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Abstract

The research focuses on testing a series of material-sensitive robotic training methods
that flexibly extend the range of subtractive manufacturing processes available to
designers based on the integration of manufacturing knowledge at an early design
stage. In current design practices, the lack of feedback information between the
different steps of linear design workflows forces designers to engage with only a
limited range of standard materials and manufacturing techniques, leading to
wasteful and inefficient solutions. With a specific focus on timber subtractive
manufacturing, the work presented in this thesis addresses the main issue hindering
the utilisation of non-standard tools and heterogeneous materials in design processes
which is the significant deviation between what is prescribed in the digital design
environment and the respective fabrication outcome.

To begin, it has been demonstrated the extent to which the heterogeneous properties
of timber affect the outcome of the robotic carving process beyond the acceptable
tolerance thresholds for design purposes. Resting on this premise, the devised
strategy to address such a material variance involved capturing, transferring,
augmenting and integrating manufacturing knowledge through the collection of real-
world fabrication data, both by human experts and robotic sessions, and training of
machine learning models (i.e. Artificial Neural Networks) to achieve an accurate
simulation of the robotic manufacturing task informed by specific sets of tools
affordances and material behaviours. The results of the training process have
demonstrated that it is possible to accurately simulate the carving process to a degree
sufficient for design applications, anticipating the influence of material and tool
properties on the carved geometry.

The collaborations with the industry partners of the project, ROK Architects (Zurich)
and BIG (Copenhagen), provided the opportunity to assess the different practical uses
and related implications of the tools in a real-world scenario following an open-ended
and explorative approach based on several iterations of the full design-to-production
cycle. The findings have shown that the devised strategy supports decision-making
procedures at an early stage of the design process and enables the exploration of
novel, previously unavailable, solutions informed by material and tool affordances.
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1 Introduction

1.1 Problem Definition

Despite the increasing accessibility of digital fabrication technologies (Kolarevic, 2004),
manufacturing and material knowledge are only rarely integrated within the
established workflows of design practices whose main task is the production of
instructions sets, such as drawings, digital models or technical reports (Hauck, Bergin
and Bernstein, 2017). As a result, whereas skilled human craftsmen are able to cope
with the uncertainty of the making process thanks to their skills and knowledge,
continually adjusting their action in a dialogue with the materials and tools (Ingold,
2013), standard digital fabrication processes are currently unable to deal with such
variance. While the term “digital craftsmanship” has become popular in the literature
(Scheurer, 2012; Stary, 2015; Jacobs et al., 2016), the cognitive abilities of human
craftsmen remain a critical aspect unmatched by the digital counterpart, enabling
learning and knowledge creation through experience.

Within a conventional design process driven by drawings and notations,
“materialisation” processes are still regarded as the last stage of linear design-to-
manufacturing workflows, in which materials are considered as passive receivers of a
previously generated ideal form stored in a CAD model (De Landa, 2002). This linear
progression from the design intention to its materialisation entails a lack of feedback
between the different stages of the process and forces design practices to engage only
with a limited range of standard manufacturing methods. The main criterion for any
manufacturing task is the resemblance of the fabricated outcome to its digital or
analogue specification. Nevertheless, only highly constrained and standardised
fabrication processes can successfully achieve this without collecting actual
fabrication feedback for adjustments at the production stage. As a consequence,
standard design-to-fabrication strategies require the use of a narrow range of
industrially-graded materials whose composition is homogeneous and behaviour is
characterised in specification reports.

This approach is particularly detrimental for a natural, heterogeneous, material such
as timber as it needs to be homogenised before becoming suitable for a conventional
manufacturing environment, requiring heavy industrial processing and material
waste. As the material is set to play a crucial role in the future of the design and
construction industry due to its excellent technical performance and sustainable
qualities (Sathre, 2007), it seems critical devising strategies to take advantage of its
natural properties. The transformation from sawn log into an “engineered timber”
product (e.g. a plywood panel) begins with chopping down the material into smaller
elements (e.g. thin layers) to a size at which they could be considered homogeneous,
discarding a significant amount of material in the process of removing all its natural
“defects” (e.g. knots, coloured stains). Subsequently, these elements are reassembled
into a specific arrangement (e.g. for plywood each layer is orthogonal to the next) using
strong adhesives and industrial jigs or presses, obtaining a final product in which the
heterogeneous properties of the natural material have been mostly eliminated. As
part of such standardisation process, only a limited range of tools are utilised in CNC
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manufacturing systems for timber, excluding a variety of techniques which have been
widely used before industrialisation to take advantage of its heterogeneous qualities
(Schindler, 2007).

Focusing on natural solid timber, the thesis addresses the main issue hindering the
utilisation of heterogeneous materials in current design-to-manufacturing workflows
which is the difficulty of specifying their properties and behaviour in response to the
fabrication tools, necessary to deliver consistent information along the design process
and comply to the established quality standards. The bottleneck of digital fabrication
processes then becomes the significant deviation between what is prescribed in the
digital design environment and the respective operation outcome, precluding the
utilisation of heterogeneous materials and non-standard manufacturing methods
from most of the design applications. For instance, fabrication tools such as carving
gouges and chisels are not able to eliminate the variance determined by the material
behaviour and the final geometry results from a complex negotiation between design
intentions and fabrication affordances. For manufacturers, the lack of full control over
the process outcome at the agreed level of precision, to which they are contractually
bound through its notational form, is not a viable business model beyond the
prototyping stage. For designers, the lack of access to manufacturing and material
knowledge leads at an early stage to blindly guess about the manufacturability of a
project which is both challenging and economically risky.

1.2 Research Proposition

The approach proposed in the research seeks to encapsulate manufacturing
knowledge specific to the material properties of timber into a transmissible form and
make it available to designers at an early stage of the design process. In this way,
design-to-manufacture workflows can advance through a series of decisions directly
informed by manufacturing and material feedback across the full range of solutions
available within a given process. The precise definition of parameter boundaries and
constraints from the beginning is intended to prevent inefficient and costly
operations.

Operating in the field of robotic subtractive manufacturing, the novelty of the
approach is in capturing, transferring, augmenting and integrating manufacturing
knowledge through the collection of real-world fabrication data, both by human
experts and robotic sessions, and training of machine learning models (i.e. Artificial
Neural Networks) to achieve an accurate simulation of the manufacturing task
informed by specific sets of tools affordances and material behaviours. Such a
knowledge base can be used to inform any fabrication task without the need for the
designer to explicitly define each fabrication parameter necessary to achieve an
intended design outcome. Furthermore, the integration of instrumental knowledge
within a design interface represents an opportunity to extend the range of
manufacturing processes and materials available to designers as the system can be
iteratively tuned to a particular set of fabrication conditions. The processing and
reconstruction of such specific features move beyond the industrial concept of
“standard” and material “defects”, integrating into the design tools a granular level of
material understanding, unthinkable only a few decades ago (Sabin and Carpo, 2017).
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Manufacturing processes could be then devised as moments of design exploration,
where the digital model is directly informed by fabrication affordances and designers
are able to curate their custom design-to-manufacturing workflow, integrating real-
world material behaviours to make better-informed design decisions, rather than
working within a standard CAM framework, in which geometry only is represented,
and material ignored. With the integration of manufacturing knowledge at an early
design stage, the potential impact of the research lies in devising a series of training
methods that flexibly extend the range of subtractive manufacturing processes
available to designers and provide an accurate prediction of non-standard operations
on timber. Access to the same knowledge resources can be used to establish a fruitful
dialogue between designers and manufacturers and develop a custom design-to-
manufacturing workflow informed by feedback information along each stage of the
process, avoiding inefficient solutions and material waste.

1.3 Research Design & Methodology

The research design and methodological frameworks have been strongly influenced
by the Innochain Research Network context, within which this research has taken
place, based on a fruitful collaboration between leading academic institutions and
industry partners across Europe.

The dual nature of the project is reflected in the structure of this research which is
based on two complementary components focused, on one hand, on the
technological development of the design simulation and fabrication framework, and
the other, on their testing within the workflows of design practices.

The first two research hypotheses belong to the technology-led component and
concern the relationship between material and end product, testing the degree to
which the fabrication system can successfully encapsulate manufacturing and
material knowledge into a transmissible form that can be accessed during the design
process.

While conventional CAM (Computer-Aided Manufacturing) simulation frameworks do
not consider timber material behaviour, Hypothesis A claims that:

The heterogeneous qualities of natural materials such as timber substantially affect the
outcome of operations performed with different carving tools, hindering their utilisation
within current design workflows.

To address this, it means establishing a series of methods to record, measure, process
and compare the variance of robotic carving operations performed under different
material and fabrication conditions. The acquisition of data will need to be structured
within rigorous and statistically valid recording sessions using a combination of sensor
devices that will accurately reconstruct the fabrication task and store its key features
into a dataset. This first hypothesis seeks to find which are the relevant parameters
affecting the operation outcome and demonstrate that such a variance is above the
acceptable threshold of production tolerances for design purposes.

Based on these premises, Hypothesis B states the following:

24



Given input parameters of (a) measurable properties of the given material, such as wood
grain structure and density, and (b) tool affordances, a prediction can be made of (c) the
geometrical outcome of the fabrication procedure to a level of accuracy sufficient for design
purposes.

The integration of material and fabrication knowledge implies the possibility of
modelling it in a form that can be accessed and queried during the design process.
The strategy adopted in this research will focus on a series of predictive methods
based on sensor data and machine learning models which will be used to investigate
to what extent it is possible to encapsulate such knowledge as part of a simulation
environment. The aim is to prove that the devised strategy can anticipate the variance
occurring in the fabrication outcome to a degree of accuracy within the acceptable
threshold of tolerance, therefore demonstrating that is possible to use the fabrication
system for design applications.

The design-led component of the research, driven by Research Question C, rests on
the validity of Hypothesis A and B to test the integration of the devised strategy
within the established workflow of real-world design firms:

How does the integration of manufacturing and material knowledge at an early stage of
the design process affect the exploration and evaluation of design solutions for robotic
carving operations?

While the first two hypotheses face a technical challenge addressed through the
collection of quantitative experimental data, Research Question C investigates the
broader implications that the integration of manufacturing and material knowledge
could have over the design process and the role of designers.

Overall, the research adopted the methodological framework of the living laboratory
as a strategy for refining complex solutions based on an early engagement with the
potential users driven by experiments, as tangible artefacts, taking place within a real-
world setting (Almirall and Wareham, 2011; Guzman et al., 2013).

The investigation of such a research question was structured using a case study
methodology based on the opportunity of engaging in a series of industry
collaborations established within the context of the Innochain project.

The critical aspect behind such a methodological choice lies in the necessity of
covering the contextual conditions within which the tools would find applications (Yin,
2017), moving beyond a purely academic context and adopting an exploratory
approach based on a series of open-ended experiments in the shape of full design-to-
production cycles.

As discussed by Baxter and Jack (2008), it is critical to ensure the convergence of the
different type of collected data in an attempt to understand, and later discuss, the
overall case rather than treat it in its separate components. Direct observation, voiced
opinions and annotated accounts abouth the use of the devised system by the
different teams of designers involved in the case studies represent the qualitative
component of the research. This is further combined with the collection of
quantitative data related to the training sessions and choices that informed the series
of design explorations.
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1.4 Thesis Outline

The central part of the work is presented in Chapter 3, 4 and 5 along two main strands
which entail the technological developments and design applications of the research.
In Chapter 6, the findings from these two components are woven together to discuss
how they relate to the body of work presented in the Literature Review (Chapter 2)
and their further outlook. Finally, Chapter 7 directly addresses the research
hypotheses put forward in this chapter and summarises the key contributions of the
research.

02. Literature Review: The perspectives of design practices, traditional crafts and
industrial manufacturing are tied together around the central role of knowledge
across different domains, evaluating the established methods for capturing,
manipulating, extending and integrating it as part of design-to-manufacturing
workflows. The review is structured in three main parts: i) Material Agency, ii) Making
Knowledge and iii) Learning Systems. In the first section, the role of material agency
and feedback information within design practices, traditional crafts, and industrial
production is assessed together with its potential of linking digital practices to physical
fabrication processes to radically reconfiguring the exploration of design solutions.
The body of work discussed in the second section deals with the study of cognitive
processes and methodological strategies linking design and making in traditional
craftsmanship and compare them to the acquisition of knowledge in industrial
manufacturing and its formalisation within simulation frameworks. In the third section
are presented a series of strategies aiming to synthesise instrumental and material
knowledge using machine learning models to inform the action of automated means
of production, supporting decision-making procedures based on the affordances
provided by specific sets of fabrication and material affordances.

03. Knowledge Acquisition: Hypothesis A is addressed through the discussion of a
series of relevant findings demonstrating that the material variance of timber
substantially affects the outcome of carving operations, supporting the need of a
strategy to control such uncertainty for design applications. The focus of the chapter
is on the first stage of the training workflow which concerns the acquisition of real-
world fabrication and material data collected through different sensor devices, its
subsequent processing and storing into a library of fabrication datasets. Two different
data acquisition methods, based on human demonstration and robotic sessions, are
presented and compared to identify how these affect the overall training process.
Finally, the extent to which the material variance of timber influences the carving
operations is assessed through a series of recording sessions based on a Design of
Experiment (DOE) strategy which is a statistically valid method to efficiently investigate
which combinations of factors and their respective values (or levels) generate
variations in the collected information.

04. Knowledge Synthesis: The validity of Hypothesis B has been demonstrated
utilising a combination of machine learning strategies to identify relevant correlations
in the collected fabrication data and establish a simulation model for robotic carving
operations, supporting key design decisions before moving to the production stage.
Besides the validation process after the training of each model, the discussed methods
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are assessed in the simulation of a series of carving operations produced with
different fabrication parameters, measuring the deviation of the prediction from the
actual fabricated outcomes. Following this, a comparative analysis of multiple
simulation models trained with different sets of fabrication affordances is presented
to demonstrate the versatility of the system and its ability to model the variance
determined by various combinations of material properties, wood species and carving
tools.

05. Knowledge Integration: The findings from the industry collaborations with ROK
Architects (Zurich) and BIG (Copenhagen) are presented and discussed to address
Research Question C, demonstrating how the devised strategy has been applied to
explore a range of design solutions previously unavailable to the designers. The
extended catalogue of digital design iterations and several robotically fabricated
pieces is organised as a series of case studies presented and discussed in three main
sections: i) Separation Between Design and Making, ii) Fabrication as Design Curation
Practice and iii) Design Negotiation Platform: Top-Down Decisions vs Bottom-Up
Affordances.

06. Discussion: The findings from the previous chapters are woven together and their
relevance is discussed in relation to the current literature along three main sections.
i) Embracing Material Variance: discusses the modelling and integration of the agency
of materials as a key component to enable holistic design feedback and support
decision-making processes. ii) Learning Tools: presents the vision of designer curating
her/his custom design-to-production process in dialogue with a tool which can be
iteratively trained and optimised to accomplish tasks. iii) Knowledge Exchange:
discusses the generation, transfer and augmentation of manufacturing knowledge
between machines and human experts in the context of automation.

07. Conclusions: The contribution of the research lies in testing a series of material-
sensitive robotic training methods that flexibly extend the range of subtractive
manufacturing processes available to designers based on the integration of
manufacturing knowledge at an early design stage. It has been demonstrated that the
heterogeneous properties of timber significantly affect the outcome of the robotic
carving process, hindering the adoption of the manufacturing method into design
workflows. As a strategy to address such a material variance, the training of the
fabrication system, based on collected sensor data and machine learning models,
demonstrated that is possible to accurately simulate the carving process to a degree
sufficient for design application. Following the training validation, the tool has been
tested in a series of industry collaborations to assess its practical use and implications
in a real-world scenario. The results have shown that the devised strategy supports
decision-making procedures at an early stage of design-to-production workflows and
enables the exploration of novel, previously unavailable, design solutions informed by
material and tool affordances.
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2 Literature Review

This chapter provides an overview of the critical terms, relevant methods and case
studies around the synthesis and integration of material knowledge in design-to-
manufacturing workflows. The literature review ties together the perspectives of
design practices, traditional crafts and industrial manufacturing around the central
role of knowledge as a strategy to identify opportunities across a wide breadth of
disciplinary fields revolving around the design and making of physical artefacts. The
analysis is structured in three main parts: i) Material Agency, ii) Making Knowledge
and iii) Learning Systems.

The first section presents the separation between the stages of design and fabrication
in current design practices based on the lack of feedback information and discusses
its consequences on design workflows. The role of the material agency is assessed
together with its potential of linking digital practices to physical fabrication processes
to radically reconfigure the exploration of design solutions. The body of work
discussed in the second section deals with the study of cognitive processes linking
design and making in traditional craftsmanship and compare them to the acquisition
of knowledge in industrial manufacturing and its formalisation within simulation
frameworks. In the third section are presented a series of strategies aiming to
synthesise instrumental and material knowledge using machine learning models to
inform the action of automated means of production, supporting decisions making
based on the affordances provided by specific sets of fabrication tools and materials.
Finally, a summary of the trends and opportunities identified by the review is provided
at the end of the chapter.

2.1 Material Agency

2.1.1 Timber as a Heterogeneous Material

Timber has been one of the first materials adopted for the production of artefacts in
human history and it has been widely used for centuries across different civilisations,
leading to rich building cultures and technological developments, evolving from hand-
driven tools to information-driven ones (Schindler, 2007). The demand for timber as a
construction material has been growing over the last years due to recent
advancements in the timber processing industry and, perhaps more importantly,
sustainability concerns regarding non-renewable resources consumption and CO2
production throughout the AEC industry (Alcorn, 1996; Sathre, 2007; Kolb, 2008).

Timber is a natural, grown, composite material made of strands of tightly-packed
cellulose fibres embedded in a lignin matrix whose parallel arrangement determines
its anisotropic behaviour, meaning that it responds differently to mechanical stresses
applied along different directions. In the specific, its structural stiffness is higher along
the grain direction which is usually described as “the direction of the dominant
longitudinal cells in a tree” (Hoadley, 2000) while is much weaker along the transversal
plane of the grain (Dinwoodie, 2000) (Fig. 2.1).
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Angle between specimen axis and grain direction

Figure 2.1 “Effect of grain angle on the tensile, bending and compression strength of
timber. (After R. Baumann, 1922)” - Source: Dinwoodie, 2000.

Besides its structural behaviour, the grain direction plays a crucial role also in the
processing and machining of timber. There are two fundamental types of cutting
actions: i) orthogonal cutting, where “the cutting edge of the tool is more or less
perpendicular to its direction of motion” and ii) peripheral milling where a rotary cutter
is intermittently put in contact with the material and removes a certain amount of it
at each rotation (Dinwoodie, 2000).

While the methods developed in this research are potentially valuable for both
techniques, the focus of this thesis is on i) orthogonal cutting (Fig. 2.2) performed with
tools such as chisels, gouges, knives, planers and axes. The main reason for this choice
is that this family of techniques receive a more significant impact from the material
than ii) peripheral milling, showing a higher variance in the fabrication outcome and
yielding to clearest results in the experiments.

N1 Cutting tool
Chip thickness ’

Depth of cut

e S L L RoTa VR

i. — -Direction of
| cutting edge

Workpiece

Figure 2.2 “Idealized cutting action. Energy is consumed in severing the wood to form the
chip, in deforming or rotating the chip, and in friction of the tool face against both the
chip and the workpiece” - Source: Hoadley, 2000.
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McKenzie (1961) identified two main parameters for this technique which are the
angles between the grain direction and i) the cutting edge and ii) the carving direction.
The interaction between the tool and material with respect to those parameters
significantly affects the outcome of the operation. For instance, carving along the main
grain direction will produce cuts with a smoother surface, while moving against the
grain will tear the workpiece. Similarly, a small cutting angle will transmit a
compression force mostly along the parallel direction of the grain while it would be
desirable to have a diagonal transmission depending on the geometry of the tool itself
(Fig. 2.3).
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Figure 2.3 Cases of Interaction of orthogonal cutting tools and different grain directions -
Source: Adapted from Hoadley, 2000.

Despite several studies in this field (Kivimaa, 1950; McKenzie, 1961; Koch, 1964,
Axelsson et al., 1993; Scholz et al., 2009; Eyma et al. 2004; Chuchala et al., 2013) aiming
to identify the correct selection of tools and related parameters to improve the
efficiency and accuracy of the process, the analysis and modelling of wood cutting
behaviour still represent a challenging task due to its heterogeneous structure
(Cristévao, 2013). As a natural material, the makeup of its internal arrangement can
vary significantly according to intrinsic (e.g. tree species) and external (e.g.
environment) conditions (Fig. 2.4).

Vs

BLACK WALNUT

BLACK CHERRY

Figure 2.4 Wood cells structure in different tree species - Source: Hoadley, 2000 (Photos by
W. Cote).
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Besides technical considerations, the heterogeneity of timber has wider economic and
environmental implications. Tree logs, or parts of them, could be considered flawed
and discarded if they do not respond to the requirement defined by the commercial
grading specifications (Hensel, 2009). Weston (2012) argues that the whole history of
architectural materials has been guided by a “hostility toward the natural tendencies of
materials as found in nature”. This is particularly valid for timber as heavy industrial
processing is utilised to transform the material as found in nature into a broader range
of engineered and standardised products such as plywood (Fig. 2.5).

Figure 2.5 Comparison between plywood and natural timber - Sources:
plywoodmaster.com (left), Lee Rentz (right).

Over the last century, there have been significant efforts in the timber industry to
correct the so-called defects of the material determined by its anisotropic
characteristics. This is still reflected in the range of commercially available software
for subtractive manufacturing tasks, completely neglecting the complex role played by
the grain arrangement and replacing it with a homogeneous block of generic matter
(DeLanda, 2002; Fure, 2011). Nevertheless, the recent developments in computational
design strategies, sensor data acquisition and robotic manufacturing which will be
discussed in the next sections have the potential to radically reconsider the role of
timber as part of design processes to take advantage of the heterogeneous nature of
the material (Menges, 2009; Menges, Schwinn and Krieg, 2016).

2.1.2 Properties, Qualities, Capacities and Affordances

The distinction between the terms “property”, “quality”, “capacity” and “affordance” is
particularly relevant for this research as it directly depends on the role played by
different types of knowledge in relation to the material medium.

For the design theorist and craftsman David Pye (1968), properties are objective and
measurable, while qualities are subjective and depending on the individual's
knowledge and sensibility. Because scientifically measurable, properties can be used
to compile characterisation of industrial materials. Steel is an example of an industrial
material which comes in a series of standardised shapes and whose properties are
specified into a series of readily available tables. Interestingly, the current approach in
the engineering of complex materials, such as fibre composites, is not based on the
definition of “typical" properties but rather on the fine-tuning of their behaviour using
a performance-driven approach (Gordon, 1988; DelLanda 2002). Similarly, in the field
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of additive manufacturing, there have been several attempts to develop highly-
detailed digital representation models of functionally graded materials exhibiting
complex, heterogeneous, properties achieved through multi-material 3d-printing
(Jackson, 2000; Bader et al., 2016).

Menges and Reichert (2012) describe the hygroscopic-driven actuation of engineered
wood veneers as an intrinsic capacity immanent in the material itself which is
expressed through the interaction of the component with the surrounding
environment and its humidity level. According to De Landa (2005), while properties
imply possession, capacities are always relational: “a knife may possess the property of
being sharp and this may give it the capacity to cut, but the latter can only be exercised
with respect to another object that has the capacity of being cut’. The relational aspect
plays a crucial role also in the definition of the term “affordance” given by the by the
perceptual psychologist James Gibson in his seminal book The Ecological Approach to
Visual Perception (1979) which he describes as the set of actions that a system or
environment allows being performed by an actor (e.g. an animal). As this always entails
a mutual interaction, the existing affordances and their qualities are dependent on
the respective structures of the two systems (Maier and Fadel, 2007).

