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Abstract

Machine learning has attracted a lot of attention in recent years and it has
become an integral part of many commercial and research projects, with a
wide range of applications. With current developments in technology, more
data is generated and stored than ever before. Identifying patterns, trends and
anomalies in these datasets and summarising them with simple quantitative
models is a vital task. This thesis focuses on the development of machine
learning algorithms based on mathematical programming for datasets that are

relatively small in size.

The first topic of this doctoral thesis is piecewise regression, where a dataset
is partitioned into multiple regions and a regression model is fitted to each
one. This work uses an existing algorithm from the literature and extends
the mathematical formulation in order to include information criteria. The
inclusion of such criteria targets to deal with overfitting, which is a common
problem in supervised learning tasks, by finding a balance between predictive
performance and model complexity. The improvement in overall performance
is demonstrated by testing and comparing the proposed method with various

algorithms from the literature on various regression datasets.

Extending the topic of regression, a decision tree regressor is also proposed.
Decision trees are powerful and easy to understand structures that can be used
both for regression and classification. In this work, an optimisation model
is used for the binary splitting of nodes. A statistical test is introduced to
check whether the partitioning of nodes is statistically meaningful and as a
result control the tree generation process. Additionally, a novel mathematical
formulation is proposed to perform feature selection and ultimately identify the
appropriate variable to be selected for the splitting of nodes. The performance
of the proposed algorithm is once again compared with a number of literature
algorithms and it is shown that the introduction of the variable selection model
is useful for reducing the training time of the algorithm without major sacrifices

in performance.

Lastly, a novel decision tree classifier is proposed. This algorithm is based
on a mathematical formulation that identifies the optimal splitting variable

and break value, applies a linear transformation to the data and then assigns
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them to a class while minimising the number of misclassified samples. The
introduction of the linear transformation step reduces the dimensionality of the
examined dataset down to a single variable, aiding the classification accuracy of
the algorithm for more complex datasets. Popular classifiers from the literature
have been used to compare the accuracy of the proposed algorithm on both
synthetic and publicly available classification datasets.
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Impact Statement

A number of novel machine learning algorithms are proposed in this thesis
to handle regression and classification tasks. The aim of this project is the
development of such algorithms under a mathematical programming and
mixed integer programming framework. All of the algorithms are based on
the principle of segmenting the data into smaller subsets and fitting a model
to each individual partition. Emphasis is placed on model interpretability and

ease of use.

This project was motivated by the increasing interest in machine learning
and data science not only from the tech industry, but other fields as well. In
addition to algorithm development, another goal for this project is to address
the need for algorithms that are easy to understand for scientists with little or no
knowledge of machine learning, such as researchers from Chemical Engineering
and Process Systems Engineering. Considering this goal, the development of
the algorithms has been done in such a way that requires minimum input from
the user in order to tune the parameters of the algorithms. The resulting models
are highly interpretable.

Several impact areas are expected to benefit from this research. In bioinformat-
ics, segmented regression has been used for the development of Quantitative
Structure-Activity Relationship (QSAR) models. The novel proposed algo-
rithm could provide new insights, as it improves upon the work of the current
literature of piecewise methodologies. Furthermore, decision trees have been ex-
tensively used in many domains, including engineering. Energy consumption,
predictive maintenance and fault diagnosis are a few examples. Applications
beyond engineering include the financial sector, fraudulent transaction detec-
tion, supply chain and more. Creating additional novel algorithms to add to

the current literature, can help extend the knowledge of these fields.

In order to put the performance of the methods in this thesis into a perspective,
all of the results generated in this work have been validated and compared
against established algorithms from the literature. This has been achieved using
state-of-the-art open source libraries that are available in popular programming

languages.
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1 Introduction

This thesis is concerned with the development of novel supervised learning
algorithms for regression and classification. The focus is the development of
mixed-integer optimisation models to address the learning tasks. In this chap-
ter, the domain of machine learning is introduced, along with the major types
of learning and their respective challenges. The main goals of this work are
summarised.

