Cut Length. Given the importance of the first 
parameters as shown by the Full Factorial experiment, this has been studied at a 
greater resolution which would also be beneficial for the following learning stage of 
the workflow. A typical recording session is then composed of a minimum of 180 
robotic operations performed on a series of wooden boards with 4 Tool/Grain Angle, 
3 Input Cut Length and 15 Tool/Surface Angle variations (i.e. 4x3x15). The operations 
outcome generated by a robotic recording session performed with the described 
structure is compared to the human demonstration data with the same meta-
properties in terms of wood species and tool presented in Section 3.2.1. 

In Fig. 3.17 the features of length, depth and width of the carved geometries are 
presented in a 3D scatter plot, where the light blue dots represent the human-based 
dataset while the red dots the robotically generated cuts. The robotic search space 
has been limited to the cuts between 35 to 55 mm long, so only a portion of the human 
dataset presented in this section has been utilised. However, considering such a 
narrow-down range made possible, in the subsequent robotic recording session, to 
have a “safe” starting point from which to further explore the boundaries of the initially 
defined parameters space, robotically obtaining cuts with both lower and higher 
values in terms of depth and width of the cut. 

The human-based demonstration provides a subset of the parameters space 
determined by the understanding of both of carving tools and timber properties, and 
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past experience. The subset represents an advantageous position from which starting 
the robotic training process, as all the recorded parameters set describe successful 
operations, which effectively remove material without creating dangerous conditions, 
potentially damaging tools and the workpiece.  

 

Figure 3.17 Comparison of the geometric features of the cuts and respective distribution 
between the human (blue) and robotic (red) datasets. 

The robotic training sessions can then be configured towards two main directions, one 
not necessarily excluding the other. On the one hand, the robot could perform an in-
depth exploration within the domain boundaries defined by the human 
demonstration, changing with incremental steps individual parameters, on the other 
hand, it could be directed toward extending the range of recorded operations with a 
gradual exploration outside the “safe” boundaries previously defined. In the second 
case, the robotically generated dataset will consist of both successful and unsuccessful 
operations. The prediction of which sets of fabrication parameters will generate a 
successful operation represents one of the aims of the learning methods described in 
the next chapter. 

 

3.4 Results: Summary 
The results presented in this chapter demonstrate that the material variance of timber 
substantially affects the outcome of carving operations above the established 
threshold of acceptable tolerances, supporting the necessity of developing a strategy 
to control such variance for design applications. To this purpose, the devised sensing 
methods can successfully reconstruct carving operations to a degree of accuracy to 
which becomes possible to record and analyse the variance occurring in their 
respective outcome. The integration of an initial human demonstration of the task 
with the data acquisition sessions performed with the industrial robotic arm is 
particularly beneficial as it provides guidance, narrowing down the mapping of the 
parameter space and avoiding dangerous or inefficient solutions. The DOE approach 
made it possible to efficiently structure the data acquisition process to support 
Hypothesis A and quantify the variance levels generated by different combinations 
of factors. Furthermore, such understanding of the task has been applied to organise 
the following robotic recording sessions through the identification of relevant 
fabrication parameters (e.g. Tool/Surface Angle) and material conditions (e.g. Grain 
Direction Intervals).  
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4 Knowledge Synthesis 
 

The chapter rests on the premise that the heterogeneous qualities of timber 
substantially affect the outcome of carving operations, as demonstrated in the 
previous chapter, and directly addresses Hypothesis B which claims that is possible 
to accurately predict and control such material variance for design purposes. 

The central proposition is to utilise a combination of machine learning strategies to 
identify relevant correlations in the collected fabrication data and establish a 
simulation model for robotic carving operations that could support early design 
decisions, before the production stage. This is based on the encapsulation of 
instrumental knowledge into a portable, re-usable and extendable package that can 
be integrated within a design interface.  Besides the validation process after the 
training of each model, the discussed methods are assessed in the simulation of a 
series of carving operations produced with different fabrication parameters, 
measuring the deviation of the prediction from the fabricated outcomes. Following 
this, a comparative analysis of multiple simulation models trained with different sets 
of fabrication affordances is presented to demonstrate the versatility of the system 
and its ability to model the variance determined by numerous combinations of 
material properties, wood species and carving tools. 

 

4.1 Learning Stage 
The computational methods necessary for the Learning stage should not only 
“generate, record and retrieve information”, as accomplished with the techniques 
presented in Chapter 3, “but also digest and synthesise information into knowledge and 
represent this knowledge properly to support decision making” (Lu 1990). As previously 
discussed (Section 2.3), machine learning models, in the specific ANNs, showed great 
potential to achieve similar tasks in the manufacturing field. 

The training workflow is organised and presented in two main sections (Fig 4.1): i) 
Binary classification for prediction of manufacturing conditions or “events” occurring 
during the robotic carving process (Section 4.2), ii) Regression-based prediction of 
geometrical features of the carving operation based on a set of input fabrication 
parameters (Section 4.3).  

 

Figure 4.1 Integration of the trained system as part of a design workflow – Diagram. 
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4.1.1 Features  
The term “feature” represents “an individual measurable property or characteristic of a 
phenomenon being observed” (Bishop 2006). A set of features is described as a “feature 
vector”. For each recorded subtractive operation, a features vector is extracted from 
the collected sensor data and stored into a dataset for that recording session. The 
same carving operation is analysed at two different scales, generating two main 
categories of feature vectors stored in separate datasets: 

1) Global Dataset: The carving operation is considered as one single event 
defined by a set of fabrication parameters and respective outcome that these 
have generated. This level of analysis is used in Section 4.2 for the binary 
prediction of specific manufacturing conditions. The feature vector for the 
global analysis is summarised below in Table 4.1:  

  

Table 4.1 Global Dataset – Recorded Features. 

2) Local Dataset: The carving operation is subdivided into a series of 
perpendicular robotic target frames arranged sequentially along the curve 
defining the cut. Each frame stores local information about the fabrication 
parameters and material outcomes in that instant and constitutes one entry 
in the dataset. For comparability reasons, all the analysed cuts are composed 
of the same number of target frames. This level of analysis is used in Section 
4.3 for the prediction of the geometric features of carving operations. The 
feature vector for the local analysis is summarised below in Table 4.2: 

 

Table 4.2 Local Dataset – Recorded Features. 
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Each recorded item, compiled in the described features vectors, constitutes a sample, 
or entry, of the dataset. For the local level, each target frame is a sample, while for the 
global level, it is the entire cut. 

4.1.2 Supervised Learning Models 
The collected sensor data, processed in features vectors, are used within a Supervised 
Learning (SL) process, a type of machine learning task which aims to infer a function 
that maps an input to an output (i.e. 	𝑌 = 𝑓(𝑋)	) based on a collection of input-output 
pairs data, representing the Training Data. Once the function has been learned, the 
system could be used for mapping unseen new data, also called Testing Data (Russel 
and Norvig, 2010).  

For the predictive task examined in this chapter, the recorded features are divided 
into two main groups and the final learning objective is to define a function mapping 
between them: X) the digital fabrication parameters defining the robotic carving 
operation and Y) the material outcomes that such parameters have generated at the 
fabrication stage. 

4.1.3 SL: Artificial Neural Networks  
The primary SL model used for the task is a nonlinear statistical data modelling tool 
called Artificial Neural Network (ANN), which, loosely inspired by its biological 
equivalent, could be described as a layered and interconnected network of “neurons” 
able to "process information by their dynamic state response to external inputs” (Hecht-
Nielsen, 1990). 

While there are many types of ANN (e.g. Convolutional Neural Networks, Generative 
Adversarial Networks, Kohonen’s Self-Organizing Maps…), this research utilised feed-
forward Multi-Layer Perceptron (MLP) models with three different types of fully 
interconnected layers (Fig. 4.2): an input layer, a number of hidden layers and an 
output layer. Each layer is composed of nodes, or neurons, which accept a weighted 
sum of inputs, process it through a non-linear function, e.g. sigmoid function, and pass 
the result to all the nodes in the next layer. For the MLP to learn the weights necessary 
for each node to compute, the training process is based on a backpropagation learning 
technique. With this strategy, after randomly initialising the weights for all the nodes, 
the error between the final network output to the actual target value in the training 
data is calculated using a loss function after each pass. Starting from the final layer 
and moving backwards, each weight’s contribution to the error is calculated and 
adjusted using a gradient descent algorithm.  

The implementation of the MLP architecture has been performed using Keras, a high-
level neural networks API (Application Programming Interface) that works in 
combination with Tensorflow, an open-source software library for high-performance 
numerical computation. Additionally, several evaluation methods and data processing 
strategies have been deployed from the scikit-learn, a popular machine learning library 
for the Python programming language. 
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Figure 4.2 Artificial Neural Network Topology – Diagram. 

The term hyperparameter indicates all those parameters which are defined before the 
actual learning process and which defines the behaviour of the model itself. The 
primary hyperparameters which are going to be considered in the next sections are 
the following: 

• Loss Function: The function responsible for computing the error between the 
ANN output and the actual target stored in the Training Data (e.g. Mean 
Squared Error). 

• Activation Function: The non-linear function responsible for computing each 
node’s output based on the received weighted sums of inputs (e.g. Sigmoid 
function) 

• Epochs: Defines the number of times that the learning process will pass 
through the entire training dataset. 

• Batch Size: Defines the number of training samples shown to the network 
during one pass. 

4.1.4 Validation Method 
The main strategy adopted for testing the performance of the trained model is the 
Train/Test Split Validation, or Hold-out (Reich and Barai, 1999), method in which the 
dataset is split into two subsets, defined as training and testing dataset according to a 
ratio where usually the former is significantly larger (generally more than 2/3 of the 
total dataset). The training dataset is used to train the model, while the testing dataset 
is used to evaluate its performance. To obtain a visual understanding of the predictive 
abilities of the model, the predicted values are plotted against the real ones. With a 
perfect predictor, all the points would be arranged along the 45 ° inclined bisecting 
line of the plot. Plotting the training history of the model with its performance score 
after each epoch makes it possible to understand how well the model can generalise 
and whether over/under-fitting is occurring at a specific stage of the training. 
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4.2 Manufacturing Events Prediction  
Predicting the occurrence of a specific manufacturing event (e.g. whether a cut is 
successful or not) given a set of fabrication parameters is a critical step in the training 
of the robotic fabrication system, avoiding potentially dangerous or inefficient 
operations and allowing the optimisation of individual parameters.  

The presented methods are based on the creation of event labels as Boolean values, 
to be assigned to each operation for a series of observed manufacturing condition. If 
the operation has been successfully completed the Boolean label will be 1, otherwise, 
it will be 0. For instance, the removal of material is awarded a value = 1, while the tool 
getting stuck into the material is assigned a value = 0. The learning objective for the 
ANN is to predict such events through the assignment of a Boolean value given a set 
of fabrication conditions. Such a decision-making task, where “categories” are 
predefined, is described as a classification problem. The dual nature of the occurrence 
or not of the event makes it a binary classification problem for which the trained 
model is used to categorise new probabilistic observations in either successful or 
unsuccessful cuts. 

4.2.1 Robotic Dataset Analysis 
The analysis of the robotic dataset aims to identify the distribution of recorded 
features values in relation to the observed event labels, existing positive or negative 
correlations between these and whether it seems possible to divide the data collection 
into two distinct groups of fabrication parameters and material conditions based on 
the occurrence of a specific event. The dataset used in this section for the modelling 
of event thresholds considers each carving operation at a global scale as one entry of 
the dataset and consists of a collection of 181 robotically-carved cuts obtained with a 
carving gouge on a series of lime wood boards (Table 4.3). 

 

 

Table 4.3 Robotic Dataset Info – Global Scale. 

After the robotic carving session, the boards have been reconstructed digitally 
through photogrammetric reconstruction (Fig. 4.3). The physical outcome of each 
operation, broken down into individual features, as described in Section 4.1.1, has 
been recorded and paired into a dataset with the related fabrication parameters that 
generated it. 
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Figure 4.3 Photogrammetric reconstruction of the robotically carved boards used for 
creating the dataset. 

A statistical description of the features of the dataset is reported in Table 4.4. In 
addition to these, the two events which will be considered for the presentation of the 
binary classification methods are i) the tool getting stuck into the material and ii) the 
actual removal of material volume, respectively described by the categorical labels 
“Stuck” and “Cut”. 

 

Table 4.4 Statistical analysis of the dataset – Global Scale. 

The statistical analysis is an important step to decide whether the selected features, 
in this case, all of them, need to be normalised. This step is crucial to increase the 
performance of the ANN: as data flows from layer to layer through additions and 
multiplication, the resulting values could get large quickly, affecting negatively the 
ability of the network to deal with non-linear relationships (Dertat, 2017). 

The following plots (Fig. 4.4) describe the distribution of the two categorical features, 
“Stuck” and “Cut”, in relation to the three main input fabrication parameters, namely 
the Tool/Surface Angle, the Tool/Grain Direction Angle and Input Length for the cut. 
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Figure 4.4 Histograms showing the distribution of the two event labels (“Stuck” and “Cut”) 
in respect to the input fabrication parameters. 

Overall, the three considered features seem to be significantly correlated to the 
occurrence or not of the analysed manufacturing conditions. The Tool/Surface Angle 
plots describe a neat distinction between samples, with a threshold around 32° to 35° 
for the “Stuck” event and around 30° to 27° for the “Cut” event. Moreover, the two 
events appear to be correlated, as the occurrence distribution is inverted in the 
respective plots. For instance, cutting along or across the grain present a higher 
number of cuts where the tool has managed to exit successfully from the material 
rather than intermediate Tool/Grain direction angles. Conversely, for the “Cut” label, 
there is a lower number of cuts along 0° and 90° of the wood grain direction able to 
successfully remove material. 

To investigate the potential linear relationship between the considered features and 
event labels, the Pearson Correlation Coefficient has been calculated and plotted into 
a heatmap (Fig. 4.5). Such coefficient requires data to be normalised and consist of 
values ranging from +1 to -1, in the case of positive or negative correlation 
respectively. Among the fabrication inputs, the Tool/Surface Angle parameter is the 
one with the highest correlation, with a negative coefficient of -0.78 for the “Stuck” 
label, meaning, as expected, that shallower angles have fewer chances of getting the 
tool stuck into the material. On the opposite, a positive coefficient of 0.73 for the “Cut” 
label, shows that steeper angles have more chances of actually removing material. On 
the other hand, the Tool/Grain Direction Angle parameter does not present a linear 
relationship with the two labels as the recording session has been structured to look 
for the occurring of the two manufacturing conditions in all the different analysed 
grain directions.   
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Furthermore, the study of output features makes possible to better understand how 
these relate to the two event labels: for instance, the Stuck label=1 is inversely 
correlated to the Max Width and End Width features, i.e. smaller values for the End 
Width features are more likely to be related to successful cuts, as the cut is not 
interrupted in the middle of the operation where the Width is larger. 

 

 

Figure 4.5 Pearson Correlation Coefficient analysis between the event labels and the other 
recorded features (global scale). 

 

Figure 4.6 Pairwise analysis of the Pearson Correlation Coefficient across all the recorded 
features (global scale). 
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The calculation of the Pearson Correlation Coefficient is extended to a pairwise 
analysis of all the features (Fig. 4.6). As the previous heatmaps suggested, the most 
significant linear relationship is found between the input features of the Tool/Surface 
Angle and the output features describing the obtained cut: MaxDepth, EndDepth, 
MaxWidth, EndWidth. Furthermore, the heatmap presents strong correlations 
between the output features themselves, showing, for instance, a positive coefficient 
of 0.95 for Max Depth and Max Width. 

The pairing of the input and output features in a series of scatter plots, in which each 
data point is coloured based on the event label, is used to get a qualitative description 
of the correlations presented in the heatmaps above (Fig. 4.7). Considering only a pair 
of features for each plot makes possible to identify, even from a visual point of view, 
the presence of two main, separable, groups. The learning objective for the binary 
classifier discussed in the next sections is to define a threshold function between 
these. 
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Figure 4.7 Scatter plots showing the distribution of the event labels (i.e. “Stuck” and “Cut”) 
in relation to the recorded features. 

 

4.2.2 Human Dataset Analysis 
In this section, the analysis of manufacturing conditions occurring during the robotic 
data collection is compared to a dataset generated under identical conditions in terms 
of tools and wood species by a human expert demonstrator. The methods used to 
record human operations have been described previously in Chapter 3 and relies on 
a combination of motion-capture cameras with real-time sensor data processing and 
subsequently photogrammetric reconstruction of the carving results. 

The comparison between the two data acquisition methods is performed using the 
local scale dataset type as it provides a higher level of detail for each target frames 
composing the carving operation.  

In Fig. 4.8 the geometrical features of Depth, Length and Width for each frame of the 
robotic dataset are plotted, and to each data point is assigned a colour based on 
whether it belongs to an operation which overall resulted successful or unsuccessful, 
namely both event labels values were equal to 1. Such analysis presents two main 
findings: i) The data points are distributed as forming two distinct groups which 
appear evident even from a visual point of view, ii) there is a range of values for each 
geometric feature which never generates successful operations, therefore it would be 
beneficial to avoid them entirely already at a design stage. 
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Figure 4.8 Analysis of the distribution of successful and unsuccessful operations in the 
robotic dataset based on output features of the carved geometry. 

Based on these premises, the successful group of operations from the robotic dataset 
has been isolated and compared next to the entire dataset of operations collected 
from the human demonstration (Fig. 4.9-4.10). 

 

 

Figure 4.9 Depth feature - Comparison between the recorded successful operations of the 
robotic (left) and human (right) datasets. 

 

 

Figure 4.10 Comparison between the recorded successful operations of the robotic (left) 
and human (right) datasets. 

The plots show that both datasets present a similar range of features values for 
successful operations, specifically between 2 to 13 mm for the Width feature and 
between 0 to -2 mm for the Depth feature. For both datasets, the prescribed range for 
the Length feature has been between 30 to 55 mm, however, the plots show that many 
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robotic operations are significantly shorter and less deep than the original digital 
intention because of the lack of control on the deviation between digital inputs and 
physical outputs. 

The main differentiator between the two datasets is represented by the ability of 
human craftsmen of intuitively navigating and anticipating, after training and 
experience, the range of possible successful operations. For this reason, a skilled 
craftsman is unlikely to execute dangerous or inefficient operations, as described in 
the previous section with the labels “Stuck” and “Cut”. Consequently, based on the two 
event labels considered here, it is not necessary to implement a binary classification 
filter between successful and unsuccessful operations for the human-based carving 
dataset. 

4.2.3 Binary Classification: Individual Event Prediction 
In this section, the individual binary prediction of the two manufacturing conditions, 
described by the categorical features “Stuck” and “Cut”, is assessed.  