The shift from isolated attributes to system thinking introduced with the term
“affordance” provides a useful framework for the modelling of manufacturing
processes as it could be argued that the outcome geometry generated by a subtractive
operation does not depend exclusively from a specific individual property (e.g. wood
grain density) of one of the two systems but rather from the reciprocal interaction of
the cutting tools with the wooden workpiece. While for Gibson the affordances
provided by a system are independent of perception, i.e. they are present regardless
of the ability of an animal to perceive them, Norman (1990), introducing the concept
in the field of Human-Machine Interaction (HMI), suggests that these are contingent
and “dependent on the experiences of the perceiver within some cultural framework”
(Mateas, 2003). This latter position implies that the knowledge and experience of a
designer, programmer or craftsman play a key role within such relational capacities.
According to McCollough (1996), our perception of the world is defined by “what we
can do with it", namely what sorts of affordances we are able to identify based on our
senses, experience and knowledge. The medium is defined as the substance that
receives the work of the tools and provides a locus for skills. A medium is a range of
possibilities which once identified by the craftsman turn to affordances. He further
argues that the affordances of a medium, such as timber, need to be discovered as
they are not obvious as, for instance, the affordances of an industrial design product
whose shape suggests possible uses. As affordances are necessarily limited, they are
strictly related to the concept of constraint which defines the range of formal
possibilities. Craftsmen seeking to explore the landscape of affordances offered by a
medium asks themselves “What can this medium do?” as much as “What do | wish to do
with this medium?”. Therefore, an artefact is not a representation of an abstract model,
but rather its final appearance is defined by the properties of the medium itself
(McCollough, 1996).

What follows is that the identification and formalisation of instrumental and material
affordances represents a critical aspect for manufacturing processes and human
making in general, as only those affordances which have been identified become
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accessible and usable. One of the key propositions of this research is to establish a
series of methods to make explicit the range of affordances available to support
designers navigating through multiple design iterations. In the field of product
engineering, the identification and design of the affordances that an object would
create in relation to its user have been widely addressed in the literature (Galvao and
Sato, 2006; Maier, Sandel and Fadel, 2008; Cormier and Lewis, 2015). While most of
these relate to functional aspects of objects (e.g. a handle provides the affordance of
being held to a cup), these methods could potentially be extended as well for the
identification and specification of material and fabrication affordances. Among the
strategies proposed by Maier and Fadel (2007), the Direct Experimentation and
Automated Identification strategies seem to be the most promising for this research.
One of the advantages of manufacturing processes is that the artefact necessary to
experiment upon already exist, for instance, an aluminium block to be machined,
therefore is possible to apply the Direct Experimentation method to determine via
heuristics the affordances of the system. Moving one step further, the Automated
Identification method implies the creation of a database where the affordances
knowledge, or expert knowledge, identified through Direct Experimentation could be
stored and integrated into a CAD environment to automatically assist future design
endeavours (Fig. 2.6).
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Figure 2.6 “Schematic of affordance identifying database system” - Source: Maier and
Fadel, 2007.

The advantage of this method is the opportunity of exploring the potential provided
by different affordances without relying exclusively on limited personal knowledge,
fostering the exploration of a broader range of solutions. As the main limitation of
such automated system is the impossibility of registering all the possible affordances
into a database, designers are then asked to play an active in the identification and
curation of their own specific set of affordances according to the assigned task. Using
a similar approach, Kim (2015) suggests the creation of curated features repositories
that could be retrieved based on the specific problem assigned and used to design
new affordances through analogical reasoning (Fig. 2.7). As the collection of features
defines the boundaries of the solution search, it seems evident that in these design
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frameworks based on affordances, the moment of design starts already from the
creation or adoption of a specific feature database or repository.
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Figure 2.7 “Design for affordance framework” - Source: Kim, 2015.

2.1.3 Material Agency and Craftsmanship

Current design-to-manufacturing workflows are structured around a series of linear
steps, from the definition of objects within a digital modelling environment to their
faithful transposition into physical entities through a variety of materialisation
technologies which are becoming increasingly available to designers (Kolarevic, 2004;
Brandt, 2012). The process of imposing an ideal form onto a material substratum,
intended as a passive receptacle, is defined in literature with the term hylomorphism,
a compound of the Greek words hyle (matter) and morphe (form). Since its first
philosophical formulation by Aristotle (Witt, 1987), the hylomorphic approach on
design and making has profoundly permeated the Western culture and have emerged
as the dominant paradigm for current design practices.

This view has been strongly opposed in more recent times by scholars advocating for
the agency of materials and its crucial role in design and making processes. In his
criticism of the hylomorphic model, Bryant (2012) argues that the creation of physical
artefacts is much closer to a negotiation process and, since it is not possible to know
in advance the outcome of any negotiation, its final outcome could not be considered
exclusively as the result of previously defined form. Putting forward the example of a
sculptor working with marble, he describes as the initial idea that starts the carving
process is constantly redefined by the encounter of unique material features in the
grain and veins structure as if the marble “wants to become something else" (Bryant,
2012).

The body of work of contemporary philosopher Manuel De Landa focuses on the
emerging of a new materiality in which materials are active participants in the genesis
of form and designers must consider their agency as an integral part of their design
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process (De Landa 1997; 2002; 2005). Such position not only implies that materials
have something to say within the design process, but they also have the potential of
bringing value to it through their variable properties, heterogeneity and complexity.
To the hylomorphic approach of current design practices, he opposes craftsmen'’s
approach to materiality, who “did not impose a shape but rather teased out a form from
the material, acting more as triggers for spontaneous behaviours and as facilitators of
spontaneous processes than as commanders imposing their desires from above” (De
Landa, 2002).

Along the same line of thought, Ingold (2013) proposes to envision the process of
making as a process of growth, where the maker joins as a participant in a process
driven by active materials which are already ongoing and determine the forms of the
world as we know it. The critical point is that even if the maker joins such process with
a form in mind, this is not what creates the work but rather the engagement with
materials. Artists like Constantin Brancusi expressed similar attention to the agency
of materials, arguing that not only materials have their own life but that we need to
reach a point where we can speak their unique language rather than impose ours
(Dudley, 1927).

The work of Gilles Deleuze and Felix Guattari presented in their book A Thousand
Plateaus: Capitalism and Schizophrenia (1980), of seminal importance for De Landa and
what he defines as the “inherent shape-generating capabilities of matter” (De Landa,
2002), put forward the ability of active materials to lead human'’s action:

“It is a question of surrendering to the wood, then following where it leads by
connecting operations to a materiality, such as the variable undulations and
torsions of the fibres guiding the operation of splitting wood, instead of imposing
a form upon a matter” (Deleuze and Guattari, 1980)

The ability of establishing a dialogue with the material through an exchange of
feedback information to adjust her or his actions is what distinguishes a craftsman,
who “can compensate for differences in the qualities of his materials, for he can adjust the
precise strength and pattern of application of this to the material’s local vagaries" in
contrast the standardisation enforced by industrial machines (Stanley Smith, 1992).
Within this dialogue, Pallasmaa (2009) argues that tools gradually evolve through the
affordances they need to address until becoming completely embodied in the
cognitive process of craftsmen who look at them as new external organs able to
dissolve the boundary between their working hands and the material.

Interestingly, while craft practices might have been seen as nostalgic or antiquate
concepts, novel technological developments are leading toward a radical revaluation
of the concept of “craftsmanship” described by Sennett (2008) as a methodological
approach between “concrete practice and making”, which played a key role in our
modern history and is becoming more and more prominent in our contemporary
society.

2.1.4 Digital Materiality and Robotics
Current notational systems available to designers, such as drawings or digital models,
mostly encode and transmit only geometrical information, causing what the historian
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Mario Carpo (2011) defines as a notational bottleneck: “what can be built, it is
determined by what can be drawn".

These strategies for encapsulating design information seem incompatible with the
experiential nature of material agency, which could only be discovered, as seen in the
previous section, through direct engagement with the process and based on
subjective knowledge and intuition. For this reason, the difficulty of transmitting non-
geometrical information could be seen as the main factor determining its exclusion
from the design process, pushing designers further away from the realm of
production to focus on the creation of instructions sets in the form of drawings. At the
same time, designers relying exclusively on drawings are necessarily removed from
directly experiencing the properties of materials and unable to construct a personal,
intuitive, knowledge of these. While craftsmen establish a dialogue with the process
and material through the concurrent exchange of feedback information, designers,
who do not have access to such type of knowledge, are forced to operate within a
hylomorphic model, where the matter is considered as inert receptacles of the shapes
defined in their digital models.

Despite such dominant paradigm, Koralevic (2008) argues that the increasing
adoption of digital manufacturing technologies is leading towards a radical
transformation of the design industry, where the design intention is closely coupled
with its production. Drawing a parallel with crafts practices, he argues for the figure of
architects as craftsmen and the adoption of such technologies as enablers of the
cyclical exploration, rather than linear, of novel design solutions driven by material
properties and manufacturing affordances, such as precision, speed and scalability. In
the light of what described in the previous section, such claim sounds, perhaps, overly
optimistic on the current state of technologies available to the vast majority of
designers, and while they exert a positive force in bringing the stage of design and
making closer together, the results are still far away from the concurrent exchange of
feedback information and “design through making" paradigm at the foundation of
crafts practices.

In this regard, Fure (2011) argues that digital fabrication technologies operate within
the same notational bottleneck of previous production methods, having as a goal the
production of an artefact which resembles as close as possible the original digital
model, measured against tolerances leaving no room for any fabrication and material
agency. While recognising the current limits of technologies, Menges (2015) advocates
not only for the integration of material information within CAD models but as active
drivers for the whole process through the integration of computational models able
to tap latent design potential of material systems, moving beyond the idea of
standardised building elements. The aim of the design process is shifted towards the
creation of the computational interfaces that enable to link the stages of design and
making rather than the individual formal outcome. Along the same line of thought,
Gramazio and Kohler (2008) have previously indicated with the term digital materiality
the interplay between digital and material processes enabled by controlling
manufacturing processes through design data. Designers are not asked to devise
static forms but material processes, giving up geometric notations and focusing on a
performative-driven approach. The focus is shifted from blueprints to dynamic sets of
rules which determines material behaviours with the advantage of creating an open-
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ended framework allowing interventions throughout the different stages of the
process.

The enabling technology that connects the digital realm of computers with the
physical world of production is represented by robotic manufacturing. While industrial
robots have been already around for a few decades, more recently there has been a
renovated interested in their application in the design and construction industry.
Bechtold (2010) discusses how a first attempt to integrate such technologies in highly
automated on-site factories for the construction of buildings has already taken place
in the 1980s in Japan. The main issue back then was that the robots were highly-
specialised and expensive machines performing standardised tasks without adding
value to the overall process, whereas today's robots can perform a wide range of
diverse tasks which would be challenging for a human to perform with similar speed
and precision.

The industrial robotic arms are generic manipulator which can be programmed to a
large variety of skills based on the application of task-specific end-effectors and
sensors. Maxwell and Pigram (2012) compare the flexibility of industrial robotic arms
to the generalist abilities of preindustrial craftsmen, in contrast with specialised
industrial machines, which can perform only a very limited range of tasks. This is made
possible through the combination of the robotic actuation with the collection of sensor
data, effectively creating an interface between the digital and physical realms and
enabling different modes of interaction between the human designer and the
fabrication machine (Dérfler, Rist and Rust, 2012)(Fig. 2.8). The inherent adaptability
of robots allows counteracting conservative tendencies such as the commitment to
inert and industrially-homogenised materials to make sure the manufacturability of a
large batch of products. Coupling industrial robotic arms with algorithmic design
methodologies enable “an explicit and bidirectional traversing of the modern division
between design and making, establishing novel pathways and feedback between mind,
hand, and machine” (Maxwell and Pigram, 2012).
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Figure 2.8 “Actuators and sensors as intermediaries between the digital and physical
model” - Source: Dérfler, Rist and Rust, 2012.
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2.1.5 Simulation Feedback

While craftsmen directly interact with materials, designers, detached from the process
of making, need to find alternative ways of accessing knowledge and query the
materials to receive feedback information and make informed design decisions.
Design-to-manufacturing interfaces focused around process-driven models, rather
than only geometrical notation, need to provide explicit feedback on material and
fabrication constraints throughout the whole process, from the conceptual stage to
the machine instruction code (Maxwell and Pigram, 2012).

A possible strategy to access such knowledge is through the creation of design
hypotheses in the form of digital models which are tested within a simulation
environment providing an understanding of performances before moving to the
physical realm. While a static model, such as geometrical blueprints, can only
represent a system at rest, simulation is necessary to investigate dynamic models
concerned with processes, such as robotic fabrication, considered as “a time-ordered
sequence of states a system takes in a given time period " (Guala, 2002).

As digital simulations are necessarily simplified and abstract models of reality, the aim
is not to recreate a perfect reconstruction of materials but rather to provide a
framework where designers could interact with their behaviours to explore design
solutions that evolve accordingly to the affordances provided by the medium
(Nicholas, 2012). While design problems are intrinsically ill-defined, simulation models
are not used to predict future events but rather to identify a meaningful structure in
the system explored (e.g. the robotic carving tool and the timber workpiece) that allow
the investigation of a stable region of the system itself as part of the design process
(Hanna, 2010). In the context of simulation as an abstract and partial proxy for reality
(Turkle et al,, 2009), Brandt (2005; 2012) proposes to iteratively validate the model,
which he defines as “isomodel”, based on real-time feedback collected by sensors that
can continuously provide information about the uncertainties occurring during the
construction stage, closing the gap between the digital and physical realm. The main
disadvantage of this simulation approach is that validation arrives only after the
design stage and, therefore, adjustments are limited and expensive.

Conventional CAD environments embedding solid modelling procedures present to
the user a simulation of operations performed on matter in its crystallised state.
Subtractive operations based on Boolean operations are informed by a hylomorphic
logic where the material volumes used are completely inert (DeLanda, 2002). As the
characterisation of homogeneous materials, such as steel, is industrially defined, the
integration of their mechanical behaviour within a simulation framework is relatively
straightforward at the resolution needed for design purposes. Material
standardisation means assuming that all the industrially-graded steel beams of the
same type behave in the same way. In more complex materials such as synthetic fibre
composites (e.g. carbon fibre), the layup is specified based on the performance
requirements and, therefore, their behaviour is known from the design stage. In
“found”, heterogeneous, materials such as timber, however, this information is not
readily available and generalisations are only partially possible due to the material
variance occurring even in trees from the same species because of a combination of
both internal and external factors. While there is variability across specific grades of

38



steel as reported in their specification tables, the characterisation of timber
components shows a much greater variance partly because these are treated like
homogeneous elements. Reducing such a variance implies considering the material in
its heterogeneous nature and including relevant additional parameters that can be
used to construct a more accurate simulation of its behaviour.

For this reason, establishing and evaluating a simulation model for timber
manufacturing operations requires gathering as much information as possible
regarding the specific piece of timber which is going to be utilised at the fabrication
stage. A first approach consists in collecting this information before production and
compile it into a simulation framework that allows exploration without the need of
physically engaging with the material. In the timber processing industry, Computed
Tomography (CT) is used for the commercial grading of raw material and identification
of “defects” such as knots which are detrimental for the homogeneity of the material,
decreasing its value (Wei, Leblon and La Rocque, 2011; Fredriksson, 2014). The level of
information about the tree's internal structure obtained with this method is highly
detailed (Fig. 2.9), however, because of its high operational costs and complexity, this
is rarely used in the timber manufacturing industry after the log leaves the sawmill
(Menges, Schwinn and Krieg, 2016). A second approach, closer to how craftsmen
operate, is to gradually develop an understanding of materials through direct
engagement, where each operation performed brings further knowledge that can be
used to adjust the overall process.

Figure 2.9 “Log computer tomography: advanced wood scanning techniques include (a)
computer tomography, (b) which results in comprehensive, three-dimensional anatomic
datasets of the log - Udo Sauter, FVA Freiburg” - Source: Menges, Schwinn and Krieg, 2016.
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An example of this is found in the work of the artist Giuseppe Penone who created
several art pieces starting from a solid trunk and carving out material following the
tree's internal structure (Fig. 2.10) to reveal how the tree looked like at an early stage
of its growth (Basualdo, 2019).

Carpo (2015) draws a parallel between the search of design solutions of pre-industrial
craftsmen to iterative digital simulations as both based on heuristics and trial-and-
error procedures. The advantage of simulation over physical making is that designers
can make and break in few hours way more full-size trials of a design than a craftsman
would be able to physically test in her or his entire life. Bringing these considerations
a step further in the field of big data and learning systems, he argues that digitally-
simulated models can be used to create a database of precedents if the experiments
or design task has no previous comparable body of work from which gathering
information, such as the robotically-wounded fibre Research Pavilion 2012 by the ICD
and ITKE Institute at the University of Stuttgart (Waimer et al., 2013).
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Figure 2.10 Artist Giuseppe Penone carves a tree to reveal its inner structure - Source:
Celant et al., 2013.

Nevertheless, if there are no comparable precedents in literature and there is no
access to physical tests of the system explored, the main issue is to retrieve the
knowledge necessary to validate the results of the digital simulation (e.g. Finite
Element Analysis). This issue is addressed by Turkle et al. (2013) using a peculiar case
study which is the simulation strategies adopted by the US in the field of nuclear
weapons. The ban of nuclear testing in 1992 created a generational divide between
those scientists who had experienced first-hand the explosion tests and a younger
generation who could engage with such events only through a simulation based on
the knowledge formalised by the first group. Given the complexity of the event, the
veracity of the simulation is nearly impossible to be tested and, even in that case, there
is no way of validating it with actual proofs. As simulations grew increasingly opaque,
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undermining trust in scientific findings, it has been necessary to avoid losing the
personal knowledge of older scientists about to retire through the creation of a
videotaped interview collection, organising an oral history of nuclear testing that could
support the creation of simulation models.

The problem of acquiring knowledge, whether direct or indirect, to validate a
simulation model is also central in the field of manufacturing where, in comparison to
nuclear testing, data is abundant and readily available. Taking advantage of this, the
approach explored in this thesis is to gradually build a knowledge base from the
acquisition of sensor data with the aim of validating the simulation model through an
inductive method.

2.2 Making Knowledge

2.2.1 Knowledge in Craftsmanship

The integration of materiality in design and manufacturing processes is strongly
dependent on knowledge and its different formalisations which make it accessible to
the participating stakeholders.

The process of deskilling refers to the progressive elimination of skilled labour
determined by the increasing adoption of automated production systems within the
manufacturing industry (Braverman, 1974). For Gordon (1988), the widespread use of
steel as material is only partially due to technical reasons while is mostly dependent
on its applicability within routinised design processes which relies on its
standardisation to require the minimum amount of skills and knowledge. On the other
hand, heterogeneous materials cannot be reduced to routines and require the
integration of high-level knowledge which is difficult to formalise (De Landa 2002).

One of the main concerns in the process of knowledge transfer from human workers
to automated means of production regards the loss of know-how determined by the
impossibility of fully transferring human personal knowledge to a machine. The
concept of tacit knowledge has been introduced by the philosopher Michael Polanyi
(1966) to refer to that portion of subjective and non-codified knowledge which we
cannot fully articulate, opposing the generally accepted notion that knowledge must
be necessarily explicit (Sorri, 1994). While explicit knowledge can be codified and
transferred, tacit knowledge cannot be communicated as “we always know more that
we can tell" (Polanyi, 1966) and its acquisition requires practical experience through
observation and direct participation (Eraut, 2000).

For Nonaka (1998), there are two dimensions to tacit knowledge: the first relates to
the knowledge of skills, for instance riding a bike, and constitutes the personal “know-
how”, the second is the cognitive dimension composed of beliefs and mental models
which shapes our perception of the world. Humans acquire new skills through
experiential learning whereby “personally experienced events are stored in episodic
memory and, over time, used to construct generalised knowledge structures in semantic
memory” (Kolb, 1984). Such knowledge, posing the foundation of the personal know-
how of every skilled craftsman, does not become formalised despite being used in
everyday practice. Rather than having a codified constitution, the understanding of
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materials and processes is achieved through “workability and practice” (McCollough,
1996).

For each task approached by a craftsman, there are different evaluation criteria, for
instance, aesthetic qualities, costs efficiency, technical procedures and material
consideration involved that "operate as positive forces for action not determinants of
outcome" (Keller and Keller, 1993). The experience knowledge of a craftsman,
accumulated through years of practice, enable addressing these dimensions to create
an original plan of action. However, as discussed by Sharif and Gentry (2015), this
preconception only initiates the task, while the "the design concept evolves concurrent
with the craftsman’s act of production and the received feedback from the evaluation of
material and objective conditions of the work".

Pye (1968) distinguishes between workmanship of risk and certainty to oppose
traditional craftsmanship to industrial manufacturing. During the making process in
crafts practice, the quality of the artefact is continuously at risk as it is based on the
“judgement, dexterity and care" of the craftsman and the outcome is not
predetermined. The uncertainty of the process, unfolding as the artefact is being
made, determine its inherent fluidity and enable the exploration of solutions not
available from the beginning. While designers utilise all their knowledge to codify
information into a set of instruction drawings before the production stage, craftsmen
are required to continuously utilise their knowledge at each step. Such distributed
exertion of knowledge not only allows a constant adjustment of her or his action based
on the contingencies of the process, but every bit of feedback information leads to
reformulating the initial knowledge that initiated the task as assumptions are
constantly questioned and evaluated.

2.2.2 Capturing Tacit Knowledge in Manufacturing

According to the SEC/ Model for knowledge transfer and conversion introduced by
Nonaka and Takeuchi (1995), there are four main modes how tacit and explicit
knowledge is created and shared within an organisation (Fig. 2.11).
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Figure 2.11 “Spiral Evolution of Knowledge Conversion and Self-transcending Process” -
Source: Nonaka and Konno, 1998.
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The first two deal with the transmission of tacit knowledge between individuals
through imitation and observation (Socialization) and the attempt of its codification to
turn it to explicit knowledge (Externalization). The second two are focused around
explicit knowledge, which can be easily codified and combined to create new
knowledge (Combination) and the assimilation of explicit knowledge and procedures
into individual tacit resources (Internalization). One of the pioneering studies on
recording human bodily motion within manufacturing environment conducted by
Frank and Lillian Gilbreth led to the development of a recording and analysis
technique named micromotion study (Gilbreth and Gilbreth, 1917). Recording with a
camera the motion of humans performing the task with the help of light sources to
track long sequences of operations (Fig. 2.12) enabled the creation of a scientific
understanding of the task based on the approach chosen by the worker, introducing
improvements based on scientifically-measured performances (Baumgart and
Neuhauser, 2009). Furthermore, it could be used to expose other workers to such an
improved understanding of the task (Socialization, SECI model) for training purposes.

Figure 2.12 “Cyclegraphic Image of a Woman Working at a Gridded Table” - Source:
Gainty, 2076.

While a master craftsman transmits knowledge mostly through Socialization, the
transmission of human know-how to a machine within a manufacturing context
requires an Externalisation process to turn it, at least partially, explicit into a
transmissible form that could be used to program a machine. According to the
American historian David Noble (1984), the development of the Numerically
Controlled (NC) system for the manufacturing of mechanical parts, developed in the
US immediately after the WWII, required to develop i) a mechanism to translate
electric power to controlled motion and ij) a medium on which information can be
stored and read later by a machine. As further discussed by Callicott (2003), the
earliest attempt to develop automated machine tools sought to codify into a
numerical transcription the “dexterity, experience and intuition embodied in the skilled
act” of experienced human machinists. The first solution proposed to address such
challenge is represented by the Record/Playback system developed in 1946-47 by
General Electric. The solution focused on recording on magnetic tape the totality of
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operations and motions performed by a skilled machinist operating a modified lathe
with the aim of using the numerical transcript to manufacture further identical parts
(Noble, 1984). According to Callicott, this solution represents the attempt of
distributing individual tacit knowledge to an automated system through its
replacement with explicit rules, maintaining at the same time its link to the tacit
identity of the maker. The NC system, developed in parallel at MIT and presented in
1952, was specifically aimed to separate completely such reliance on the tacit
dimension of individual skills of the workforce, circumventing “the role of the machinist
as the source of the intelligence in the production” with the intent of shifting the control
over the manufacturing process from the shop-floor to the managerial level (Noble,
1984). With the definition of fabrication parameters into a software interface, the
machinist is asked to externalize his tacit understanding of the task into an explicit
form (Callicott, 2003).

In the recent years, several studies in the field of manufacturing have argued for the
transfer of human tacit knowledge as a necessary step to automate tasks which still
requires a high level of dexterity and constant parameters adjustment based on
feedback information. The following analysis of relevant precedent aimed to address
a series of methodological questions faced by this research in the process of defining
a strategy to capture and formalise the knowledge of skilled human experts
performing carving operations on timber.

- How is it possible to break down a manufacturing task and extract relevant
knowledge at each stage?