We currently live in a "data era” where vast amounts of data are created and col-
lected every day. Due to this growth in the availability of data, machine learning
and data science have gained increased popularity over the last decades due
to the variety of applications, even to simple everyday tasks. Machine learn-
ing involves the use of scientific processes and methods to analyse and draw
conclusions from data and it is an agglomeration of several fields including

computer science, statistics, mathematical optimisation and more (Grus, 2019).

This domain has infiltrated our daily lives with countless applications such as
(Mohri et al., [2012):

e Text or document classification , e.g. spam detection

Natural language processing

Speech recognition

Computer vision tasks, e.g. image recognition and face detection

Fraud detection e.g. credit card payments

Social networks

Recommendation systems and search engines

and many others.
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Machine learning and artificial intelligence are at the centre of what is known
as Industry 4.0, which is the automation of current traditional industries using
modern smart technologies (dos Santos et al., 2018).

Advances in computer technology have enabled the storage and processing
of large amounts of data, as well as accessing it remotely through the internet.
Cloud computing, advanced analytics and big data have largely impacted many

industries, with chemical engineering being one of them.

Artificial intelligence and machine learning systems have been applied to chem-
ical engineering processes to help identify patterns in data that would take
significantly longer for a human to find (Cartwright, 2020).

Machine learning methodologies have been applied to various areas of chemical
engineering, with examples including modelling and simulation (Chetouani
et al., 2007; Khayet and Cojocaru, 2012), process control (Shah and Gopal,
2016;|Chaffart and Ricardez-Sandoval, 2018) and process optimisation (Medina+

Gonzdlez et al., 2020; Petsagkourakis et al., 2020) to name a few.

Outside of commercial applications, machine learning has been extensively
applied for research purposes, allowing many fields to adopt data-driven ap-
proaches.

However, information that might be hidden in the data becomes useful only
when it is analysed and translated in such a way that it can be easily used in
the future. The application of machine learning methods to databases is often
called data mining, where the objective is to construct mathematical models that
should have the ability to learn from the data and make reliable predictions for
future applications (Witten et al., 2016).

Thanks to the increased amount of interest, a lot of research has been done in
the domain of machine learning and the development of algorithms that differ
in their approach, the type and size of data they can handle as well as the task
they are solving.
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FIGURE 1.1: The machine learning world (Vasily Zubarev, 2018).

As a result of the diversity of the ongoing research, this field is larger than
ever before, with various types of learning in existence, such as supervised and
unsupervised learning, reinforcement learning and deep learning to name a

few. Figure[I.T|is a visual overview of the domain of machine learning.

This doctoral thesis aims to develop machine learning algorithms based on

mathematical programming and optimisation techniques to deal with super-
vised learning cases and datasets that are relatively small in size.
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1.1 Supervised learning

In supervised learning, given a set of data D = {(x,, yx),n = 1,..., N} the task
is to learn the relationship between the input x and output y such that, when
given a novel input x* the predicted output y* is accurate (Barber, 2012).

The term "supervised" indicates that there is a notional "supervisor" specifying
the output y for each input x in the available data D. Upon receiving such a
set of labelled training samples, the learner captures this mapping of input
and output and can make predictions for new unseen points. This supervised
learning approach is the one associated with tasks such as classification and

regression.

1.1.1 Classification and regression

Two major types of supervised learning problems include classification and
regression. Variables can be characterised as either quantitative or qualitative.
Quantitative variables can take numerical values such as a person’s age or the
average temperature of a city. On the other hand, qualitative variables take on
values that belong in one of K different categories, also known classes. Problems
that can handle quantitative output variables are referred to as regression
problems whereas problems that can handle categorical output variables are

referred to as classification problems (James et al., 2013).

Specifically, classification is a modelling technique that assigns new samples
to known groups. The goal is to create a set of mathematical rules that sep-
arate samples into known classes; these are choices from a predefined list of

possibilities.

Meanwhile, regression is a modelling technique that creates a set of mathemat-
ical rules that capture the relationship between dependent and independent
variables. The goal of regression is to produce a continuous number that pre-

dicts the dependent variable or output as accurately as possible.