In a first instance, the task is approached with the training of a Logistic Regression (LR) 
model which represents a simpler, linear, model in comparison to the ANN model 
presented in the second part of this section using identical data and training 
conditions. LR is a binary classification algorithm whose aim is to linearly separate 
dichotomous classes within an N-dimensional dataset through an N-1 hyperplane. In 
simpler models, e.g. a 2-dimensional dataset, the separation boundary will be a 
straight line, while for a 3-dimensional dataset, it will be a 2D plane. To achieve this, 
LR models utilise the sigmoid function (or logistic function), which is an S-shaped 
function that maps any real number between 0 and 1, resulting particularly useful for 
transforming probability predictions into binary values:  

𝜎(𝑧) = 1/(1 + 𝑒!") 

where 𝑒 is the Euler’s number and z is the value to transform. 

The main reason to use such model, besides its more straightforward implementation, 
is to test whether the features dataset is linearly separable in the two groups 
describing the successful completion of the operation (0 or 1) in relation to the event 
considered. 

The metrics used to evaluate the predictive abilities of the binary classifiers trained in 
this section, both for the LR and ANN models, are the following: 

- Accuracy (%) is the percentage number of correct predictions made by a 
trained model in relation to the total amount of predictions. 

- Null Accuracy (%) is the accuracy measure as a percentage value that a 
dummy model would score always predicting one of the two categorical 
features. 

- Confusion Matrix is a table used to summarise the performance of the 
trained model describing the correct and incorrect predictions and type of 
errors, which the accuracy metrics alone is not able to provide. The four 
categories of the table are the following: 
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o True Positives (TP): Data point = 1 (True) and Prediction = 1 (True).   

o True Negatives (TN): Data point = 0 (False) and Prediction = 0 (False). 

o False Positives (FP): Data point = 0 (False) and Prediction = 1 (True). 

o False Negative (FN): Data point = 1 (True) and Prediction = 0 (False). 

Based on the Confusion Matrix results, the following scores are provided: 

o Precision = TP / (TP+FP) 

o Recall = TP/(TP+FN) 

o F-1 Score = 2 * Precision * Recall / (Precision + Recall) 

o Support is the number of actual occurrences of the class in the 
specified dataset.  

The loss function used for the training progress is defined as binary cross-entropy 
function, or log loss function, and it is the define as:  

𝐶 =	
1
𝑛	3[𝑦	 log(𝑎) − (1 − 𝑦) log(1 − 𝑎)]

#

 

where n is the total number of items of training data, the sum is over all training inputs, 
x, and y is the corresponding desired output and 𝑎 is the prediction output (Nielsen, 
2015). The main advantage of using such a loss function (Fig. 4.11), in comparison, for 
instance, to the quadratic cost function, is that the larger the error, the faster the 
model will learn, penalising especially those predictions that are confident and wrong 
(Loss Functions - ML Cheatsheet, 2017): 

 

 

Figure 4.11 Log Loss Functions – Source: ML Cheatsheet 2017. 

The examined dataset, consisting of 181 samples (i.e. carving operations), is 
subdivided into two subsets, a Training and Testing dataset, with a proportion of 
75%:25%, corresponding to 135:45 samples. The total number of training epochs is 
250. 
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The input feature vector has three dimensions: 1) Tool/Surface Angle 2) Tool/Grain 
Direction Angle 3) Input Cut Length. The output categorical feature value to predict is 
a binary output (0 or 1) in relation to the individual event considered. 

After the training, the LR model scores an Accuracy of 90% and 84.1% for the “Stuck” 
and “Cut” events respectively (Fig. 4.12 - 4.13). The null accuracy values for the “Stuck” 
model is 62.7 % and 67.7% for the “Cut” model. 

 

 

Figure 4.12 “Stuck” event label: Training history plots of the LR model. 

 

 

Figure 4.13 “Cut” event label: Training history plots of the LR model. 

The predictive abilities of the model are evaluated plotting the predicted results for 
the Testing dataset in confusion matrices (Fig. 4.14). Different score measures are 
reported below each matrix. Overall, both LR trained models performs well with a 
Precision score of 0.96 for the “Stuck” event and 0.97 for the “Cut” event.  

Following the analysis of the predictive performances of the LR model, an assessment 
of an ANN model addressing the same predictive task is presented below. The network 
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topology is structured as 3:6:1, with an input layer of size = 3 corresponding to the 
dimension of the input features vector, one hidden layer with size = 6 each and finally 
an output layer with size = 1. To compare the ANN model with the LR one, the training 
epochs number, i.e. 250, and the batch size parameter, i.e. 10, are the same. 

 

 

Figure 4.14 Confusion matrices for testing the prediction rate of the LR model - “Stuck” 
(left) and “Cut” (right) event labels. 

At the end of the training, the “Stuck” model reached an accuracy score against the 
Validation dataset of 90.6%, in respect of a null accuracy of 62.7% (Fig. 4.15). The “Cut” 
model reached a Validation Accuracy score of 92.6%, in respect of a null accuracy of 
67.7% (Fig. 4.16). Based on the training history plots, both accuracy scores converge 
quickly before the first 150 epochs and remain stationary until the end of the training.  

 

 

Figure 4.15 “Stuck” event label: Training history plots of the ANN model. 
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Figure 4.16 “Stuck” event label: Training history plots of the ANN model. 

The predictive abilities of the system are tested and plotted in the Confusion Matrices 
below (Fig. 4.17). Overall, both trained ANN models perform reasonably well with a 
Precision score of 0.95 for the “Stuck” event and 0.92 for the “Cut” event. 

 

 

Figure 4.17 Confusion matrices for testing the prediction rate of the ANN model - “Stuck” 
(left) and “Cut” (right) event labels. 

Comparing the LR and ANN models, the main takeaway is that the ANN model scores, 
for both event labels prediction, only a slightly higher accuracy value of a few 
percentage points. This finding suggests the dataset is linearly separable, for each 
event, in two distinct groups (0 and 1), as the LR model accuracy rate is above 90% in 
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both cases. While the ANN performs slightly better than a linear model (LR), the latter, 
simpler, model appears sufficiently suitable for the task of a single event prediction. 

4.2.4 Binary Classification: Combined Events Prediction 
While it is possible to predict whether an undesired manufacturing condition will 
occur, this does not necessarily guarantee the overall success of the operation. For 
instance, the actual removal of material does not ensure that the tool will not get 
stuck, or the other way around, the completion of the tool movement does not imply 
that it will remove any material at all. The success of an operation depends on a series 
of factors which need to be considered simultaneously to confidently achieve the 
desired outcome. Furthermore, designers could have different opinions of what a 
successful operation is, not necessarily relying only on quantitative data but also on a 
qualitative or subjective analysis, for instance, perceived smoothness or other user-
defined criteria (Fig. 4.18). 

 

Figure 4.18 Successful operation prediction process – Diagram. 

The definition of a Success label is, therefore, depending on the combination of 
individual single event labels. As all the event labels are structured with 0 as not 
successful, and 1 as successful operation in respect to a specific event, it is then 
possible to combine multiple of them using the 𝐴𝑁𝐷 Boolean operation. The plots in 
Fig. 4.19 present the results of the Boolean intersection of the “Stuck” 𝐴𝑁𝐷 “Cut” events 
in relation to different pairs of dataset features. 
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Figure 4.19 Scatter plots showing the distribution of the “Success” event label in relation to 
the recorded features. 

Firstly, even if only pairs of features are plotted each time, drawing a line to separate 
the two groups is not as straightforward, at least visually, as in the individual-event 
case presented in Fig. 4.7. As in the previous section, both LR and ANN model 
prediction performances are assessed in respect of the Success event label using the 
same configuration of features vectors, Train/Test Data split ratio and model 
parameters for comparison. During the training, the LR model scored a Validation 
Accuracy rate of 64.4% with a Validation Loss value of 0.672, which represents a poor 
performance, considering that such value corresponds to the null accuracy rate for 
that prediction task (Fig. 4.20). The result is further confirmed in Fig. 4.21 by the 
confusion matrix and the classification report metrics which show how the model 
always predicted the same value (i.e. 0). 

 

Figure 4.20 “Success” event label: Training history plots of the LR model. 
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Figure 4.21 Confusion matrix for testing the prediction rate of the LR model - “Success” 
event label. 

Following the assessment of the LR model, the ANN model has been tested for the 
same binary prediction task. During the training, the ANN model reached a Validation 
Accuracy score of 94.7% and a Validation Loss value of 0.110 (Fig 4.22). Afterwards, the 
predictive abilities of the model have been tested against the Testing dataset, with a 
Precision score value of 87% (Fig 4.23). 

 

Figure 4.22 “Success” event label: Training history plots of the ANN model. 

 

Figure 4.23 Confusion matrix for testing the prediction rate of the ANN model - “Success” 
event label. 

Comparing the performances of the LR and ANN models, the results suggest that, 
while for the single event prediction, the LR model showed a similar prediction rate to 
the ANN, demonstrating that the dataset is linearly separable, for the combined event 
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prediction, the LR model is inadequate to determine whether one operation would be 
successful or not. On the other hand, the ANN model proved to be able to correctly 
separate the two groups, performing reasonably well for the task requirements.  As 
the prediction of the “Success” label is based on the combination of individual events 
(i.e. “Stuck”, “Cut”), it could be framed as a typical XOR problem (Minsky and Papert, 
1969), where the model is trying to define a region roughly in the middle between 
cutting too deep (and getting stuck) and cutting too shallow (and not cutting at all). 
This type of problems justifies the use of a hidden layer in the ANN model, as linear 
models are not sufficient to perform the prediction task, as demonstrated by the 
findings. Alternatively to creating a “Success” label and using an ANN model, it should 
be possible to assess whether an operation would be successful or not combining the 
individual predictions of linear classifiers for single events. 

 

4.3 Geometric Features Prediction 
Based on the binary classification process presented in the previous section, it is 
possible to identify which fabrication parameters will lead to a successful operation, 
excluding all those operations which are not effective or even dangerous. 
Nevertheless, the trained binary classifier does not provide sufficient information to 
geometrically reconstruct the outcome of the carving process. 

The methods presented in this section seek to provide a geometrical approximation 
of subtractive operations informed by sensor-based data reconstruction of robotic 
operations performed during the recording sessions. As for the event prediction, this 
represents a supervised learning problem based on the pairing of fabrication 
parameters with material outputs. Specifically, it is a regression problem, as the model 
is asked to predict continuous output values (e.g. depth cut values) rather than 
categorical probabilities. 

The learning objective is two-fold:  i) To predict geometric output features values, such 
as actual Width, Depth and Length of the cut, based on a robotic toolpath and related 
fabrication parameters; ii) To reconstruct from a carved geometry the robotic toolpath 
that has generated it. Once the relationship between the two groups of data is 
established, it should be possible to utilise the predictive abilities of the system in both 
directions.  

The goal of the strategy presented in this section is to significantly lower the deviation 
error between digital input geometries and robotically fabricated carving operations 
to a level which makes it possible to integrate such manufacturing technique as part 
of a design interface. 

4.3.1 Robotic Dataset Analysis 
As described in Section 4.1.1, the type of dataset used for the regression-based 
prediction of geometrical features is based on individual target frames arranged in a 
sequence of 20 frames in total. This level of analysis provides a detailed description of 
the operation both in terms of input and output features. 

The training boards series from which the dataset is generated is the same utilised for 
the binary event prediction task in Section 4.2, however, as the operations are 
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considered at the local target frames scale, the number of the samples, 𝑛	 = 	3780, is 
much higher than the number of cuts (Table 4.5). 

 

 

Table 4.5 Robotic Dataset Info – Local Scale. 

In Fig. 4.24, a pair-wise features heatmap shows the Pearson correlation coefficient 
values, while in the three heatmaps in Fig. 4.25, each output features to be predicted 
is analysed individually.  

The three output features are positively and strongly correlated with each other: 
longer cuts show higher depth and width values. Furthermore, while in Section 4.2.1 
the Tool/Surface Angle feature presented high correlation values in respect to the 
categorical labels to be predicted, in this case, where only individual target frames are 
considered, the correlation coefficient values do not show a strong linear relationship. 

 

 

Figure 4.24 Pairwise analysis of the Pearson Correlation Coefficient across all the 
recorded features (Local scale). 
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Figure 4.25 Pearson Correlation Coefficient analysis between individual geometric 
features of the cuts and the other recorded features. 

4.3.2 Regression: Geometric Features Prediction 
In this section, the prediction of the geometrical features necessary for the geometric 
simulation of subtractive operations is addressed using both an ANN model and a 
simpler linear model, called Linear Regression (LinR), for comparison.  

LinR is a model for regression tasks which assumes a linear relationship between a set 
of continuous input variables and a single continuous output variable. While its 
architecture is similar to the LR model (used in Section 4.2 for the binary prediction), 
it also differs for two main aspects: i) It does not make use of a Sigmoid function for 
splitting its prediction into two categories. ii) It uses the Mean Absolute Error (MAE) or 
Mean Squared Error (MSE) as loss function during the training and as metrics for the 
evaluation of the trained model. 

Mean Absolute Error (MAE): measures the average magnitude of the errors in a set 
of predictions, without considering their direction. It is the average, expressed in the 
same unit of the dataset, over the test sample of the absolute differences between 
prediction and actual observation where all individual differences have equal weight. 

𝑀𝐴𝐸 =	
1
𝑛3|𝑌$ − 𝑌F$|

%

$&'

 

Mean Squared Error (MSE): It is the average of squared differences between 
prediction and actual observation. In comparison to the MAE, it returns an indication 
of the average magnitude of the error. 

𝑀𝑆𝐸 =	
1
𝑛3(𝑌$ − 𝑌F$)(

%

$&'

 

The dataset, consisting of 3780 samples (i.e. target frames), is subdivided into two 
subsets, a Training and Testing dataset, with a proportion of 75%: 25%, corresponding 
to 2835:945 samples. The input feature vector has five dimensions: 1) Tool/Surface 
Angle 2) Tool/Grain Direction Angle 3) Input Unit Cut Length 4) Input Incremental Cut 
Length 5) Input Depth. The continuous output features to predict are A) Depth B) 
Length and C) Width values for each of the target frames describing the operation.  

Plotting the performance score of the model during the training enables the in-
progress evaluation of the system and identifying whether the model is 
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over/underfitting. In Fig. 4.26, the plots of the training histories of the LinR and ANN 
model are compared:  

 

Figure 4.26 – Comparison between the LR and the ANN model – Training history plots. 

The comparison summary is the following: 

- Depth: The validation loss (MSE) with the LinR was 0.591 while with the ANN 
was 0.183, an improvement of the 222.9% in respect of the linear model.  

- Length: The validation loss (MSE) with the LinR was 0.276 while with the ANN 
was 0.107, an improvement of the 157.9% in respect of the linear model. 

- Width: The validation loss (MSE) with the LinR was 0.567 while with the ANN 
was 0.195, an improvement of the 190.7% in respect of the linear model. 

The results demonstrate that the ANN model performs better than the LinR for the 
assigned task and that a linear model is insufficient to predict the output features of 
subtractive operation. For this reason, it will not be utilised in the subsequent studies. 
After the training, the predictive abilities of the ANN are tested using the testing 
dataset left out before the training process. In Fig. 4.27, the ANN predicted values are 
plotted against the actual ones: 

 

Figure 4.27 Train/test split validation for the prediction of the geometric features of the 
cuts (i.e. Depth, Width and Length of the cut). 

The data points in the plots tend to align along the 45 ° bisecting line of the squared 
plots, showing the correct performance of the system. The Mean Absolute Error (MAE) 
and Standard Deviation (SD) for the prediction are the following: a) Length: MAE = 
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1.014 mm, SD = 0.293 mm; b) Width: MAE = 0.958 mm, SD = 0.106 mm; c) Depth: MAE 
= 0.921 mm, SD = 0.179 mm. 

4.3.3 Regression: ANN Topology and Hyperparameters Search 
The topology and hyperparameters of the ANN models presented in the previous 
section have been optimised for each individual feature prediction. The technique 
chosen to conduct such optimisation is a grid search method which is an exhaustive 
searching method for learning algorithms based on a manually defined set of 
hyperparameters and evaluated with a train/test split validation method. 

The search has been set up in three passes. The first two passes were concerned with 
the topology of the network, defining the number of layers (i.e. 1 or 2) and the number 
of neurons for each layer, ranging from 2 to 30 with an interval of 2, for a total of 15 
configurations tested for each pass. 

In Fig. 4.28 - 4.30, the validation results are plotted as grey points, while the results 
mean is plotted as a red dots-connecting line. The third pass, based on the results 
obtained from the previous two, focused on the optimisation of two key 
hyperparameters for the ANN model: i) the number of epochs and ii) the batch size. 
The hyperparameters search subsets utilised are: Epochs = {50, 100, 200, 400}, Batch 
Size = {5, 10, 20, 40}. 

The results of the hyperparameter optimisation are plotted along with the first two 
topological optimisation searches in the shape of 2-D heatmaps with size 4x4, for a 
total of 16 configurations tested. 

 

Figure 4.28 Depth feature prediction: optimisation of the ANN topology (i.e. the number of 
hidden layers and neurons) and hyperparameters (i.e. epochs and batch size). 
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Figure 4.29 Width feature prediction: optimisation of the ANN topology (i.e. the number of 
hidden layers and neurons) and hyperparameters (i.e. epochs and batch size). 

 

Figure 4.30 Length feature prediction: optimisation of the ANN topology (i.e. the number 
of hidden layers and neurons) and hyperparameters (i.e. epochs and batch size).  

The summary of the best models found by the Grid Search optimisation is the 
following: 

- Depth: First Hidden Layer Neurons = 12; Second Hidden Layer Neurons = 24, 
Epochs = 200, Batch Size = 5. 

- Width: First Hidden Layer Neurons = 22; Second Hidden Layer Neurons = 16, 
Epochs = 400, Batch Size = 40. 

- Length: First Hidden Layer Neurons = 20; Second Hidden Layer Neurons = 20, 
Epochs = 200, Batch Size = 40. 

4.3.4 Regression: Fabrication Parameters Prediction 
While in the previous section the models have been trained to predict the geometric 
features of the carving outcome from a combination of fabrication parameters, in this 
section, the learning objective is reversed: the models are trained to predict the 
fabrication parameters necessary to achieve a given carved geometry. 

Such an application can be used for correcting the fabrication parameters to match a 
predefined desired geometrical outcome described as a digital Boolean operation or 
acquired through 3D scanning. The predicted fabrication parameters are used to 
reconstruct the robotic toolpath necessary to obtain the target carved geometry. 

To achieve this, the configuration of input and output from the previous sections has 
been reversed. The predicted fabrication parameters are: A) Tool/Surface Angle B) 
Input Length. The input feature vector is 5-dimensional: 1) Actual Unit Length 2) Actual 
Incremental Length 3) Actual Depth 4) Actual Width 5) Tool/Grain Direction Angle. 

The ANN topology is 5: 25: 25: 1 with Epochs = 200 and Batch Size = 20. These 
hyperparameters values have been defined following a Grid Search optimisation 
strategy as discussed in Section 4.3.3.  

In Fig. 4.31 and 4.32 are presented the ANNs training histories and train/test split 
validation plots. 
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Figure 4.31 Tool/Surface Angle prediction: training history plot (left) and train/test split 
validation (right). 