Manual
Manufacturing Task

1. Capture > 2. Segment 3. Model
: + Raw Digital * Human and
Human-Workpiece Data Workpiece States
Interactions + Time-space * Human-
dependencies Workpiece
between human Interaction
action and workpiece Model
« PDF changes
+ Video
+ Animations
« Virtual <—1 6. Reproduce 5. Decode 4. Extract (€
Reality . : 3
- Augmente . Prec_::se actions * Human action sequence
d Reality * Motion mechanics corresponding to
* Problem solving observed and
gestures unobserved workpiece
+ Key decisions state sequence

* Task strategy
Figure 2.13 “6-step Digitisation Process” - Source: Prahbu et al. (2017)

Prahbu et al. (2017) presented a method to acquire skills for fibre composites
layup from human experts and transfer them to novices or automated
manufacturing systems. The study started identifying the key components of the
task, for instance, the ply manipulation technique and utilised 3D scanning
technology (i.e. Microsoft Kinect) to digitise the interaction between the expert's
bodily motion and the workpiece. Such information is formalised in a series of
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discrete states and used in a Hidden Markov Model, a stochastic machine learning
model to predict time series phenomena, with the aim of extracting
manufacturing knowledge for each component of the overall manual layup task
(Fig. 2.13).

What is the influence of expertise and subjective knowledge in the recording of
human-based tasks?

Another study in the field of fibre-reinforced composites by Kikuchi et al. (2014)
compared two human workers with significantly different levels of expertise
performing the task of spraying up a mould. Tool and human'’s body motion
were recorded using an optical motion capture camera system, while the
tracking of the eye movement was capture with a goggle-like apparatus worn
by the participants. The comparison between the data collected by recording
the two workers made possible to identify key aspects of tacit knowledge
developed by the more skilled craftsman in years of experience which allowed
him to complete the task more efficiently and with better quality in the final
product than the novice. Data generated by the skilled human demonstration
could be then processed and translated to robotic movements, avoiding
programming the task entirely from scratch.

Is it possible to inform a robotic fabrication task based on captured human
knowledge and what are the main advantages?

In-contact subtractive manufacturing tasks are complex and diverse processes
which require several years of experience by a human operator to maintain
control over a series of key parameters which defines the surface quality of
the product. For manual grinding tasks, Ng et al. (2014) identify a series of Key
Process Variables (KPVs) such as contact force, toolpath and feed rate, which
are recorded and used to generate an analytical material removal model
which encapsulate the surface finishing skills of the operators. The key
advantage of the methods is to reduce the need for costly robotic Design of
Experiment (DoE) trials to develop an empirical model of the task. Polishing
operations are particularly relevant for some industries, such as aeronautics,
as it significantly affects the performance of the final manufactured part. Kalt,
Monfared and Jackson (2016) developed a device that facilitates the capturing
of data during manual polishing operations. The tool consists of a combination
of different sensors such as multi-axial force-torque sensor, an inertial
measurement unit monitoring the orientation of the piece together with a
measure of vibrations and a combination of reflective markers used within a
motion capture cameras system to record the part movements and polishing
patterns (Fig. 2.14). The recording of skilled operators in a series of
experiments led to the identification of recurring patterns (e.g. constant
pressure, linear translation and surface profiling) utilised to complete the task.
The identification of the patterns, described by a combination of different
sensor data, together with an understand of the type of required feedback,
mostly visual and tactile, represents the foundations to develop a robotic
polishing system.
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Figure 2.14 “Design of the fixture to capture manual polishing” - Source: Kalt, Monfared
and Jackson (2016)

- What are the main parameters to consider in carving operations performed with
chisels or gouges and how these can be recorded?

Steinhagen et al. (2016) presented a series of methods for the recording of
manual stone surface chiselling with the aim of informing a robotic fabrication
system. Their analysis compares several manual traditional techniques
measured with a high-speed camera system (i.e. GOM Pontos HS). The
recording of the hammer's movement and speed made possible to extract the
kinetic energy utilised by the craftsman for each operation, while the same
camera setup has been used to calibrate the robotic chiselling end-effector,
ensuring the correct translation of the kinetic energy values across the two
different domains (Fig. 2.15). The comparison of chiselling operations for
different types of stones allowed the identification of the correlation between
kinetic energy and material removal volume for each configuration, generating
an understanding of how material properties influences the outcome of
manual and automated subtractive techniques (Steinhagen and Kuhlenkoétter,
2015).

Figure 2.15 “Setup of the camera system with camera and stone specimen for chiselling
(left), Picture of a filmed chisel with the measured coordinates (right)” - Source:
Steinhagen et al. (2016).
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2.2.3 Computer-Aided Process Planning

The integration of expert knowledge through the Combination (SECI Model) of rules,
procedures and specifications for subtractive operations into software have been
gradually implemented into design-to-manufacturing software under the term
Computer-Aided Process Planning (CAPP).

CAPP methods supported by a knowledge base seek to determine the sequence and
parameters of manufacturing processes to efficiently produce a part (Ham and Lu,
1988; Alting and Zhang, 1989) based on the domain expertise available to the planning
system. Some of the typical aspects of CAPP are described by Park (2003) as
“manufacturing features recognition, assigning machining operations to each machining
feature, sequencing machining operations, set up and fixture, planning, and NC
generation”.

Automatic features recognition methods aim to break down a solid geometry into
individual features and match each of them to a previously defined catalogue of
geometries supported by the software (Verma and Rajotia, 2010). The concept of
machining feature is particularly relevant in knowledge-driven processes as it
represents a strategy to map a set of geometrical features to a set of manufacturing
operations (Mawussi and Tapie, 2011), directly linking the stages of design and
fabrication.

The most pressing issue around such activities is the creation of a knowledge base
that would reflect the experience of a domain expert. Imitating such intelligence is
necessary to support the sequence of the decisions of the automated system:

“...the solution space of process planning is too extensive for searching in an
exhaustive manner, which is why the imitation of intelligence is necessary. No
matter how extensive the solution space, a human expert can find a reasonably
good solution in a feasible time by quickly decreasing the solution space. The
logical procedure for decreasing the solution space without losing reasonably good
solutions involves the intelligence of domain experts.” - Park (2003)

Referring to the SECI Model, the integration of domain expert knowledge within CAPP
software could be structured in two main strategies:

- Combination: The software provides access to an extensive database compiled
by expert and collecting cutting data such as machining features strategies,
tools and machine specifications or fabrication parameters.

- Externalization: Integrating personal knowledge with the addition to the
databases of the specificities of the shop floor. Preserving the machinist know-
how and expedite the programming of known machining procedures. Each
machinist can create personalised templates for collection of operations to
achieve predefined geometrical features.

These methods could potentially provide the opportunity to constantly expand the
capabilities of the system and refine the initial knowledge base. Nevertheless, despite
their several advantages, the requirement of strictly organising knowledge by
predefined categories, its description by a limited range of parameters and the
compulsory use of standard machining techniques significantly reduce the
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applicability of these tools. On the one hand, the link between geometric features and
machining operations expedite the toolpath planning process and programming of
operation but, on the other, it strictly determines the range of shapes available and
their modelling requirements. As it is not possible to define all the possible geometric
features and their possible combinations, these methods are often incomplete and
require substantial adjustments by a skilled human operator (Kiritsis,1995; Marri,
Gunasekaran and Grieve, 1998; Xu, Wang and Newman, 2011).

2.2.4 Design for Manufacturability Feedback

A critical aspect of Knowledge-based CAPP systems is the formulation and
communication of design feedback determined by manufacturability considerations.
Design for Manufacturability (DFM) is defined as the process of designing products
focusing on the optimisation of manufacturing functions, such as fabrication,
assembly or testing, to ensure the lowest cost of production and highest quality of the
final product (Anderson, 2014).

As discussed by a number of scholars in the field of manufacturing (Gupta et al.,1997;
Barnawal et al., 2015), the increasing specialisation and distribution of knowledge over
large teams of professional hinder the communication between different functional
teams involved in the design-to-manufacturing workflow. As design engineers do not
necessarily possess manufacturing knowledge, the designed product might satisfy
functional requirements while resulting not suitable for the production stage. For this
reason, the design team relies on the manufacturability feedback given by the
manufacturing engineers and the design evolves through multiple iterations of such a
process which end up in a lengthy development stage and delays in the production.
Furthermore, as decisions taken at an early design stage are critical as any change
made at a later manufacturing stage results increasingly more and more expensive
(Verhagen et al., 2012), it is necessary to provide designers with a DFM automated tool
which enable them to receive feedback on a given manufacturing technique from the
beginning of the design process and swiftly evaluate multiple solutions without
delaying the development of the product (Fig. 2.16).
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Figure 2.16 “Product life-cycle cost, design knowledge and freedom related to design
process” - Source: Verhagen et al. (2012)
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In a “What-If' design development approach (Vaneker and van Houten, 2006),
designers are supplied with continuous, automated, DFM feedback at every alteration
of the design, making possible to evaluate the quality of the design instance provided
and compare the effects of the applied changes further down the process. Feedback
information can be formulated in many different forms such as text, 2D drawings or
3D visualisations and could prompt the designer to check, for instance, the match
between product’'s shape and chosen material, geometrical adjustments based on
process constraints or availability of the necessary production tools within the
company’s supply chain.

According to Gupta et al. who put together a comprehensive survey of the available
DFM feedback systems (1997), the automated manufacturability problem is generally
divided into three steps: i) Determine if the design is manufacturable; ii) If
manufacturable, define its manufacturability rating which represents an evaluation of
the difficulties of manufacturing the product; iii) If not manufacturable, identify what
design attributes determine the issue and propose solution. Performing automated
manufacturability analysis integrated into intelligent CAD systems allows designers to
focus on the creative aspect of the process without having to memorise
manufacturability checklist or material specifications (Ferrer, 2010; Verhagen et al.,
2012).

In concurrent engineering, the design of a mechanical part in aluminium for the
automotive industry, for instance, is fully integrated with DFM feedback, making
possible to significantly increase the efficiency of the overall workflow. If a simplified
version of the process is to be considered, in the first stage, manufacturability is
defined according to a series of evaluations focused around parameters such as
shape, bounding box dimensions, tools accessibility, tolerances and finishing
requirements. Some of these parameters determine in a binary way whether the
product is machinable or not. For instance, if its size exceeds the workable volume of
the machine available, the design is not manufacturable. If the design passes the first
stage, the design is deconstructed in the individual machining operations necessary
to obtain the final geometry and an analysis of their complexity determine the
difficulty of fabrication and costs approximation. If a design does not pass the first
stage, the design attributes responsible for the failure are highlighted. For machined
parts, typical issues are using right-angle corners for internal pockets, not considering
the minimum tool radius diameter, or placing geometric features in areas not
accessible by the tools due to specific machine limitations, for instance, a limited
number of mechanical axes. The individual analysis of features of the second stage
allows comparing individual production time and costs, prompting valid alternative
and costs/benefits charts to the designer to support the decision-making process.

The formulation of DFM feedback for specific manufacturing process with standard
materials, such as metal machining, has been developed throughout decades of
applied research with an increasing crystallisation of the range of analytical
procedures available. While these could undoubtedly have a significant impact in
reducing production time and costs, the rigidity of the protocols necessary to establish
for benefitting from this approach (e.g. definition of a codified range of design
features) hinders the adoption of similar methods within design practices dealing with
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more open-ended and explorative design strategies using non-standard materials and
tool affordances.

2.2.5 Instrumental Knowledge in Design Practices

From the perspective of design practices, the early access to instrumental knowledge,
defined by Witt (2010) as an understanding of the set of procedures necessary to
operate a technological mean toward an intended outcome, through DFM feedback
represents the opportunity of linking the design and manufacturing stage within an
integrated production process. This type of knowledge enables the creation of
“systems of interrelated technologies intended to facilitate the aims of design” and its
encapsulation into a design/fabrication/construction system allows making it “easily
accessible, communicable, repeatable, hackable and transformable” (Witt 2010). One of
the examples he proposes, referencing Lynn (1999), is the encapsulation of calculus-
based mathematics which makes possible for designers to operate with NURBS curves
in a 3D modelling software without really having to explicitly acquire that type of
mathematical understanding.

The integration of knowledge within an interface allows the designer/user to
continuously query it and have in return a validated design simulation directly
informed by operative constraints encapsulated in the tool itself. Access to knowledge
does not necessarily imply an understanding of it by the final user: the knowledge
could only be possessed by the tool-maker, e.g. the software developer, yet support
any design endeavour if appropriately integrated into the tools available to the
designer. Eventually, as discussed in Chapter 6, neither the tool-maker and designer-
user might have a full understanding of the instrumental knowledge made available
as this can be captured, transferred, augmented and integrated without necessarily
becoming fully explicit during any step of the process.

2.3 Learning Systems

2.3.1 Machine Learning in Manufacturing

One of the key challenges in manufacturing today is the management of risks due to
the increasing complexity of technical aspects of production, processes organisation
and business logistics (Wiendahl and Scholtissek, 1994). The acquisition of a large
amount of data for monitoring, diagnostic, scheduling and optimisation of the
production process has been increasingly adopted as one of the most compelling
strategies to mitigate such risks (Monostori, 2002; Harding, Shahbaz and Kusiak, 2006;
Larose and Larose, 2014).

As manufacturing environments produces data in large amounts and different
varieties, one of the inherent challenges of such a strategy is the ability and capacity
of collecting, storing, parsing and ultimately making sense of such high load of
information (Monostori, Markus, Van Brussel, and Westkampfer, 1996; Wuest et al.,
2016).

The development of automation at an information level, such as Computer
Numerically Controlled (CNC) systems, made possible to increase the efficiency of
manufacturing processes, however, as discussed by Lu (1990), the necessary next step
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of automation development should concern the knowledge level, where
computational processes, supported by a large amount of data collected, will be used
to “improve productivity of critical decision-making tasks in design and manufacturing”.
The transition from information-intensive to knowledge-intensive systems implies the
development of technologies which not only generate and retrieve information but
also synthesise knowledge and its integration to support decision-making procedures.

One of the key requirements for the synthesis of knowledge is the ability to continually
adapt and reconfigure based on collected data to face the constantly evolving and
rapidly changing condition of contemporary manufacturing environments. The
definition of learning systems given by Simon (1983) addresses this specific
requirement: “Learning denotes changes in the system that is adaptive in the sense that
they enable the system to do the same task or tasks drawn from the same population more
effectively the next time”. As argued by Winston (1980), the adaptability of learning
systems is achieved through the creation of mental models which are gradually
improved through observation and experience to generate an understanding of the
environment which directly determines individual performances.

Machine Learning (ML) models have emerged as promising candidates to achieve the
transition from information-intense to knowledge-intense systems in manufacturing
(Whitehall and Lu, 1991; Monostori, 2002; Hansson et al.,, 2016). ML consists in
programming computational models to achieve an assigned task based on the
collection of data and past experiences (Alpaydin, 2014). The advantage of using such
an approach in manufacturing is the ability of such systems to find “highly complex and
non-linear patterns in data of different types and sources and transform raw data to
features spaces, so-called models, which are then applied for prediction, detection,
classification, regression, or forecasting” (Lu, 1990). In this way, it is possible to identify
implicit relationships within the dataset and access previously unavailable sources of
knowledge.

Inductive learning, based on the generation of generalised statements out of many
examples provided to the system (Duffy, 1997), is particularly suited for all those tasks
which are data-rich but knowledge-sparse, as usually it is the case for problems in
engineering and manufacturing. Such an approach seeks to fill in the gaps of a specific
knowledge domain and is compared by Lu (1990) to the synthesis task that engineers
perform within decision-making processes. Michalski (1983) argues that a promising
application of inductive learning is for the refinement of knowledge bases initially
developed by human experts, where it could be used to “detect and rectify
inconsistencies, to remove redundancies, to cover gaps, and to simplify expert-derived
decision rules" (Michalski, 1983).

One of the advantage of synthesising knowledge from manufacturing applications is
that most of the collected data in production environment is already structured and
labelled, which makes it suitable for a type of inductive learning defined as
“supervised”, where the model learns “from examples provided by a knowledgeable
supervisor” (Sutton and Barto, 2014) who provides, during the training, the pairing
between input and output data. One of the most popular categories of models for
supervised learning in manufacturing is called Artificial Neural Network (ANN) (Zhang
and Huang, 1995; Monostori, 2002).
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In the next section is presented a review of the advantages and disadvantages of ANNs
in manufacturing applications through a series of case studies while a technical
description of the algorithm is presented later in Chapter 4 to provide the reader with
a more in-depth understanding of the learning mechanisms applied during the
training workflow for robotic carving operations.

2.3.2 Applications in Subtractive Fabrication Strategies

One of the main challenges presented by subtractive processes, especially in metals
machining, is the difficulty of creating a simulation framework that would make
possible to increase the amount of control over a broad and diverse range of
production techniques. In these regards, the main risk of using an analytical approach
is using sets of simplified assumptions which are not able to fully describe the
interplay of different factors involved in the production, rendering it unusable for real-
world applications. Luttervelt et al. (1998) argue that the only viable method to
modelling is to adopt an empirical approach based on the collection of qualitative (e.g.
machinist domain knowledge) and quantitative information (e.g. fabrication
parameters data) during the performing of the machining process.

While statistical regression techniques are widely used in the field of manufacturing,
the key advantage of ANNs for subtractive applications is their ability of identifying
complex non-linear relationship and patterns among large quantities of collected
data, resulting in a significant improvement in the prediction accuracy rate of
production parameters and qualities (Tsai, Chen and Lou, 1999). Another advantage
of using ANNs is that the training does not require any preliminary assumption about
the process or mechanism sought to be modelled and it is possible to expand the
model, for instance with additional input parameters or collecting larger experimental
datasets, without altering the structure of the model itself (Zain, Haron and Sharif,
2009).

Several studies have collated and compared ANNs applications for metal machining
tasks, providing an understanding of the modelling strategies adopted across the
industry (Pontes et al. 2010; Razak et al., 2010; Al-Zubaidi, Ghani and Haron, 2011). The
main variables sought to be predicted are i) surface roughness, ii) tool wear, iii)
cutting force and iv) material removal rate. The main features used in literature to
predict those variables are a) cutting speed, b) feed, c) depth of cut (Fig. 2.17).

These factors affect significantly the efficiency of the production process as they
concern either the quality of the final product or the monitoring of the machine and
tools used. The predictors, namely the fabrication parameters used for the prediction,
are strictly dependent on the task, as their relevance might vary according to different
techniques. Nevertheless, parameters such as cutting speed, feedrate, depth of cut
are taken into consideration in most of the applications.
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Figure 2.17 “Nature of predictors employed in model building” - Source: Pontes et al.,

2010.

Other relevant parameters are related to specific sensor devices, such as vibration
signature or cutting force components, or physical components and properties, such
as material and size of the cutting tool, workpiece hardness and lubrication condition.
While in the considered machining tasks the workpiece is devised as a homogenous
block of matter, also reflected in the parameters chosen to describe each individual
task (Fig. 2.17), this research proposes to include material-specific parameters that
could describe the heterogeneous nature of the material and its impact on the
fabrication process. According to the survey conducted by Pontes et al. (2010) on ANN-
based strategy for machining applications, the development of the model is generally

structured in 5 stages (Fig. 2.18):
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Figure 2.18 “Forecasting process” - Source: Pontes et al., 2010 (adapted from Montgomery

et al.2008)

1)

Problem Definition: Specification of the variable to predict, the predictors,
namely the independent variable used for the prediction, and definition of the

intended use of the trained model in the production environment.

2)

the subtractive operation.

3)
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Data Collection: Definition of the techniques and devices (e.g. force-torque
sensors, laser scanner) used to collect meaningful data for the description of

Data Analysis: Series of processing steps to transform the collected data into
useable information for the training process.




4) Model Selection and Training: Definition of the model topology (e.g. the
number of layers and neurons), parameters and training process.

5) Model Validation: Application of the trained model to predict a series of new
cases, excluded from the training, to provide a performance measure and
assess its quality.

For instance, surface roughness is one of the parameters affecting the most
manufacturing costs as it directly determines not only the aesthetic quality but also
several mechanical properties such as friction ratio or resistance to corrosion (Stark
and Moon, 1999). Bernardos and Vosniakos (2002) have identified the series of
parameters which affects the surface quality (Fig. 2.19) and used them for its
prediction for face milling operations on aluminium.
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Figure 2.19 “Fishbone diagram with the parameters that affect surface roughness” -
Source: Bernardos and Vosniakos, 2012.

A further set of applications of ANNs in subtractive strategies is focused on the
prediction of manufacturing conditions for diagnostic and maintenance purposes. The
prediction is structured as a binary classification task which aims to predict whether a
specific event would occur given an input set of conditions such as fabrication
parameters and relevant status descriptors. ANNs models have been applied in
several studies (Li and Elbestawi, 1996; Chen and Jen, 2000; Dimla Sr. and Lister, 2000;
Balazinski et al., 2002) to predict with high accuracy the status of the tool (i.e. wear
level measure) and whether it would break during the machining operation.

Together with the several advantages of ANNs described above, Zain, Haron and
Sharif (2009) argues that the main limitation of such modelling approach for
machining applications consist in the necessary collection of empirical data which
could be costly and time-consuming as the amount of data provided to the system
directly affect the prediction performances. Furthermore, as ANNs are based on
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stochastic procedures, the repeatability of the training parameters across different
version of the model is not assured.

2.3.3 Machine Learning as Design Tool

In machining applications, machine learning models are used for the optimisation of
task to reduce costs and time, and it involves the fine-tuning of production parameters
or physical configurations of the machine, the cutting tool or blank of material. As such
process takes place only at the fabrication stage, the solution proposed by the trained
system never involves alterations of the design of the object to be manufactured,
significantly limiting the range of solutions available. Nevertheless, since the synthesis
of design solutions directly depends on the knowledge of the designer, it would be
beneficial to support crucial early-stage design decisions with an automated system
that can provide knowledge acquired through induction from previous examples
relevant for the specific task (Potter et al., 2011).

As already argued by Negroponte (1975), learning systems could have a significant
impact if integrated within the design process as designers, especially architects,
cannot handle large-scale problems because too complex or small-scale ones as they
are too individual and specific. As such systems could gain experience over time, the
aspiration is to establish a dialogue and partnership between two intelligent systems,
the learning machine and the human designer:

“Imagine a machine that can follow your design methodology and at the same time
discern and assimilate your conversational idiosyncrasy. The same machine, after
observing your behavior, could build a predictive model of your conversational
performance. Such a machine could then reinforce the dialogue by using a
predictive model to respond to you in a manner that is in rhythm with your
personal behavior and conversational idiosyncrasies.”

— Nicholas Negroponte, 1970.

With the greater availability of data and computational power, machine learning
models are becoming increasingly integrated within design-to-manufacturing
workflow as they can provide precious insight on the overall process and guide the
exploration of solutions, otherwise unavailable, through the simulation of scenarios
based on different type of analysis such as structural, environmental, functional or
material-based considerations.

According to Duffy (1997), a design system not able to learn provide a static source of
knowledge to the designer which is destined to become obsolete if not continuously
updated by further knowledge and identifies machine learning as an effective strategy
to aid the synthesis of design solutions and provide guidance supported by relevant
domain expertise.

Hanna (2007) utilises inductive machine learning (i.e. Support Vector Machine) to
optimise the design of modular lattice structures to evaluate decisions based on a
structural performance analysis of previously generated structural examples, deriving
a function that directly maps between an assigned load condition and an optimal
lattice configuration. Using a similar approach, Wilkinson, Bradbury and Hanna (2014)
presented a method to approximate wind pressure on tall buildings based on local
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geometric features for generative design explorations and optimisation (Fig. 2.20). The
machine learning model (i.e. ANN) has been trained using a large dataset of
computational fluid dynamics data generated with the analysis of 600 procedurally
generated tall buildings.

For both studies, the key advantage of such an approach is the significantly increase
in computational speed in comparison to time-consuming physics-based simulation
models. This allows the integration of the trained system within a design workflow for
the rapid evaluation of multiple solutions supported by structural or environmental
considerations. The drawback of spending time in generating the initial training
dataset is justified for those cases where similar optimisation tasks are required for
several design instances and the trained system could be utilised multiple times,
guiding each design iteration.
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Figure 2.20 “Case 1 - (left) simulation; (centre) prediction; (right) error” - Source:
Wilkinson, Bradbury and Hanna, 2014.

ML models, such as Self-Organising Maps (SOM), have also been integrated within
design-to-manufacturing workflow for their ability to convert high-dimensional data
to a lower-dimensional space. In this way, designers can systematically explore
solutions entailing a combination of several parameters conveniently arranged in a 2-
dimensional space (Harding, 2016).