In supervised learning, constructing an accurate predictive model involves
fitting it to a set of training data and then fine-tuning its parameters in such a
way that this model will be able to make reliable predictions on new untrained
data.
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1.1.2 Challenges in supervised learning

Overfitting is a common concern when constructing any predictive machine
learning model. Creating a supervised learning model includes fitting it to a
set of training data. During this process, if the mathematical functions of the
model fit the data points too closely, then the resulting model will overfit future
predictions. This usually means that the selected model is too complex and
is easily affected by all the peculiarities that exist in the data. Consequently,
this model has poor predictive performance (Hawkins, 2004). On the other
end, there is underfitting, which results from a model that is too simple and

therefore unable to produce good predictions.

This problem of over and under fitting is also known as the bias vs variance
tradeoff. As mentioned, creating a model that will be able to generalise well
to new data is a challenging task. Figure[I.2]below is a standard example of
demonstrating the difference between bias and variance.

Imagine playing a game of darts. The goal is to hit the target at the centre of the
board. If we are able to consistently hit the target, then there is low bias and
variance in our accuracy. However, if all of our shots are all concentrated but
away from our target, then it is obvious that for some reason our accuracy is

biased to hit that specific spot on the board.

On the other hand, if our shots are scattered across the board with no apparent
pattern, then there is variance in our aim. In this case, some of our shots might

actually hit the target, but it is obvious that overall we are not very good.

Extending this example to statistics and machine learning, the bias error derives
from probable bad assumptions in the learning process, resulting in a model
that has not captured the underlying relationship of the data. This is normally

associated with underfitting.
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Low Variance High Variance

Low Bias

High Bias

FIGURE 1.2: An example of bias vs variance (]Fortmann—Roe|, |2012|).

In contrast, a high-variance model is one that is very sensitive and is affected by
small fluctuations in the data. This is an indication that the model is so tailored
to the specific training set that it is also describing the data’s noise.

In machine learning, this problem is about creating a model that will have good
predictive performance and it will be able to generalise well to new data. To
test the performance of a model, it is a fairly standard approach to split the
data for training and testing purposes, a process which is explained in detail in
Section 2.4} and use various metrics to quantify performance.
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Test Sample

Prediction Error

/

Training Sample

Low High
Model Complexity

FIGURE 1.3: Test and training error as a function of model com-
plexity (Hastie et al.,|2008)

Figure [1.3|illustrates the impact that model complexity has on performance.
Low model complexity can lead to a model with high bias meaning that there is
a large prediction error in both training and testing. High model complexity can
lead to a model with high variance resulting in a big performance gap between

the training and testing phase.

1.2 Unsupervised learning

In unsupervised learning, given a set of data D = {x",n =1,..., N} the aim is
to find a compact description of the data (Barber, [2012). The learner this time
receives a set of unlabelled training data points and makes decisions for new
unseen data. Unsupervised tasks can be challenging since there is no known

output variable to map and predict.
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Two major types of unsupervised learning include dimensionality reduction

and clustering algorithms.

1.2.1 Clustering

Clustering, as the name suggests, takes unlabelled data and finds subgroups,
also known as clusters. Clustering algorithms seek to partition the data and
create clusters in such a way that the samples within the same clusters are

similar, whereas the samples between different clusters are less similar.

This ‘similarity” is expressed mathematically by explicitly defining an appro-
priate metric. This metric is often a domain-specific consideration that is made
based on knowledge of the examined data (Witten et al., 2016).

1.2.2 Dimensionality reduction

Dimensionality reduction is the process of reducing the size of high-dimensional
data consisting of a large number of input variables to find a more compact
representation, while retaining as much of the original data characteristics as
possible. This process is important as it can explore the correlation between the
variables and eliminate the highly correlated ones. Such a process is also useful
for saving both memory and computational time (Muller and Guido) 2016).

1.2.3 Challenges in unsupervised learning

In contrast to the challenges of supervised learning, unsupervised learning
is different and quite challenging. Since there is no target variable or output,
there is no good way of knowing whether the unsupervised task has performed

"well".