 

Figure 4.32 Input Cut Length prediction: training history plot (left) and train/test split 
validation (right). 

The results of the training assessed using the Train/Test Split Validation methods are 
the following: 

- Tool Angle / Surface:  MAE = 1.174°, SD = 0.375°. 

- Input Cut Length: MAE = 0.821 mm, SD = 0.124 mm. 

These results, showing low error figures in the prediction, demonstrate that ANN 
models could also be used for the reconstruction of robotic operations alongside the 
simulation of geometric features. 

4.3.5 Binary Classification + Regression: Optimized Training 
In this section, the binary classifier for manufacturing conditions and regression 
prediction of geometric features are combined to improve the overall performance of 
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the system. In the studies presented below is assumed that the binary classifier can 
predict with high accuracy, as previously demonstrated, whether a given set of 
fabrication parameters would generate a successful or unsuccessful operation. For 
this reason, the dataset utilised here to train the ANN exclusively consists of 
operations with attached a “Successful” label value. In this way, the original dataset 
size of 3780 is shrunk down to 1160 samples with significantly narrower boundaries 
of the feature’s distribution (Fig. 4.33). 

 

Figure 4.33 Individual features histograms of the dataset with only successful operations. 

The input and output feature vectors, networks topologies and hyperparameters are 
unchanged in respect of those used in Section 4.3.2. As in the previous studies, Fig. 
4.34 - 4.36 show both the training history plots and Train/Test split validation plots 
next to each other for the prediction of the geometric features of Depth, Width and 
Length of the operation outcome. 
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Figure 4.34 Depth prediction: training history plot (left) and train/test split validation 
(right). 

 

Figure 4.35 Length prediction: training history plot (left) and train/test split validation 
(right). 

 

Figure 4.36 Width prediction: training history plot (left) and train/test split validation 
(right). 
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The results of the training assessed using the Train/Test Split Validation methods are 
the following: 

- Depth: MAE = 0.462 mm, SD = 0.030 mm. 

- Width: MAE = 0.733 mm, SD = 0.375 mm. 

- Length: MAE = 0.681 mm, SD = 0.194 mm. 

In Fig. 4.37, the training histories of the ANN models assessed in this section (in red) 
are compared with the ones of Section 4.3.2 which has been trained with both 
“Successful” and “Unsuccessful” operations (in blue): 

 

 

Figure 4.37 Training history plots comparing the prediction performance of the ANN 
model trained with only successful operations against the one trained with the full 
dataset. 

In the Binary Filtered ANN training histories, the training loss value is decreased by 
64.0% for the Depth, 74.1% for the Width and 31.2% for the Length prediction. Overall, 
the ANNs trained with only “Successful” operations outperform the ANNs trained on 
the full dataset. These results suggest that operations which are not “Successful” are 
more difficult to model by the trained system. One of the possible reasons is that 
manufacturing conditions which define the geometrical outcome of operations 
defined as “Unsuccessful” are not necessarily consistent. For instance, once a tool is 
stuck into the material, it is harder to predict the way is going to “break” the fibre 
structure to “get out” in comparison to a tool that smoothly cut through the fibre 
layers. 

4.4 Results: Carving Operations Series 
The predictive abilities of the models have been assessed at the end of every training 
session utilising a Testing dataset, demonstrating their ability to accomplish the 
assigned prediction task with low error values. This section presents an in-depth 
analysis of the application of the trained models to a series of carving operations and 
how the devised methods can be used to accurately simulate the deviation between 
the desired digital input and the physical fabrication outcome. The measure of the 
deviation between input and output is intended in geometrical terms, measured in 
mm, occurring in the features of Length, Depth and Width. 
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The series is composed of a total of 16 operations which have been robotically 
fabricated on a lime wood board and have not been utilised for the training of the 
system, representing “unseen” data suitable for evaluating the performance of the 
trained models. The critical aspect of these carving operations is that they are 
geometrically identical to each other as defined in the digital design environment and, 
consequently, the geometric input features, such as Length or Depth values, are the 
same for all the operations. The only non-geometrical parameter which changes 
throughout the series is the variation of the Tool/Surface Angle feature between the 
start and end of each cut, ranging from 45° to 25°. A summary of these parameters is 
reported in Table 4.6: 

 

 

Table 4.6 Carving Operation Series – Info. 

The robotic operation outcomes are measured through a photogrammetric 
reconstruction of the board and their geometrical description is reported in Fig. 4.39 
in which the digital input (as dashed black line) representing the desired outcome is 
compared to the actual physical result (in red). 

Firstly, it should be noted how each individual cut not only diverges to different extent 
from its respective desired digital input, but it also differs significantly from the rest of 
the operations in the series. Furthermore, a subset of cuts appears truncated due to 
the tool getting stuck in the material (“Stuck” label event), while, conversely, in another 
subset, no amount of material has been removed (“Cut” label event). This initial study 
shows, once again, that the interaction of carving tools with the properties of timber 
substantially affects the outcome of digitally-defined subtractive operations. In these 
regards, a measure of the deviation between digital inputs and physical outputs is 
presented below in Fig. 4.38. 

 

 

Figure 4.38 Deviation analysis (actual value vs input value) for the feature of Depth and 
Length of the cuts in the series. In red, the operations which removed any material 
volume.  
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Figure 4.39 Comparison between the input geometry (dashed black line) and the carved 
one (red). For each operation, top and side views are provided together with the deviation 
error. 
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Considering only the cuts which have removed material, the highest average value of 
deviation for the target frames composing the cut is found in Cut 01 for the Depth 
feature (1.43 mm) and in Cut 08 for the Length feature (12.55 mm). Analysing the 
whole cut rather than the single frame, the deviation from the original digital input is 
411% and 56% respectively.  

Following this initial deviation analysis, the methods described in this chapter have 
been applied to the same carving operations series to obtain a more accurate 
prediction of the fabrication outcomes. The trained ANN models utilised for the task 
are the ones presented in Section 4.3 for the regression-based prediction of 
geometric features. The configuration of materials (i.e. lime wood) and carving tools 
(i.e. Stubai 9-20) is unchanged with respect to the training stage. The prediction results 
are reported in Fig. 4.40, where is possible to compare in the same plot the ANN model 
prediction (in light blue), the actual fabricated geometry (as a red line) and the original 
digital input (as dashed black line). The operations which have not removed any 
material volume have been excluded from the comparison study. 

Fig. 4.41-4.42 presents the deviation measure for the Length and Depth feature, 
comparing the actual values against the input values and the actual values against the 
predicted ones. This side-by-side comparison clearly shows a substantially lower 
deviation range between the digital input and physical output of carving geometries 
when the machine learning-based simulation is utilised instead of the conventional 
digital Boolean operations. 

 

Figure 4.40 Deviation analysis for the Length feature:  actual vs input value (left), actual 
value vs predicted value (right). 

 

Figure 4.41 Deviation analysis for the Depth feature:  actual vs input value (left), actual 
value vs predicted value (right). 
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To further support this claim, Table 4.7 summarises the percentage deviation error for 
each cut presented in Fig. 4.40, showing an improvement of several times (up to 11) 
in the accuracy of the outcome geometry. These results suggest that the integration 
of the devised methods into a design stage would enable to anticipate more precisely 
the outcome of the operation in a later fabrication stage, enabling the adoption of 
such a robotic manufacturing process previously unavailable due to its high variance 
determined by tools and material affordances. 

 

Table 4.7 Percentage deviation errors for the features of Depth and Length of the cut. 
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Figure 4.42  Comparison between the input (dashed black line), the actual (red line) and 
predicted geometry (light blue). 

 

4.5 Results: Comparative Analysis of Trained Networks 
The validation of the learning strategies in the previous sections allows performing a 
comparative analysis of multiple networks trained with different materials, tools and 
parameters. The goal of the study is to discuss the potential of fine-tuning a design-
to-manufacturing workflow to a specific set of fabrication affordances and, potentially, 
create a library of trained systems to be deployed accordingly to the requirements of 
the design brief. For this purpose, the following studies aim to assess whether the 
devised methods are sufficiently versatile to synthesise knowledge from a wide variety 
of fabrication dataset. 

The key driver of the comparative analysis is the concept of variance across the 
following categories: 

i) Within the same wood species (i.e. different Tool/Grain direction angles). 

ii) Across different wood species with the same carving tool. 

iii) Within the same wood species but different carving tools. 

In statistics, the term variance (𝜎() is defined as the measure of how far each value in 
the dataset (in this case, the predicted values) is from the mean. The variance for a 
dataset sample is mathematically described as:   

𝜎( =
1
𝑁	3(𝑥$ −𝑚)(

)

$&'

 

where 𝑁 is the sample size, 𝑥$ is the sample and 𝑚 is the sample mean. The square 
root of the sample variance is the Standard Deviation (𝜎) (SD) which has the advantage 
of being expressed in the same unit of the mean. The Relative Standard Deviation 
(RSD), or Coefficient of Variation (CV), calculated as 𝑅𝑆𝐷 =	𝜎 ∗ 100 𝜇⁄  (where 𝜇 is the 
mean), is useful to determine the extent of the SD in relation to the mean of the 
dataset expressed in percentage points (%). 

The datasets utilised for such comparison have been collected through a series of 
robotic training sessions using different types of wood species (i.e. Lime, Tulip and 
Oak) and various carving tools (i.e. Stubai 9/20, 9/30 and 7/30). Table 4.8 collects the 
main info about each dataset. 

 

Table 4.8 Description of the datasets used for the comparative analysis. 
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The datasets have been utilised for training the respective ANNs model for the 
prediction of the geometric features of Length, Depth and Width of the cut. The 
models have been evaluated using a train/test split validation method and the 
resulting MAE values have been reported in Table 4.9. The low prediction errors 
showed in all the different trained models allow proceeding with the comparison 
between them in the following studies. 

 

 

Table 4.9  Prediction rates of the ANN models trained for the comparative analysis. 

4.5.1 Wood Grain  
As previously discussed, the fibrous structure of timber is the material feature 
affecting the most its mechanical performances, generating a significant variance in 
the outcome of identical carving operations executed in different locations and 
orientations on the same workpiece. Such behaviour is defined with the term 
orthotropic as it is characterised by three mutually perpendicular planes of symmetry: 
longitudinal direction along the fibres, radial direction towards annual rings and 
tangential direction to the annual rings (Hoadley, 2000). 

One of the key skills in woodworking is the understanding of the influence of the wood 
grain and the ability to steer the carving tools accordingly to achieve the desired 
outcome in a constant dialogue with the material. While such an understanding is not 
present in current CAM environments, the studies of this section aim to demonstrate 
that is possible to train a system to quantify and model the influence of the grain 
structure in different carving configurations. 

The training focused on a range of operations executed between 0° (i.e. along) and 
90°, (i.e. across) in respect to the main grain direction, with intervals of 30°. The 
predictive abilities of the system have been assessed through 4 sets of operations, 
with each set presenting 4 identical operations executed on the same wooden board 
at angles of 0°, 30°, 60° and 90° (Fig. 4.43 - 4.46). 
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Figure 4.43 Set A - Wood grain direction – ANN-based prediction of the carving operation 
(light blue) against the digital input (dashed black line) - top and side views. 

 

 

Figure 4.44 Set B - Wood grain direction – ANN-based prediction of the carving operation 
(light blue) against the digital input (dashed black line) - top and side views. 
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Figure 4.45 Set C - Wood grain direction – ANN-based prediction of the carving operation 
(light blue) against the digital input (dashed black line) - top and side views. 

 

 

Figure 4.46 Set D - Wood grain direction – ANN-based prediction of the carving operation 
(light blue) against the digital input (dashed black line) - top and side views. 
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The plots in Fig. 4.47 describe the variability in the carving outputs for the three main 
predicted output features (i.e. Total Length, Max Depth, Max Width) in relation to the 
different grain directions along which the same operation has been executed. The 
predicted feature for the four operations in each set, for a total of 4 sets, are 
represented as dark grey points connected with a dotted line. For the Length and 
Depth feature, the red points and dotted line show the input digital features of the 
desired geometry. The width of the cut is not used as input as it is defined by the 
previous two features and the tool specifications. 

 

 

Figure 4.47 Comparison of the variability of the prediction output based on the Tool/Grain 
Direction Angle parameter across the four sets of operations. 

In Fig. 4.48, a measure of the Standard Deviation (𝜎) for each set is reported in relation 
to the three predicted features, while the tables below the graphs also include the 
measure of the mean and variance. The measure of the variance varies significantly 
across the different sets of operations generated by various configurations of 
fabrication parameters. Some operations appear less sensitive to changes determined 
by the different grain directions, while others are deeply affected. For instance, Set D 
shows variance 𝜎( = 136.71	𝑚𝑚(, while Set C has a variance of only 𝜎( = 29.77	𝑚𝑚( for 
the Depth features prediction. 
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Figure 4.48 Comparison of the Standard Deviation (𝜎) and Variance (𝜎() across the four 
sets of operations for the Width, Length and Depth features. 

 

4.5.2 Wood Species 
The study of the previous section is here extended to different timber species to show 
how the trained system can model the influence of different grain arrangements and 
densities on the outcome of the fabrication task. The wood species analysed are the 
following: 

- European Oak (Quercus robur): Average Density = 700kg/m³. 

- Lime (Tilia x europaea): Average Density = 560 kg/m³. 

- Tulip (Liriodendrun tulipifera): Average Density = 455 kg/m3. 

All the wood samples used have been kiln dried and presented a moisture content 
between 12-16%. The analysis is conducted with the same set of 4 operations 
presented in the previous section, now extended to a matrix of size 3x4 (i.e. species x 
grain directions) making possible to compare the influence of the wood grain 
directionality across multiple timber species (Fig. 4.49 – 4.52). 

Fig. 4.53 reports the analysis of the variability of the geometric outcome features from 
the same set of input parameters as modelled by the trained ANN models.  The plots 
provide a horizontal comparison across the four sets of operations considered for the 
study grouped based on the Tool/Grain Direction Angle feature (i.e. 0°, 30°, 60°, 90°) 
and respective wood species (i.e. Oak, Tulip, Lime).  The study is complemented in Fig. 
4.54 with the presentation of the RSD values for each set of operations in a series of 
heatmap plots.  
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Figure 4.49 Set A - Wood species – ANN-based prediction of the carving operation (light 
blue) against the digital input (dashed black line) - top and side views. 

 

Figure 4.50 Set B - Wood species – ANN-based prediction of the carving operation (light 
blue) against the digital input (dashed black line) - top and side views. 
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Figure 4.51 Set C - Wood species – ANN-based prediction of the carving operation (light 
blue) against the digital input (dashed black line) - top and side views. 

 

Figure 4.52 Set D - Wood species – ANN-based prediction of the carving operation (light 
blue) against the digital input (dashed black line) - top and side views. 
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In some of the material configurations, the deviation of the outcomes from the desired 
digital input seems to follow a similar trend across the different grain directions 
considered, although with different amplitudes (e.g. Fig. 4.53: Oak / Tulip – Max Cut 
Depth; Oak / Tulip – Max Cut Width). The trained models are able to predict not only 
whether a set of fabrication parameters will generate a successful operation but also 
the actual geometry of those cuts which have been included in the prediction despite 
being labelled as “unsuccessful”. This is evident for the prediction of the Length 
feature, in which some of the cuts are interrupted as the tool is getting stuck into the 
material, generating a substantial variance for the same operation performed towards 
different grain directions but also different operations performed along the same 
grain direction (e.g. Fig. 4.53: Oak – Cut Length - Tool/Grain Direction Angle = 60° – Set 
A vs Set B).  The prediction of the Max Width feature shows the lowest values for the 
RSD, meaning that is the features less affected in comparison to Depth and Length by 
operations performed towards different grain directions. The main reason is that the 
value of Max Width is usually reached in the middle of the cut, as both successful and 
unsuccessful operations could have similar values while for the Length that would be 
usually half or less. 

 

 

Figure 4.53 Comparison of the variability of the prediction output based on the wood 
species parameter across the four sets of operations. 
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Figure 4.54  Comparison of the RSD across the four sets of operations for the Depth, 
Length and Width features. 

 

4.5.3 Carving Tools 
In this section, the trained network ability to model the interplay between tool 
affordances and material properties is presented. Intuitively, a change in tooling 
would necessarily determine a change in the obtained carved geometries. For a 
heterogeneous material such as timber, however, such variation in the outcome does 
not follow a linear relationship depending on tool specifications. This means that an 
increase of 𝑥 in the width of the cutting profile will not necessarily increase the width 
of the obtained cut of 𝑥 amount. As the affordances of the carving gouges are 
mediated by the specificity of the grain arrangement and direction, it seems necessary 
to assess the ability of the trained networks to model such non-linear relationship in 
the perspective of a fabrication process making use of multiple carving tools. 

The gouges utilised in the study are Stubai 9/20, 9/30, 7/30. The first number 
represents an indexical sequence used by the company to describe the depth of the 
cutting profile, while the second number represents the width of the profile in 
millimetres. The selected species for the assessment is Tulip. In respect of the previous 
two sections, the analysis presented here uses four different sets of operations to 
accommodate fabrication parameters that would fit all the different tool sizes and 
shapes considered. Each set is composed of four identical operations, as in the 
previous studies, creating a 4x3 matrix (i.e. carving gouges x grain directions) (Fig. 4.55– 
4.58). 
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Figure 4.55 Set E – Carving tools – ANN-based prediction of the carving operation (light 
blue) against the digital input (dashed black line) - top and side views. 

 

Figure 4.56 Set F – Carving tools – ANN-based prediction of the carving operation (light 
blue) against the digital input (dashed black line) - top and side views. 
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Figure 4.57 Set G – Carving tools – ANN-based prediction of the carving operation (light 
blue) against the digital input (dashed black line) - top and side views. 

 

Figure 4.58 Set H – Carving tools – ANN-based prediction of the carving operation (light 
blue) against the digital input (dashed black line) - top and side views. 
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As in the previous studies with different wood species, the predicted geometric 
features for each operation performed with various tools are compared to each other 
(Fig. 4.59) to measure i) the variability between them and ii) their deviation from the 
prescribed input values. While the first is expected as the tools considered have 
different sizes, it is valuable to check whether operations performed with different 
tools follow or not a similar overall trend based on the grain direction of the cut. The 
measure of the RSD for each set shows that the carving direction plays a crucial role 
in the definition of the outcome geometry, showing substantial variance for the same 
operation which reaches values above 70% in some of the configurations (Fig. 4.60). 

 

Figure 4.59 Comparison of the variability of the prediction output based on the carving 
tool parameter across the four sets of operations. 

 

Figure 4.60 Comparison of the RSD across the four sets of operations for the Depth, 
Length and Width features. 



 
127 

 

4.6 Results: Summary 
The chapter addresses Hypothesis B which claims that is possible to control the 
material variance in robotic carving operations and presents a series of simulation 
methods based on the training of machine learning models with real-world fabrication 
data. The assessment of the predictive abilities of trained models demonstrated that 
these methods successfully generate an accurate simulation of such operations, 
lowering the deviation error between the predicted and fabricated geometry to an 
acceptable range for its implementation into a design interface. 