Simulation of material behaviour based on heuristics is one key advantage for
designer dealing with techniques and materials which have not been formalised at an
industrial level or whose behaviour is too complex to be modelled with an analytical,
rule-based, approach. Zwierzycki, Nicholas and Ramsgaard Thomsen (2018) proposes
the use of a supervised machine learning model (i.e. ANN) to predict the spring-back
of thin metal sheets in robotic incremental forming processes. The learning process
maps between local geometric features of size 5x5 ¢cm encoded as 2-dimensional
image-based heightfield (10x10 pixels), together with distance value from the
supporting frame, and the depth value of each incrementally-formed point of the
panel, acquired via 3d scanning. Such mapping aims to provide a simulation tool
evaluating how the material behaviour is influenced by shape-based features and
compensating the fabrication process to obtain a product closer to the original design
intention described in the digital model (Fig. 2.217).
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Figure 2.21 “The comparison of different input-output training sets and the achieved
accuracy. Top row “forward” prediction, bottom row “reversed” prediction” - Source:
Zwierzycki, Nicholas and Ramsgaard Thomsen, 2018.

2.4 Summary

The increasing integration of digital fabrication technologies within design practices is
challenging the separation between design and making in current production
workflows. A new sensibility toward materials and tool technologies have become a
central part of the architectural discourse where designers are asked to envision
performance-driven processes bridging between the digital and physical realms
rather than focusing on the creation of static forms. Simulation tools and robotic
fabrication technologies are regarded as enabling frameworks to establish
information feedback loops driving the design and making of artefacts. Moving
beyond the hylomorphic models requires the development of interfaces which enable
designers to seamlessly engage with production processes, providing instrumental
knowledge at an early design stage to explore novel solutions based on tools and
material affordances.

The degree to which such a knowledge integration is possible, specifically for carving
operations on timber, is central to Hypothesis A and B and it has been addressed in
the literature review analysing and comparing different strategies from the
manufacturing industry, traditional crafts and design practices.

In human making, the design of an artefact evolves through direct engagement with
the process and is driven by individual sensibility, experience and knowledge. The
“design through making” (Ingold, 2013) approach at the foundation of traditional crafts
practices based on what Sennett (2008) describes as “a dialogue between concrete
practices and thinking”, provides a compelling alternative to the notation-based
paradigm defining the current separation between design and making in design
practices. In the field of manufacturing, the automation of fabrication processes based
on the integration of human knowledge, both tacit and explicit, has proved to be an
efficient method for its applicability to a large variety of non-trivial tasks which
requires a combination of dexterity, high-level understanding of the process and
constant adjustments based on sensor feedback.

57



The development of sensor devices to record and reconstruct manufacturing tasks
has led to the adoption of machine learning models able to synthesise and integrate
knowledge to support decision-making procedures based on the processing of large
datasets. Artificial Neural Networks (ANN) have been identified as particularly suited
to address this task because of their ability to identify complex non-linear patterns
among large quantities of data, enabling the optimisation of individual fabrication
parameters in relation to the physical output of the task, increasing the overall
efficiency of the production process. While most of machine learning applications in
the field of subtractive manufacturing processing are related to metal machining
tasks, in which the material is considered as homogeneous, there is a lack of
precedence concerning natural materials such as timber. The inclusion of material-
specific parameters that could describe the heterogeneous nature of the material and
anticipate its impact on the fabrication process appears as a valuable approach to
reduce the variance of the fabrication outcomes and develop a design-to-production
system whose training and performance are tested in the following chapters.

From the designer’s point of view, which is the perspective adopted for Hypothesis C,
the encapsulation of manufacturing knowledge within a design engineering interface
enables better-informed decision making and provides direct feedback at an early
stage about the manufacturability of a part based on time, costs and functional
parameters. The creation of knowledge bases from human expertise and
manufacturing data accumulated over decades of developments made possible
defining precise, rule-based, analytical models for a range of subtractive
manufacturing techniques. However, currently available CAPP interfaces present two
main disadvantages: i) The manufacturability evaluation of components forces
industrial designers to work within a highly-constrained environment based on the
identification and creation of a limited set of geometric features which could be then
easily translated for the generation of machine’s instruction. ii) The design and making
processes are still considered within a linear workflow, restricting the availability of
knowledge to a limited range of highly codified techniques and industrially-graded
homogenous materials which directly hinders the exploration of novel design
solutions. While the knowledge integrated in these tools is limited and destined to
become obsolete if not continuously updated, the integration of machine learning
models as part of design processes represents a promising strategy increasingly
adopted in the design industry to flexibly extend the range of design solutions
available and support their synthesis supported by relevant domain expertise,
potentially based on fabrication and material considerations.
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3 Knowledge Acquisition

The core of the research, structured around the three hypotheses presented in
Chapter 1, is concerned with the acquisition of data (Chapter 3) for the synthesis of
material and instrumental knowledge (Chapter 4) to be integrated at an early stage
of design-to-manufacturing workflows (Chapter 5). Such knowledge base directly
supports decision-making procedures which could have a significant impact if
considered from the beginning of the design process. These evaluations concern the
affordances provided by specific sets of fabrication tools and material systems and
their influence on the original design intention expressed through a digital notation
before the fabrication stage.

This chapter addresses Hypothesis A, claiming that the heterogeneous qualities of
materials such as timber substantially affect the outcome of operations performed with
different carving tools, hindering their utilisation within current design workflows. The
focus of the chapter is on the first stage of the training workflow which concerns the
acquisition of real-world fabrication and material data collected through different
sensor devices, its subsequent processing and storing into a library of fabrication
datasets. Two different data acquisition methods, based on human demonstration
and robotic recording, are presented and compared to identify how these differently
affect the overall training process. Finally, the extent to which the material variance of
timber affects the carving operations is assessed through a series of recording
sessions based on a Design of Experiment (DOE) strategy which is a statistically valid
method to efficiently investigate which combinations of factors and their respective
values (or levels) generate variations in the collected information.

3.1 Training Workflow and Instrumentation

The design-to-manufacturing workflow developed in the research specifically
addressed subtractive fabrication tasks performed on timber, a highly heterogeneous
composite material, with different sets of carving tools such as chisels and gouges.
Such operations require a high-level understanding of the complex interaction
between the fabrication tool and the local properties of the material being cut. Given
the high variance in the outcomes determined by the combination of multiple timber
properties, species and carving techniques, there is not a comprehensive analytical
model able to provide an accurate simulation of such family of subtractive operations.

Rather than proposing a universal simulation model, this thesis sought to establish a
flexible workflow to train a design system towards a specific set of fabrication
affordances through the collection of real-world sensor data based on the constraints
and resources available. The developed strategy aims to capture, transfer, augment
and integrate the instrumental knowledge necessary to perform those tasks into a
design-to-manufacturing interface, enabling its access to designers without prior
understanding of manufacturing processes or material behaviours.

The access to such knowledge extends the range of tools and manufacturing methods
available to designers for the exploration of previously unavailable design solutions.
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Furthermore, the lack of precedence in robotic manufacturing for the examined
carving techniques made possible to radically reconsider from first principles how
fabrication systems could be trained to perform operations which are not part of
standard manufacturing environments.

The training process is based on a sequence of three main stages (Fig. 3.1):

Recording: The acquisition of fabrication data is structured through a series
of carving sessions aimed to collect into a dataset the combination of
fabrication parameters driving the carving operation (i.e. Tool/Surface Angle,
Tool/Grain Direction Angle, Force Feedback, Input Cut Length, Input Cut
Depth) and pair them with their respective outcomes measured as the Actual
Length, Width, Depth of the cut and Total Removal Volume. Such information
is captured, both in real-time and at a later stage, using an array of motion
capture cameras (MOCAP) to track the position and orientation of the carving
tools, a force feedback sensor to measure the intensity of the force applied by
the craftsman and 3D photogrammetric techniques to reconstruct in a highly
detailed mesh geometry the result obtained by the carving operations.

Learning: The collected datasets are used to train a supervised machine
learning model, i.e. Artificial Neural Network (ANN), whose main learning
objective is to predict the geometric outcome of a subtractive operation from
a user-defined toolpath and the series of fabrication parameters described
above, or conversely, generate a robotic toolpath out of a digitally carved
geometry. Each robotic toolpath is a sequence of target frames which defines
the position and orientation of the carving gouge along the cut. Given a
sequence of target frames, the trained ANN predicts at each frame the
geometric output parameters of the cut (i.e. Length, Width, Depth) considering
the influence of material properties determined by differences in wood
species (i.e. grain arrangement and density) and resulting angle of the carving
operation with the principal grain direction.

Fabrication: The trained ANN represents a package of instrumental
knowledge that can be transferred, re-used, extended and, most importantly,
integrated within an interface to digitally evaluate multiple design solutions
informed by tools and material properties before moving to the production
stage. The chosen design solution, once robotically fabricated, is assessed
through a deviation analysis which compares it to the predicted simulation.

The training workflow should not be considered as a linear progression from the
recording to the fabrication stage but rather as a knowledge platform that can
continuously be remodelled through several cycles with new fabrication data, further
trained to improve its prediction performance and applied to different sets of design

tasks.
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3.1.1 Industrial Robotic Arm and Carving End Effector

The main element of the manufacturing system is a 6-axis industrial robotic arm, an
ABB IRB1600/1.45 model which has been used both for the several training sessions
and following industry secondments projects.

The robotic arm is considered as part of the medium-small category for industrial
actuators with a working range, described as a spherical envelope, of radius 1450 mm
(Fig. 3.2) and payload, i.e. how much the robot can carry without losing in accuracy or
speed, of 10 kg. The system is composed of three main components: the industrial
robotic arm, the teaching pendant, through which the user can interact with the
system, and the controller itself, which is the computer that runs the system. The
robotic arms run programs written in RAPID, ABB proprietary language. The ABB
controller version is 5.0.

IRB 1600-6/1.45

Axis movement Working range Axis max speed
1786 Axis 1 +180° to -180° 180°/s
Axis 2 +150° to -90° 180°/s
Axis 3 +65° to -245° 185°/s
Axis 4 +200° to -200° def.  385°/s
+/-190° revolution
1114 Axis 5 +400° to -400° def.  400°/s
Axis 6 +/-288 revolution 460°/s

720

1150 L 1450

Figure 3.2 ABB IRB 1600 Working Range - Source: ABB, Product Specification - IRB
1600/1660 Manual, 2019.

An end effector, or End-of-Arm Tooling (EOAT), is the device attached at the end of the
industrial robotic arm used to perform actions and interact with the fabrication
environment. Since traditional carving tools have been excluded from standard
industrial fabrication environments, it has been necessary to develop a custom end-
effector to use such a toolset within a robotic manufacturing process. The main
component of the end effector is an electric reciprocating carving tool developed by a
third-party company and mostly used by human craftsman to perform more
efficiently carving operations, reducing the daily work fatigue and obtaining more
consistent results. The motor powering the tool is a single-phase electric motor which
generates a power of 0.25 kW. The main advantages of including such mechanism are:
i) Increase of speed and consistency of the cut, ii) Possibility of easily swapping
different chisels and gouges with their standard fit, iii) The reciprocating mechanism
works in relation to the material resistance, providing higher frequency vibration with
harder type of wood, and lower frequency with softer ones.

The main body of the reciprocating tool is inserted into a mounting fixture which does
not allow any translation. The carving gouge is mounted on a cart that can slide linearly
on a rail to maintain intact the reciprocating function (Fig. 3.3). As more resistance is
found during the cut, the more the carving gouge slide back into the electric tool and
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more current is drawn to generate higher frequency vibrations, allowing the cutting
operation to be performed more smoothly.

The gouges and chisels utilised in the experiments are standard traditional carving
tools made by Stubai, an Austrian tooling company, used by human craftsman and
fitted with a custom handle adaptor to insert them in the electric tool (Fig. 3.4).

Top View

. — Mounting Plate
¥ Robotic Flange Connector

Figure 3.3 Robotic Carving Effector - Diagram.

Figure 3.4 Robotic Carving Effector.

63



3.1.2 Sensing Systems

Testing Hypothesis A implies identifying those parameters (e.g. the angle between the
grain direction and the tool's cutting edge) which affect the operation outcome and
measuring whether such a variance is so significant to hinder the design process. To
achieve this, in the recording stage a series of methods have been tested with the aim
of collecting a sufficiently large and comprehensive amount of data which is necessary
to describe the observed fabrication task and its respective outcome.

Such a task presents a series of methodological challenges that need to be addressed
in the definition of the sensing strategy as they might prevent the collection of
statistically valid information necessary to support or refute what is claimed in the first
hypothesis of this research:

- Noise: Data collected from physical environments, such as manufacturing
settings, are extremely noisy, namely, they carry a large amount of
meaningless information. If the noise is higher than the signal generated by
the sensors, the collected data are unusable.

- Relevance: |dentification of the relevant parameters necessary to reconstruct
the fabrication process. While collecting the largest as possible amount of data
is theoretically advisable, as even secondary conditions could play a role in the
system being recorded, limited time and resources required to estimate the
“vital-few" parameters which most significantly affect the outcome of the task
and discard the “trivial-many” (i.e. Pareto Principle). In this regard, previous
knowledge of the fabrication task might lead to a biased selection and this
could be mitigated through careful planning the design of the experiment,
ensuring its statistical validity.

- Scale: A manufacturing task can be analysed at different resolutions, leading
to a different description of the same process. It is necessary to define what is
the relevant scale to consider during the recording based on the type of
knowledge integration which should be made later available during the design
stage. For instance, the same carving operations could be defined as part of a
carved texture, as an individual cut or as a collection of multiple timeframes,
each with specific local parameters values.

- Time: Evaluation of the timing of the data acquisition in relation to the
performing of the operation. For instance, it might be necessary to record
tools position and trajectories in real-time simultaneously with the carving
process or limit the recording to the reconstruction of the carved outcome on
the wooden board after the task has been completed.

Based on these considerations, the devised sensing strategy for the recording of
carving operations makes use of two main scanning techniques: 1) Motion Capture
Cameras (Fig. 3.5) and 2) Photogrammetric Reconstruction (Fig. 3.6).

Motion Capture Cameras (MOCAP) is a sensor technology based on the recording of
the movement of objects in space. It has a wide variety of application in different fields
such as the movie industry, sports or computer vision for robotics. An array of
cameras arranged around a recording area are used to track with a high degree of
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precision (= 0.1 to 0.2 mm) the position of spherical reflective markers. The calibration
of the system is performed with a calibration wand which presents a cluster of
markers in a known position which is measured by the cameras while the user moves
the wand in different orientations through the recording space.

The MOCAP system used for the recording stage is composed of 6 x Flex 13 cameras
by Optitrack and their proprietary recording software Motive (v. 1.9). Each camera has
a resolution of 1.3 Megapixels, a Field-Of-View (FOV) of 56° and a record at a Frame
Rate per Second (FPS) of 120. The data is streamed in real-time from the Motive
interface to the 3D modelling design environment (Rhino3D/Grasshopper) through a
custom script component. This utilises the NatNet client/server architecture to share
motion tracking data, both as single markers and clusters (i.e. rigid bodies), to third-
party applications through a standard local network interface.

Photogrammetry reconstruction technique consists in reconstructing 3D objects
based on a collection of photographs of the same object taken from different points
of view. The reconstruction accuracy depends on the circumstances of the captured
images and the object itself. The collection of pictures was taken with a Sony Alpha
6000 camera and was processed for compensating any lens distortion. For each
board, a collection of about 100 pictures was generated with each picture shoot from
30 to 50 cm in a controlled light environment. The reconstruction was performed with
the software Recap Photo by Autodesk which has the advantage of running the
computation on its cloud-based service rather than relying on the local hardware
specifications. This reduced the processing time to a range between 30 to 60 min with
the final output consisting of highly detailed textured meshes. The reconstruction
process does not provide an indication of the actual dimensions, therefore, it has been
necessary to scale the resulting mesh according to manual measurements of the
physical board to obtain a reconstruction with the correct size.

Figure 3.5 Motion capture cameras used in the Recording stage to track the tools and
reconstruct the carving operation.
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Figure 3.6 Photogrammetric reconstruction of a robotically-carved wooden board.

3.2 Recording Stage

Knowledge acquisition is described by Lucas (1991) as the “process of collecting and
structuring knowledge in a problem domain”. The creation of a knowledge base begins
with consulting multiple knowledge sources such as human experts, textbooks, and
databases with the aim of gathering relevant information which can be encoded into
a valid knowledge representation.

The Recording stage is the first part of the workflow addressed in the thesis as it
focuses on the collection of real-world fabrication data which will be used to
synthesise and integrate the instrumental and material knowledge necessary to
perform carving operations on timber.

To achieve this, two different knowledge sources are considered for the data
collection: i) Carving demonstrations performed by human experts, ii) Structured
robotic carving session.

At this stage, the selection of materials and carving tools has significant implications
over the use of the trained simulation interface in terms of solution space available to
the designer. These will be discussed in detail in Chapter 5 through a series of design
case studies.

The chosen medium to collect fabrication data has been a series of wooden boards
carved with a set of carving gouges. In each dataset are stored the cuts obtained with
one carving tool on the same wood species and fabricated during the same session.
The boards have a uniform size of 300x250 mm and both sides have been used. Each
side counts between 20 to 35 operations, depending on the different configurations
of fabrication parameters. Several training boards are used in one recording session,
generating a collection of cuts between 180 and 300 samples.

One of the key steps in the data acquisition is the abstraction of the carving outcomes
into a series of quantifiable measures which could be used to describe the selected
family of subtractive fabrication operations. The photogrammetric reconstruction of
the training boards makes it possible to store and analyse the outcome of each
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operation which is decomposed in its main geometrical components and
subsequently processed into a series of features information to be used in the
Learning stage. The selected measures are the depth, width, length of the cut and the
estimation of the total removal volume.

The operations have been analysed at two different scales, each providing a different
description of the process and respective different type of datasets. In the first
recording strategy, individual operations have been decomposed in a sequence of
keyframes of fixed number with each attached a set of fabrication information for that
specific local instance, generating a refined description of the operation and variation
of key parameters along the cut. The focus of the analysis is then shifted from the
results of the overall cut to the changes between each keyframe. At the same time,
global measures could be derived from local information considering the whole
sequence, for instance, the sum of length measurements for each frame could be
used to obtain the total length of the cut. The second approach focuses specifically at
this global scale with every single cut considered as the result of a single operation
and described with global descriptors such as maximum depth or width of the cut,
total length or feed rate. Different dataset resolutions of the same operations allow
setting up a combination of predictive processes, presented in the next chapter, to
significantly increase the efficiency of the overall fabrication task.

For the robot-based dataset, it is always possible to compare between digital input
and physical output and the learning objective is to define a function able to map
between the two with a reasonable degree of error. For the human-based dataset,
however, it is not possible to compare between the two, as the cognitive functions that
drive the action of the human reside inside the brain. What it is possible to capture
then, it is not the design intention itself but rather what are the effect of such on the
fabrication parameters, or features, devised to describe the carving process. For this
reason, the recording of skilled human demonstration requires a different approach
which aims to devise, from the accurate photogrammetric description of the cuts, how
the skilled craftsman physically steered the tools to obtain that specific result.

To achieve this, human-based recording requires a more complex sensing strategy in
which data are collected both simultaneously to the carving operation with MOCAP
and at a later stage through photogrammetric reconstruction. At the same time, robot-
based recording sessions, which are technically more straightforward to implement,
are presented with the challenge of capturing instrumental knowledge without a
previously formalised understanding of the task available. The definition of fabrication
parameters is then based on the indirect intuition of the programmer who does not
engage directly with the fabrication process and materials. As a result, this approach
requires a series of expensive, both in terms of resources and time, trial-and-error
sessions for parameters tuning which lead to the following considerations:

i) The parameter space necessary to consider is usually significantly large and
the relationship between fabrication parameters is not necessarily linear.
Therefore, generating a mapping of such space is either highly inefficient as it
requires time and material waste, or not comprehensive, as the data points
are too sparse to synthesise usable knowledge.
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ii) More efficient methods for parameters space explorations, such as
Reinforcement Learning (RL) strategies, are still based on physical tests with
an error-reward system which, in a manufacturing context, could lead to
dangerous situation determining the damaging of the industrial arm, the
effector or the material. The strength of the RL approach based on millions of
attempts performed in a digital environment is not applicable in this case, as
producing an accurate simulation of the carving task is the end goal of the
training process and, as such, it is not available ahead.

As time and resources for the training session are limited, it is necessary to put in
place a strategy to define a subset of the fabrication parameters space that is worth
exploring in relation to the assigned design brief. However, without an understanding
of the task based on a direct experience of the manufacturing process, the
relationship between parameters is unknown. For instance, what values should be
assigned to the Tool/Surface Angle parameters given a user-defined set of cut
lengths? How do these change from the beginning to the end of the cut? How the
depth profile of the cut should be matched accordingly?

The proposed approach is to collect this information from an initial human
demonstration of the task and combine it with a further extended robotic search of
the refined parameter space.

3.2.1 Human Expert Demonstration

The issue of exploring a large fabrication parameters space is addressed through the
discussion of the methods that enable the recording of human experts demonstrating
the fabrication task and the analysis of an example dataset.

The goal is to provide guidance for efficiently setting up the series of robotic training
sessions, narrowing down the search space through the definition of domain
boundaries for the selected features rather than arbitrarily assigning them.

Each robot operation has been defined following these steps:

i.  Definition of the position and orientation of the cut in respect to the wood
grain direction and its length. This implies arranging in the digital design
environment a series of straight lines on the reconstructed model of the
board.

ii.  From the straight line, generation of the arc describing the operation, defining
its depth.

iii.  Definition of the orientation of the tool and its variation along the cut, focusing
specifically on the angle between the cutting profile of the gouge and
workpiece surface.

While the parameters of the first point are directly defined by the user based on
geometrical considerations, e.g. number of operations that can fit on a board, the
second and third point require an operational understanding of the interaction of the
tool with the material.

The human demonstration is not intended as a definitive and extensive formalisation
of the task but rather as a safe starting point which could be used to orient the
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subsequent robotic exploration towards a more specific direction. On the other hand,
the modelling of the task based on skilled craftsmen presents two main limitations: i)
Human tacit knowledge is subjective and based on individual experience. ii) Its record
is always partial and biased by the point of view of the observer and chosen measuring
devices. Therefore, the main difference with recording a human expert in comparison
to a machine is that the cognitive intention driving the action is not measurable and
remains as part of craftsman tacit knowledge. The lack of access to such requires
measuring, instead, the action of the craftsman as she or he performs the operation
and use this as an expression of the intended action although mediated by the
physical world. For this reason, the aim of the sensing strategy is to capture in real-
time, as the craftsman carves the wooden board, all the relevant fabrication
parameters which makes it possible to create a specific carved geometry. This
information is processed and compiled simultaneously into a dataset.

The real-time updating reconstruction of the tool in the digital interface is performed
with the MOCAP through the application of 3d-printed custom markers to the carving
tool (Fig. 3.7). Through this method, it has been possible to record the cartesian
coordinates (XYZ) of the tool and its orientation along the three principal axes (ABC).
From such information is then possible to extract a series of relevant fabrication
parameters such as the angle between the tool and the carving surface or its angle in
relation to the main grain direction. As the data collected through the human
demonstration are further extended and used to guide the robotic recording sessions,
it is important that the two sets of operations are performed with the same tools and
wood species. The sensor data collected by the human are processed through a series
of steps to extract useful information that can be used to inform the subsequent
robotic training session. A demonstration of such process is presented below through
the analysis of an example dataset generated by a novice craftsman using a traditional
carving gouge on a series of lime wood boards, counting 155 operations in total.

Figure 3.7 Custom tracking markers are applied to the carving tools to reconstruct in real-
time their position and orientation in the digital recording environment.
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Besides the collection of sensor data concurrently with the actual carving session, the
training boards have also been recorded through photogrammetric reconstruction to
keep a precise measure of the outcomes of carving operations (Fig. 3.8).
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Figure 3.8 Photogrammetric reconstruction of a series of training boards carved by a
human expert.

A first step in the extraction of instrumental knowledge from the human
demonstration is the definition of the domain boundaries of the recorded fabrication
parameters values and their related distribution. This significantly narrows down the
following robotic training session to a range of parameters that are known to be
generating a successful carving operation. For instance, the values of Tool/Surface
angle at the beginning and end of the cut are contained within relatively small
domains, between 48° to 37° and 30° to 20° respectively (Fig. 3.9).
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Figure 3.9 Recorded features from the human-based carving session - Histograms.
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In the bar plots below (Fig. 3.10), the recorded operations are arranged in groups
according to the length value within intervals of 5 mm each and analysed in relation
to the respective width and depth of the cut. The analysis shows how the geometrical
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features of the cuts performed by the human are positively correlated with each other,
i.e. an increase in the length corresponds to a deeper and wider carved geometry. For
instance, longer cuts allow the tool to cut through the wooden fibres more in-depth
rather than shorter ones where the tool does not have enough space to perform the
action.
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Figure 3.10 Plots showing the correlation between the geometric features (i.e. Length,
Depth, Width) of the cuts created by the human expert.