It is very hard to assess the obtained results and there is no universally accepted
mechanism for performing validation on an independent data set (James et al.,
2013). This lack of a validation method often leads to the necessity of manual
inspection to validate the results. This is why it is common for unsupervised
techniques to be used as part of an exploratory data analysis (Muller and Guido,
2016).
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1.3 Motivation and contribution of the thesis

In recent years, there has been a great increase in the computational power of
Mixed Integer Optimisation (MIO) solvers such as GUROBI (Gurobi Optimiza+
tion, LLC} 2019) and CPLEX (IBM, 2019). These improved solvers are capable
of handling problems of considerable size. Bixby| (2012) tested a set of MIO
problems on the same computer using various versions of the CPLEX solver from
1991 through 2007. The speedup factor was measured to be more than 29,000.
Combined with major improvements in computer hardware, researchers are
able to tackle a selection of statistical and machine learning problems using

integer optimisation.

Optimisation techniques using mixed integer programming as well as ma-
chine learning methodologies, have been applied to solve chemical engineering
problems in the past. However, the focus in this work is placed on algorithm de-
velopment. These novel algorithms use mixed integer programming techniques
and expand upon the existing literature of machine learning methods. In this
section, the motivation of this thesis is discussed as well as the motivation for
developing novel regression and classification algorithms that are interpretable

and transparent.

1.3.1 Development of a piecewise regression algorithm

The first part of the thesis addresses the development of a piecewise regression
algorithm. Piecewise regression methods using linear expressions have the
advantage of simplicity and model interpretability due to the use of linear
models, but identifying the position of the break points is a challenging task.
Piecewise approaches use break points to partition the input data into segments.
Those break points are the boundaries between the different segments. As a
result, the final regression model consists of a number of segments, also known
as regions, their corresponding break point values and an explicit regression

model that is fitted to each region.

Piecewise regression models have been used in the past for various applications.
Toms and Lesperance (2003) used piecewise regression in order to model abrupt
changes in ecological data. Specifically, this work used data from a study which

looked at understory plant communities along a transition from clearcut to
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old-growth forest. The objective of the analysis was to locate a threshold that
represented a difference in plant composition. Hence, piecewise regression
provided those thresholds as the break points of the model.

Another application of piecewise regression was presented by Malash and
El-Khaiary| (2010). This research study demonstrated that piecewise linear
regression can be used as a tool to analyse experimental absorption data. Pre-
vious mechanistic models suffered from uncertainties that were caused by the
different absorption rates for different time periods, and it was usually up
to the researcher to visually examine and decide those segments. The piece-
wise regression approach used in this work on the other hand, provided good

estimates.

In a more recent study, Muggeo et al. (2020) used data from the European Centre
for Disease Prevention and Control (ECDC) for COVID-19. The authors used
piecewise regression to quantify the effect of the lockdown on some well-known

measures which are typically measured to monitor an epidemic progression.

In terms of available software, the segmented package, which is available for
the R programming language, enables users to fit segemented models to data.
However, the user has to specify the number of regions as well as initial esti-
mates for the position of the break points (Muggeo, 2008} 2003). This software
has some important limitations though. The first one is the fact that it is difficult
to reasonably supply good starting points especially for multivariate datasets,
where data visualisation is impossible. The second limitation is that only the
partitioning feature can have different regression coefficients across the seg-
ments, while the other input variables keep the same coefficients across the

whole range.

Many research on piecewise regression has been application driven, while
software and algorithm availability is quite limited. This issue was partially
adressed by Yang et al|(2016), with the development OPLRA (Optimal Piecewise
Linear Regression Analysis). This algorithm is a piecewise regression approach
that splits data into regions and fits a linear regression model to each one.
One of the main drawbacks of this algorithm is the selection of the optimal
number of regions. The authors proposed a heuristic rule which is based on
an iterative approach. A series of Mixed Integer Linear Programming (MILP)
models are solved and with each iteration a new region is added to the model.
The termination criterion uses a parameter introduced by the authors. This
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parameter is used as a threshold for the reduction of the error between iterations.
This parameter is fixed to a specific value based on the findings of a sensitivity
analysis.