The structure of the training workflow in two main stages (i.e. i) binary classifier for 
prediction of manufacturing conditions or “events” ii) regression-based prediction of 
geometrical features necessary to reconstruct the carving operation proved to be 
particularly efficient as the filtering out of fabrication parameters leading to 
unsuccessful operations made possible to substantially improve (with a margin 
between 31.2% and 64.0%) the predictive performances of the system (Section 4.3.5). 
The event threshold prediction (Section 4.2) was assessed through the prediction of 
two different manufacturing conditions: the successful removal of material and the 
successful extraction of the tool. The prediction of individual event thresholds resulted 
suitable for a linear model, such as LR, as the two groups defining the occurrence of 
the event are linearly separable. For the prediction of combined events, however, a 
non-linear model such as the ANN outperformed the LR. The trained ANN proved to 
be able to predict reasonably well, with an accuracy of 87%, if an operation would be 
successful or not based on a set of fabrication parameters and design intentions. 

The evaluation of the methods for prediction of geometric features of carving 
operations (i.e. Depth, Width and Length) based on a given set of fabrication 
parameters (Section 4.3) showed how the ANN model is more suitable for the task in 
comparison to a linear model, such as linear regression (LinR), which is not able to 
capture the non-linear relationships between inputs and outputs features. The 
predictive abilities of trained ANNs have been validated following a train/test split 
validation method, showing low error values (i.e. Depth = 0.462 mm; Length =0.733 
mm, Width = 0.681 mm). These figures are particularly relevant for the support of 
Hypothesis B as they are all within the error thresholds (even the highest one of 2% 
deviation error) established in Chapter 3, demonstrating that the trained system can 
predict the result of carving operations with an accuracy sufficient for its deployment 
within a design workflow. To further test the performance of the system, the trained 
networks were utilised to simulate a series of carving operations (Section 4.4), 
providing a significantly more accurate simulation of the carving outcome considering 
the influence of material and tools properties in respect of the initially prescribed 
digital input. The comparative analysis of multiple ANNs (Section 4.5) trained with 
different combinations of affordances demonstrates that the devised methods can 
accurately model the variance occurring for identical carving operations performed 
across different combinations of material properties, wood species and carving tools. 
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5 Knowledge Integration 
 

The methods and experimental results presented in the previous chapters focused on 
the synthesis of manufacturing knowledge based on the acquisition of real-world 
fabrication and their processing through a series of machine learning strategies. This 
chapter discusses the integration of such a knowledge as part of a simulation interface 
to support decision making procedures at an early stage of the design process, 
considering both fabrication constraints and opportunities. 

The validity of the proposed methods has been assessed within the context of two 
industry secondments at ROK Architects (Zürich) and BIG (Copenhagen). Such 
collaborations provided the opportunity to apply the devised design-to-manufacturing 
strategies into the established workflow of design firms.   

The focus of the secondments, each spanning for several months, was driven by 
Research Question C of this thesis which aimed to investigate how the integration of 
manufacturing and material knowledge at an early stage of the design process affects the 
exploration and evaluation of design solutions for robotic carving operations. 

The main proposition behind such a research question is that the lack of information 
on material and fabrication affordances significantly limits the number of decisions 
that a designer can take during the design process and excludes from the search a 
substantial subset of design solutions. A standard hylomorphic model would not 
present, for instance, the effect of the grain direction on the carving process or the 
variance in the design outcome across two different wood species. 

Following a case study methodology, the investigation implied, then, conducting 
experiments in the shape of full design-to-production cycles in a real-world context 
showing how their outcomes have been reached only following a multistep design 
process where the designer has been asked to make critical decisions based on a 
material and fabrication simulation provided by the trained system.  

While the first two hypotheses, addressed in the previous chapters, deals with 
quantitative data as they focused on sensor-based recording session, material 
behaviour modelling and machine performances, Research Question C combines 
both quantitative and qualitative data as it aims to assess the interaction of different 
groups of design professionals with the devised design-to-production workflow.  

The outcome of the industry collaborations was an extended catalogue of digital 
explorations and material evidence organised along  a series of case studies which will 
be presented in the following pages to support each a specific set of findings. For this 
reason, the chapter is organised in three main sections: 5.2) Separation Between 
Design and Making 5.3) Fabrication as Design Curation Practice and 5.4) Design 
Negotiation Platform. 
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5.1 Interface and Design Workflow 
 

 

Figure 5.1 Different modes of integrating the trained system into design workflows. 

The aim of encapsulating instrumental knowledge is its integration into a design 
interface which makes it accessible to designers and presents them with the 
opportunity of using materials behaviour into their design workflow as process 
drivers. Once the network has been trained and the correlations between fabrication 
parameters and carved geometries are established, it is possible to translate back and 
forth between the two sets of data and customise the ANN topology towards a specific 
design task (Fig. 5.1).  

The three main modes of applications explored in the experiments are: 

• From robotic toolpath to the simulation of the carved geometry. While 
conventional digital Boolean operations are insufficient in calculating the 
outcome of subtractive operations with non-standard tools on heterogeneous 
materials, the trained network provides a more accurate simulation based on 
actual material properties and tool affordances. Designers can directly test 
how individual fabrication parameters affect the resulting operation and 
evaluate how these could be tuned to match their design intention. The 
prediction could be applied to multiple cuts at the same time, each with 
different input parameters, and used to generate the overall simulation of the 
cutting pattern. 

• Individual parameters optimization. Utilizing the same set of training inputs and 
outputs is possible to create labels (as Boolean flags) to predict a series of 
event thresholds based on sets of fabrication parameters, such as the 
successful removal of material or the correct extraction of the tool from the 
workpiece. Moreover, additional labels could be created by the designer to 
describe formal preferences (e.g. surface roughness, edges definition), 
curating the training dataset along a specific design direction. Such 
information can be used to tune individual fabrication parameters to 
maximise specific performances, such as material removal volume, without 
the risk of defining a dangerous or inefficient carving operation. 
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• From carved geometry to robotic toolpath. Extracting fabrication data out of the 
scanned model of a previously carved workpiece to reconstruct the robotic 
toolpath that has generated it. Alternatively, the same method could be 
applied to start from a digital geometry obtained through a subtractive 
Boolean operation as a way of matching a formal design intention in the 
fabrication stage 

Figure 5.2 Software stack for the design simulation interface.  

The trained networks have been made available to the designers through a digital 
interface in Rhino3D and Grasshopper where the user has been asked to model their 
design either geometrically or through the definition of a basic set of input parameters 
for the carving operations (Fig. 5.2). Such design data are structured into “features” 
according to the same process used for the training process and exported to a CSV 
(Comma Separated Values) file. From the design interface, it is possible to seamlessly 
call an external Python routine which requests to the ANN to produce a prediction 
based on its configuration of inputs and outputs. Utilising Google’s Tensorflow 
framework and Keras as front-end is possible to save the ANN layers topology and 
weights distribution in a JSON file after the training.  The main advantage of such a 
modular approach is the opportunity of flexibly loading within the same routine any 
desired trained network based on the specific design requirements. This could be, for 
instance, switching between wood species or quickly evaluating the effect of different 
carving tools in respect of a given grain direction. 

 

5.2 Separation Between Design and Making 
The collaboration with BIG in Copenhagen took place concurrently with the installation 
of two industrial robotic arms in their office spaces and provided the opportunity to 
assess the potential role of such technologies within their well-established design 
workflow. The chosen model for both industrial arms has been the ABB IRB 1600, 
whose specifications have already been described in Chapter 4. The robots were 
installed inside an industrial cell facing each other and with a medium-sized horizontal 
area between them where to position the workpiece. The fabrication cell was placed 
in the workshop area of the office dedicated to model making, mostly in foam and 
plastic materials.  

This section addresses and analyses the established industry paradigm for the 
production of artefacts based on a linear workflow, as presented in Chapter 2, 
through the opportunity provided by the unusual proximity of the design team with 
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robotic fabrication facilities which made possible to test the full design-to-production 
cycle. BIG is currently one of the leading firms in the architectural design industry with 
offices in Copenhagen, London and New York and hundreds of projects for renown 
public institutions and private clients. As a design firm, they deliver projects in the 
shape of drawings, specifications and reports and they are not directly involved in the 
manufacturing stage of the project.  

The first opportunity to engage with the newly acquired fabrication facilities was the 
fabrication of a large landscape/urban model of Manhattan, New York, to present their 
linear park project for the city, the BIG U, as part of an exhibition at the Architectural 
Biennale di Venezia 2018 (Fig. 5.3, 5.4). The main idea was to move away from the 
usual foam and plastics used for representational model and utilise solid wood to 
create a piece that would be more resistant and could be used in further occasions 
after the exhibition. The final U-shaped model at a scale of 1:750 covered an area 
including both the city waterfront and the Hudson River surrounding the city. For 
transportation reasons, the model was subdivided into 17 modules, each consisting 
of two parts for the city and water areas. The design and fabrication of the model were 
supervised both by the NY and Copenhagen office and took approximately three 
months. 

 

 

Figure 5.3 – Completed BIG U model at the Biennale di Venezia 2018. 

Milling, the process of removing material using a rotary cutter against a workpiece 
(Oberg et al., 2016), was selected from the beginning as a well-established, industry-
based, technique for achieving the task. An entry-level wood router (i.e. Kress 1050-
FME-1) has been attached to the industrial robotic arm through a custom mount and 
configured as end-effector. This tool has been widely adopted by the maker 
community for its high price/quality ratio, however, it presents several limitations if 
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compared to an industry-grade milling spindle, such as lack of a power inverter and 
digital speed control, low power (1050 Watts) and relatively small milling bits clamp of 
only 8 mm diameter.  

The milling technique was developed and specifically optimised to operate within the 
industrial paradigm of a linear progression from the stage of design to fabrication. 
From this perspective, milling could be compared to the more recent 3D printing 
techniques as both promise to deliver exactly the original desired shape within very 
tight tolerances. As a way to exclude any material agency from the process, most of 
the time only industrially-graded homogeneous materials, such as metal or plywood, 
are utilised. 

 

 

Figure 5.4 Robotic milling of one of the timber modules of the BIG U model. 

The design-to-production workflow is described in Fig. 5.5 and is organised in three 
main stages: i) the creation of the digital model, ii) the generation of the toolpath with 
a dedicated CAM software and processing of such for an industrial arm task and finally 
iii) the robotic fabrication task itself.  

Each module was milled in one go within a fabrication time oscillating between 4 to 12 
hours according to module size (in length) and material volume to be removed. 
Generally, the tool feed-rate has been kept to a conservatively low value to avoid 
overloading the tool and ensure a higher finishing quality. The chosen milling 
operation could be considered as part of a “roughing” strategy performed with flat end 
mill down-cutter of diameter = 8 mm. As the available tool was not able to cut beyond 
a certain depth, the timber blank had to be cut down to its final outer profile by an 
external contractor. 
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Figure 5.5 Design-to-production workflow of the BIG U model. 

The transfer of a manufacturing technique such as robotic milling from the highly 
controlled environment of a factory/workshop to a design studio environment 
together with its application with a heterogeneous material, such as timber, 
highlighted a series of issues arising from the adoption of a conventional linear 
workflow based on the separation between the stages of design and making: 

• A first issue was the distribution of the workload to create the digital model, in 
which the NY team has been responsible for defining the area to be 
represented and curate its content, while the Copenhagen team had the role 
of creating the model for its fabrication. The idea that is possible, or advisable, 
to separate the two tasks appears as a reflection of the established paradigm 
in the design industry: as the two teams focused on two different aspects of 
the project, one focusing on the design while the other on the production, it 
was particularly challenging to ensure the delivery and integrity of all the 
necessary information and the two teams ended up creating two different 
digital models serving two different purposes. 

• From a conceptual level, the transfer of the representational model to a digital 
fabrication model showed a strong preconception deriving from previous 
experience of model making within the office applied to a different type of 
technology and material. The office established a technique to achieve three-
dimensional landscape models via stacking together flat sheet material, such 
as cardboard or acrylic panels, cut to the right shape with an in-house laser 
cutter. Such layer-based logic has a strong influence on the visual appearance 
of the model, as any height difference is represented through right-angle small 
steps. The decision of the design team to apply a similar peculiar aesthetics to 
a model achieved with a completely different type of technology and material 
shows how individual manufacturing knowledge deeply affects design 
decisions (Fig. 5.6). In this case, a previous understanding of model-making 
techniques potentially limited the exploration of design opportunities which 
would fully exploit the tool fabrication affordances and timber properties. For 
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instance, milling a smooth three-dimensional surface, resembling more 
closely the physical geographical configuration, would not be achievable with 
laser cutting. As a practical consequence of this design decision, the digital 
model had to be manually layered and each step had to be modelled as 
geometry rather than resulting from stacking flat-sheet material.  

 

 

Figure 5.6 Layered design options for the landscape model. 

• The lack of integration of specific manufacturing knowledge for milling 
operations with the design interface in such early stage of the process proven 
to be detrimental for the overall efficiency of the design-to-manufacturing 
workflow, requiring several post-rationalising adjustments which ended up in 
the necessity of the modelling the same object twice. To begin, the model had 
to be split up in separate modules of equal size, both for transportations, 
storage, fabrication working area and material availability of limited sizes 
rather than an indefinite large single piece. Furthermore, a series of geometric 
features determined by the fabrication technique and tools choice had to be 
implemented. For instance, it is not possible to achieve right-angle corners of 
a pocket and the corners will be necessary filleted based on the tool radius. 
Similarly, the router has a maximum reachable depth before collision defined 
by the length of the milling bits which results in the impossibility of achieving 
some type of geometries. Even in a compartmentalised workflow as the one 
described, the integration of initial manufacturability checks, similarly to the 
ones provides by online 3D printing services (e.g. wall thickness, steep 
angles…), concurrently with the design modelling would have made possible 
to avoid costly mistakes which would appear evident only at a later fabrication 
stage.  

• While issues deriving from geometrical features and specificities of the chosen 
fabrication techniques were problematic for the overall process, the definition 
of material aspects of the project presented an additional set of challenges for 
the project. The digital models, even the one optimised for fabrication, carried 
no information regarding properties and behaviour of the specific material 
chosen to “materialise” the digitally-defined shape. Timber, more than other 



 
135 

 

materials, presents specific challenges and requires careful planning as 
fabrication material. The choice of such material for the large landscape model 
significantly affected the choice made by the design team at an early stage 
when they had no information available about material features. The design 
solution space shrank considerably in relation to simple parameters, such as 
maximum length or thickness, in relation to the actual availability of the 
material. The chosen wood species was Lime for its light colour and relatively 
uniform grain arrangement. The information regarding the available 
dimensions for the boards of that species forced designers to readjust the size 
of the modules and remove part of the geometries which would not fit with 
the given thickness. Moreover, the blank for each module had to be put 
together glueing up 3 different boards to reach the width of 75 cm. This 
necessitated revising how the model was described digitally, taking into 
consideration an increased number of seams and the careful placement of 
individual boards in regards to the figuring determined by the grain 
arrangement. While in the digital environment each module appeared 
uniform and solid, in the physical version it was possible to notice the 
difference between different boards mostly because of subtle tone difference 
deriving from the differences in trees. 

• The positioning of the workpiece inside the cell was measured using the 
precise coordinate system of the industrial arm and reconstructed in the 
digital design interface. The main issue with such method is that once the 
workpiece was correctly located, there was no strategy to take into account 
the shrinking and deformation of the blank determined by environmental 
conditions and in general higher tolerances given by using a natural material 
instead of an industrial one. Such a deviation between digital and physical 
model could go from several millimetres up to 1-2 centimetres for some of the 
largest modules. Furthermore, it was quite challenging to describe how this 
deformation has happened through the measurement of a few points within 
the robot coordinate system. As a consequence, geometrical features at the 
edges of the blank were either shifted or left unmachined. Cutting in different 
directions in respect of the wood grain loaded the tool differently, therefore, 
the machine had to be supervised to continuously monitor the sound and 
vibration level and the speed decreased accordingly. 

 

Figure 5.7 Warping of the timber model after the robotic milling operation due to changes 
in the internal stresses of the grain. 
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Finally, a few days after the fabrication, the asymmetrical release of the 
mechanical stress of the fibres, due to the removal of material on one side 
only, together with local environmental conditions generated significant 
warping in the milled boards. In some of those, it was necessary to apply stress 
release cuts on the bottom side of each component as the displacement 
reached a difference of several centimetres between the centre and the edges 
(Fig. 5.7). This posed a potential issue for the assembly of the modules in their 
final configuration. 

5.2.1 Results: Summary 
The project provided a series of valuable insights regarding the advantages and 
disadvantages of using a linear and compartmentalised workflow from the design to 
the fabrication stage: 

• Utilising well-established fabrication techniques, such as robotic milling, 
allows seamless integration of the process within the current workflow of the 
design firm and generally has been received positively by most of the design 
professionals used to operate within a notation-based paradigm. 

• The proximity of fabrication facilities, such as the industrial robotic arms cell, 
to the design team is not necessarily enough to encourage designers to 
engage with the fabrication tools and material properties. The predominant 
approach based on the “materialisation” of digital geometries, like in 3D 
printing processes, is mostly based on long-established workflows and lack of 
tool interfaces that would grant designers with manufacturing knowledge at 
an early stage. 

• Even within a prescriptive fabrication workflow utilising robotic milling, timber 
material properties played a critical role which required to move several times 
back and forth between the stage of design and fabrication to reach a final 
design solution. 

• Access to a material knowledge database, combined with data related to 
economic and resources availability within the local supply change, would be 
beneficial to the designer alongside formal considerations. 

 

5.3 Fabrication as Design Curation Practice  
In parallel with the design and fabrication of the BIG U model, the team of designers 
developed a series of robotic carving experiments focusing on the bottom-up 
exploration of material features through the integration of manufacturing knowledge 
at an early stage of the design process.  

The training of the system, following the methods described in the previous chapters, 
implied the selection of the range of wood species, properties and carving tools to 
define the solution domain of the design exploration. This approach presents an 
opposite perspective compared to the previous case study as it moves from the 
physical domain of the fabrication stage to inform the exploration of design solutions 
in the digital realm. The shift from the physical to digital reject the conventional 
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workflow presented in the previous section, where a model is defined digitally and 
“materialised”, as a sort of physical instance of an abstract shape. The perspective 
presented in this section frames the act of design as a curatorial practice where the 
designer is asked to specify, from the beginning, the physical domain of affordances 
through which directing her or his investigation. Whereas this might seem an 
unnecessary limitation, theoretically hindering the full exploration of the entire 
domain of solutions, the specification of the domain of the operations makes it 
possible to confidently map the complex combination of affordances and integrate 
effectively such knowledge as part of the digital interface. Such a knowledge base  
enables a series of solutions to be unlocked which would otherwise be unavailable in 
a purely digital hylomorphic space. Such an integrated base is not a crystallised entity, 
but it is constantly refined and expanded as more real-world data are collected. The 
curatorial process suggests instead of a monolithic approach, a modular and 
incremental approach, which can expand horizontally through the collection of 
multiple types of different affordances, and vertically, through collecting more 
information to create a more robust understanding of those properties and 
constraint. Furthermore, as discussed in the previous section, the lack ok of a 
knowledge base could be detrimental for the overall process where the chosen design 
might be unsuitable actual fabrication methods and constraints. 