It is important to quantify such trends in a way that, for instance, during the robotic
task, the depth of the cut that is achievable in a 8 cm long cut is not applied to one half
of the length, leading to a potentially dangerous manufacturing condition. Based on
such requirements, an arc profile was defined based on the human demonstration
data for each group length. This profile not only is important to define the advisable
maximum depth of the operation but also to define the geometric shape of the arc
itself. The final curve is based on the average of all the operations within the same,
relatively small, group, sharing similar values of length, depth and width (Fig. 3.11).

In Fig. 3.12, the entire collection of 155 operations is plotted to show the overall trend
followed by the Tool/Surface Angle parameter along the length of the cut. The dark
grey points represent the individual target frames composing an operation, a
collection of 20 units for each cut, while the red line is the 2" order polynomial
regression curve that describes the overall trend. The initial Tool/Surface Angle values
range between 48° to 37° while at the end of the cuts the values decrease between
30° to 20°. As shown in Fig. 3.13 using the same length intervals previously utilised,
shorter cuts necessarily have less space to perform such variation between the
beginning and the end of the operation, therefore, the change of the Tool/Surface
Angle parameter from one robotic target frames to another is significantly larger.
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Figure 3.11 Analysis of the depth “profile” of cuts across groups of different lengths.
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Figure 3.12 Tool/Surface Angle variation between the beginning and end of the cuts in the
human-generated dataset.
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Figure 3.13 Tool/Surface Angle variation between the beginning and end of the cuts across
groups of cuts of different lengths.

Finally, the dataset indicates that the structure of the wood grain affects the action of
the human craftsman, steering the tool differently according to the carving direction.
Cutting the wood fibres across the grain seems to afford the creation of wider and
deeper cuts in comparison to operations performed along the main grain direction
(Fig. 3.14). This is likely due to the counteracting action applied by the craftsman to
avoid the tool cutting increasingly deeper and creating long splinters when carving
along the main grain direction.
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Figure 3.14 Plots showing the correlation between the angle of the carving direction in
relation to the wood grain and the geometric features of the resulting cuts.
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3.2.2 Robotic Data Collection

The robot-based dataset stores two main categories of information: i) Digitally-
defined fabrication parameters, ii) Measures of the physical outcomes of the
operation on the material. The first is defined in the digital design environment and
recorded before the actual fabrication stage, while the second is recorded
immediately after the completion of the fabrication task. As the final goal is to map
between the original desired outcome and the actual fabricated one, there is no need
to record sensor data simultaneously with the carving operation itself.

In the digital environment, each operation is initially described as a straight line of the
desired length arranged, together with many others, on the training board. Once the
position and orientation in respect of the main grain direction, the next step consists
of assigning the desired overall length and the arc profile that will determine the depth
of the cut. Length and depth of the cut are the primary descriptors for the intended
outcome, as the width of the cut will be a function of the type of carving tool used in
relation to the previous two parameters.

The curve defining the operation is then broken down into multiple points and, for
each of those, the position and orientation that the end effector will have to follow
along the cut are defined through the generation of a plane. The main parameter is
represented by the definition of the angle between the tool and the material surface
and how this changes along the cut. Each plane is transformed into a robotic target
frame defined by the 6-dimensional vector {X, Y, Z, A, B, C} defining position and
orientation of the end effector based on the assigned robotic coordinates system. An
ordered collection of robotic target frames fully describes the robotic task for each
carving operation (Fig. 3.15).
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Figure 3.15 Robotic operations are defined digitally through a sequence of target frames
storing local fabrication parameters and geometric features of the resulting cut.

After the fabrication stage, the outcome generated by the robotic carving operation is
measured digitally through the photogrammetric reconstruction of the training board.
Each mesh is segmented down into the single operation and the curve defining the
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cut is reconstructed. As for the digital input, the output curve is subdivided into a
collection of equally spaced planes to extract local information about the length, depth
and width of the cut for each frame. As the number of frames is the same between
the input and output curves, it is then possible to compare the two sets and
understand the influence of the fabrication process on the original digital design and,
ideally, adjust the process accordingly to the correct combination of fabrication
parameters.

3.2.3 Tolerance Threshold

In CNC metal machining, geometric tolerances are essential information necessary for
the manufacturing of any mechanical part as they determine the time and resource
necessary to complete the production cycle. Different levels of precision are required
according to the industry, application, material and manufacturing technique as
specified through internationally-accepted tolerance grades (i.e. ISO 2768).

The definition of tolerance in timber manufacturing is more challenging, at least at the
level of precision of metal machining, and there is no universally accepted
specification of tolerance grades across the industry. The main difficulty is due to its
inherent variance as a natural material across different species, geographical areas,
environmental conditions and unique individual features. Furthermore, the material
shows a complex behaviour of shrinkage and expansion based on its moisture
content, increasing the difficulty of measuring the precision of individual features as
they go through constant geometrical deformation.

Nevertheless, for specific categories of engineered timber products, it has been
possible in some countries to adopt a standard code defining a precision threshold
necessary to maintain for a given use. For timber elements used for structural
applications in the UK, for instance, there are permissible cross-sectional deviations
(detailed in BS EN 336:2013) that need to be respected in construction projects (e.g.
for sections of machined timber with side length < 100 mm, the accepted tolerance is
+ 1mm, while for side length > 100 mm, the tolerance is = 1.5 mm).

While the use of engineered timber partially mitigates the issue of dimensional
consistency, the definition of tolerances level for solid timber in its natural state is
more challenging due to its variability. Craftsmen know how to deal with its
heterogeneous properties and complex behaviour through years of experience and
learn how to steer their action in relation to the affordances provided by the material
to achieve the desired level of precision.

For this reason, it is important to define from the beginning the threshold within which
this variance due to timber heterogeneous properties is acceptable in respect of the
chosen resolution for the design process, mostly depending on the function and field
of application of the artefact being produced. For instance, timber joinery in a
furniture piece would require a higher level of precision (with tolerance around + 1
mm), while particular surface textures might require lower tolerances (+ 2-5 mm).
Besides its function, there is another critical aspect to consider in the definition of the
desired tolerance threshold: the deviation error between the prescribed digital model
(or as if it were manufactured on a completely homogeneous, dull, material) as
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prescribed by the designer and the fabricated outcome on that specific piece of
timber.

In the context of this chapter, in which are considered only individual carving
operations producing a linear cut, a deviation of 5 mm on a 20 mm length cut is more
significant than the same deviation on a cut with length 50 mm, as it would represent
a deviation of 25% against 10% between the digital notation and physical outcome.
For this reason, the analysis of the fabricated cuts is measured against a threshold
based on a percentage measure between deviation and total size of the feature (e.g.
Length, Depth, Width of the cut). The variance measure in the next section has been
conducted against different tolerance thresholds of 2%, 5% and 10%. Such a measure,
together with the functional requirements determined by the specific application of
the produced artefacts, should provide designers with a valuable indication, only
partially subject to personal judgement, on what is the precision level required to
engage with the design process.

3.3 Design of Experiments

The central assumption, claimed in Hypothesis A, at the base of this research is that
properties of timber, such as grain density and direction, substantially affect the
interaction of the carving tool with the material and produce a variance in the
fabrication outcome.

For this reason, it is necessary to identify a) whether such variance occurs across
different material conditions and to what extent, b) what are the relevant parameters
that determine such variations, €) how the recording sessions should be structured to
efficiently acquire data with the recording methods previously described, d) whether
the variance level is suitable for design purposes based on an accepted tolerance
threshold.

To achieve this, it has been necessary to establish an initial set of experiments aimed
to collect robotic fabrication data performing a range of carving operations with
different configurations of fabrication parameters and material conditions. The
methodology used to perform these is described as Design-Of-Experiments (DOE) which
is “the name given to the techniques used for guiding the choice of the experiments to be
performed in an efficient way” to test the hypothesis and explain the sources of
variation in the collected information (Cavazzuti, 2013). According to the survey on the
application of ANNs in subtractive fabrication process by Pontes et al. (2010), over one-
third of the examined studies made use of DOE methods to build the Training dataset.

One common approach in the manufacturing industry is to perform a set of
experiments where only one factor is changed at a time (OFAT) with all the other
variables fixed. While such method is relatively easy to perform, it presents the main
disadvantage of failing to consider the interaction between factors, namely “the failure
of one factor to produce the same effect on the response at different levels of another
factor” (Montgomery 2017). As the thesis revolves around the interaction of the tool
with different material properties, such a strategy is inadequate to understand the
variability involved across different fabrication tasks.
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An alternative DOE technique able to deal with multiple factors varied at the same
time is known as factorial experiments. As demonstrated by Czitrom (1999), such a
method not only makes possible to estimate the interactions between factors but it
also a) requires fewer resources (i.e. time, material, experiments), b) it is more precise
than OFAT, c) the collected experimental information concerns a larger region of the
factor space.

Full-factorial experiments consist of all the possible combinations of factors and
respective levels considered to test the hypothesis (Antony 2014). One the main risks
for these experiments is known as “combinatorial explosion” (Schuster, 2000), where
the number of combinations of parameters considered determines a level of
complexity which rapidly exceeds the resources available to address the hypothesis.
Such issue is particularly valid in the field of manufacturing, where performing
multiple production tests come with a high cost in terms of time and waste of material.

As the collection of a larger, rather than sparse, amount of fabrication data would be
beneficial for the subsequent stages of the training workflow, the strategy adopted
has been to perform a full factorial experiment set yet mitigating the risk of
combinatorial explosion through the information acquired by the human
demonstration. The advantage of using the recording of skilled human experts
performing a series of carving operation is to start the robotic experiments with an
initial understanding of the task grounded on real-world fabrication data acquired
efficiently in terms time and material resources.

For setting up such experiments, it is necessary to define which are the factors that
hypothetically determine the variations in the outcome of the fabrication task and
their respective levels, or values, which determine both the resolution and extension
of the experiments search space. The Factors-Levels combinations have been defined
based a) on the human data analysis presented in Section 3.2.1, b) the domain of
design applications of the tool once successfully trained, c) the resources available
and related costs, d) the physical constraints of the fabrication setup. This information
allowed a significant reduction of the search space considered and focus on a targeted
range of parameters and material conditions.

The selected factors and respective levels are presented below in Table 3.1. As the
chosen methodology is a Full Factorial DOE, this implies a total of 144 (i.e. 3x4x3x4)
operations to be performed by the robot, combining the variation of all level values.

TR

Wood Species 3 Tulip, Lime, Oak
Grain Direction 4 0°, 30°, 60°, 90°
Input Cut Length 3 35, 45, 55 [mm]
Tool Angle (Start) 4 25°, 30°, 35°, 40°

Table 3.1 Factors and levels examined in the Full Factorial DOE.
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The key response value measured in the experiment has been the deviation between
the Input Cut Length and the Actual Cut Length of the carved operation throughout
the different Factors-Levels. Since the experiment considers three levels for the Input
Cut Length factors, the percentage of every single deviation in relation to the
respective nominal length has been considered rather than using its absolute
measure. The deviation value = 0.0 indicates no deviation between Input and Actual,
while deviation value = 1.0 indicates a deviation corresponding to the full Input Length
of the cut. As we consider cuts with length between 35 and 55 mm, with a deviation
threshold of 10% the accepted tolerances for the cut length are between +3.5 and 5.5
mm, which it is quite high and suited to a limited number of applications, while, with
a higher threshold of 2%, the accepted tolerances range from £0.7 to £1.1 mm.

An analysis of the cut length deviation across the different combinations of factors
considered is presented below in Fig. 3.16.
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Figure 3.16 Analysis of the deviation error (%) in the length parameter of carving
operations performed with different fabrication and material configurations.

The results of the analysis indicate the following:

- Material properties such as grain arrangement and density (i.e. Wood Species)
and grain direction (i.e. Tool/Grain Angle) substantially affect the outcome of
the carving operations and determine a deviation between the intended
length of the cut and the actual physical result of the operation. In most of the
cases, the percentage deviation error goes way above even the highest
acceptable deviation threshold of 10%, with some combinations of factors (e.g.
the leftmost column in plots collection with Tool/Surface Angle = 25°) with a
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deviation error of 100% due to the failing of the operation in removing any
material.

- The influence of different material properties has different effects on the
fabrication results. For instance, the same operations (i.e. Tool Angle Start =
40°) performed in Tulip and Oak present deviation values significantly
different.

- There are sets of factors levels which determine a significantly lower cut length
deviation. For this reason, these could be considered optimal, however, in
relation to the next stages of the training workflow, this is not particularly
significant as the trained system needs to be able to predict any operation
regardless of its deviation value from its input condition.

- The Tool/Surface Angle factor has been confirmed as a key input fabrication
parameter which substantially affects the result of carving operations.

The Full-Factorial DOE supported Hypothesis A as the measured variance in robotic
carving operations with timber is above the acceptable threshold for design purposes,
even in respect to the conservative one of 10% deviation error, confirming the
necessity of developing a strategy to accurately map between the digital input and
fabrication outcome of carving operations. For each recording session, the acquisition
of fabrication data has been structured, based on the results stated above, through
sets of robotic operations.

Before the recording session, it is necessary to establish the two key meta-parameters
of the selected wood species and carving tools. Following this, the three key
parameters variated for each cut of the sessions are the Tool/Surface Angle,
Tool/Grain Angle, and the Input Cut Length. Given the importance of the first
parameters as shown by the Full Factorial experiment, this has been studied at a
greater resolution which would also be beneficial for the following learning stage of
the workflow. A typical recording session is then composed of a minimum of 180
robotic operations performed on a series of wooden boards with 4 Tool/Grain Angle,
3 Input Cut Length and 15 Tool/Surface Angle variations (i.e. 4x3x15). The operations
outcome generated by a robotic recording session performed with the described
structure is compared to the human demonstration data with the same meta-
properties in terms of wood species and tool presented in Section 3.2.1.

In Fig. 3.17 the features of length, depth and width of the carved geometries are
presented in a 3D scatter plot, where the light blue dots represent the human-based
dataset while the red dots the robotically generated cuts. The robotic search space
has been limited to the cuts between 35 to 55 mm long, so only a portion of the human
dataset presented in this section has been utilised. However, considering such a
narrow-down range made possible, in the subsequent robotic recording session, to
have a “safe” starting point from which to further explore the boundaries of the initially
defined parameters space, robotically obtaining cuts with both lower and higher
values in terms of depth and width of the cut.

The human-based demonstration provides a subset of the parameters space
determined by the understanding of both of carving tools and timber properties, and

79



past experience. The subset represents an advantageous position from which starting
the robotic training process, as all the recorded parameters set describe successful
operations, which effectively remove material without creating dangerous conditions,
potentially damaging tools and the workpiece.

Length 20\ . ’/;15’2
0 e -1~ Depth

Figure 3.17 Comparison of the geometric features of the cuts and respective distribution
between the human (blue) and robotic (red) datasets.

The robotic training sessions can then be configured towards two main directions, one
not necessarily excluding the other. On the one hand, the robot could perform an in-
depth exploration within the domain boundaries defined by the human
demonstration, changing with incremental steps individual parameters, on the other
hand, it could be directed toward extending the range of recorded operations with a
gradual exploration outside the “safe” boundaries previously defined. In the second
case, the robotically generated dataset will consist of both successful and unsuccessful
operations. The prediction of which sets of fabrication parameters will generate a
successful operation represents one of the aims of the learning methods described in
the next chapter.

3.4 Results: Summary

The results presented in this chapter demonstrate that the material variance of timber
substantially affects the outcome of carving operations above the established
threshold of acceptable tolerances, supporting the necessity of developing a strategy
to control such variance for design applications. To this purpose, the devised sensing
methods can successfully reconstruct carving operations to a degree of accuracy to
which becomes possible to record and analyse the variance occurring in their
respective outcome. The integration of an initial human demonstration of the task
with the data acquisition sessions performed with the industrial robotic arm is
particularly beneficial as it provides guidance, narrowing down the mapping of the
parameter space and avoiding dangerous or inefficient solutions. The DOE approach
made it possible to efficiently structure the data acquisition process to support
Hypothesis A and quantify the variance levels generated by different combinations
of factors. Furthermore, such understanding of the task has been applied to organise
the following robotic recording sessions through the identification of relevant
fabrication parameters (e.g. Tool/Surface Angle) and material conditions (e.g. Grain
Direction Intervals).
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4 Knowledge Synthesis

The chapter rests on the premise that the heterogeneous qualities of timber
substantially affect the outcome of carving operations, as demonstrated in the
previous chapter, and directly addresses Hypothesis B which claims that is possible
to accurately predict and control such material variance for design purposes.

The central proposition is to utilise a combination of machine learning strategies to
identify relevant correlations in the collected fabrication data and establish a
simulation model for robotic carving operations that could support early design
decisions, before the production stage. This is based on the encapsulation of
instrumental knowledge into a portable, re-usable and extendable package that can
be integrated within a design interface. Besides the validation process after the
training of each model, the discussed methods are assessed in the simulation of a
series of carving operations produced with different fabrication parameters,
measuring the deviation of the prediction from the fabricated outcomes. Following
this, a comparative analysis of multiple simulation models trained with different sets
of fabrication affordances is presented to demonstrate the versatility of the system
and its ability to model the variance determined by numerous combinations of
material properties, wood species and carving tools.

4.1 Learning Stage

The computational methods necessary for the Learning stage should not only
“generate, record and retrieve information", as accomplished with the techniques
presented in Chapter 3, “but also digest and synthesise information into knowledge and
represent this knowledge properly to support decision making” (Lu 1990). As previously
discussed (Section 2.3), machine learning models, in the specific ANNs, showed great
potential to achieve similar tasks in the manufacturing field.

The training workflow is organised and presented in two main sections (Fig 4.1): i)
Binary classification for prediction of manufacturing conditions or “events” occurring
during the robotic carving process (Section 4.2), ii) Regression-based prediction of
geometrical features of the carving operation based on a set of input fabrication
parameters (Section 4.3).

&
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INPUT ANN ANN OUTPUT
DIGITAL Fabrication Binary ) Regression Length GEOMETRY
DESIGN Parameters Classification Geometric Width PREDICTION

Filter Features Depth

EVENT LABELS
-Tool Stuck
-Material Removal
- User Preference

Figure 4.1 Integration of the trained system as part of a design workflow - Diagram.

81



4.1.1 Features

The term “feature” represents “an individual measurable property or characteristic of a
phenomenon being observed” (Bishop 2006). A set of features is described as a “feature
vector”. For each recorded subtractive operation, a features vector is extracted from
the collected sensor data and stored into a dataset for that recording session. The
same carving operation is analysed at two different scales, generating two main
categories of feature vectors stored in separate datasets:

1) Global Dataset: The carving operation is considered as one single event
defined by a set of fabrication parameters and respective outcome that these
have generated. This level of analysis is used in Section 4.2 for the binary
prediction of specific manufacturing conditions. The feature vector for the
global analysis is summarised below in Table 4.1:

e

Tool Angle - Start Degrees Fabrication Parameter
Tool Angle - End Degrees Fabrication Parameter
Grain Direction Degrees Fabrication Parameter
Input Length mm Fabrication Parameter
Input Max Depth mm Fabrication Parameter
Actual Length mm Material Outcome
Actual Max Depth mm Material Outcome
Actual End Depth mm Material Outcome
Actual Max Width mm Material Outcome
Actual Width mm Material Outcome

Table 4.1 Global Dataset - Recorded Features.

2) Local Dataset: The carving operation is subdivided into a series of
perpendicular robotic target frames arranged sequentially along the curve
defining the cut. Each frame stores local information about the fabrication
parameters and material outcomes in that instant and constitutes one entry
in the dataset. For comparability reasons, all the analysed cuts are composed
of the same number of target frames. This level of analysis is used in Section
4.3 for the prediction of the geometric features of carving operations. The
feature vector for the local analysis is summarised below in Table 4.2:

SN A - S I R

Tool/Surface Angle Degrees Fabrication Parameter
Tool/Grain Direction Angle Degrees Fabrication Parameter
Input Depth Degrees Fabrication Parameter
Input Unit Length mm Fabrication Parameter
Input Length mm Fabrication Parameter
Actual Depth mm Material Outcome
Actual Unit Length mm Material Qutcome
Actual Length mm Material Qutcome
Actual Width mm Material Qutcome

Table 4.2 Local Dataset - Recorded Features.
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Each recorded item, compiled in the described features vectors, constitutes a sample,
or entry, of the dataset. For the local level, each target frame is a sample, while for the
global level, it is the entire cut.

4.1.2 Supervised Learning Models

The collected sensor data, processed in features vectors, are used within a Supervised
Learning (SL) process, a type of machine learning task which aims to infer a function
that maps an input to an output (i.e. Y = f(X)) based on a collection of input-output
pairs data, representing the Training Data. Once the function has been learned, the
system could be used for mapping unseen new data, also called Testing Data (Russel
and Norvig, 2010).

For the predictive task examined in this chapter, the recorded features are divided
into two main groups and the final learning objective is to define a function mapping
between them: X) the digital fabrication parameters defining the robotic carving
operation and Y) the material outcomes that such parameters have generated at the
fabrication stage.

4.1.3 SL: Artificial Neural Networks

The primary SL model used for the task is a nonlinear statistical data modelling tool
called Artificial Neural Network (ANN), which, loosely inspired by its biological
equivalent, could be described as a layered and interconnected network of “neurons”
able to "process information by their dynamic state response to external inputs" (Hecht-
Nielsen, 1990).

While there are many types of ANN (e.g. Convolutional Neural Networks, Generative
Adversarial Networks, Kohonen'’s Self-Organizing Maps...), this research utilised feed-
forward Multi-Layer Perceptron (MLP) models with three different types of fully
interconnected layers (Fig. 4.2): an input layer, a number of hidden layers and an
output layer. Each layer is composed of nodes, or neurons, which accept a weighted
sum of inputs, process it through a non-linear function, e.g. sigmoid function, and pass
the result to all the nodes in the next layer. For the MLP to learn the weights necessary
for each node to compute, the training process is based on a backpropagation learning
technique. With this strategy, after randomly initialising the weights for all the nodes,
the error between the final network output to the actual target value in the training
data is calculated using a loss function after each pass. Starting from the final layer
and moving backwards, each weight's contribution to the error is calculated and
adjusted using a gradient descent algorithm.

The implementation of the MLP architecture has been performed using Keras, a high-
level neural networks APl (Application Programming Interface) that works in
combination with Tensorflow, an open-source software library for high-performance
numerical computation. Additionally, several evaluation methods and data processing
strategies have been deployed from the scikit-learn, a popular machine learning library
for the Python programming language.
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Figure 4.2 Artificial Neural Network Topology - Diagram.

The term hyperparameter indicates all those parameters which are defined before the
actual learning process and which defines the behaviour of the model itself. The
primary hyperparameters which are going to be considered in the next sections are
the following:

¢ Loss Function: The function responsible for computing the error between the
ANN output and the actual target stored in the Training Data (e.g. Mean
Squared Error).

¢ Activation Function: The non-linear function responsible for computing each
node’s output based on the received weighted sums of inputs (e.g. Sigmoid
function)

e Epochs: Defines the number of times that the learning process will pass
through the entire training dataset.

e Batch Size: Defines the number of training samples shown to the network
during one pass.

4.1.4 Validation Method

The main strategy adopted for testing the performance of the trained model is the
Train/Test Split Validation, or Hold-out (Reich and Barai, 1999), method in which the
dataset is split into two subsets, defined as training and testing dataset according to a
ratio where usually the former is significantly larger (generally more than 2/3 of the
total dataset). The training dataset is used to train the model, while the testing dataset
is used to evaluate its performance. To obtain a visual understanding of the predictive
abilities of the model, the predicted values are plotted against the real ones. With a
perfect predictor, all the points would be arranged along the 45 ° inclined bisecting
line of the plot. Plotting the training history of the model with its performance score
after each epoch makes it possible to understand how well the model can generalise
and whether over/under-fitting is occurring at a specific stage of the training.
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4.2 Manufacturing Events Prediction

Predicting the occurrence of a specific manufacturing event (e.g. whether a cut is
successful or not) given a set of fabrication parameters is a critical step in the training
of the robotic fabrication system, avoiding potentially dangerous or inefficient
operations and allowing the optimisation of individual parameters.