However, fixing this parameter can lead to overfitting when the algorithm is
presented with new datasets. This work proposes an extension of that method
that will address this issue and decide the final number of regions with a more
robust and established way. The new algorithm uses information criteria to

deal with the model selection task and improve prediction accuracy.

Four different variants are proposed that can be split into two main approaches.
Iterative and non-iterative approaches. The iterative ones use the mathematical
model of OPLRA for splitting data into regions and post-process the results to use
the information criteria. The non-iterative approaches extend the mathematical
formulation and integrate the criteria into the optimisation. These approaches

can identify the number of regions without the need of iterations.

1.3.2 Development of a decision tree regressor

The next part of this thesis focuses on generating tree regression models. In
previous work, Yang et al.| (2017) developed a tree regression algorithm, called
MPtree, that employed an MILP mathematical formulation to optimise the value
of the break points when splitting nodes. Generating a tree structure involves
solving that MILP model recursively, splitting nodes into two sub-nodes until a
stopping criterion is satisfied.

However, there are two major drawbacks with that algorithm. The first one is
the stopping criterion, which uses a heuristic rule that includes a parameter that
the authors defined based on a sensitivity analysis. This fixed value results in
poor performance when new examples are introduced to the algorithm. Hence,
there is a need for a better solution.

The second drawback concerns the practical use of the algorithm. Since the
nature of tree models requires partitioning the data repeatedly, the MPtree
algorithm becomes impractical when it is used to fit datasets with a large
number of variables. In this case, the problem is that for each node the algorithm
performs an exhaustive search through the entire input space, solving an MILP

model for each input variable separately until the best one is identified. To deal
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with this issue, a novel mathematical formulation is proposed that will be used
as an embedded subset selection model to enable the algorithm to search for
the optimal partitioning variable on a reduced set of input variables.

1.3.3 Development of a decision tree classifier

This work focuses on the development of a decision tree classifier. Decision
trees are easy to understand and powerful for making predictions. Current
classification tree approaches partition the input data recursively into nodes and
generate tree structures with the goal of creating homogeneous tree branches,
containing samples of specific classes (Breiman et al., 1984). Standard tree
classifiers assign a specific class membership to leaf nodes. As a result they
compromise part of the accuracy of the classification in the case of small trees,
or overfit the data in the case of large trees.

In this work, a novel tree classifier is proposed with the aim of addressing such
issues. The classifier uses an optimisation model to split nodes into subsets and
identify the optimal partitioning variable. The mathematical formulation of
this algorithm also fits a linear expression to the data at each splitting, creating
a new pseudo-feature based on which the classification task is performed. The
classification is achieved by partitioning this new feature into multiple regions,
also referred to as "ranges" in this work, and assigning a single class membership
to each range. This mathematical formulation is applied recursively in order to

generate a tree structure.

The resulting trees contain breaking rules similar to those of other established
classifiers. However, each leaf node can represent multiple classes at once, since
each node contains multiple ranges that are based on the linear transforma-
tion of the mathematical model. This approach can create more compact tree

structures that are easy to understand.
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2 Literature review

In this chapter, a deeper analysis of classical machine learning is given focusing
on the differences of supervised and unsupervised learning. Additionally, some
of the most popular algorithms for each respective learning type are described
and the basics of model selection are also presented. This review aims to give

an overview of the current state in machine learning.

2.1 Supervised learning

In supervised learning, the task is to fit a function to the data that will map the
input-output relationship that exists in the data. This mathematical function is
created by a set of labeled training data. Two major categories with a plethora
of applications of both industrial and academic interest, are regression and

classification.

2.1.1 Classification and regression

Many algorithms exist in the literature that handle such tasks with various
degrees of complexity. Algorithms that are more complex are more demanding
in computational resources and often harder to interpret. On the other hand,
less complex approaches are quick to compute and easier to understand. Such
is the case of linear regression, which models the relationship of variables using
linear expressions. Logistic regression is also a simplistic approach, which

despite its name, is used for binary classification tasks.