The following analysis is not focused on the specific comparison between milling and 
carving processes, which are too different both in methods and scope for a meaningful 
parallelism, but rather on the difference between the developed training methods and 
the conventional workflows and how these influence the design process. 

5.3.1 Expert Systems and What-If Scenarios - Background 
The “What-If” design approach, previously introduced in the Literature Review Chapter, 
provides designers with multiple scenarios based on different types of design 
alterations together with a series of DFM feedback necessary to support an informed 
decision to advance in the design process.  

According to Vaneker and van Houten (2006), such methods aim to replicate the 
cognitive process of designers and engineers who are continuously asked to define 
and assess the combination of solutions that lies ahead together with the 
consequences of a specific choice on the overall outcome. The value of automating, at 
least partially, such a process is to support users in the navigation of sequential What-
if stages which require to be informed in real-time by a multitude of information 
sources such as programs, databases or knowledge bases. Each of these sources acts 
as an expert system which provides contextual knowledge to structure the what-if 
investigation and generate the set of scenarios presented to the user. 

Expert systems are defined by Lucas and van der Gaag (1991) as those “systems which 
are capable of offering solutions to specific problems in a given domain or which are able 
to give advice, both in a way and at a level comparable to that of experts in the field”. In 
their present-day formulation, expert systems are described as the combination of a) 
a knowledge base and b) an inference engine which is responsible for “manipulating 
the knowledge represented in the knowledge base” (Fig. 5.8). 
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Figure 5.8 “Global architecture of an expert system” – Source: Lucas and van der Gaag, 
1991. 

The inference engine is encapsulated with a consultation system which represents the 
interface through which the user can interrogate the system.  

As shown by several studies (Looney, 1993; Huang and Zhang, 1995; Goel and Chen, 
1996; Medsker, 2012), ANN can be used successfully to create hybrid Expert Systems 
(ES) utilising their ability to build rules from the examples provided by the user. As 
Kottai and Bahill (1989) point out, one of the main differences with conventional ES is 
that the generation of the inference engine can be achieved with minimal external 
intervention as the “network gradually takes over the task of the human expert”. 
Furthermore, ANN-based expert systems appeared more robust than conventional 
ones when provided with erroneous or incomplete data, still giving reasonable 
answers. Nevertheless, if compared to the original diagram proposed by Lucas and 
van der Gaag (Fig. 5.8), there are no explanation or trace facilities, since it is particularly 
challenging to reconstruct the reasoning behind the prediction of the ANN, appearing 
to the user/designer as a black box. 

Within the thesis context, as discussed in the previous chapters, ANNs have been 
implemented as part of a strategy to synthesise material and instrumental knowledge 
based on data collected from directly recording human experts and robotic 
production sessions. The designer is not acting as an expert as she or he is not 
responsible for individuating the underlying relationships and patterns in the dataset 
but rather, through the curation of the training process, selecting the affordances and 
relative domain within which the design exploration is focused. While conventional 
expert systems are based on a set of rules established by human experts, in this case, 
the user setting up the ANN-based system does not need to know those rules or even 
explicitly formulate them. The inference engine represented by the trained ANN does 
not provide clues behind its reasoning and, as such, it does not increase the 
knowledge of the user but it instead provides a powerful source of knowledge which 
is possible to constantly query during the design process. As a result of the user 
curation process, the trained system does not provide access to universal knowledge 
about any timber subtractive manufacturing process, but rather to a specific subset 
of affordances coinciding with the one necessary to inform the what-if scenarios 
design strategy. 
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5.3.2 Training 
The goal assigned to the team of designers was the exploration of a series of carving 
patterns for special surface treatments, generating interesting visual and tactile 
effects for a wide range of applications, from furniture pieces to building components 
of larger assemblies (e.g. façade or interior panels).  

The exploration set out to investigate the influence of material qualities in the 
definition of the formal outcome of the design intention. For this reason, the designers 
started by selecting three substantially different wood species (i.e. Lime, Tulip and 
Oak) both in terms of aesthetic qualities and mechanical properties. The second focus 
of the investigation has been on the interaction of a set of different carving tools (i.e. 
Stubai 9-20, 9-30, 7-30) with the material properties, such as grain density and 
directionality (i.e. 0°, 30°, 60°, 90° from the main grain direction), of the selected wood 
species. 

The aim of the training process was to map the complex interaction of the material 
and fabrication affordances to create a package of knowledge that could be integrated 
into the digital design exploration. The collection of the real-world fabrication data 
through robotic recording session had to be carefully arranged, balancing between 
the full range of the affordances available and the limited amount of time and 
resources available. A first step has been to select the relevant combinations. For each 
wood species, the collection of cuts has been performed using the three different 
carving tools in the fabrication toolset following four different carving direction with 
an interval of 30° between each. Within such selection, the following step has been to 
define the values range for each fabrication parameters (e.g. Tool/Surface Angle or 
Input Cut Length).  

As discussed in Chapter 3, such operation could be performed either through a 
demonstration of a skilled human expert or an arbitrary definition of reasonable 
boundaries based on the designer’s intuition. While the human’s demonstration 
would have been more efficient, the second method has been chosen as it was 
relevant for this case study to identify both successful and unsuccessful robotic 
operations to avoid inefficient and dangerous configurations in the following design 
stage. In relation to the carving patterns exploration, the investigation has been 
limited to three main Input Cut Length intervals (i.e. 35, 45, 55 mm) which have been 
evaluated as providing enough meaningful variation in the pattern. Each length 
interval has been investigated through a selection of cuts between 9 to 13, each with 
a different variation of Tool/Surface Angle value, which represents a key parameter in 
the definition of the carving outcome as demonstrated in Chapter 3. The figure below 
(Fig. 5.9) summarises the structure of the curatorial process and how this defined the 
robotic training sessions. 
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Figure 5.9 Selection of the parameters explored in the training session. 

As a result of such structure, each wood species dataset counts between 430 to 460 
robotic carving operations. Each training board (300x400x35 mm) counted between 
32 and 36 cuts and took an average of 15 minutes to be produced, with the setting up 
(i.e. positioning, fixing and calibrating) being the most time-consuming part. Once 
these data have been collected and properly organised, the datasets have been used 
to train several ANNs based on the specific combination of wood species and tools 
utilised following the methods presented in the previous chapter. 

The access to several carving simulations through the digital interface has been made 
possible through the seamless switch between different trained networks. 
Consequently, from the same set of input parameters is possible to receive back 
almost immediately multiple predictions and effectively compare them. 

5.3.3 Design Explorations 
As the designers had the opportunity to curate the domain of their design 
investigation, the team could confidently utilise the digital simulation interface as 
informed by the real-world fabrication data collected during the training sessions.  

A series of pattern generation strategies have been developed with the aim of creating 
complex textures based on generative principles rather than manually defining each 
carving operation (Fig. 5.10). The key concept is the perturbation of a “field”, in this 
case carving toolpaths arranged on a grid, performed by an external element such as 
an attractor/repulsion point, a curve or a grey-scale map. Following the positioning of 
the generating element, designers could define the type and range of modifications 
generated in the variation of the geometric and fabrication parameters of the 
toolpaths. These are open-ended and could be easily defined through the design 
interface and could include, for instance, variations in the cut length, depth, rotation 
or overlapping. 
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Figure 5.10 Procedural generation of carving patterns in the digital design environment. 

Each toolpath of the generated pattern was fed to the trained ANN which returns a 
simulation of the collection of carving operations based on the selected material and 
fabrication parameters. The advantage of such method is not only, as discussed in the 
previous chapter, to access a more accurate prediction of the fabrication outcome, 
but also to seamlessly evaluate the influence of different fabrication affordances in 
generating different outcomes from the same set of input parameters. As such 
methods enable the assessment of multiple combinations at a digital level, it 
substantially reduces the need for robotically fabricating each generated pattern, 
making the process more efficient and reducing material waste. 

Such a workflow was utilised to generate several designed/fabricated carved panels 
to evaluate the effectiveness of the developed methods. Design explorations followed 
a what-if scenarios structure organised through multiple stages in a tree-like structure 
whose branches eventually culminating with the actual robotic fabrication of that 
design iteration. At each stage, the available combinations of material and fabrication 
affordances, based on the collected data during the training, could result unpractical 
to navigate in terms of solutions space. As a more effective way to advance the design 
process, each stage required the choice of one specific set of affordances to explore, 
with the others inherited from the previous stage. Such analysis could explore 
geometric pattern variations, wood species and density, grain directionality, carving 
tools and specific fabrication parameters, such as Tool/Surface Angle, which would 
significantly affect the resulting length, depth and width of the cut. 

The opportunity to access the ANN simulation of multiple fabrication simulations had 
to be combined with the designer’s intuition of evaluating whether the specific 
iterations would respect her or his design intention and what to explore in the 
following stage to steer the overall process. Alongside qualitative evaluations, it has 
been very important to provide designers with a series of quantifiable measure that 
would support the decision-making procedure at each stage such as the number of 
cuts, fabrication time and resulting geometric parameters. 

5.3.4 Design Case Study 
This section discusses one of the several design explorations performed by the team 
of designers. The focus is to present the tree-like evolution of the investigation, the set 
of affordances considered at each stage and the evaluation of the fabricated panels. 
The structure of the what-if scenarios sequence is summarised below in Fig. 5.11. 
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Figure 5.11 Tree-like structure of the what-if stages explored during the design process. 

Behind each fabricated panel, several digital designs were explored through the ANN-
based simulation of the outcome geometry. The design evolution is presented 
through a smaller portion of the overall carving pattern for one larger panel (Fig. 5.12). 

 

 

Figure 5.12  The ANN-based simulation represents the interface between the digital 
robotic toolpath and the final carved panel, enabling the evaluation of multiple design 
solutions before moving to the production stage.  
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1) Geometry Pattern (Fig. 5.13): The original geometric pattern is generated 
following the methods described above, utilising a curve as the perturbating 
element of a grid of carving toolpath. Based on the distance from the curve, 
the toolpaths have been subject to a rotation between -30° to 30° and 
variation in length between 35 to 50 mm. 

Figure 5.13 Stage 1: Geometric pattern generation. 

2) Wood Species (Fig. 5.14): The generated pattern was simulated using a series 
of arbitrarily defined fabrication parameters across different wood species to 
understand their impact on the fabricated outcome. Please note that the 
selection of the wood species was not determined only by the geometric 
prediction, as the input params exploration was still minimal at this early 
stage, but also by qualitative consideration from the designer’s team, such as 
the surface colour of a specific species (i.e. “oak is too dark”). 

Figure 5.14 Stage 2: Wood species comparison (i.e. Lime, Oak, Tulip). 

3) Grain Direction (Fig. 5.15): Once tulip was chosen as preferred species, the 
necessary following step has been to assess the influence of the grain 
structure and direction in relation to the carving toolpaths. The carving pattern 
was oriented along four main grain directions (0°,30°,60°,90°) which added to 
the rotation applied during the pattern generation (e.g. 60°+12.4° = 72.4° is the 
actual angle between the toolpath and grain direction). 
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Figure 5.15 Stage 3: Grain direction (i.e. 0°, 30°, 60°, 90°) 

4.1) Carving Tool (Fig. 5.16): The what-if scenario scenarios made possible to quickly 
evaluate alternative solutions for the same pattern generated by different fabrication 
tools curated during the training process. In this case, once defined the wood species 
and angle in respect to the grain structure, it was possible to assess the simulation of 
the same pattern carved with a Stubai 9-20 and 7-30 carving gouge. 

 

Figure 5.16 Stage 4.1: Carving gouges (i.e. Stubai G930, G730) 
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4.2 > 5) Carving Pattern Params > Carving Tools (Fig. 5.17): The second what-if 
scenario revolving around the selection of different carving tools was combined with 
substantial modifications of the geometric parameters in three different alternatives 
(Pattern A, Pattern B, Pattern C). Different amount of operations and overlapping 
factor were explored to understand what would work best with carving tools of 
different sizes. 

 

 

Figure 5.17 Stage 4.2: Geometric variations of the original pattern (Stage 1). 

6) Fabrication Stage (Fig. 5.18-19): The final stage of the exploration is the robotic 
fabrication of a series of carved panels which results from the sequence of what-if 
scenarios examined by the design team (Fig. 5.20-21). For this exploration, two digital 
patterns were selected for the fabrication stage. Both were manufactured on ulip 
boards following the main grain direction (0°). Pattern A was carved with a Stubai 9-30 
and focused on the toolpath rotation with minimum overlap between cuts. Pattern D 
was carved with a Stubai 9-20, a smaller carving tool, and utilised a fixed grid 
orientation with a higher number of cuts which resulted in a larger overlap and a 
subtler texture. The photogrammetric reconstruction of the carved panels was 
compared to the ANN-based prediction and the deviation between the two was used 
to generate colour gradient mapping. 
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Figure 5.18 Stage 6, Pattern A.3: Fabrication and analysis of the outcome. ANN-based 
digital simulation (top), photogrammetric reconstruction (middle), deviation analysis map 
(bottom). 
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Figure 5.19 Stage 6, Pattern D: Fabrication and analysis of the outcome. ANN-based digital 
simulation (top), photogrammetric reconstruction (middle), deviation analysis map 
(bottom).  
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Figure 5.20 Robotic carving operations during the secondment at BIG. 

 

 

Figure 5.21 Detail of a robotically-carved texture fabricated during the secondment at BIG. 
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5.3.5 Results: Summary 
The discussion of a typical design to fabrication exploration based on a sequence of 
what-if scenarios describe the workflow utilised by the design team for producing 
several carved panels. The following findings could be derived from such catalogue of 
material evidence and digital experiments performed within the secondment 
timeframe: 

• The final fabrication stage of a specific what-if scenario does not represent 
necessarily the end of the design process, but it becomes instead the starting 
point for another set of digital explorations which can build upon the initial 
fabricated evidence. As the tree-like structure of the presented case study 
suggested, the design to fabrication process is rarely linear and choices made 
at an early stage can always be revised, especially if new material data is 
included in the process. 

• While the prediction of any single carving operation is highly accurate within a 
fraction of millimetres, as demonstrated in the previous chapter, the analysis 
of complex fabricated patterns shows a higher deviation between the ANN-
based prediction and the photogrammetric reconstruction of the carved 
board. The main reason for this is likely due by the combined effect of 
overlapping cuts whose interaction generate mechanical conditions which are 
not present in the single cut configuration. For instance, a carving operation 
performed where only one side of the cut find the resistance of the material, 
while the material has already been removed on the other side by the previous 
operation, is a specific condition which has not been modelled during the 
training stage. Nevertheless, the overall accuracy of the ANN-predicted 
pattern is more than acceptable for design purposes and it has been proved 
to be able to correctly capture the impact of different material and fabrication 
affordances on the fabricated geometrical outcome. 

• The curation of the fabrication process through the definition of the training 
stage and material affordances explored represents the keystone of the 
design process. The search domains defined at an early stage through the 
selection of the wood species, relevant material properties, carving tools and 
fabrication parameters directly the determine the range of solutions available 
in the digital design stage.  

• The exploration of what-if scenarios driven by material affordances would not 
be possible using conventional methods based on purely geometric 
considerations rather than on the collection of real-world fabrication data. As 
a consequence, the evaluation of the impact of choices such as the selection 
of a specific wood species enables to unlock a series of design opportunities 
otherwise unavailable and support a better-informed decision-making 
process. 
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5.4 Design Negotiation Platform: Top-down Decisions 
and Bottom-up Fabrication Affordances 

 

 

Figure 5.22 “Kizamu”, a research demonstrator realised as part of the collaboration with 
ROK Architects.  

The integration of material and fabrication affordances provide designers with the 
opportunity to evaluate their effect on their original design intention. As the trained 
ANN provides an accurate simulation of the fabrication outcome, the designer could 
either decide to embrace the agency of materials and tools on the design or, 
conversely, use such information to adjust the robotic fabrication parameters 
accordingly to obtain the original design. In most cases, such decision is not binary 
and implies to carefully balance between top-down design requirements and bottom-
up material features. Consequently, the developed methods, once integrated within a 
design-to-manufacturing workflow, provide the opportunity to negotiate between 
these two different positions. 

The secondment at ROK Architects set out to evaluate the impact of the machine-
learning-based design tools if used as a negotiation platform for the design and 
fabrication of a large furniture piece for a gallery space (Fig. 5.22-24). The 
demonstrator is named Kizamu, Japanese for “carving”, and should serve as an 
exhibition platform for several smaller art items. The aesthetic appearance of the 
carving process and material is supporting the focus on the item on each platform. 
The focus on a specific design brief from an actual client made possible to test the 
developed tools within a real-world scenario with a specific timeframe, resources 
availability and costs. While at the building scale it is challenging to develop and test 
different design-to-fabrication workflows due to strict legislation that regulates the 
different stages, the interior furniture project allowed more freedom in proposing 
alternative pathways to production which did not necessarily rely on a notational form 
of the object.  
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Figure 5.23 The demonstrator is composed of a series of robotically-carved wooden 
platforms to exhibit art objects. 

 

 

Figure 5.24 Details of the carved flutes of one of the wooden platforms of the 
demonstrator. 
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5.4.1 Top-Down Constraints and Design Choices 
The design brief and its requirement posed a series of constraints which needed to be 
integrated as part of the negotiation platform. These considerations included the 
number of “exhibition spots” needed together with the overall dimensions, display 
height and orientation in relation to the gallery space. Alongside such requirements, 
designers had the opportunity to project their design intention at different scales, 
through a series of top-down choices having a significant impact on the final result. 

Pattern Parameters (Fig. 5.25): As previously discussed, there are several 
combinations of geometric and fabrication parameters which play a crucial role in the 
creation of a carved texture. One of the key design choices has been to focus on a 
pattern made of parallel carved flutes which could vary in their number, orientation, 
overlap and the number of cuts in which they were subdivided. Each cut composing a 
carved flute could be shifted forward or backwards in relation to the next one to 
change the overlap between the two. Finally, fabrication parameters for each 
operation have been randomised within specific ranges, for instance with Input Cut 
Lengths between 40 and 80 mm and Input Cut Depth between 1 to 6 mm. The 
combination of these choices at the local scale made possible to create variation 
within an, initially, very simple parallel arrangement of operations. 

 

 

Figure 5.25 Carving pattern parameters – Diagram. 

Board Parameters (Fig. 5.26):  At the medium scale of the individual board, the critical 
top-down decisions taken by the designers were the overall profile of the board and 
the relationship between the carved and uncarved areas which would define the 
arrangement of the art pieces exhibited. Furthermore, the three-dimensional 
definition of the boards, with a difference of several centimetres in the levels between 
the two areas, required shifting from two-dimension carving patterns toward a more 
complex configuration of the fabrication process. 
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Figure 5.26 Boards Parameters – Diagram. 