The presented methods are based on the creation of event labels as Boolean values,
to be assigned to each operation for a series of observed manufacturing condition. If
the operation has been successfully completed the Boolean label will be 1, otherwise,
it will be 0. For instance, the removal of material is awarded a value = 1, while the tool
getting stuck into the material is assigned a value = 0. The learning objective for the
ANN is to predict such events through the assignment of a Boolean value given a set
of fabrication conditions. Such a decision-making task, where “categories” are
predefined, is described as a classification problem. The dual nature of the occurrence
or not of the event makes it a binary classification problem for which the trained
model is used to categorise new probabilistic observations in either successful or
unsuccessful cuts.

4.2.1 Robotic Dataset Analysis

The analysis of the robotic dataset aims to identify the distribution of recorded
features values in relation to the observed event labels, existing positive or negative
correlations between these and whether it seems possible to divide the data collection
into two distinct groups of fabrication parameters and material conditions based on
the occurrence of a specific event. The dataset used in this section for the modelling
of event thresholds considers each carving operation at a global scale as one entry of
the dataset and consists of a collection of 181 robotically-carved cuts obtained with a
carving gouge on a series of lime wood boards (Table 4.3).

I S B N N N
12

Cuts 181 Lime ABB IRB1600 Stubai 9/20

Table 4.3 Robotic Dataset Info - Global Scale.

After the robotic carving session, the boards have been reconstructed digitally
through photogrammetric reconstruction (Fig. 4.3). The physical outcome of each
operation, broken down into individual features, as described in Section 4.1.1, has
been recorded and paired into a dataset with the related fabrication parameters that
generated it.
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Figure 4.3 Photogrammetric reconstruction of the robotically carved boards used for
creating the dataset.

A statistical description of the features of the dataset is reported in Table 4.4. In
addition to these, the two events which will be considered for the presentation of the
binary classification methods are i) the tool getting stuck into the material and ii) the
actual removal of material volume, respectively described by the categorical labels
“Stuck” and “Cut”.

Measure Stuck

Cut AngleStart| AngleEnd Grain | Input Len. Actual Len.Max Depth End Depth| Max Width End Width

Count 180.0 180.0 180.0 180 180.0 180.0 180.0 180.0 180.0 180.0 180.0
0.63 0.68 325 20 445 45.03 21.26 -1.01 0.79 6.52 4.92
0.48 0.47 474 0 34.08 8.18 17.11 1.18 1.12 5.86 6.5
m 0.0 0.0 25.0 20 0.0 35.04 0.0 -3.83 -3.83 0.0 0.0
0.0 0.0 28.47 20 0.0 35.04 0.0 2.01 -1.56 0.0 0.0
1.0 1.0 3243 20 45.0 45.03 25.36 -0.36 -0.04 551 0.0
75% 1.0 1.0 36.28 20 67.5 55.03 345 0.0 0.0 12.55 12,51
Max 1.0 1.0 420 20 90.0 55.03 55.07 0.0 0.0 16.87 16.87

Table 4.4 Statistical analysis of the dataset - Global Scale.

The statistical analysis is an important step to decide whether the selected features,
in this case, all of them, need to be normalised. This step is crucial to increase the
performance of the ANN: as data flows from layer to layer through additions and
multiplication, the resulting values could get large quickly, affecting negatively the
ability of the network to deal with non-linear relationships (Dertat, 2017).

The following plots (Fig. 4.4) describe the distribution of the two categorical features,
“Stuck” and “Cut”, in relation to the three main input fabrication parameters, namely
the Tool/Surface Angle, the Tool/Grain Direction Angle and Input Length for the cut.
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Figure 4.4 Histograms showing the distribution of the two event labels (“Stuck” and “Cut”)
in respect to the input fabrication parameters.

Overall, the three considered features seem to be significantly correlated to the
occurrence or not of the analysed manufacturing conditions. The Tool/Surface Angle
plots describe a neat distinction between samples, with a threshold around 32° to 35°
for the “Stuck” event and around 30° to 27° for the “Cut” event. Moreover, the two
events appear to be correlated, as the occurrence distribution is inverted in the
respective plots. For instance, cutting along or across the grain present a higher
number of cuts where the tool has managed to exit successfully from the material
rather than intermediate Tool/Grain direction angles. Conversely, for the “Cut” label,
there is a lower number of cuts along 0° and 90° of the wood grain direction able to
successfully remove material.

To investigate the potential linear relationship between the considered features and
event labels, the Pearson Correlation Coefficient has been calculated and plotted into
a heatmap (Fig. 4.5). Such coefficient requires data to be normalised and consist of
values ranging from +1 to -1, in the case of positive or negative correlation
respectively. Among the fabrication inputs, the Tool/Surface Angle parameter is the
one with the highest correlation, with a negative coefficient of -0.78 for the “Stuck”
label, meaning, as expected, that shallower angles have fewer chances of getting the
tool stuck into the material. On the opposite, a positive coefficient of 0.73 for the “Cut”
label, shows that steeper angles have more chances of actually removing material. On
the other hand, the Tool/Grain Direction Angle parameter does not present a linear
relationship with the two labels as the recording session has been structured to look
for the occurring of the two manufacturing conditions in all the different analysed
grain directions.
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Furthermore, the study of output features makes possible to better understand how
these relate to the two event labels: for instance, the Stuck label=1 is inversely
correlated to the Max Width and End Width features, i.e. smaller values for the End
Width features are more likely to be related to successful cuts, as the cut is not
interrupted in the middle of the operation where the Width is larger.

Stuck

0.8
MaxDepth

EndDepth

Success -04

InputLength 0.28

Grain 0.075 -0.0

ActualLength -0.51

Cut
AngleStart
MaxWidth

EndWidth

Stuck

Cut
0.8
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MaxWidth
AngleStart -04
EndWidth 0.52
Success 0.46 -0.0
Grain 0.00035
InputLength -0.29 04
EndDepth -0.49
Stuck -0.53
-0.8
MaxDepth

Cut

Figure 4.5 Pearson Correlation Coefficient analysis between the event labels and the other

recorded features (global scale).
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Figure 4.6 Pairwise analysis of the Pearson Correlation Coefficient across all the recorded

features (global scale).
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The calculation of the Pearson Correlation Coefficient is extended to a pairwise
analysis of all the features (Fig. 4.6). As the previous heatmaps suggested, the most
significant linear relationship is found between the input features of the Tool/Surface
Angle and the output features describing the obtained cut: MaxDepth, EndDepth,
MaxWidth, EndWidth. Furthermore, the heatmap presents strong correlations
between the output features themselves, showing, for instance, a positive coefficient
of 0.95 for Max Depth and Max Width.

The pairing of the input and output features in a series of scatter plots, in which each
data pointis coloured based on the event label, is used to get a qualitative description
of the correlations presented in the heatmaps above (Fig. 4.7). Considering only a pair
of features for each plot makes possible to identify, even from a visual point of view,
the presence of two main, separable, groups. The learning objective for the binary
classifier discussed in the next sections is to define a threshold function between
these.
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Figure 4.7 Scatter plots showing the distribution of the event labels (i.e. “Stuck” and “Cut”)
in relation to the recorded features.

4.2.2 Human Dataset Analysis

In this section, the analysis of manufacturing conditions occurring during the robotic
data collection is compared to a dataset generated under identical conditions in terms
of tools and wood species by a human expert demonstrator. The methods used to
record human operations have been described previously in Chapter 3 and relies on
a combination of motion-capture cameras with real-time sensor data processing and
subsequently photogrammetric reconstruction of the carving results.

The comparison between the two data acquisition methods is performed using the
local scale dataset type as it provides a higher level of detail for each target frames
composing the carving operation.

In Fig. 4.8 the geometrical features of Depth, Length and Width for each frame of the
robotic dataset are plotted, and to each data point is assigned a colour based on
whether it belongs to an operation which overall resulted successful or unsuccessful,
namely both event labels values were equal to 1. Such analysis presents two main
findings: i) The data points are distributed as forming two distinct groups which
appear evident even from a visual point of view, ii) there is a range of values for each
geometric feature which never generates successful operations, therefore it would be
beneficial to avoid them entirely already at a design stage.
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Figure 4.8 Analysis of the distribution of successful and unsuccessful operations in the
robotic dataset based on output features of the carved geometry.

Based on these premises, the successful group of operations from the robotic dataset
has been isolated and compared next to the entire dataset of operations collected
from the human demonstration (Fig. 4.9-4.10).
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Figure 4.9 Depth feature - Comparison between the recorded successful operations of the
robotic (left) and human (right) datasets.
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Figure 4.10 Comparison between the recorded successful operations of the robotic (left)
and human (right) datasets.

The plots show that both datasets present a similar range of features values for
successful operations, specifically between 2 to 13 mm for the Width feature and
between 0 to -2 mm for the Depth feature. For both datasets, the prescribed range for
the Length feature has been between 30 to 55 mm, however, the plots show that many
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robotic operations are significantly shorter and less deep than the original digital
intention because of the lack of control on the deviation between digital inputs and
physical outputs.

The main differentiator between the two datasets is represented by the ability of
human craftsmen of intuitively navigating and anticipating, after training and
experience, the range of possible successful operations. For this reason, a skilled
craftsman is unlikely to execute dangerous or inefficient operations, as described in
the previous section with the labels “Stuck” and “Cut”. Consequently, based on the two
event labels considered here, it is not necessary to implement a binary classification
filter between successful and unsuccessful operations for the human-based carving
dataset.

4.2.3 Binary Classification: Individual Event Prediction
In this section, the individual binary prediction of the two manufacturing conditions,
described by the categorical features “Stuck” and “Cut”, is assessed.

In a first instance, the task is approached with the training of a Logistic Regression (LR)
model which represents a simpler, linear, model in comparison to the ANN model
presented in the second part of this section using identical data and training
conditions. LR is a binary classification algorithm whose aim is to linearly separate
dichotomous classes within an N-dimensional dataset through an N-1 hyperplane. In
simpler models, e.g. a 2-dimensional dataset, the separation boundary will be a
straight line, while for a 3-dimensional dataset, it will be a 2D plane. To achieve this,
LR models utilise the sigmoid function (or logistic function), which is an S-shaped
function that maps any real number between 0 and 1, resulting particularly useful for
transforming probability predictions into binary values:

o(z)=1/1+e7%)
where e is the Euler's number and z is the value to transform.

The main reason to use such model, besides its more straightforward implementation,
is to test whether the features dataset is linearly separable in the two groups
describing the successful completion of the operation (0 or 1) in relation to the event
considered.

The metrics used to evaluate the predictive abilities of the binary classifiers trained in
this section, both for the LR and ANN models, are the following:

- Accuracy (%) is the percentage number of correct predictions made by a
trained model in relation to the total amount of predictions.

- Null Accuracy (%) is the accuracy measure as a percentage value that a
dummy model would score always predicting one of the two categorical
features.

- Confusion Matrix is a table used to summarise the performance of the
trained model describing the correct and incorrect predictions and type of
errors, which the accuracy metrics alone is not able to provide. The four
categories of the table are the following:
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o True Positives (TP): Data point = 1 (True) and Prediction = 1 (True).

o True Negatives (TN): Data point = 0 (False) and Prediction = O (False).

o False Positives (FP): Data point = 0 (False) and Prediction = 1 (True).

o False Negative (FN): Data point = 1 (True) and Prediction = O (False).
Based on the Confusion Matrix results, the following scores are provided:

o Precision =TP /(TP+FP)

o Recall = TP/(TP+FN)

o F-1Score =2 * Precision * Recall / (Precision + Recall)

o Support is the number of actual occurrences of the class in the
specified dataset.

The loss function used for the training progress is defined as binary cross-entropy
function, or log loss function, and it is the define as:

1
€=~ Iy log(@ — (1~ ) log(1 - @)]

where nis the total number of items of training data, the sum is over all training inputs,
x, and y is the corresponding desired output and a is the prediction output (Nielsen,
2015). The main advantage of using such a loss function (Fig. 4.11), in comparison, for
instance, to the quadratic cost function, is that the larger the error, the faster the
model will learn, penalising especially those predictions that are confident and wrong
(Loss Functions - ML Cheatsheet, 2017):

10 Log Loss when true label = 1

log loss

0.0 0.2 0.4 0.6 0.8 1.0
predicted probability

Figure 4.11 Log Loss Functions - Source: ML Cheatsheet 2017.

The examined dataset, consisting of 181 samples (i.e. carving operations), is
subdivided into two subsets, a Training and Testing dataset, with a proportion of
75%:25%, corresponding to 135:45 samples. The total number of training epochs is
250.
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The input feature vector has three dimensions: 1) Tool/Surface Angle 2) Tool/Grain
Direction Angle 3) Input Cut Length. The output categorical feature value to predict is
a binary output (0 or 1) in relation to the individual event considered.

After the training, the LR model scores an Accuracy of 90% and 84.1% for the “Stuck”
and “Cut” events respectively (Fig. 4.12 - 4.13). The null accuracy values for the “Stuck”
model is 62.7 % and 67.7% for the “Cut” model.

LR - Stuck - Acc: 0.919, Val Acc: 0.900 LR - Stuck - Loss: 0.205, Val Loss: 0.233
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Figure 4.12 “Stuck” event label: Training history plots of the LR model.
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Figure 4.13 “Cut” event label: Training history plots of the LR model.

The predictive abilities of the model are evaluated plotting the predicted results for
the Testing dataset in confusion matrices (Fig. 4.14). Different score measures are
reported below each matrix. Overall, both LR trained models performs well with a
Precision score of 0.96 for the “Stuck” event and 0.97 for the “Cut” event.

Following the analysis of the predictive performances of the LR model, an assessment
of an ANN model addressing the same predictive task is presented below. The network
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topology is structured as 3:6:1, with an input layer of size = 3 corresponding to the
dimension of the input features vector, one hidden layer with size = 6 each and finally
an output layer with size = 1. To compare the ANN model with the LR one, the training
epochs number, i.e. 250, and the batch size parameter, i.e. 10, are the same.

STUCK Label - Confusion Matrix CUT Label - Confusion Matrix

“a

it Lo R oo
0 0.94 0.94 0.94 18

1 0.97 0.97 0.97 36 1 1.0 0.96 0.98 45

avg/total 0.96 0.96 0.96 54 avg/total 0.97 0.97 0.97 72

Figure 4.14 Confusion matrices for testing the prediction rate of the LR model - “Stuck”
(left) and “Cut” (right) event labels.

At the end of the training, the “Stuck” model reached an accuracy score against the
Validation dataset of 90.6%, in respect of a null accuracy of 62.7% (Fig. 4.15). The “Cut”
model reached a Validation Accuracy score of 92.6%, in respect of a null accuracy of
67.7% (Fig. 4.16). Based on the training history plots, both accuracy scores converge
quickly before the first 150 epochs and remain stationary until the end of the training.
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Figure 4.15 “Stuck” event label: Training history plots of the ANN model.
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Figure 4.16 “Stuck” event label: Training history plots of the ANN model.

The predictive abilities of the system are tested and plotted in the Confusion Matrices
below (Fig. 4.17). Overall, both trained ANN models perform reasonably well with a
Precision score of 0.95 for the “Stuck” event and 0.92 for the “Cut” event.

STUCK Label - Confusion Matrix CUT Label - Confusion Matrix
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1 0.97 0.94 0.96 36 1 0.97 0.88 0.92 34

avg/total 0.95 0.94 0.94 54 avg/total 0.92 0.91 0.91 54

Figure 4.17 Confusion matrices for testing the prediction rate of the ANN model - “Stuck”
(left) and “Cut” (right) event labels.

Comparing the LR and ANN models, the main takeaway is that the ANN model scores,
for both event labels prediction, only a slightly higher accuracy value of a few
percentage points. This finding suggests the dataset is linearly separable, for each
event, in two distinct groups (0 and 1), as the LR model accuracy rate is above 90% in
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both cases. While the ANN performs slightly better than a linear model (LR), the latter,
simpler, model appears sufficiently suitable for the task of a single event prediction.

4.2.4 Binary Classification: Combined Events Prediction

While it is possible to predict whether an undesired manufacturing condition will
occur, this does not necessarily guarantee the overall success of the operation. For
instance, the actual removal of material does not ensure that the tool will not get
stuck, or the other way around, the completion of the tool movement does not imply
that it will remove any material at all. The success of an operation depends on a series
of factors which need to be considered simultaneously to confidently achieve the
desired outcome. Furthermore, designers could have different opinions of what a
successful operation is, not necessarily relying only on quantitative data but also on a
qualitative or subjective analysis, for instance, perceived smoothness or other user-
defined criteria (Fig. 4.18).
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Figure 4.18 Successful operation prediction process - Diagram.

The definition of a Success label is, therefore, depending on the combination of
individual single event labels. As all the event labels are structured with 0 as not
successful, and 1 as successful operation in respect to a specific event, it is then
possible to combine multiple of them using the AND Boolean operation. The plots in
Fig. 4.19 present the results of the Boolean intersection of the “Stuck” AND “Cut” events
in relation to different pairs of dataset features.
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Figure 4.19 Scatter plots showing the distribution of the “Success” event label in relation to
the recorded features.

Firstly, even if only pairs of features are plotted each time, drawing a line to separate
the two groups is not as straightforward, at least visually, as in the individual-event
case presented in Fig. 4.7. As in the previous section, both LR and ANN model
prediction performances are assessed in respect of the Success event label using the
same configuration of features vectors, Train/Test Data split ratio and model
parameters for comparison. During the training, the LR model scored a Validation
Accuracy rate of 64.4% with a Validation Loss value of 0.672, which represents a poor
performance, considering that such value corresponds to the null accuracy rate for
that prediction task (Fig. 4.20). The result is further confirmed in Fig. 4.21 by the
confusion matrix and the classification report metrics which show how the model
always predicted the same value (i.e. 0).
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Figure 4.20 “Success” event label: Training history plots of the LR model.
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Figure 4.21 Confusion matrix for testing the prediction rate of the LR model - “Success”
event label.

Following the assessment of the LR model, the ANN model has been tested for the
same binary prediction task. During the training, the ANN model reached a Validation
Accuracy score of 94.7% and a Validation Loss value of 0.110 (Fig 4.22). Afterwards, the
predictive abilities of the model have been tested against the Testing dataset, with a
Precision score value of 87% (Fig 4.23).
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Figure 4.22 "Success” event label: Training history plots of the ANN model.
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Figure 4.23 Confusion matrix for testing the prediction rate of the ANN model - “Success”
event label.

Comparing the performances of the LR and ANN models, the results suggest that,
while for the single event prediction, the LR model showed a similar prediction rate to
the ANN, demonstrating that the dataset is linearly separable, for the combined event
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prediction, the LR model is inadequate to determine whether one operation would be
successful or not. On the other hand, the ANN model proved to be able to correctly
separate the two groups, performing reasonably well for the task requirements. As
the prediction of the “Success” label is based on the combination of individual events
(i.e. “Stuck”, “Cut"), it could be framed as a typical XOR problem (Minsky and Papert,
1969), where the model is trying to define a region roughly in the middle between
cutting too deep (and getting stuck) and cutting too shallow (and not cutting at all).
This type of problems justifies the use of a hidden layer in the ANN model, as linear
models are not sufficient to perform the prediction task, as demonstrated by the
findings. Alternatively to creating a “Success"” label and using an ANN model, it should
be possible to assess whether an operation would be successful or not combining the
individual predictions of linear classifiers for single events.

4.3 Geometric Features Prediction

Based on the binary classification process presented in the previous section, it is
possible to identify which fabrication parameters will lead to a successful operation,
excluding all those operations which are not effective or even dangerous.
Nevertheless, the trained binary classifier does not provide sufficient information to
geometrically reconstruct the outcome of the carving process.

The methods presented in this section seek to provide a geometrical approximation
of subtractive operations informed by sensor-based data reconstruction of robotic
operations performed during the recording sessions. As for the event prediction, this
represents a supervised learning problem based on the pairing of fabrication
parameters with material outputs. Specifically, it is a regression problem, as the model
is asked to predict continuous output values (e.g. depth cut values) rather than
categorical probabilities.

The learning objective is two-fold: i) To predict geometric output features values, such
as actual Width, Depth and Length of the cut, based on a robotic toolpath and related
fabrication parameters; ii) To reconstruct from a carved geometry the robotic toolpath
that has generated it. Once the relationship between the two groups of data is
established, it should be possible to utilise the predictive abilities of the system in both
directions.

The goal of the strategy presented in this section is to significantly lower the deviation
error between digital input geometries and robotically fabricated carving operations
to a level which makes it possible to integrate such manufacturing technique as part
of a design interface.

4.3.1 Robotic Dataset Analysis

As described in Section 4.1.1, the type of dataset used for the regression-based
prediction of geometrical features is based on individual target frames arranged in a
sequence of 20 frames in total. This level of analysis provides a detailed description of
the operation both in terms of input and output features.

The training boards series from which the dataset is generated is the same utilised for
the binary event prediction task in Section 4.2, however, as the operations are
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considered at the local target frames scale, the number of the samples, n = 3780, is
much higher than the number of cuts (Table 4.5).

IR N N N

Frames 3780 Lime ABB IRB1600 Stubai 9/20

Table 4.5 Robotic Dataset Info - Local Scale.

In Fig. 4.24, a pair-wise features heatmap shows the Pearson correlation coefficient
values, while in the three heatmaps in Fig. 4.25, each output features to be predicted
is analysed individually.

The three output features are positively and strongly correlated with each other:
longer cuts show higher depth and width values. Furthermore, while in Section 4.2.1
the Tool/Surface Angle feature presented high correlation values in respect to the
categorical labels to be predicted, in this case, where only individual target frames are
considered, the correlation coefficient values do not show a strong linear relationship.
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Figure 4.24 Pairwise analysis of the Pearson Correlation Coefficient across all the
recorded features (Local scale).
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Figure 4.25 Pearson Correlation Coefficient analysis between individual geometric
features of the cuts and the other recorded features.

4.3.2 Regression: Geometric Features Prediction

In this section, the prediction of the geometrical features necessary for the geometric
simulation of subtractive operations is addressed using both an ANN model and a
simpler linear model, called Linear Regression (LinR), for comparison.

LinRis a model for regression tasks which assumes a linear relationship between a set
of continuous input variables and a single continuous output variable. While its
architecture is similar to the LR model (used in Section 4.2 for the binary prediction),
it also differs for two main aspects: i) It does not make use of a Sigmoid function for
splitting its prediction into two categories. ii) It uses the Mean Absolute Error (MAE) or
Mean Squared Error (MSE) as loss function during the training and as metrics for the
evaluation of the trained model.

Mean Absolute Error (MAE): measures the average magnitude of the errors in a set
of predictions, without considering their direction. It is the average, expressed in the
same unit of the dataset, over the test sample of the absolute differences between
prediction and actual observation where all individual differences have equal weight.

n

1 -~

MAE =~ Y~ 7
i=1

Mean Squared Error (MSE): It is the average of squared differences between
prediction and actual observation. In comparison to the MAE, it returns an indication
of the average magnitude of the error.

v _
MSE = = (v, = £,
i=1

The dataset, consisting of 3780 samples (i.e. target frames), is subdivided into two
subsets, a Training and Testing dataset, with a proportion of 75%: 25%, corresponding
to 2835:945 samples. The input feature vector has five dimensions: 1) Tool/Surface
Angle 2) Tool/Grain Direction Angle 3) Input Unit Cut Length 4) Input Incremental Cut
Length 5) Input Depth. The continuous output features to predict are A) Depth B)
Length and C) Width values for each of the target frames describing the operation.

Plotting the performance score of the model during the training enables the in-
progress evaluation of the system and identifying whether the model is
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over/underfitting. In Fig. 4.26, the plots of the training histories of the LinR and ANN
model are compared:

DEPTH - LR vs ANN LENGTH - LR vs ANN WIDTH - LR vs ANN
Training Loss: 0.591 vs 0.159 Training Loss: 0.276 vs 0.108 Training Loss: 0.567 vs 0.176
1.0 1.0 1.0
model model model
—— Linear Reg —— Linear Reg —— Linear Reg
08 —— Deep ANN 08 —— Deep ANN 08 —— Deep ANN

Mean Squared Error
Mean Squared Error

Mean Squared Error

0.0 0.0 0.0
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Epochs Epochs Epochs

Figure 4.26 - Comparison between the LR and the ANN model - Training history plots.

The comparison summary is the following:

- Depth: The validation loss (MSE) with the LinR was 0.591 while with the ANN
was 0.183, an improvement of the 222.9% in respect of the linear model.