Global Parameters (Fig. 5.27): From the beginning, the design team oriented its 
preference toward lime wood as preferred wood species due to its light, warm, colour, 
and its excellent machinability. The overall configuration of the piece was driven by 
the concept of a carved landscape made of different boards with organic and 
smoothen shapes, with the art pieces positioned in a central position of these carved 
podia.  

 

 

Figure 5.27 Global design parameters - Diagram. 
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5.4.2 Bottom-Up Features 
Each carved board composing the furniture piece, while following a similar design logic 
to the others, presents individual local features and changes in the pattern 
arrangements of parallel flutes, due to the combination of input design parameters 
and material features related to the chosen wood species, such as grain density and 
arrangement.  

Similarly to the previous case studies, a training session has been set up to obtain an 
ANN-based simulation of the effect of these on the fabrication outcome. The networks 
have been trained using Lime wood and a set of three different carving tools (i.e. 
Stubai 9-20, 9-30, 7-30). The design exploration focused on the variation of top-down 
design parameters and how these are affected in a non-linear and unexpected way by 
the properties of material and tools. Even within fixed design parameters boundaries, 
such choices generate a significant variation in the outcome. The opportunity to 
seamlessly explore such a domain, before moving to the fabrication stage, appears 
beneficial for the efficiency of the overall workflow. Several design iterations have 
been generated following a what-if scenarios strategy, simultaneously proposing 
multiple alternatives at the variation of one individual parameter or fabrication 
condition.  

In the following pages, three different studies are presented as examples of the 
application of the developed methods for such design brief. The input fabrication 
parameters are reported on the side of the top view of the toolpaths arrangement and 
related carving simulation. Study A (Fig. 5.28) shows the effects of changing a 
fabrication parameter at the local scale of the individual cut with a variation of the 
Input Cut Length between 14.3 and 60.19 mm and decreasing the total number of cuts 
from 653 to 431. Study B (Fig. 5.29) focuses on the variation at the pattern level with a 
variation of the number of flutes from 18 to 32. Study C (Fig. 5.30) is concerned with 
the effect of different carving tools operated with the same design parameters. Linear 
changes in the size of the tools are not necessarily reflected in the obtained patterns, 
which show significant variations among the different cuts even within the same 
sample. 

The evolution of the design through a series of what-if scenarios allows evaluating 
simultaneously aesthetic and functional requirements together with material and 
fabrication considerations, negating the linear progression of conventional 
production workflows. Consequently, the design team could focus on exploring 
multiple solutions and receiving back for each a series of qualitative and quantitative 
DFM feedback to support or dismiss their choices. 
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Figure 5.28 Study A: Local variation in the cutting length of the carving operations.   
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Figure 5.29 Study B: Variation in the arrangements of carved “flutes”. 
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Figure 5.30 Study C: Variation in the carving gouges used. 
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5.4.3 Fabrication 
The robotic fabrication of each board required several carving passes to achieve the 
desired final shape. The number of these passes ranged from 12 to 30, depending on 
how much material was needed to be removed. For each of these fabrication steps, 
the trained ANN generated a simulated instance of the carving outcome to evaluate 
at each step the successful combination of parameters would align with the design 
intention (Fig. 5.31). The amount of material removed at each cut has been maximised 
using the binary event threshold method described in the previous chapter (Section 
4.2) to cull out unsuccessful operations. 

The fabrication has been performed with the same industrial robotic arm (i.e. ABB IRB 
1600) used in the previous case studies equipped with the carving effector and the set 
of gouges selected during the training (Fig. 5.33-34). The rectangular boards were fully 
carved in their final shape and only afterwards trimmed down to their final edge 
profile using a standard 3-axis CNC router. While this might be inefficient time-wise, it 
provided the opportunity to test the system and collect valuable insights for the 
robotic carving process.  

 

Figure 5.31 Layers of information used for the design, production and analysis of the 
robotically-carved boards. 
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Each carved board was reconstructed digitally through photogrammetry and 
compared to the ANN-based prediction, generating a gradient-based mapping of the 
deviation between the two (Fig. 5.32). This analysis was critical to validate the tool and 
assess the impact of its application as a core element of the digital design process. 
While the overall simulation is accurate to a tolerance below 1 mm, it should be noted 
that some area of the carved board shows a higher deviation value than the average. 
This is probably due to local material conditions, specific to the specific wooden 
sample, with mechanical properties that slightly differ from the rest of the grain of 
structure. Such behaviour can be caused by several conditions related to the tree 
growth, the presence of features such as knots or different hygroscopic response to 
the internal moisture content.  

 

 

Figure 5.32 Deviation analysis of the robotically-carved boards. ANN-based digital 
simulation (top), photogrammetric reconstruction (middle), deviation analysis map 
(bottom). 
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Figure 5.33 Robotic carving process of one of the demonstrator’s components. 

 

 

Figure 5.34 Close-up detail of a robotic carving operation. 
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5.4.4 Results: Summary 
The design and robotic fabrication of Kizamu focused on the application of the 
developed methods within a real-world project commission as a negotiation platform 
among a selection of relevant criteria that drive a typical design-to-manufacturing 
workflow. 

• The integration of instrumental knowledge enabled the assessment of the 
constraints and opportunities provided by the material and tool affordances 
on top-down design decisions. Access to a specifically trained manufacturing 
knowledge base is beneficial to the evolution of the design process as it 
becomes possible to assess simultaneously, at an early stage when key 
decisions are taken, both design and fabrication considerations. 

• The simulation can be used to easily explore material-aware solutions ahead 
of the fabrication stage, however, the physical fabrication of the carving 
patterns is still necessary for evaluation of qualities related to optical (e.g. 
colours, light reflections and shadows) and tactile (e.g. smoothness) aspects. 
In this case, the trained system makes it possible to reduce the number of 
necessary fabrication iterations to reach the final design. 

• The combination of complex pattern configurations, in comparison to 
individual carving operations, and the three-dimensional shape of the final 
boards appeared to be a challenging scenario for the ANN-based simulation. 
While the overall digital result is still very accurate, as shown through the 
deviation map analysis, the combined effect of multiple operations is difficult 
to model and would require the collection of further data. 

• The introduction of material and fabrication affordances as design drivers 
needs to be carefully balanced with the more conventional top-down, 
geometric-driven, design approach. A promising strategy for this specific 
project was clearly defining the areas and domain within which both would 
lead the design process. The carved portions of each board were not modelled 
digitally beforehand but resulted from the digital explorations informed by the 
collected real-world fabrication data. Within this context, the developed tools 
can be used to choose between the optimisation of individual fabrication 
parameters to achieve the original design intention or, potentially, follow a 
more open-ended trajectory where material and fabrication affordances act 
as design drivers.  



 
162 

 

6 Discussion 
 

The research investigates the synthesis and integration of manufacturing and material 
knowledge at an early stage of the design process to enable the exploration of novel 
design opportunities informed by the affordances of non-standard tools (i.e. carving 
gouges) and heterogeneous materials (i.e. timber).  

In the previous chapters, the developed methods, experiments and related results 
have been presented along two main conceptual strands: 

i) Technology: Development of a robotic training workflow based on the 
acquisition of real-world fabrication data and utilisation of machine 
learning models to obtain an accurate simulation of subtractive 
operations.  

ii) Design: Implementation of the trained system as part of the established 
workflow of design firms to inform the design and fabrication of a 
catalogue of digital experiments and material evidence. 

In this chapter, the relevance of the main findings in relation to the thesis hypotheses 
and how these relate to the body of work from the literature are discussed together 
with an assessment of their impact, methodological constraints and further outlook. 

For this purpose, the two strands have been here woven together as they reciprocally 
support each other in highlighting the knowledge contribution of this research. Such 
integration of the technology-led and design-led component of the work is 
horizontally present in each of the three sections of this chapter: 

i) Embracing Material Variance discusses the modelling and integration of 
the agency of materials as a key component to enable holistic design 
feedback and support decision-making processes. 

ii) Learning Tools presents the vision of designer curating her/his own 
custom design-to-production process in dialogue with a tool which can be 
iteratively trained and optimised to accomplish tasks. 

iii) Knowledge Exchange discusses the generation, transfer and 
augmentation of manufacturing knowledge between machines and 
human experts in the context of automation. 

 

6.1 Embracing Material Variance 
While the literature review has shown the primary role of materials and their agency 
in design and manufacturing practices, either to exploit or suppress it, the starting 
point of the research has focused around the acquisition of data to specifically 
measure the variance generated by the heterogeneous properties of timber in carving 
operations. The findings collected during the experiments support Hypothesis A and 
demonstrate that the heterogeneous qualities of materials such as timber 
substantially affect the outcome of operations performed with different carving tools, 
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hindering their utilisation within current design workflows. The application of a DOE 
methodology has been used to demonstrate that such variance not only is 
measurable, but it appears to be significantly affected by the direction of the carving 
in respect of the main grain direction and the structural arrangement of the fibres 
across different wood species. 

From this position, the research has shown how translating back and forth between 
geometric modelling and robotic manufacturing parameters makes it possible to 
seamlessly explore the landscape of material affordances provided by the system 
through the continuous consultation of an integrated knowledge base aimed to 
inform design decisions at every stage. The findings demonstrate that an alternative 
to the dominant hylomorphic approach in the industry is feasible in which 
heterogeneous materials such as timber are not transformed into inert and 
homogeneous media but, through a combination of sensor data and machine learning 
strategies, it is possible to effectively train our tools to adapt to the nature of materials, 
fully embracing their heterogeneity and yet maintaining control over the entire design 
process. 

6.1.1 Successful and Unsuccessful Operations 
Machine learning models based on binary and multi-labels classification are currently 
used in the manufacturing industry for machine and tools monitoring purposes (Sun 
et al., 2004; Phillips, 2015; Susto, 2015). This research made use of similar methods 
beyond the diagnostic scope applied only at the fabrication stage, providing an 
understanding of the relationship between shape features, manufacturing constraints 
and material affordances at an early design stage. In comparison to the industrial 
applications, the prevention of tool damaging, for instance, is considered as a key 
design requirement that needs to be satisfied by the design solution itself rather than 
using a corrective approach at a later stage based on decreasing machining 
performances, such as reducing speed or material removal rate. Furthermore, as the 
threshold is based on the combination of individual labels describing specific 
manufacturing and design conditions, it is possible to search for operations which 
satisfy multiple requirements defined accordingly with the design brief and final 
product specifications. 

Interestingly, the assessment of the training methods showed that linear regression 
models for binary classification provide comparable performances to the ANNs for 
individual labels prediction, while they are outperformed by the latter for the 
combined events prediction which ultimately defines the successful operation 
threshold.  What this seems to indicate is that the two groups of successful and 
unsuccessful operations, based on sets of individual manufacturing conditions, are 
not linearly separable and ANN models are more suited to identify complex non-linear 
patterns among the recorded data. 

6.1.2 Geometric Features Prediction 
In the field of subtractive manufacturing, the application of machine learning models 
is mainly confined to the optimisation of individual parameters to increase 
performances and reduce costs at the fabrication stage (Pontes et al., 2010; Zain, 
Haron and Sharif, 2009; Bernardos and Vosniakos, 2002; Stark and Moon, 1999; Tsai, 
Chen and Lou, 1999).  
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The results of the training suggest a novel range of applications for ANNs within 
design-to-manufacturing workflows where an early integration of manufacturing 
knowledge is used for the reconstruction of the geometric features of carving 
operations as informed by fabrication and material affordances. This makes it possible 
to evaluate multiple design solutions before moving to the production stage and avoid 
late adjustments which are inevitably limited and inefficient.  

The validity of the methods has been demonstrated in Chapter 4 through a series of 
experiments using different carving gouges and wood species, where the trained 
networks have been successfully deployed to model the influence that the variance of 
tools and material properties have on digital carving geometries. Furthermore, the 
findings show that ANN networks trained on datasets with only successful operations, 
filtered out by the binary classifier, perform significantly better (even above 70%) than 
networks trained with both successful and unsuccessful operations. One possible 
explanation could be that that specific manufacturing conditions, such as the breaking 
of grain fibres following the tool getting stuck, exhibit a more complex behaviour 
which is harder to identify and model. This indicates that the combination of the two 
strategies, the binary classifier and the geometry regression model, is highly advisable 
as it determines an increase of the prediction performances for simulation purposes. 

6.1.3 Material Feedback  
As manufacturers are contractually obliged to deliver products which comply with 
their notational description provided by design firm within agreed tolerances, the 
outcome variance determined by materials and tools properties is mostly regarded as 
a risk rather than an opportunity. This challenge has been addressed during the 
collaborations with the two industry partners of the project, ROK Architects and BIG, 
which provided the opportunity to apply the devised methods into the established 
workflows of design firms and develop a catalogue of design explorations for a wide 
range of applications, from furniture to building components of larger assemblies.  

As previously identified in the literature review, the lack of knowledge-based tools is 
central to the issue of linear design-to-manufacturing workflows based on separate 
stages without feedback information. The research demonstrated that is possible to 
establish a simulation framework supported by real-world fabrication data to better 
support design explorations providing an accurate geometrical description which 
considers material properties and behaviours, reducing the uncertainty of the 
outcome in the fabrication stage. The access to a validated simulation framework able 
to provide feedback at any stage of the workflow presented, in a practical case study 
such as robotic carving, what is described by Maxwell and Pigram (2012) as the shift 
from a geometric-driven to a process-driven approach to design. Material knowledge 
that would be usually available only through direct engagement with fabrication 
processes over an extensive period (Sennet, 2008; Ingold, 2013), it is here used to 
guide the choices of designers who benefits from such knowledge through receiving 
manufacturability feedback in real-time despite being physically and timely detached 
from the actual carving process. In comparison to CAPP strategies (Park, 2003) relying 
on standard materials and features specified for individual industries (e.g. aeronautics, 
automotive…), the advantage of the devised methods is to give designers the 
opportunity of actively participating in the definition of their custom design-to-
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manufacturing workflow, extending the range of processes and materials beyond 
industry conventions to better fit the diversity of design briefs and their requirements. 

The devised methods are not dissimilar in their practical application to other analysis 
and simulations frameworks, such as Finite Element Analysis (FEA) or Computational 
Fluid Dynamics (CFD), as they provide designers with the opportunity of evaluating the 
results of a proposed specification before actually building (or fabricating) it. However, 
they also differ substantially from those as they propose an alternative to the 
dominant hylomorphic approach as discussed in Chapter 2, representing the material 
with more sensitivity towards i) its heterogeneity and anisotropic behaviour and ii) 
the chosen manufacturing method and fabrication tools. The research focused on 
providing designers with a simulation of the effect of material properties, such as the 
wood grain direction, on a digital model to enable the exploration and comparison of 
multiple options otherwise unavailable within a hylomorphic context.  

Based on the validation of this approach, as presented in the experiments discussed 
in Chapter 5, it is possible to envision a potential outcome of such a simulation tool 
in which it is not only used to anticipate the material outcome of the desired design 
intention but also to proactively modify that original intention to follow better the 
peculiarities of the material (e.g. a local grain condition determined by a knot).  A 
version of this is represented by the, previously discussed, work of the artist Giuseppe 
Penone as he did not prescribe the position and orientation of the cuts performed 
with the carving gouge, but he instead followed, step by step, the branches inside the 
log without knowing where they would lead. This type of application, where the agency 
of material plays an active role in shaping the design outcome, should be possible to 
achieve already with the current version of the training process as it is based on the 
requirement of knowing the relationship between the robotic carving action and its 
respective material outcome. At the same time, this would require two additional 
components: i) the specification of design or fabrication goal (e.g. follow the branches 
inside the tree log) ii) sensor feedback providing local material feedback information 
as the fabrication process unfolds (e.g. specific grain arrangement around a knot). 

Although the research strategically focused on a specific application such as robotic 
carving with timber, the developed methods have the potential to be applied to a 
broader variety of non-trivial robotic manufacturing tasks requiring dexterity and a 
high-level understanding of the constraints. For those processes where fabrication 
and material affordances play a crucial role in the definition of the design outcome, it 
is necessary to establish a simulation strategy that will integrate their effect from an 
early stage. For instance, the modelling of the spring back factor for the bending of 
steel rods based on real-world data would lead to reducing the tolerances necessary 
for the assembling of multiple parts. This means that the machine would not execute 
the bending action accordingly to the exact digital geometric notation expressed in 
angle values (°), but it would instead adaptively compensate for the resistance of the 
metal.  In concrete 3d printing, the material shrinkage during the curing process 
affects significantly the final geometry of the printed component and having access to 
a model of such behaviour could be used to better organise the timing of the 
fabrication process and identify which shapes and features work best given a specific 
concrete composition. 
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The ultimate potential of training procedures for extracting manufacturing knowledge 
through the collection of fabrication and material data is their inherent scalability. As 
more relevant data are provided to the system, the better the network will be able to 
approximate the assigned process or behaviour and, therefore, support the decision-
making process of designers and manufacturers. The bottleneck of the data 
acquisition stage necessary to train these models could be overcome coordinating the 
training of multiple robots and machines communicating with each other through an 
online interface and sharing the same fabrication data repository. Recently, Google 
successfully explored this approach through the parallel training of 14 industrial 
robots, learning through a reinforcement learning strategy with over 800,000 total 
attempts to pick up random objects (Levine et al., 2016). Such a distributed strategy 
for knowledge acquisition and synthesis makes it possible creating libraries of 
material knowledge condensed in discrete packages that could be easily implemented 
into any design-to-manufacturing workflow. 

 

6.2 Learning Tools 
6.2.1 Designers, Toolmakers and Curators 
The research investigated the role of designers as active curators of their design tools 
as a way to extend their authorship to the entire design-to-manufacturing workflow 
and fluently move between the design and fabrication stages, enabling the access to 
novel design solutions. 

Historically, the dynamic bidirectional relationship between tools and their output has 
been a critical factor in driving our understanding of the world: as we made tools to 
better understand and shape our surroundings, the same tools shaped us and defined 
the boundaries and scope of our knowledge. Andrew Witt (2010) traces this 
throughout the discipline of architecture, starting with Brunelleschi who was not only 
designing buildings, “but also the instruments to construct these building” such as hoists 
and pulleys, and continuing with Giambattista Suardi’s “geometrical pen” that enabled 
the drawing of complex curves by employing compound motion, and thus enabling 
new creative expressions in the architecture. Digital design tool-making can be traced 
back to the 1960s with the early developments of the original CAD systems (Aish, 
2013). These early systems and subsequent developments continuing right up to the 
present have provided the foundations for expressing creative and technical 
intentionality evident in all contemporary design processes. 

In the same way, access to digital fabrication technologies is leading to a radical 
reconsideration of the scope of design-to-manufacturing workflows and their 
influence on the built environment. Nevertheless, the collaborations with the industry 
partners of the project showed that the direct access and proximity to manufacturing 
facilities (i.e. industrial robotic arms) is a necessary but insufficient condition alone for 
designers to engage with materials and fabrication processes. The separation, 
physical and chronological, between design and making is deeply rooted in the 
established culture and workflows of design firms. This linear progression is further 
reinforced from the lack of tools acting as interfaces to share feedback information 
across the different stages of the processes and stakeholders involved. 
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One of the main limiting factors of existing tools for designers is their difficult 
customisation which makes it particularly challenging to adapt them to the specific 
needs of each project. Designers, frustrated with the opaqueness of their software, 
are turning to develop their own digital tools, making extensive use of coding, readily 
available libraries and the support of a growing open-source community of developers 
(Miller, 2010; Deutsch, 2017; Deutsch, 2019). While the figure of designer as toolmaker, 
along the path initiated by Brunelleschi (Carpo, 2011), is undoubtedly fascinating, 
especially in academia, the exposure to the design industry has also shown its 
limitations as most designers do not currently possess the expertise necessary to 
develop their own software and, consequently, they are forced to use the generic tools 
provided by their firm.  

The novel approach proposed in this research has been to provide the team of 
designers with a customisable design-to-manufacturing interface communicating 
fabrication and material feedback in relation to a specific selection of desired 
geometric features, wood species, tools and carving techniques. The advantage of 
such a curatorial approach is that designers can adapt their design tools through the 
iterative acquisition and processing of material and fabrication data rather than 
explicitly coding software from scratch. The access to manufacturing knowledge, 
synthesised with machine learning strategies from the curated data, supported the 
choices of designer along each stage of the design development, from the initial choice 
of the wood species to the impact of a specific geometric feature on the overall 
fabrication speed. 

The trained tool represents an expert system (Lucas and van der Gaag 1991) curated 
by the designers themselves which actively supported the explorations of novel design 
solutions driven by fabrication and material affordances as modelled from the 
provided data. For this reason, the acquisition and curation of such information played 
a key role in the design process as it directly defined the domain of solutions that 
would have been later available in the digital simulation interface.  

As such knowledge is accessed through digital geometrical simulation, it enabled 
designers to immediately evaluate the results of their design intention once expressed 
through the material medium, simultaneously comparing multiple scenarios. These 
findings support the argument put forward by Hanna (2007) and Tamke, Nicholas and 
Zwierzycki (2018) for the use of machine learning models within design workflow to 
support decision-making procedures for complex fabrication processes. 

Further advantages of this approach highlighted from the industry collaborations have 
been:  

- Open-ended Modularity: Multiple networks trained with different wood 
species and carving tools have been integrated into the same design interface 
to compare simultaneously different combinations of fabrication affordances. 
This can be used to easily extend the capabilities of the simulation interface 
through the addition of more trained modules and include, for instance, new 
wood species or carving techniques. 

- Flexibility / Scalability: The accuracy of the simulation of carving operations 
directly depends on the amount and quality of the provided data. As the 
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design brief evolved throughout the process, it has been possible to organise 
further recording sessions to acquire new data which would reflect more 
closely its requirements in terms of materials and geometric features. 

Based on these premises, it can be speculated that, in the future, further iterations of 
similar learning tools would be able to perform the assigned task increasingly well 
over time as more “experience” is provided in the form of curated fabrication and 
material data, likewise a craftsman learns over years of experience. As already argued 
by Nicholas Negroponte (1970), these trained systems could eventually rise to the role 
of actual partners in the design process, actively proposing novel solutions and 
establishing a fruitful dialogue with their human counterpart. 

6.2.2 Counterpoint: Designer NOT Maker 
One of the critical challenges discussed during the industry collaborations has been 
the scalability of the devised design-to-manufacturing process for timber carving 
operations beyond the prototyping stage to the actual production. Whether the 
fabricated object is an architectural component or a furniture piece, there is no 
guarantee that manufacturing contractors would be able and willing to adopt a 
production strategy devised by someone else not considering their specific workflow 
structure and machines’ capabilities. 

Design projects evolve through a complex web of technical, economic and social 
interactions generated by the multitude of different stakeholders involved. Within 
such a multi-stages negotiation process, the key element necessary to support such 
interaction is the access to a common knowledge base which should provide a shared 
understanding of the opportunities and constraints available at any stage of the 
process. In response to this, the research proposed a series of methods to integrate 
portions of manufacturing knowledge into a transmissible form that can be shared 
and used to steer design decisions. 

In this perspective, it might be beneficial to reconsider the relationship between the 
role of designer and fabricator as two separate professional figures, where the latter 
is the actual developer of the material-driven manufacturing workflow and provides 
the former with a machine learning-powered simulation environment which allows an 
integration of fabrication knowledge from the beginning of the design process. 

Designers not willing to engage with the physical dimension of making and the 
exploration of material behaviours can still access such knowledge directly through an 
interface which provides the necessary constraints set to efficiently drive their design. 
This means that once the design solution is finalised, the manufacturer can confidently 
move to production knowing that the project has been developed within the 
framework of affordances initially provided. 

One critical issue that could be overlooked during the technical developments of tools, 
but it appeared to be central for design firms, is the quest for originality and the 
exploration of novel design and fabrication methods as a way to achieve it. In this 
regard, the main issue with using tools developed by other designers or manufactures 
is the over-constrained aesthetics outcomes that such methods allow. One example 
of this is the “ROBmade” system and its software plugin “BrickDesign” developed by 
Keller Systeme AG for the design and robotic fabrication of brick façade elements 
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(Source: https://keller-systeme.ch/en/robmade-facades). The system has been 
developed in collaboration with the architects Fabio Gramazio and Matthias Kohler 
who have been the first to explore such fabrication methods in the architecture field 
(Gramazio and Kohler, 2008). Despite the potentially infinite variations made available 
by the system in terms of complex brick patterns, the overall outcome is strongly 
attached to the architect’s aesthetic and the series of projects previously developed 
by their firm. For this reason, while the tool has been demonstrated as a compelling 
design-to-manufacturing framework, its impact has been fairly limited in the 
construction industry.  

The main risk is then to incorporate a large part of the design decisions within the tool 
itself, allowing only for a limited variety of parameters and heavily defining the 
aesthetic outcome. The approach presented in the thesis mitigates such an issue 
providing an understanding of fabrication-specific parameters and material features 
rather than constraining the design search to a limited number of formal solutions. 
The material variance addressed by the tool is not subjectively selected by another 
author (i.e. the toolmaker) recognizing qualities, as Pye (1968) would argue, based on 
her/his assessment but rather determined by objective properties of the material 
which do not compromise the designer’s authorship. This strategy, together with the 
opportunity of finely tuning the design/fabrication system to a particular set of 
manufacturing conditions, makes possible to establish a better interface between 
fabricator and architect and a broader acceptance of fabrication-based design tools in 
practice. 

 

6.3 Knowledge Exchange 
6.3.1 Human Knowledge Integration 
The recording of human demonstrations performing carving operations revealed the 
ability of the skilled expert to intuitively navigate the range of successful operations 
and avoid dangerous or inefficient manufacturing conditions.  

The analysis of any of the robotically generated training datasets shows the presence 
of a geometric threshold which defines the range of possible operations available in 
that specific system configuration. The comparison with the human dataset collected 
in similar conditions, in terms of tools and materials, demonstrate the human’s ability 
to anticipate the failure threshold. 

This initial finding suggested the potential of using human demonstrations to 
efficiently generate an initial knowledge base to be used to further inform the robotic 
recording sessions. This has been further supported by several case studies in 
literature (Kikuchi et al., 2014; Ng et al., 2014; Kalt, Monfared and Jackson, 2016; 
Steinhagen et al., 2016, Prahbu et al., 2017;) where human demonstrations have been 
utilised to inform subtractive fabrication tasks, for instance, polishing and grinding 
operations. 

The approach has been assessed in a series of experiments which have demonstrated 
two main benefits:  
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i) Efficient exploration of the robotic fabrication parameter’s space from a 
set of operations which have been already defined as successful, avoiding 
proceeding by trial-and-error which, especially in the field of 
manufacturing, could be costly and dangerous. 

ii) Curation of the training process toward specific sets of solutions through 
the direct definition of a series of design features and shapes obtained 
using the intuition, experience and skills of a human expert. 

Knowledge bases in machining are created through the externalisation (Nonaka and 
Takeuchi 1995) of machinist’s tacit knowledge into a series of machine and tooling 
parameters recorded in large databases within a CAM framework. In the developed 
methods, the collection of knowledge is not dependent on the ability of the craftsman 
to describe the process and identify its key aspects but rather on the unfiltered 
recording of the operation through sensor data. 

Although falling outside the scope of this research, a more in-depth study and 
comparison of different expertise levels in human craftsmen would have probably 
revealed valuable insights leading to different grades of knowledge repositories. In 
reference to Pye’s argument (1968) for which the recognition of material qualities is 
subjective and dependent on individual knowledge in opposition to the objective 
properties of materials, it could be assumed that datasets collected from different 
craftsmen would show unique features, a sort of “signature” determined by their 
personal experience, intuition and skills. 

Beyond the advantages to the field of automated manufacturing, such differentiation 
of knowledge sources could be used in an educational context where the robotic 
carving system trained with data coming from an expert could be used for the training 
of many inexperienced human apprentices, overcoming the problem of lack of skilled 
craftsman willing to spend time transferring their skills through extensive teaching. 

6.3.2 AI and Knowledge Synthesis 
In the description of Expert Systems (ES), Lucas and van der Gaag (1991) highlight the 
importance of its “explanation facilities”, namely the possibility of asking at any 
moment during the consultation with the system how certain conclusions were 
arrived at. He further describes the use of “trace facilities” through which “the reasoning 
behaviour of the system can be followed one inference step at a time during the 
consultation”. While the creation of a knowledge base for an ES makes use symbolic 
models and explicit rules to capture the behaviour of a group of experts to replicate 
it, ANN models automatically identify patterns in the provided examples through 
optimisation of their weight values over many iterative cycles. 

Extracting explicit rules for knowledge base creation is particularly challenging as most 
of the knowledge, especially expert one, is implicit and difficult to communicate. 
Furthermore, conventional rule-based ESs are not able to extract knowledge from 
experience in the shape of collected manufacturing and material data (Yoon, 1994). 
The integration of ANNs models in ESs have been used in literature to overcome those 
limitations (Zeng et al. 2002), however, the lack of explicit rules determines the 
impossibility of tracing how a specific conclusion has been reached. For this reason, 
ANNs have been often described as “black-boxes” (Benítez, Castro and Requena, 
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1997). The research made use of physical sensor devices and a series of ANNs to 
acquire, synthesise and integrate manufacturing knowledge in a design workflow for 
robotic carving operations in timber. The designer can consult the expert system 
through a conventional 3D modelling interface which returns material and fabrication 
feedback based on design choices as a geometric simulation of the results of the 
carving operations.  

In knowledge-based software for metal machining, the knowledge usually resides in 
an extensive database with explicit information created from empirical data which is 
possible to consult and update with new information. On the opposite, the ANNs 
developed in this research perform the function of automated “oracles” (Vanmali, Last 
and Kandel, 2002), able to produce a solution (i.e. geometry simulation) for a given 
problem (i.e. carving operation) without the possibility of tracing their reasoning to 
check whether they are right or not. The validation of the oracle happens at the end 
of the training stage and, once validated, it should be trusted by the error range 
measured during the validation. 

While there is a number of studies (Benitez, Castro and Requena 1997; Boger and 
Guterman 1997; Hinton, Vinyals, Dean 2015) demonstrating that is possible to partially 
extract knowledge from ANNs, such strategies were beyond the expertise level of the 
designer-users interacting with the interface and were not applied during the industry 
collaborations. Nevertheless, the results indicate that the teams of designers had 
successfully accessed the knowledge encapsulated in the tool and used it to drive the 
design process supported by feedback information steering their choices throughout 
sequential what-if scenarios. The opaqueness of the ANNs did not affect the practical 
use of the trained tool in the design applications observed during the industry 
collaborations. In a similar way, very few designers interrogate themselves about the 
calculus-based mathematics behind each NURBS surface they create in their preferred 
3D modelling environment. However, If the ANN is able to predict whether a set of 
fabrication parameter will generate a “dangerous” operation with an accuracy of 90%, 
as demonstrated in Chapter 4, to what extent should designers integrate their 
knowledge and intuition to confirm or refute such a prediction? What happens if 
designers do not have that specific knowledge? To what extent should the 10% error 
influence their design decisions?  

The knowledge encapsulated in the ANN appears to be a different form of tacit 
knowledge, accessible but just as difficult, if not impossible, to communicate, as the 
experience gathered throughout the years by a skilled human craftsman.  It is relevant 
to note that throughout all the different stages of recording data from human and 
robotic sessions, training of the machine learning model and integration into the 
design interface, this knowledge, has always been transmitted across different stages 
without being made explicit. The critical difference between the tacit knowledge 
encapsulated in a human and the trained model, is not then its traceability or 
understanding but rather its accessibility that enables the latter to be easily packaged, 
transmitted, integrated and most importantly, always consulted without any concerns 
regarding scalability, which conversely is the most severe drawback of personal tacit 
human knowledge. 
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6.3.3 Automation and Traditional Crafts 
During the development of this research, one of the most recurring questions asked 
during presentations and lectures has been whether the developments of AI and 
automation technology would gradually erode until completely substituting 
traditional crafts. Debating over broader socio-economic scenarios is beyond the 
scope of this research, however, the project findings suggest a few reflections relevant 
for such discussion. 

The Arts and Crafts movement, begun in England in the second half of XIX Century, 
strongly opposed the upcoming Second Industrial Revolution and put forward the 
moral superiority of hand-made traditional crafts. To these were attributed the value 
of “honesty” and imperfections were celebrated as an expression of humanity’s 
uniqueness. Similarly, in the second half of XX Century, David Pye distinguishes 
between the workmanship of certainty in industrial production and the workmanship 
of risk in traditional crafts, where the quality of the outcome of the making process is 
constantly at risk and subject to the unique human’s judgement and dexterity (Pye, 
1968). 

Nevertheless, the series of design projects developed for this research challenge such 
understanding of “imperfection” as an exclusively human trait, as the carved 
geometries fabricated by the robotic arm show a range of variation which was not 
programmed, although simulated and anticipated, and originated not by human 
action but rather from allowing, in a controlled way, the interaction between tools and 
material properties such as the influence of the wood grain direction in steering the 
depth of the cutting profile of the gouge. The carved panels do not show the usual 
repetitiveness of industrial production processes and could be easily confused as 
human-made. 

The celebrated “imperfections” of traditional craft practices then are not the exclusive 
result of prescribed human ingenuity but rather emerge from the complex 
interactions between the carving tools driven by human actions through the 
landscape of affordances offered by the material medium. This follows the same 
argument put forward by Herbert Simon (1969) discussing the origins of complex 
animal behaviour, including humans. He argues that the apparent complex behaviour 
shown by an ant does not depend from superior cognitive abilities of the animal but 
rather from following simple behavioural rules in a complex environment: “Viewed as 
a geometric figure, the ant’s path is irregular, complex, and hard to describe. But its 
complexity is really a complexity in the surface of the beach, not the complexity in the ant.” 

If a robot is able to produce an artefact seemingly indistinguishable from one made 
by a human, showing the unique “imperfections” traditionally attributed to human 
making, the role of traditional crafts will probably need to evolve to remain relevant 
in the light of these novel fabrication processes. Whether human expertise will be 
replaced or augmented by these technologies remains an open discussion to which 
this research wanted to contribute proposing, through a specific case study, a possible 
way of linking together the domain of human making to robotic manufacturing.  

As shown in Chapter 4, a demonstration of a skilled human expert represented the 
starting point for the training of the robotic system, reducing significantly the time and 
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resources necessary to complete the task. While, on the one hand, it could be argued 
that human’s intervention is not necessary after the initial interaction with the 
fabrication system, on the other hand, as human’s ingenuity and cognitive abilities 
remain, for now, unsurpassed, it could be advantageous to frame the relationship 
between human and the machine as an unfolding, open-ended, dialogue, rather than 
a linear process. The abilities of skilled human experts could be then augmented (for 
instance, in precision or speed) by the ongoing training of the fabrication tools 
available to a craftsman, iteratively widening the scope of the fabrication process in 
terms of novel materials, tools and techniques. As the system is trained based on the 
data provided by the craftsman, the trained tool would be unique and match her/his 
subjective dimension and idiosyncrasies alongside the objective properties of tools 
and materials. 

Furthermore, the encapsulation, at least partial, of human tacit knowledge into a 
transmissible form could address the issue of knowledge scalability and distribution, 
as discussed in the previous section, of traditional crafts which are slowly fading away 
as there are increasingly fewer skilled experts able to transmit the knowledge to the 
next generation. In this regard, it does not seem unlikely a future scenario where 
craftsmen apprentices all around the world would learn, for instance, how to carve 
timber using a chisel from a robotic fabrication system trained with the combined 
knowledge of multiple human experts. 

 

6.4 Limitations 
The devised strategy focused on a narrow set of materials and processes to develop 
a compelling application with the necessary depth to support the validity of the 
research investigation. The extent to which the methods could be applied to different 
applications was not demonstrated in this thesis. It only could be assumed that these 
should be valid, at least partially, for a broader range of design-to-manufacturing 
workflows than the ones directly investigated, utilising different sets of heterogeneous 
materials and non-standard fabrication methods. This claim is supported by the 
growing evidence in the literature on the versatility of machine learning models for 
manufacturing applications, where complex and diverse tasks are successfully 
modelled based on the identification of key correlations in the provided data.  

The devised training workflow also showed a series of technical limitations. While the 
prediction of carving operations is highly accurate and suitable for design purposes, 
the deviation analyses of carving patterns show higher deviation values in comparison 
to the prediction of single cuts. This suggests that the sequence of operations 
determines complex mechanical interactions between individual operations, falling 
outside the current predictive capabilities of the system, therefore, it would be 
beneficial to train the ANNs with multiple cuts configurations to successfully model 
such behaviour. Furthermore, one of the limitations of the research has been 
considering exclusively quantitative types of data, i.e. tool damaging and null material 
removal rate, for the prediction of manufacturing events, while one of the key 
potentials of the devised method could be combining measurable conditions with 
subjective evaluations based on designer’s judgement and sensibility defining, for 
instance, tactility (e.g. surface smoothness) or optical features. 
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While different carving tools and wood species were utilised for the training process, 
the data collected from the human demonstrations is not as diverse, as it focused on 
a fairly narrow range of carving of operations and, perhaps more importantly, skillset 
level. The recording methods have only been tested with just a few craftsmen and 
their subjective dimension remained marginal to this thesis to rather focus on the 
main research proposition. Admittedly, it would have been wise to spend more 
resources on this aspect to further prove the strength of the devised strategy to 
capture human knowledge and transfer it to the domain of robotic manufacturing and 
digital design interfaces. 

Finally, the case study-based methodology adopted to investigate the design 
component of this research made it possible to devise a series of compelling 
applications within the living laboratory context of the Innochain Research Network. 
Nevertheless, such a research component presents a constraint shared with other 
projects developed within a similar framework, namely the drawing of general 
statements and valid conclusions from a necessarily limited range of case studies. 
While the two industry partners of the projects were quite diverse in terms of scope 
and scale of operations, it hasn’t been possible to engage with a broader range of 
design practitioners and firms due to resources and time constraints. Nevertheless, 
despite the limitations in the number of case studies addressed, the industry 
collaborations were key for situating the project within a real-world context, making it 
possible to develop the design and fabrication workflows based on actual industry 
needs and requirements, while, at the same time, providing a framework within which 
evaluating the outcome of these collaborations. 