- Length: The validation loss (MSE) with the LinR was 0.276 while with the ANN
was 0.107, an improvement of the 157.9% in respect of the linear model.

- Width: The validation loss (MSE) with the LinR was 0.567 while with the ANN
was 0.195, an improvement of the 190.7% in respect of the linear model.

The results demonstrate that the ANN model performs better than the LinR for the
assigned task and that a linear model is insufficient to predict the output features of
subtractive operation. For this reason, it will not be utilised in the subsequent studies.
After the training, the predictive abilities of the ANN are tested using the testing
dataset left out before the training process. In Fig. 4.27, the ANN predicted values are
plotted against the actual ones:
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Figure 4.27 Train/test split validation for the prediction of the geometric features of the
cuts (i.e. Depth, Width and Length of the cut).

The data points in the plots tend to align along the 45 ° bisecting line of the squared
plots, showing the correct performance of the system. The Mean Absolute Error (MAE)
and Standard Deviation (SD) for the prediction are the following: a) Length: MAE =
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1.014 mm, SD = 0.293 mm; b) Width: MAE = 0.958 mm, SD = 0.106 mm; c) Depth: MAE
=0.921 mm, SD =0.179 mm.

4.3.3 Regression: ANN Topology and Hyperparameters Search

The topology and hyperparameters of the ANN models presented in the previous
section have been optimised for each individual feature prediction. The technique
chosen to conduct such optimisation is a grid search method which is an exhaustive
searching method for learning algorithms based on a manually defined set of
hyperparameters and evaluated with a train/test split validation method.

The search has been set up in three passes. The first two passes were concerned with
the topology of the network, defining the number of layers (i.e. 1 or 2) and the number
of neurons for each layer, ranging from 2 to 30 with an interval of 2, for a total of 15
configurations tested for each pass.

In Fig. 4.28 - 4.30, the validation results are plotted as grey points, while the results
mean is plotted as a red dots-connecting line. The third pass, based on the results
obtained from the previous two, focused on the optimisation of two key
hyperparameters for the ANN model: i) the number of epochs and ii) the batch size.
The hyperparameters search subsets utilised are: Epochs = {50, 100, 200, 400}, Batch
Size = {5, 10, 20, 40}.

The results of the hyperparameter optimisation are plotted along with the first two
topological optimisation searches in the shape of 2-D heatmaps with size 4x4, for a
total of 16 configurations tested.
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Figure 4.28 Depth feature prediction: optimisation of the ANN topology (i.e. the number of
hidden layers and neurons) and hyperparameters (i.e. epochs and batch size).
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Figure 4.29 Width feature prediction: optimisation of the ANN topology (i.e. the number of
hidden layers and neurons) and hyperparameters (i.e. epochs and batch size).
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Figure 4.30 Length feature prediction: optimisation of the ANN topology (i.e. the number
of hidden layers and neurons) and hyperparameters (i.e. epochs and batch size).

The summary of the best models found by the Grid Search optimisation is the
following:

- Depth: First Hidden Layer Neurons = 12; Second Hidden Layer Neurons = 24,
Epochs = 200, Batch Size = 5.

- Width: First Hidden Layer Neurons = 22; Second Hidden Layer Neurons = 16,
Epochs =400, Batch Size = 40.

- Length: First Hidden Layer Neurons = 20; Second Hidden Layer Neurons = 20,
Epochs = 200, Batch Size = 40.

4.3.4 Regression: Fabrication Parameters Prediction

While in the previous section the models have been trained to predict the geometric
features of the carving outcome from a combination of fabrication parameters, in this
section, the learning objective is reversed: the models are trained to predict the
fabrication parameters necessary to achieve a given carved geometry.

Such an application can be used for correcting the fabrication parameters to match a
predefined desired geometrical outcome described as a digital Boolean operation or
acquired through 3D scanning. The predicted fabrication parameters are used to
reconstruct the robotic toolpath necessary to obtain the target carved geometry.

To achieve this, the configuration of input and output from the previous sections has
been reversed. The predicted fabrication parameters are: A) Tool/Surface Angle B)
Input Length. The input feature vector is 5-dimensional: 1) Actual Unit Length 2) Actual
Incremental Length 3) Actual Depth 4) Actual Width 5) Tool/Grain Direction Angle.

The ANN topology is 5:25:25:1 with Epochs = 200 and Batch Size = 20. These
hyperparameters values have been defined following a Grid Search optimisation
strategy as discussed in Section 4.3.3.

In Fig. 4.31 and 4.32 are presented the ANNs training histories and train/test split
validation plots.
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Figure 4.31 Tool/Surface Angle prediction: training history plot (left) and train/test split
validation (right).
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Figure 4.32 Input Cut Length prediction: training history plot (left) and train/test split
validation (right).

The results of the training assessed using the Train/Test Split Validation methods are
the following:

- Tool Angle / Surface: MAE =1.174°, SD = 0.375°.
- Input Cut Length: MAE = 0.821 mm, SD = 0.124 mm.

These results, showing low error figures in the prediction, demonstrate that ANN
models could also be used for the reconstruction of robotic operations alongside the
simulation of geometric features.

4.3.5 Binary Classification + Regression: Optimized Training
In this section, the binary classifier for manufacturing conditions and regression
prediction of geometric features are combined to improve the overall performance of
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the system. In the studies presented below is assumed that the binary classifier can
predict with high accuracy, as previously demonstrated, whether a given set of
fabrication parameters would generate a successful or unsuccessful operation. For
this reason, the dataset utilised here to train the ANN exclusively consists of
operations with attached a “Successful” label value. In this way, the original dataset
size of 3780 is shrunk down to 1160 samples with significantly narrower boundaries
of the feature’s distribution (Fig. 4.33).

Angle Grain Success
200
300 1000
150
200 750
100 500
0 | - 0 0
20 25 30 35 0 20 40 60 80 0.6 0.8 1.0 1.2 1.4
iCutLength iCutRatio iDepth
400 150 300
300 100 200
200
100
, . , —mm i
1.8 2.0 22 24 26 0.0 0.2 04 06 0.8 1.0 -02 -0.1 0.0 0.1 0.2
ilncLength oCutLength oCutRatio
150 200 150
100 150 100
100
) Il -l II i t
. o E
0 10 20 30 40 50 0.5 1.0 1.5 2.0 25 0.0 0.2 0.4 0.6 0.8 1.0
oDepth olncLength oWidth
600 200 200
400
100 100
” I II
0 _—--l 0 .-__ 0 .—_
-2.0 -1.5 -1.0 -0.5 0.0 0 20 40 00 25 50 75 100 12

Figure 4.33 Individual features histograms of the dataset with only successful operations.

The input and output feature vectors, networks topologies and hyperparameters are
unchanged in respect of those used in Section 4.3.2. As in the previous studies, Fig.
4.34 - 4.36 show both the training history plots and Train/Test split validation plots
next to each other for the prediction of the geometric features of Depth, Width and
Length of the operation outcome.
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Figure 4.34 Depth prediction: training history plot (left) and train/test split validation
(right).
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Figure 4.35 Length prediction: training history plot (left) and train/test split validation
(right).
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Figure 4.36 Width prediction: training history plot (left) and train/test split validation
(right).
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The results of the training assessed using the Train/Test Split Validation methods are
the following:

- Depth: MAE = 0.462 mm, SD = 0.030 mm.
- Width: MAE = 0.733 mm, SD = 0.375 mm.
- Length: MAE = 0.681 mm, SD = 0.194 mm.

In Fig. 4.37, the training histories of the ANN models assessed in this section (in red)
are compared with the ones of Section 4.3.2 which has been trained with both
“Successful” and “Unsuccessful” operations (in blue):

DEPTH - ANN_F vs ANN LENGTH - ANN_F vs ANN WIDTH - ANN_F vs ANN
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Figure 4.37 Training history plots comparing the prediction performance of the ANN
model trained with only successful operations against the one trained with the full
dataset.

In the Binary Filtered ANN training histories, the training loss value is decreased by
64.0% for the Depth, 74.1% for the Width and 31.2% for the Length prediction. Overall,
the ANNSs trained with only “Successful” operations outperform the ANNs trained on
the full dataset. These results suggest that operations which are not “Successful” are
more difficult to model by the trained system. One of the possible reasons is that
manufacturing conditions which define the geometrical outcome of operations
defined as “Unsuccessful” are not necessarily consistent. For instance, once a tool is
stuck into the material, it is harder to predict the way is going to “break” the fibre
structure to “get out” in comparison to a tool that smoothly cut through the fibre
layers.

4.4 Results: Carving Operations Series

The predictive abilities of the models have been assessed at the end of every training
session utilising a Testing dataset, demonstrating their ability to accomplish the
assigned prediction task with low error values. This section presents an in-depth
analysis of the application of the trained models to a series of carving operations and
how the devised methods can be used to accurately simulate the deviation between
the desired digital input and the physical fabrication outcome. The measure of the
deviation between input and output is intended in geometrical terms, measured in
mm, occurring in the features of Length, Depth and Width.
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The series is composed of a total of 16 operations which have been robotically
fabricated on a lime wood board and have not been utilised for the training of the
system, representing “unseen” data suitable for evaluating the performance of the
trained models. The critical aspect of these carving operations is that they are
geometrically identical to each other as defined in the digital design environment and,
consequently, the geometric input features, such as Length or Depth values, are the
same for all the operations. The only non-geometrical parameter which changes
throughout the series is the variation of the Tool/Surface Angle feature between the
start and end of each cut, ranging from 45° to 25°. A summary of these parameters is
reported in Table 4.6:

M“m i Angle il Length i Depth

45°-25° 55 mm 0.8 mm

Table 4.6 Carving Operation Series - Info.

The robotic operation outcomes are measured through a photogrammetric
reconstruction of the board and their geometrical description is reported in Fig. 4.39
in which the digital input (as dashed black line) representing the desired outcome is
compared to the actual physical result (in red).

Firstly, it should be noted how each individual cut not only diverges to different extent
from its respective desired digital input, but it also differs significantly from the rest of
the operations in the series. Furthermore, a subset of cuts appears truncated due to
the tool getting stuck in the material (“Stuck” label event), while, conversely, in another
subset, no amount of material has been removed (“Cut” label event). This initial study
shows, once again, that the interaction of carving tools with the properties of timber
substantially affects the outcome of digitally-defined subtractive operations. In these
regards, a measure of the deviation between digital inputs and physical outputs is
presented below in Fig. 4.38.
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Figure 4.38 Deviation analysis (actual value vs input value) for the feature of Depth and
Length of the cuts in the series. In red, the operations which removed any material
volume.
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Figure 4.39 Comparison between the input geometry (dashed black line) and the carved
one (red). For each operation, top and side views are provided together with the deviation
error.
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Considering only the cuts which have removed material, the highest average value of
deviation for the target frames composing the cut is found in Cut 01 for the Depth
feature (1.43 mm) and in Cut 08 for the Length feature (12.55 mm). Analysing the
whole cut rather than the single frame, the deviation from the original digital input is
411% and 56% respectively.

Following this initial deviation analysis, the methods described in this chapter have
been applied to the same carving operations series to obtain a more accurate
prediction of the fabrication outcomes. The trained ANN models utilised for the task
are the ones presented in Section 4.3 for the regression-based prediction of
geometric features. The configuration of materials (i.e. lime wood) and carving tools
(i.e. Stubai 9-20) is unchanged with respect to the training stage. The prediction results
are reported in Fig. 4.40, where is possible to compare in the same plot the ANN model
prediction (in light blue), the actual fabricated geometry (as a red line) and the original
digital input (as dashed black line). The operations which have not removed any
material volume have been excluded from the comparison study.

Fig. 4.41-4.42 presents the deviation measure for the Length and Depth feature,
comparing the actual values against the input values and the actual values against the
predicted ones. This side-by-side comparison clearly shows a substantially lower
deviation range between the digital input and physical output of carving geometries
when the machine learning-based simulation is utilised instead of the conventional
digital Boolean operations.
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Figure 4.40 Deviation analysis for the Length feature: actual vs input value (left), actual
value vs predicted value (right).
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Figure 4.41 Deviation analysis for the Depth feature: actual vs input value (left), actual
value vs predicted value (right).
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To further support this claim, Table 4.7 summarises the percentage deviation error for
each cut presented in Fig. 4.40, showing an improvement of several times (up to 11)
in the accuracy of the outcome geometry. These results suggest that the integration
of the devised methods into a design stage would enable to anticipate more precisely
the outcome of the operation in a later fabrication stage, enabling the adoption of
such a robotic manufacturing process previously unavailable due to its high variance
determined by tools and material affordances.

“ Actual/Input Depth | Actual/Pred Depth |Actual/Input Length | Actual/Pred Length
0

62.60% 6.20% 76.70% 13.50%
1 65.60% 7.90% 26.10% 4.60%
2 66.90% 8.40% 5.80% 3.90%
3 60.70% 9.00% 5.00% 3.00%
4 48.00% 25.20% 0.10% 8.10%
5 44.20% 28.00% 27.00% 7.40%
6 101.70% 19.60% 47.00% 4.40%
7 242.50% 31.30% 67.90% 4.60%
8 1110.70% 105.00% 102.40% 8.90%

Table 4.7 Percentage deviation errors for the features of Depth and Length of the cut.
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Figure 4.42 Comparison between the input (dashed black line), the actual (red line) and
predicted geometry (light blue).

4.5 Results: Comparative Analysis of Trained Networks
The validation of the learning strategies in the previous sections allows performing a
comparative analysis of multiple networks trained with different materials, tools and
parameters. The goal of the study is to discuss the potential of fine-tuning a design-
to-manufacturing workflow to a specific set of fabrication affordances and, potentially,
create a library of trained systems to be deployed accordingly to the requirements of
the design brief. For this purpose, the following studies aim to assess whether the
devised methods are sufficiently versatile to synthesise knowledge from a wide variety
of fabrication dataset.

The key driver of the comparative analysis is the concept of variance across the
following categories:

i) Within the same wood species (i.e. different Tool/Grain direction angles).
i) Across different wood species with the same carving tool.
iii) Within the same wood species but different carving tools.

In statistics, the term variance (c?) is defined as the measure of how far each value in
the dataset (in this case, the predicted values) is from the mean. The variance for a
dataset sample is mathematically described as:

N
1 2
== Y —m)
i=1

where N is the sample size, x; is the sample and m is the sample mean. The square
root of the sample variance is the Standard Deviation (¢) (SD) which has the advantage
of being expressed in the same unit of the mean. The Relative Standard Deviation
(RSD), or Coefficient of Variation (CV), calculated as RSD = o * 100/u (where pu is the
mean), is useful to determine the extent of the SD in relation to the mean of the
dataset expressed in percentage points (%).

The datasets utilised for such comparison have been collected through a series of
robotic training sessions using different types of wood species (i.e. Lime, Tulip and
Oak) and various carving tools (i.e. Stubai 9/20, 9/30 and 7/30). Table 4.8 collects the
main info about each dataset.

Cut Frames 3780 Lime ABB IRB1600  Stubai 9/20
B Cut Frames 138 2760 12 Oak ABB IRB1600 Stubai 9/20
C Cut Frames 213 4260 12 Tulip ABB IRB1600 Stubai 9/20
D Cut Frames 192 3840 12 Tulip ABB IRB1600 Stubai 9/30
E Cut Frames 136 2720 12 Tulip ABB IRB1600  Stubai 7/30

Table 4.8 Description of the datasets used for the comparative analysis.
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The datasets have been utilised for training the respective ANNs model for the
prediction of the geometric features of Length, Depth and Width of the cut. The
models have been evaluated using a train/test split validation method and the
resulting MAE values have been reported in Table 4.9. The low prediction errors
showed in all the different trained models allow proceeding with the comparison
between them in the following studies.

A

0.684 0.462 0.733
B 0.545 0.593 0.802
C 0.732 0.446 0.679
D 0.402 0.522 0.584
E 0.564 0.604 0.546

Table 4.9 Prediction rates of the ANN models trained for the comparative analysis.

4.5.1 Wood Grain

As previously discussed, the fibrous structure of timber is the material feature
affecting the most its mechanical performances, generating a significant variance in
the outcome of identical carving operations executed in different locations and
orientations on the same workpiece. Such behaviour is defined with the term
orthotropic as it is characterised by three mutually perpendicular planes of symmetry:
longitudinal direction along the fibres, radial direction towards annual rings and
tangential direction to the annual rings (Hoadley, 2000).

One of the key skills in woodworking is the understanding of the influence of the wood
grain and the ability to steer the carving tools accordingly to achieve the desired
outcome in a constant dialogue with the material. While such an understanding is not
present in current CAM environments, the studies of this section aim to demonstrate
that is possible to train a system to quantify and model the influence of the grain
structure in different carving configurations.

The training focused on a range of operations executed between 0° (i.e. along) and
90°, (i.e. across) in respect to the main grain direction, with intervals of 30°. The
predictive abilities of the system have been assessed through 4 sets of operations,
with each set presenting 4 identical operations executed on the same wooden board
at angles of 0°, 30°, 60° and 90° (Fig. 4.43 - 4.46).
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The plots in Fig. 4.47 describe the variability in the carving outputs for the three main
predicted output features (i.e. Total Length, Max Depth, Max Width) in relation to the
different grain directions along which the same operation has been executed. The
predicted feature for the four operations in each set, for a total of 4 sets, are
represented as dark grey points connected with a dotted line. For the Length and
Depth feature, the red points and dotted line show the input digital features of the
desired geometry. The width of the cut is not used as input as it is defined by the
previous two features and the tool specifications.
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Figure 4.47 Comparison of the variability of the prediction output based on the Tool/Grain
Direction Angle parameter across the four sets of operations.

In Fig. 4.48, a measure of the Standard Deviation (o) for each set is reported in relation
to the three predicted features, while the tables below the graphs also include the
measure of the mean and variance. The measure of the variance varies significantly
across the different sets of operations generated by various configurations of
fabrication parameters. Some operations appear less sensitive to changes determined
by the different grain directions, while others are deeply affected. For instance, Set D
shows variance 0 = 136.71 mm?, while Set C has a variance of only 62 = 29.77 mm? for
the Depth features prediction.
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Figure 4.48 Comparison of the Standard Deviation (a) and Variance (a?) across the four
sets of operations for the Width, Length and Depth features.

4.5.2 Wood Species

The study of the previous section is here extended to different timber species to show
how the trained system can model the influence of different grain arrangements and
densities on the outcome of the fabrication task. The wood species analysed are the
following:

- European Oak (Quercus robur). Average Density = 700kg/m3.
- Lime (Tilia x europaea). Average Density = 560 kg/m3.
- Tulip (Liriodendrun tulipifera): Average Density = 455 kg/m?>.

All the wood samples used have been kiln dried and presented a moisture content
between 12-16%. The analysis is conducted with the same set of 4 operations
presented in the previous section, now extended to a matrix of size 3x4 (i.e. species x
grain directions) making possible to compare the influence of the wood grain
directionality across multiple timber species (Fig. 4.49 - 4.52).

Fig. 4.53 reports the analysis of the variability of the geometric outcome features from
the same set of input parameters as modelled by the trained ANN models. The plots
provide a horizontal comparison across the four sets of operations considered for the
study grouped based on the Tool/Grain Direction Angle feature (i.e. 0°, 30°, 60°, 90°)
and respective wood species (i.e. Oak, Tulip, Lime). The study is complemented in Fig.
4.54 with the presentation of the RSD values for each set of operations in a series of
heatmap plots.
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In some of the material configurations, the deviation of the outcomes from the desired
digital input seems to follow a similar trend across the different grain directions
considered, although with different amplitudes (e.g. Fig. 4.53: Oak / Tulip - Max Cut
Depth; Oak / Tulip - Max Cut Width). The trained models are able to predict not only
whether a set of fabrication parameters will generate a successful operation but also
the actual geometry of those cuts which have been included in the prediction despite
being labelled as “unsuccessful”. This is evident for the prediction of the Length
feature, in which some of the cuts are interrupted as the tool is getting stuck into the
material, generating a substantial variance for the same operation performed towards
different grain directions but also different operations performed along the same
grain direction (e.g. Fig. 4.53: Oak - Cut Length - Tool/Grain Direction Angle = 60° - Set
Avs Set B). The prediction of the Max Width feature shows the lowest values for the
RSD, meaning that is the features less affected in comparison to Depth and Length by
operations performed towards different grain directions. The main reason is that the
value of Max Width is usually reached in the middle of the cut, as both successful and
unsuccessful operations could have similar values while for the Length that would be
usually half or less.
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Figure 4.53 Comparison of the variability of the prediction output based on the wood
species parameter across the four sets of operations.
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4.5.3 Carving Tools

In this section, the trained network ability to model the interplay between tool
affordances and material properties is presented. Intuitively, a change in tooling
would necessarily determine a change in the obtained carved geometries. For a
heterogeneous material such as timber, however, such variation in the outcome does
not follow a linear relationship depending on tool specifications. This means that an
increase of x in the width of the cutting profile will not necessarily increase the width
of the obtained cut of x amount. As the affordances of the carving gouges are
mediated by the specificity of the grain arrangement and direction, it seems necessary
to assess the ability of the trained networks to model such non-linear relationship in
the perspective of a fabrication process making use of multiple carving tools.

The gouges utilised in the study are Stubai 9/20, 9/30, 7/30. The first number
represents an indexical sequence used by the company to describe the depth of the
cutting profile, while the second number represents the width of the profile in
millimetres. The selected species for the assessment is Tulip. In respect of the previous
two sections, the analysis presented here uses four different sets of operations to
accommodate fabrication parameters that would fit all the different tool sizes and
shapes considered. Each set is composed of four identical operations, as in the
previous studies, creating a 4x3 matrix (i.e. carving gouges x grain directions) (Fig. 4.55-
4.58).
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Figure 4.55 Set E - Carving tools - ANN-based prediction of the carving operation (light
blue) against the digital input (dashed black line) - top and side views.
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As in the previous studies with different wood species, the predicted geometric
features for each operation performed with various tools are compared to each other
(Fig. 4.59) to measure i) the variability between them and ii) their deviation from the
prescribed input values. While the first is expected as the tools considered have
different sizes, it is valuable to check whether operations performed with different
tools follow or not a similar overall trend based on the grain direction of the cut. The
measure of the RSD for each set shows that the carving direction plays a crucial role
in the definition of the outcome geometry, showing substantial variance for the same
operation which reaches values above 70% in some of the configurations (Fig. 4.60).
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Figure 4.59 Comparison of the variability of the prediction output based on the carving
tool parameter across the four sets of operations.
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Figure 4.60 Comparison of the RSD across the four sets of operations for the Depth,
Length and Width features.
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4.6 Results: Summary

The chapter addresses Hypothesis B which claims that is possible to control the
material variance in robotic carving operations and presents a series of simulation
methods based on the training of machine learning models with real-world fabrication
data. The assessment of the predictive abilities of trained models demonstrated that
these methods successfully generate an accurate simulation of such operations,
lowering the deviation error between the predicted and fabricated geometry to an
acceptable range for its implementation into a design interface.

The structure of the training workflow in two main stages (i.e. i) binary classifier for
prediction of manufacturing conditions or “events” ii) regression-based prediction of
geometrical features necessary to reconstruct the carving operation proved to be
particularly efficient as the filtering out of fabrication parameters leading to
unsuccessful operations made possible to substantially improve (with a margin
between 31.2% and 64.0%) the predictive performances of the system (Section 4.3.5).
The event threshold prediction (Section 4.2) was assessed through the prediction of
two different manufacturing conditions: the successful removal of material and the
successful extraction of the tool. The prediction of individual event thresholds resulted
suitable for a linear model, such as LR, as the two groups defining the occurrence of
the event are linearly separable. For the prediction of combined events, however, a
non-linear model such as the ANN outperformed the LR. The trained ANN proved to
be able to predict reasonably well, with an accuracy of 87%, if an operation would be
successful or not based on a set of fabrication parameters and design intentions.

The evaluation of the methods for prediction of geometric features of carving
operations (i.e. Depth, Width and Length) based on a given set of fabrication
parameters (Section 4.3) showed how the ANN model is more suitable for the task in
comparison to a linear model, such as linear regression (LinR), which is not able to
capture the non-linear relationships between inputs and outputs features. The
predictive abilities of trained ANNs have been validated following a train/test split
validation method, showing low error values (i.e. Depth = 0.462 mm; Length =0.733
mm, Width = 0.681 mm). These figures are particularly relevant for the support of
Hypothesis B as they are all within the error thresholds (even the highest one of 2%
deviation error) established in Chapter 3, demonstrating that the trained system can
predict the result of carving operations with an accuracy sufficient for its deployment
within a design workflow. To further test the performance of the system, the trained
networks were utilised to simulate a series of carving operations (Section 4.4),
providing a significantly more accurate simulation of the carving outcome considering
the influence of material and tools properties in respect of the initially prescribed
digital input. The comparative analysis of multiple ANNs (Section 4.5) trained with
different combinations of affordances demonstrates that the devised methods can
accurately model the variance occurring for identical carving operations performed
across different combinations of material properties, wood species and carving tools.
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5 Knowledge Integration

The methods and experimental results presented in the previous chapters focused on
the synthesis of manufacturing knowledge based on the acquisition of real-world
fabrication and their processing through a series of machine learning strategies. This
chapter discusses the integration of such a knowledge as part of a simulation interface
to support decision making procedures at an early stage of the design process,
considering both fabrication constraints and opportunities.

The validity of the proposed methods has been assessed within the context of two
industry secondments at ROK Architects (Zurich) and BIG (Copenhagen). Such
collaborations provided the opportunity to apply the devised design-to-manufacturing
strategies into the established workflow of design firms.

The focus of the secondments, each spanning for several months, was driven by
Research Question C of this thesis which aimed to investigate how the integration of
manufacturing and material knowledge at an early stage of the design process affects the
exploration and evaluation of design solutions for robotic carving operations.

The main proposition behind such a research question is that the lack of information
on material and fabrication affordances significantly limits the number of decisions
that a designer can take during the design process and excludes from the search a
substantial subset of design solutions. A standard hylomorphic model would not
present, for instance, the effect of the grain direction on the carving process or the
variance in the design outcome across two different wood species.

Following a case study methodology, the investigation implied, then, conducting
experiments in the shape of full design-to-production cycles in a real-world context
showing how their outcomes have been reached only following a multistep design
process where the designer has been asked to make critical decisions based on a
material and fabrication simulation provided by the trained system.

While the first two hypotheses, addressed in the previous chapters, deals with
quantitative data as they focused on sensor-based recording session, material
behaviour modelling and machine performances, Research Question C combines
both quantitative and qualitative data as it aims to assess the interaction of different
groups of design professionals with the devised design-to-production workflow.

The outcome of the industry collaborations was an extended catalogue of digital
explorations and material evidence organised along a series of case studies which will
be presented in the following pages to support each a specific set of findings. For this
reason, the chapter is organised in three main sections: 5.2) Separation Between
Design and Making 5.3) Fabrication as Design Curation Practice and 5.4) Design
Negotiation Platform.
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5.1 Interface and Design Workflow
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Figure 5.1 Different modes of integrating the trained system into design workflows.

The aim of encapsulating instrumental knowledge is its integration into a design
interface which makes it accessible to designers and presents them with the
opportunity of using materials behaviour into their design workflow as process
drivers. Once the network has been trained and the correlations between fabrication
parameters and carved geometries are established, it is possible to translate back and
forth between the two sets of data and customise the ANN topology towards a specific
design task (Fig. 5.1).

The three main modes of applications explored in the experiments are:

From robotic toolpath to the simulation of the carved geometry. While
conventional digital Boolean operations are insufficient in calculating the
outcome of subtractive operations with non-standard tools on heterogeneous
materials, the trained network provides a more accurate simulation based on
actual material properties and tool affordances. Designers can directly test
how individual fabrication parameters affect the resulting operation and
evaluate how these could be tuned to match their design intention. The
prediction could be applied to multiple cuts at the same time, each with
different input parameters, and used to generate the overall simulation of the
cutting pattern.

Individual parameters optimization. Utilizing the same set of training inputs and
outputs is possible to create labels (as Boolean flags) to predict a series of
event thresholds based on sets of fabrication parameters, such as the
successful removal of material or the correct extraction of the tool from the
workpiece. Moreover, additional labels could be created by the designer to
describe formal preferences (e.g. surface roughness, edges definition),
curating the training dataset along a specific design direction. Such
information can be used to tune individual fabrication parameters to
maximise specific performances, such as material removal volume, without
the risk of defining a dangerous or inefficient carving operation.
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e From carved geometry to robotic toolpath. Extracting fabrication data out of the
scanned model of a previously carved workpiece to reconstruct the robotic
toolpath that has generated it. Alternatively, the same method could be
applied to start from a digital geometry obtained through a subtractive
Boolean operation as a way of matching a formal design intention in the
fabrication stage
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Figure 5.2 Software stack for the design simulation interface.

The trained networks have been made available to the designers through a digital
interface in Rhino3D and Grasshopper where the user has been asked to model their
design either geometrically or through the definition of a basic set of input parameters
for the carving operations (Fig. 5.2). Such design data are structured into “features”
according to the same process used for the training process and exported to a CSV
(Comma Separated Values) file. From the design interface, it is possible to seamlessly
call an external Python routine which requests to the ANN to produce a prediction
based on its configuration of inputs and outputs. Utilising Google's Tensorflow
framework and Keras as front-end is possible to save the ANN layers topology and
weights distribution in a JSON file after the training. The main advantage of such a
modular approach is the opportunity of flexibly loading within the same routine any
desired trained network based on the specific design requirements. This could be, for
instance, switching between wood species or quickly evaluating the effect of different
carving tools in respect of a given grain direction.

5.2 Separation Between Design and Making

The collaboration with BIG in Copenhagen took place concurrently with the installation
of two industrial robotic arms in their office spaces and provided the opportunity to
assess the potential role of such technologies within their well-established design
workflow. The chosen model for both industrial arms has been the ABB IRB 1600,
whose specifications have already been described in Chapter 4. The robots were
installed inside an industrial cell facing each other and with a medium-sized horizontal
area between them where to position the workpiece. The fabrication cell was placed
in the workshop area of the office dedicated to model making, mostly in foam and
plastic materials.

This section addresses and analyses the established industry paradigm for the
production of artefacts based on a linear workflow, as presented in Chapter 2,
through the opportunity provided by the unusual proximity of the design team with
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robotic fabrication facilities which made possible to test the full design-to-production
cycle. BIG is currently one of the leading firms in the architectural design industry with
offices in Copenhagen, London and New York and hundreds of projects for renown
public institutions and private clients. As a design firm, they deliver projects in the
shape of drawings, specifications and reports and they are not directly involved in the
manufacturing stage of the project.

The first opportunity to engage with the newly acquired fabrication facilities was the
fabrication of a large landscape/urban model of Manhattan, New York, to present their
linear park project for the city, the BIG U, as part of an exhibition at the Architectural
Biennale di Venezia 2018 (Fig. 5.3, 5.4). The main idea was to move away from the
usual foam and plastics used for representational model and utilise solid wood to
create a piece that would be more resistant and could be used in further occasions
after the exhibition. The final U-shaped model at a scale of 1:750 covered an area
including both the city waterfront and the Hudson River surrounding the city. For
transportation reasons, the model was subdivided into 17 modules, each consisting
of two parts for the city and water areas. The design and fabrication of the model were
supervised both by the NY and Copenhagen office and took approximately three
months.

Figure 5.3 - Completed BIG U model at the Biennale di Venezia 2018.

Milling, the process of removing material using a rotary cutter against a workpiece
(Oberg et al., 2016), was selected from the beginning as a well-established, industry-
based, technique for achieving the task. An entry-level wood router (i.e. Kress 1050-
FME-1) has been attached to the industrial robotic arm through a custom mount and
configured as end-effector. This tool has been widely adopted by the maker
community for its high price/quality ratio, however, it presents several limitations if
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compared to an industry-grade milling spindle, such as lack of a power inverter and
digital speed control, low power (1050 Watts) and relatively small milling bits clamp of
only 8 mm diameter.

The milling technique was developed and specifically optimised to operate within the
industrial paradigm of a linear progression from the stage of design to fabrication.
From this perspective, milling could be compared to the more recent 3D printing
techniques as both promise to deliver exactly the original desired shape within very
tight tolerances. As a way to exclude any material agency from the process, most of
the time only industrially-graded homogeneous materials, such as metal or plywood,
are utilised.
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Figure 5.4 Robotic milling of one of the timber modules of the BIG U model.

The design-to-production workflow is described in Fig. 5.5 and is organised in three
main stages: i) the creation of the digital model|, ii) the generation of the toolpath with
a dedicated CAM software and processing of such for an industrial arm task and finally
iii) the robotic fabrication task itself.

Each module was milled in one go within a fabrication time oscillating between 4 to 12
hours according to module size (in length) and material volume to be removed.
Generally, the tool feed-rate has been kept to a conservatively low value to avoid
overloading the tool and ensure a higher finishing quality. The chosen milling
operation could be considered as part of a “roughing” strategy performed with flat end
mill down-cutter of diameter = 8 mm. As the available tool was not able to cut beyond
a certain depth, the timber blank had to be cut down to its final outer profile by an
external contractor.
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Figure 5.5 Design-to-production workflow of the BIG U model.

The transfer of a manufacturing technique such as robotic milling from the highly
controlled environment of a factory/workshop to a design studio environment
together with its application with a heterogeneous material, such as timber,
highlighted a series of issues arising from the adoption of a conventional linear
workflow based on the separation between the stages of design and making:

e Afirstissue was the distribution of the workload to create the digital model, in
which the NY team has been responsible for defining the area to be
represented and curate its content, while the Copenhagen team had the role
of creating the model for its fabrication. The idea that is possible, or advisable,
to separate the two tasks appears as a reflection of the established paradigm
in the design industry: as the two teams focused on two different aspects of
the project, one focusing on the design while the other on the production, it
was particularly challenging to ensure the delivery and integrity of all the
necessary information and the two teams ended up creating two different
digital models serving two different purposes.

e From aconceptual level, the transfer of the representational model to a digital
fabrication model showed a strong preconception deriving from previous
experience of model making within the office applied to a different type of
technology and material. The office established a technique to achieve three-
dimensional landscape models via stacking together flat sheet material, such
as cardboard or acrylic panels, cut to the right shape with an in-house laser
cutter. Such layer-based logic has a strong influence on the visual appearance
of the model, as any height difference is represented through right-angle small
steps. The decision of the design team to apply a similar peculiar aesthetics to
a model achieved with a completely different type of technology and material
shows how individual manufacturing knowledge deeply affects design
decisions (Fig. 5.6). In this case, a previous understanding of model-making
techniques potentially limited the exploration of design opportunities which
would fully exploit the tool fabrication affordances and timber properties. For
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instance, milling a smooth three-dimensional surface, resembling more
closely the physical geographical configuration, would not be achievable with
laser cutting. As a practical consequence of this design decision, the digital
model had to be manually layered and each step had to be modelled as
geometry rather than resulting from stacking flat-sheet material.

Figure 5.6 Layered design options for the landscape model.

The lack of integration of specific manufacturing knowledge for milling
operations with the design interface in such early stage of the process proven
to be detrimental for the overall efficiency of the design-to-manufacturing
workflow, requiring several post-rationalising adjustments which ended up in
the necessity of the modelling the same object twice. To begin, the model had
to be split up in separate modules of equal size, both for transportations,
storage, fabrication working area and material availability of limited sizes
rather than an indefinite large single piece. Furthermore, a series of geometric
features determined by the fabrication technique and tools choice had to be
implemented. For instance, it is not possible to achieve right-angle corners of
a pocket and the corners will be necessary filleted based on the tool radius.
Similarly, the router has a maximum reachable depth before collision defined
by the length of the milling bits which results in the impossibility of achieving
some type of geometries. Even in a compartmentalised workflow as the one
described, the integration of initial manufacturability checks, similarly to the
ones provides by online 3D printing services (e.g. wall thickness, steep
angles...), concurrently with the design modelling would have made possible
to avoid costly mistakes which would appear evident only at a later fabrication
stage.

While issues deriving from geometrical features and specificities of the chosen
fabrication techniques were problematic for the overall process, the definition
of material aspects of the project presented an additional set of challenges for
the project. The digital models, even the one optimised for fabrication, carried
no information regarding properties and behaviour of the specific material
chosen to “materialise” the digitally-defined shape. Timber, more than other
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materials, presents specific challenges and requires careful planning as
fabrication material. The choice of such material for the large landscape model
significantly affected the choice made by the design team at an early stage
when they had no information available about material features. The design
solution space shrank considerably in relation to simple parameters, such as
maximum length or thickness, in relation to the actual availability of the
material. The chosen wood species was Lime for its light colour and relatively
uniform grain arrangement. The information regarding the available
dimensions for the boards of that species forced designers to readjust the size
of the modules and remove part of the geometries which would not fit with
the given thickness. Moreover, the blank for each module had to be put
together glueing up 3 different boards to reach the width of 75 cm. This
necessitated revising how the model was described digitally, taking into
consideration an increased number of seams and the careful placement of
individual boards in regards to the figuring determined by the grain
arrangement. While in the digital environment each module appeared
uniform and solid, in the physical version it was possible to notice the
difference between different boards mostly because of subtle tone difference
deriving from the differences in trees.

e The positioning of the workpiece inside the cell was measured using the
precise coordinate system of the industrial arm and reconstructed in the
digital design interface. The main issue with such method is that once the
workpiece was correctly located, there was no strategy to take into account
the shrinking and deformation of the blank determined by environmental
conditions and in general higher tolerances given by using a natural material
instead of an industrial one. Such a deviation between digital and physical
model could go from several millimetres up to 1-2 centimetres for some of the
largest modules. Furthermore, it was quite challenging to describe how this
deformation has happened through the measurement of a few points within
the robot coordinate system. As a consequence, geometrical features at the
edges of the blank were either shifted or left unmachined. Cutting in different
directions in respect of the wood grain loaded the tool differently, therefore,
the machine had to be supervised to continuously monitor the sound and
vibration level and the speed decreased accordingly.

Figure 5.7 Warping of the timber model after the robotic milling operation due to changes
in the internal stresses of the grain.
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Finally, a few days after the fabrication, the asymmetrical release of the
mechanical stress of the fibres, due to the removal of material on one side
only, together with local environmental conditions generated significant
warping in the milled boards. In some of those, it was necessary to apply stress
release cuts on the bottom side of each component as the displacement
reached a difference of several centimetres between the centre and the edges
(Fig. 5.7). This posed a potential issue for the assembly of the modules in their
final configuration.

5.2.1 Results: Summary

The project provided a series of valuable insights regarding the advantages and
disadvantages of using a linear and compartmentalised workflow from the design to
the fabrication stage:

e Utilising well-established fabrication techniques, such as robotic milling,
allows seamless integration of the process within the current workflow of the
design firm and generally has been received positively by most of the design
professionals used to operate within a notation-based paradigm.

e The proximity of fabrication facilities, such as the industrial robotic arms cell,
to the design team is not necessarily enough to encourage designers to
engage with the fabrication tools and material properties. The predominant
approach based on the “materialisation” of digital geometries, like in 3D
printing processes, is mostly based on long-established workflows and lack of
tool interfaces that would grant designers with manufacturing knowledge at
an early stage.

e Even within a prescriptive fabrication workflow utilising robotic milling, timber
material properties played a critical role which required to move several times
back and forth between the stage of design and fabrication to reach a final
design solution.

e Access to a material knowledge database, combined with data related to
economic and resources availability within the local supply change, would be
beneficial to the designer alongside formal considerations.

5.3 Fabrication as Design Curation Practice

In parallel with the design and fabrication of the BIG U model, the team of designers
developed a series of robotic carving experiments focusing on the bottom-up
exploration of material features through the integration of manufacturing knowledge
at an early stage of the design process.

The training of the system, following the methods described in the previous chapters,
implied the selection of the range of wood species, properties and carving tools to
define the solution domain of the design exploration. This approach presents an
opposite perspective compared to the previous case study as it moves from the
physical domain of the fabrication stage to inform the exploration of design solutions
in the digital realm. The shift from the physical to digital reject the conventional

136



workflow presented in the previous section, where a model is defined digitally and
“materialised”, as a sort of physical instance of an abstract shape. The perspective
presented in this section frames the act of design as a curatorial practice where the
designer is asked to specify, from the beginning, the physical domain of affordances
through which directing her or his investigation. Whereas this might seem an
unnecessary limitation, theoretically hindering the full exploration of the entire
domain of solutions, the specification of the domain of the operations makes it
possible to confidently map the complex combination of affordances and integrate
effectively such knowledge as part of the digital interface. Such a knowledge base
enables a series of solutions to be unlocked which would otherwise be unavailable in
a purely digital hylomorphic space. Such an integrated base is not a crystallised entity,
but it is constantly refined and expanded as more real-world data are collected. The
curatorial process suggests instead of a monolithic approach, a modular and
incremental approach, which can expand horizontally through the collection of
multiple types of different affordances, and vertically, through collecting more
information to create a more robust understanding of those properties and
constraint. Furthermore, as discussed in the previous section, the lack ok of a
knowledge base could be detrimental for the overall process where the chosen design
might be unsuitable actual fabrication methods and constraints.

The following analysis is not focused on the specific comparison between milling and
carving processes, which are too different both in methods and scope for a meaningful
parallelism, but rather on the difference between the developed training methods and
the conventional workflows and how these influence the design process.

5.3.1 Expert Systems and What-If Scenarios - Background

The “What-If' design approach, previously introduced in the Literature Review Chapter,
provides designers with multiple scenarios based on different types of design
alterations together with a series of DFM feedback necessary to support an informed
decision to advance in the design process.

According to Vaneker and van Houten (2006), such methods aim to replicate the
cognitive process of designers and engineers who are continuously asked to define
and assess the combination of solutions that lies ahead together with the
consequences of a specific choice on the overall outcome. The value of automating, at
least partially, such a process is to support users in the navigation of sequential What-
if stages which require to be informed in real-time by a multitude of information
sources such as programs, databases or knowledge bases. Each of these sources acts
as an expert system which provides contextual knowledge to structure the what-if
investigation and generate the set of scenarios presented to the user.

Expert systems are defined by Lucas and van der Gaag (1991) as those “systems which
are capable of offering solutions to specific problems in a given domain or which are able
to give advice, both in a way and at a level comparable to that of experts in the field". In
their present-day formulation, expert systems are described as the combination of a)
a knowledge base and b) an inference engine which is responsible for “manipulating
the knowledge represented in the knowledge base” (Fig. 5.8).
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Figure 5.8 “Global architecture of an expert system” - Source: Lucas and van der Gaag,
1991.

The inference engine is encapsulated with a consultation system which represents the
interface through which the user can interrogate the system.

As shown by several studies (Looney, 1993; Huang and Zhang, 1995; Goel and Chen,
1996; Medsker, 2012), ANN can be used successfully to create hybrid Expert Systems
(ES) utilising their ability to build rules from the examples provided by the user. As
Kottai and Bahill (1989) point out, one of the main differences with conventional ES is
that the generation of the inference engine can be achieved with minimal external
intervention as the “network gradually takes over the task of the human expert'.
Furthermore, ANN-based expert systems appeared more robust than conventional
ones when provided with erroneous or incomplete data, still giving reasonable
answers. Nevertheless, if compared to the original diagram proposed by Lucas and
van der Gaag (Fig. 5.8), there are no explanation or trace facilities, since it is particularly
challenging to reconstruct the reasoning behind the prediction of the ANN, appearing
to the user/designer as a black box.

Within the thesis context, as discussed in the previous chapters, ANNs have been
implemented as part of a strategy to synthesise material and instrumental knowledge
based on data collected from directly recording human experts and robotic
production sessions. The designer is not acting as an expert as she or he is not
responsible for individuating the underlying relationships and patterns in the dataset
but rather, through the curation of the training process, selecting the affordances and
relative domain within which the design exploration is focused. While conventional
expert systems are based on a set of rules established by human experts, in this case,
the user setting up the ANN-based system does not need to know those rules or even
explicitly formulate them. The inference engine represented by the trained ANN does
not provide clues behind its reasoning and, as such, it does not increase the
knowledge of the user but it instead provides a powerful source of knowledge which
is possible to constantly query during the design process. As a result of the user
curation process, the trained system does not provide access to universal knowledge
about any timber subtractive manufacturing process, but rather to a specific subset
of affordances coinciding with the one necessary to inform the what-if scenarios
design strategy.
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5.3.2 Training

The goal assigned to the team of designers was the exploration of a series of carving
patterns for special surface treatments, generating interesting visual and tactile
effects for a wide range of applications, from furniture pieces to building components
of larger assemblies (e.g. fagade or interior panels).

The exploration set out to investigate the influence of material qualities in the
definition of the formal outcome of the design intention. For this reason, the designers
started by selecting three substantially different wood species (i.e. Lime, Tulip and
Oak) both in terms of aesthetic qualities and mechanical properties. The second focus
of the investigation has been on the interaction of a set of different carving tools (i.e.
Stubai 9-20, 9-30, 7-30) with the material properties, such as grain density and
directionality (i.e. 0°, 30°, 60°, 90° from the main grain direction), of the selected wood
species.

The aim of the training process was to map the complex interaction of the material
and fabrication affordances to create a package of knowledge that could be integrated
into the digital design exploration. The collection of the real-world fabrication data
through robotic recording session had to be carefully arranged, balancing between
the full range of the affordances available and the limited amount of time and
resources available. Afirst step has been to select the relevant combinations. For each
wood species, the collection of cuts has been performed using the three different
carving tools in the fabrication toolset following four different carving direction with
an interval of 30° between each. Within such selection, the following step has been to
define the values range for each fabrication parameters (e.g. Tool/Surface Angle or
Input Cut Length).

As discussed in Chapter 3, such operation could be performed either through a
demonstration of a skilled human expert or an arbitrary definition of reasonable
boundaries based on the designer's intuition. While the human’s demonstration
would have been more efficient, the second method has been chosen as it was
relevant for this case study to identify both successful and unsuccessful robotic
operations to avoid inefficient and dangerous configurations in the following design
stage. In relation to the carving patterns exploration, the investigation has been
limited to three main Input Cut Length intervals (i.e. 35, 45, 55 mm) which have been
evaluated as providing enough meaningful variation in the pattern. Each length
interval has been investigated through a selection of cuts between 9 to 13, each with
a different variation of Tool/Surface Angle value, which represents a key parameter in
the definition of the carving outcome as demonstrated in Chapter 3. The figure below
(Fig. 5.9) summarises the structure of the curatorial process and how this defined the
robotic training sessions.
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Figure 5.9 Selection of the parameters explored in the training session.

As a result of such structure, each wood species dataset counts between 430 to 460
robotic carving operations. Each training board (300x400x35 mm) counted between
32 and 36 cuts and took an average of 15 minutes to be produced, with the setting up
(i.e. positioning, fixing and calibrating) being the most time-consuming part. Once
these data have been collected and properly organised, the datasets have been used
to train several ANNs based on the specific combination of wood species and tools
utilised following the methods presented in the previous chapter.

The access to several carving simulations through the digital interface has been made
possible through the seamless switch between different trained networks.
Consequently, from the same set of input parameters is possible to receive back
almost immediately multiple predictions and effectively compare them.

5.3.3 Design Explorations

As the designers had the opportunity to curate the domain of their design
investigation, the team could confidently utilise the digital simulation interface as
informed by the real-world fabrication data collected during the training sessions.

A series of pattern generation strategies have been developed with the aim of creating
complex textures based on generative principles rather than manually defining each
carving operation (Fig. 5.10). The key concept is the perturbation of a “field”, in this
case carving toolpaths arranged on a grid, performed by an external element such as
an attractor/repulsion point, a curve or a grey-scale map. Following the positioning of
the generating element, designers could define the type and range of modifications
generated in the variation of the geometric and fabrication parameters of the
toolpaths. These are open-ended and could be easily defined through the design
interface and could include, for instance, variations in the cut length, depth, rotation
or overlapping.
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Figure 5.10 Procedural generation of carving patterns in the digital design environment.

Each toolpath of the generated pattern was fed to the trained ANN which returns a
simulation of the collection of carving operations based on the selected material and
fabrication parameters. The advantage of such method is not only, as discussed in the
previous chapter, to access a more accurate prediction of the fabrication outcome,
but also to seamlessly evaluate the influence of different fabrication affordances in
generating different outcomes from the same set of input parameters. As such
methods enable the assessment of multiple combinations at a digital level, it
substantially reduces the need for robotically fabricating each generated pattern,
making the process more efficient and reducing material waste.

Such a workflow was utilised to generate several designed/fabricated carved panels
to evaluate the effectiveness of the developed methods. Design explorations followed
a what-if scenarios structure organised through multiple stages in a tree-like structure
whose branches eventually culminating with the actual robotic fabrication of that
design iteration. At each stage, the available combinations of material and fabrication
affordances, based on the collected data during the training, could result unpractical
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