 

6.5 Further Research 
Within the scope of the thesis, three key areas worthy of further research were 
identified:  

• Data acquisition: The recording of the task is strictly dependent on the 
limitations of the sensor devices utilised to capture the event information. The 
sensor strategy adopted in the research made use of different types of 
cameras operating in the visible and infrared light spectrum. This 
configuration made it possible to successfully reconstruct the carving 
operations examined, nevertheless, the introduction of different type of 
sensor devices not based on vision could be used to define a more 
comprehensive description of the task. For instance, a force-torque sensor 
applied on the end-effector would make possible to precisely measure the 
cutting force along the different axis, while a tomographic scan of a wooden 
workpiece would return an incredibly detailed description of the grain 
structure that can be used to establish more precise material correlations. The 
collection of a more diverse range of sensor data is reflected in the generation 
of a more extensive set of input features which would improve the robustness 
of the trained model. Furthermore, such an integration of sensor data would 
made possible to precisely control in real-time the robotic actuation to account 
for local conditions of the material and complement the early-stage material 
simulation provided by the trained model. 
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• Learning Strategy: One of the main limitations emerged during the results 
discussion has been the lower predictive performances of the trained models 
when applied to complex combinations of carving operations in comparison 
to individual predictions. For this reason, further research is necessary to 
address the non-linear influence that previously executed operations have on 
the following operation in the fabrication sequence when considered as part 
of an overall carving pattern geometry. To achieve this, it might be beneficial 
to adopt a combination of different learning strategies modelling the carving 
task from different types of datasets other than numerical features values. For 
instance, the use of 2D image samples describing the neighbourhood 
condition between operations could be used to feed a Deep Convolutional 
Neural Network model which could be integrated as part of the presented 
workflow. 

• Design Workflow Integration: One of the advantages of the approach 
proposed in this thesis is the scalable and open-end dimension of the devised 
methods which would enable the creation of manufacturing and material 
knowledge modules ready to be deployed in the workflow of any design firm. 
For this reason, it would be worthwile to broaden the sample of firms exposed 
to the devised strategy to better understand the different use cases across a 
more diverse selection of design firms with different requirements and type 
of operations. Further investigation is needed to assess the integration of the 
methods at a larger scale based on the coordination of multiple data 
acquisition strategies, parallel models training and knowledge sharing 
between different fabrication machines through an online interface. 
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7 Conclusion 
 

7.1 Hypotheses Response 
7.1.1 Hypothesis A 
 

Hypothesis A: The heterogeneous qualities of materials such as timber 
substantially affect the outcome of operations performed with different carving 
tools, hindering their utilisation within current design workflows.  

The findings in support of Hypothesis A were presented in Chapter 3 through a series 
of studies based on the acquisition of manufacturing and material data collected 
during human and robotic carving sessions recorded with a combination of different 
sensor devices. 

The Factorial Design of Experiment (DOE) proved to be an efficient method to explore 
combinations of factors and identify their relation to the observed phenomenon (i.e. 
the carving operation), confirming its primary role for the analysis manufacturing 
processes as stated by several previous studies (Benardos and Vosniakos, 2002; 
Athreya and Venkatesh, 2012; Antony, 2014; Montgomery, 2017). In this specific 
research, the combination of experimental data collected both by human experts and 
robotic recording sessions has shown to be particularly beneficial as it reduced 
significantly the range of each factor-level, therefore reducing time and use of material 
necessary to achieve statistically valid results. The developed sensing strategy 
presented in Section 3.1 made it possible to successfully reconstruct each operation 
to a high level of details (± 0.2 mm) necessary to measure variance levels within a 
range suitable for design applications. 

In Section 3.3, the results of the DOE strongly support Hypothesis A as material 
properties such as grain arrangement, density and carving direction determine a 
significant deviation between the digitally prescribed operation and its actual physical 
result on the material. In the specific, the hypothesis is supported by the fact that 
deviation error is, in most cases, substantially above the defined tolerance threshold 
for design purposes, hindering the use of the robotic carving process in any practical 
application. Such deviation is not constant and its amplitude changes across the 
different material conditions, wood species and carving tools analysed. Specific sets 
of factors-levels have consistently shown lower deviation values, suggesting that there 
are optimal combinations of parameters for which the agency of material aligns with 
the desired design intention. In most cases, however, the agency of the examined 
timber properties is not overridden by the fabrication process and pure geometrical 
Boolean operations do not provide a satisfying digital simulation of the resulting 
geometry. Furthermore, the quantification of the agency of material behaviours in 
carving operations supports the argument for which materials are active participants 
in the genesis of forms rather than mere inert receptacles and should be involved in 
a mutual dialogue with the design process (Deleuze and Guattari, 1980; DeLanda, 
2002; Ingold, 2013). 
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7.1.2 Hypothesis B 
 

Hypothesis B: Given input parameters of (a) measurable properties of the given 
material, such as wood grain structure and density, and (b) tool affordances, a 
prediction can be made of (c) the geometrical outcome of the fabrication procedure 
to a level of accuracy sufficient for design purposes. 

Resting on the validity of Hypothesis A, Hypothesis B focused on the necessity of 
establishing a series of methods to accurately model the relationship between the 
digital design input and the fabrication outcome of carving operations. As analytical 
models for complex manufacturing tasks are particularly difficult to generate 
(Luttervelt et al., 1998), the chosen methodology to investigate the hypothesis has 
been an inductive approach aimed to identify complex patterns and correlations 
among the recorded fabrication dataset through the training of a combination of 
machine learning models (Lu, 1990). 

The evidence in support of Hypothesis B have been collected both after the training 
of each predictive models using a Testing dataset and in their further applications in 
a series of comparability studies: 

- The results presented in Section 4.2 suggest that is possible to predict with 
high accuracy (i.e. 87%) whether a set of fabrication parameters would 
generate a successful or unsuccessful operation according to a set of 
evaluation criteria defined by the user. The identification of dangerous or 
inefficient operations supports early-stage design decision-making 
procedures based on tools and material affordances before moving to the 
prediction of carved geometries. Designers can identify which sets of 
geometries are suited for the chosen manufacturing process and efficiently 
narrow-down the design exploration boundaries towards a range of 
successful operations. 

- The findings in Section 4.3 show that an ANN model trained on collected 
fabrication data can accurately map from robotic fabrication toolpaths to 
carved geometries and opposite direction with a similar low error rate in the 
prediction. The comparison between the prediction results of the trained 
network with the digital Boolean operations method shows a significant 
improvement in accuracy up to one order of magnitude. In particular, the 
degree of tolerance in the prediction rate is below 1 mm (i.e. Depth = 0.462 
mm; Length = 0.733 mm, Width = 0.681 mm) and, therefore, within the 
tolerance threshold as defined in Chapter 3, demonstrating that the devised 
system makes possible using the robotic carving process on timber for design 
purposes. 

- In Section 4.5, comparability studies between models trained on different 
fabrication conditions show that i) material properties, wood species and tool 
specifications play a primary role in the definition of the final carved geometry, 
further supporting Hypothesis A; ii) the trained ANNs are sensitive to such 
variance and able to accurately model the influence of different 
manufacturing conditions on the carving outcome. It is interesting to note that 



 
178 

 

the variance analysis performed for different sets of fabrication parameters 
indicates that some cuts are more sensitive than others in respect to changes 
in the material conditions such as wood grain directionality or material 
density. 

As discussed in Section 6.1, the successful demonstration of the validity of 
Hypothesis B is particularly relevant beyond the practical utilisation of the simulation 
framework as it shifts the idea of material variance from a detrimental and 
unpredictable component towards a controllable dimension of the agency of tools and 
materials potentially enriching the overall design process. 

7.1.3 Research Question C 
 

Research Question C: How does the integration of manufacturing and material 
knowledge at an early stage of the design process affect the exploration and evaluation of 
design solutions for robotic carving operations? 

Research Question C was addressed through a series of case studies, presented in 
Chapter 5, performed in collaboration with the industry partners of the project where 
the integration of material and manufacturing knowledge at an early stage of the 
process made possible to unlock a series of novel, otherwise unavailable, design 
opportunities and support a better-informed decision-making process. 

The findings from the first case study, discussed in Section 5.2, provided valuable 
insights on the established workflows and culture of design firms and indicated that 
one of the main reasons for the current separation between design and making is the 
lack of interfaces that would grant designers with manufacturing knowledge, 
providing feedback along the way to guide the design process. At the current state, 
the variance of heterogeneous materials such as timber and non-standard fabrication 
methods determine a significant deviation between the prescribed digital notation 
and the fabrication outcome, preventing their utilisation for any practical application. 
Nevertheless, the findings from the industry collaborations demonstrate that the 
integration of a simulation framework supported by real-world fabrication data can 
be used for evaluating the constraints and opportunities provided by wood properties 
and carving tools on top-down design decisions, reducing the uncertainty of the 
outcome in the fabrication stage. For this reason, the access to a specifically-trained 
manufacturing knowledge base is particularly beneficial for the advancement of the 
design process as it becomes possible to assess simultaneously, at an early stage 
when key decisions are made, both design and fabrication considerations.  

As discussed in Section 5.3, the exploration of solutions organised through what-if 
scenarios (Vaneker and van Houten, 2006) driven by material affordances would have 
not been possible using conventional methods based on purely geometric 
considerations rather than on the collection of actual fabrication data. The workflow 
entails the analysis of geometric pattern variations, wood species and density, grain 
directions, carving tools and specific fabrication parameters (e.g. Tool/Surface Angle) 
which significantly affect the resulting geometric features (i.e. Length, Depth and 
Width) of the cuts. The final fabrication stage of a specific what-if scenarios sequence 
does not necessarily represent the end of the design process, but it could become 
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instead the starting point for another set of digital explorations which can build upon 
the fabricated evidence. Following a tree-like structure, the design to fabrication 
process is rarely linear and choices made at an early stage can always be revised, 
especially if novel material evidence is included in the system. 

Each industry case study unfolded in an extended catalogue of robotically fabricated 
components and multiple digital design iterations supported by the ANN-based 
simulation tool trained by the team of designers to fit the specific scope of the design 
brief. The benefits provided by the open-ended modularity, flexibility and scalability 
of the system have been discussed in Chapter 6 based on the collected findings. One 
of the main takeaway is that the active role assumed by the team of designers in the 
curation of the training of the system was successfully justified with the access to a 
brief-specific, yet previously unexplorable, domain of fabrication-informed solutions 
already at the initial design stage.  

As addressed in Section 5.4, the choices taken by the designer interacting with the 
simulation framework are usually concerning a negotiation between top-down design 
decisions and the, now accessible, interaction that these have with specific sets of 
tools and materials. The devised strategy opens up a new way of approaching the 
issue of the deviation between digital and physical, offering a negotiation platform 
where designers could choose between the optimisation of individual fabrication 
parameters to achieve the original design intention or following a more open-ended 
trajectory where fabrication affordances act as design drivers (Menges, 2012). 

 

7.2 Contribution 
The contribution to knowledge of the research is to the fields of robotic fabrication 
technologies and digital interfaces for design-to-manufacturing applications as it 
focused on utilising sensor data to train material-sensitive fabrication systems and 
integrating them as part of design workflows.  

Although the research strategically focused on a specific application such as robotic 
carving with timber, as previously discussed in Chapter 6, the developed methods 
could potentially apply to a broader variety of design and robotic manufacturing tasks 
requiring a high-level understanding of the different fabrication affordances involved 
in the process. 

Part of the novelty of the approach proposed in this research lies in transposing 
established industrial methods for optimising robotic manufacturing tasks into the 
workflow of creative practices to augment and support the abilities of designers 
providing feedback information to guide the evaluation of design solutions. 

The successful development of a series of methods to collect, process and encapsulate 
manufacturing knowledge and its application within a design environment 
demonstrated the benefits of interacting at an early stage with fabrication tools and 
material affordances to make better-informed design decisions and enable the 
exploration of novel design opportunities. 
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7.2.1 Designing Through Material Affordances 
The research presents, through a practical application, an alternative framework to 
the hylomorphic paradigm for the design and making of physical artefacts dominant 
in current design practices (DeLanda, 2002). 

Heterogeneous materials, such as timber, are not transformed into inert and 
homogeneous media: through a combination of sensor data and machine learning 
models, it is possible to effectively train our tools to adapt to the nature of materials, 
fully embracing their heterogeneity and yet maintaining control over the entire design 
process (Fure, 2011; Weston, 2012). 

The research found context within an increasingly prominent component of the 
current architectural discourse focused on a renew sensibility towards tools 
technologies and materiality, within which simulation and robotic fabrication are 
regarded as enabling frameworks to establish information feedback loops driving 
design and production processes (Maxwell and Pigram, 2012; Dörfler, Rist and Rust, 
2012). 

The access to a validated simulation framework able to provide feedback information 
from an early stage of the workflow made possible the shift from a geometric-driven 
to a process-driven approach to design, bridging between the digital and physical 
realm (Gramazio and Kohler, 2008; Menges, 2012). 

The creation of design hypotheses in the form of digital models which are tested 
within a simulation environment was proven as a promising strategy to anticipate and 
exploit the variance of complex material properties before moving to the actual 
production stage. 

Material knowledge that would be usually available only through direct engagement 
with fabrication processes over an extensive period (Sennet, 2008; Ingold, 2013; Sharif 
and Gentry, 2015), it is here used to guide the choices of designers who benefits from 
such knowledge through receiving manufacturability feedback in real-time despite 
being physically and timely detached from the actual carving process.  

The encapsulation of knowledge made possible to shift the approach to digital design 
processes more closely to the “thinking through making” (Ingold, 2013) approach of 
crafts practices based on heuristics and trial-and-error, here combined with the 
advantages of speed and scalability of digital design environments (Carpo, 2015). 

 

7.2.2 Design Curation & Learning Tools 
The novel approach proposed in the thesis is based on providing the team of 
designers with a customisable design-to-manufacturing interface communicating 
fabrication and material feedback in relation to a specific selection of desired 
geometric features, wood species, tools and carving techniques. The advantage of 
such a curatorial approach is that designers can adapt their design tools through the 
iterative acquisition and processing of material and fabrication data rather than 
explicitly coding software from scratch. The access to manufacturing knowledge, 
synthesised with machine learning strategies from the curated data, supported the 
choices of designer along each stage of the design development (Vaneker and van 
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Houten, 2006), from the initial choice of the wood species to the impact of a specific 
geometric feature on the overall fabrication speed. 

The trained tool represents an expert system (Lucas and van der Gaag 1991) curated 
by the designers themselves which actively supported the explorations of novel design 
solutions driven by fabrication and material affordances as modelled from the 
provided data. For this reason, the acquisition and curation of such information play 
a key role in the design process as it directly defines the domain of solutions that 
would have been later available in the digital simulation interface.  

As such knowledge is accessed through digital geometrical simulation, it enables 
designers to immediately evaluate the results of their design intention once expressed 
through the material medium, simultaneously comparing multiple scenarios. These 
findings support the argument put forward by Hanna (2007) and Tamke, Nicholas and 
Zwierzycki (2018) for the use of machine learning models within design workflow to 
support decision-making procedures for complex fabrication processes. 

In comparison to CAPP strategies (Park, 2003) relying on standard materials and 
geometric features specified for individual industries (e.g. aeronautics, automotive…), 
the advantage of the devised methods is to give designers the opportunity of actively 
participating in the definition of their custom design-to-manufacturing workflow, 
extending the range of processes and materials beyond industry standards to better 
fit the diversity of design briefs and their requirements. 

 

7.2.3 Knowledge Acquisition, Synthesis and Integration 
The research successfully addressed the challenge of acquiring and integrating 
manufacturing knowledge to validate simulation frameworks necessary for the 
development of digital interfaces that would enable designers to engage with the 
affordances of production processes. 

A key contribution of this research lies in weaving together the perspectives of design 
practices, traditional crafts and industrial manufacturing around the central role of 
knowledge in the making of physical artefacts, highlighting overlaps and strategies 
that could be translated across these different domains to overcome such a challenge. 

In doing so, the research put forward a practical example of how knowledge from the 
domain of human making could be captured and transferred in a robotic 
manufacturing environment to efficiently train a fabrication system.  

The demonstration required the development of a sensing strategy and experimental 
data collection process based on a combination of human expert demonstrations and 
robotic recording sessions which was proved to be particularly beneficial to narrow 
down the mapping of the parameter space explored, saving time and material 
resources. 

This further support the findings of previous case studies in the literature (Kikuchi et 
al., 2014; Ng et al., 2014; Kalt, Monfared and Jackson, 2016; Steinhagen et al., 2016, 
Prahbu et al., 2017;) where human demonstrations have been utilised to inform a 
range of subtractive fabrication tasks, such as polishing and grinding operations. 
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The research presents an example of a transition process from an information-intense 
to a knowledge-intense system for design and manufacturing (Whitehall and Lu, 1991; 
Monostori, 2002; Hansson et al., 2016), where the devised strategy has not only been 
used to record and retrieve information but, more importantly, to synthesis such 
information into knowledge to support decision making (Lu, 1990).  

The focus on subtractive manufacturing allowed the reintroduction of traditional 
carving tools, such as chisel and gouges, within the realm of robotic manufacturing 
applications with timber, unlocking this way a series of techniques with peculiar 
expressive qualities, now made available to a larger segment of users beyond 
traditional human craftsmen. In this way, the research suggests a possible strategy to 
preserve and distribute human making knowledge, infusing new life into the currently 
declining scope of traditional crafts through their reconciliation with contemporary 
design practices. 

The successful development of a strategy to synthesise and integrate knowledge 
presented in this research is particularly valuable for all the different stakeholders 
involved along a typical design-to-manufacture workflow. 

From the perspective of designers, the access to packages of instrumental knowledge 
extends the range of materials and manufacturing techniques available as the trained 
models bring a significant increase in the simulation accuracy of non-standard 
fabrication processes. Designers willing to engage with the curation of the training 
process have the opportunity of creating customised design-to-manufacturing 
workflows validated by feedback data and statistical models. At the same time, the 
trained system does not require the designer to be a manufacturing expert, computer 
scientist or a skilled craftsman to engage with the production process as feedback 
information is provided through a familiar geometrical interface. In this case, the 
access to material and manufacturing knowledge could be compared to the 
specialised knowledge made available within other simulation frameworks (e.g. FEA, 
CFD) to a larger group of design professionals, enabling the evaluation of complex 
structural or environmental analysis. 

Finally, for manufacturing companies, the research demonstrates a strategy for 
encapsulating manufacturing knowledge and making it available to all the 
stakeholders involved in the design workflow, ensuring from the beginning a fruitful 
communication between the different parts and avoiding inefficient decisions which 
could be very expensive and challenging to adjust at a later stage of the process. 
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