Other more sophisticated approaches include Multivariate Adaptive Regression
Splines (MARS) (Friedman), (1991)), Support Vector Machines (SVM) (Cortes and Vap-
nik,, 1995) and K-Nearest Neighbors (KNN) (Cover and Hart, 1967).
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In the field of mathematical optimisation there is the Automated Learning of Alge-
braic Models for Optimization (ALAMO) (Cozad et al.,2014; Wilson and Sahinidis,
2017), a mixed integer optimisation approach called Classification and Regression
via Integer Optimisation (CRIO) (Bertsimas and Shioda, 2007) and a piecewise
regression approach called Optimal Piecewise Linear Regression Analysis (OPLRA)
(Yang et al., 2016).

Decision tree models are conceptually simple yet powerful. Tree structures
are constructed by repeated splits of the input variables into two descendant
subsets, called child nodes. These splits create if-then-else rules to assign
samples into child nodes. Those nodes that are not split any further are called
terminal or leaf nodes. One popular metric being used for the creation of these
splits is the information gain (Quinlan, 1986), which is based on information
entropy. Information entropy can be viewed as the amount of information that
there is in an event (Shannon) 2001). The more certain or deterministic an event
is, the less information it contains. Information gain is based on the difference

of entropy when a split occurs to the data.

Popular tree algorithms include Classification and Regression Trees (CART) (Breiman
et al., [1984), Iterative Dichotomiser 3 (ID3) (Quinlan, 1986), C4.5 (Quinlan,[1993),
Conditional Inference Trees, (CTree) (Hothorn et al., |2006), M5P (Quinlan et al.,
1992;|Wang and Witten), [1996) and Cubist.

Advances have been made in the field of integer optimisation as well, with
tree approaches being able to handle both classification and regression tasks.
An algorithm called DTIP has been developed (Verwer and Zhang, 2017), that
uses integer programming to construct trees of certain depth from data sets of
sizes up to 1000 samples. Furthermore, Bertsimas and Dunn! (2017) developed
an algorithm called Optimal Classification Trees (OCT) that uses mixed integer
optimisation techniques in order to generate tree structures. The key difference
between this approach and other classic methods is the creation of decision

rules based on multivariate splits.

Ensemble methods have gained a lot of interest due to their good predictive
ability. Those methods create multiple "weak learners" in parallel and combine
them to achieve better predictive performance than creating a single "strong

learner". One such popular algorithm is Random Forest (Breiman, |2001).
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Another category that has attracted attention is boosting. Boosting is very simi-
lar to ensemble methods, meaning that multiple models are created. However,
those models are trained sequentially and each model focuses on where the
previous one performed poorly. After many iterations, the result is a single
model with better predictive performance than the original. Popular methods
include Adaptive Boosting (AdaBosot) (Freund and Schapire, 1997) and XGBoost
(Chen and Guestrin|, 2016).

2.1.2 Description of literature algorithms

Linear Regression

In linear regression, the relationship between input and output variables is
modelled using linear functions. If XT = (X1, Xy, ..., X;,) is the vector of input

variables, then the linear model takes the following form (Hastie et al., 2008):

m
Y:ﬁo+ZXj'ﬁj
=1

where:
Bo regression intercept
Bj regression coefficients
m input variables

The unknown model parameters can be estimated from the known values of
the data. One of the most popular estimation methods is least squares, where

the objective is to minimise the residual sum of squares.
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FIGURE 2.1: Straight-line relationship between delivery time and
delivery volume (Montgomery et al., 2012)

Figure2.1]is an example of estimating the relationship between delivery time
and delivery volume of a product for a soft drink beverage company. The data
points suggest a correlation between time and volume; in fact the impression is
that the data points fall along a straight line (Montgomery et al., 2012).

Multivariate Adaptive Regression Splines - MARS

MARS is a regression approach that can be seen as an extension of linear models
and is well suited for high-dimensional problems. MARS creates models that

have the following form (Friedman, 1991):

Y:ZCi'Bi(x)

The model is a weighted sum of basis functions B;(x), with ¢; being constant
coefficients. The basis functions that are used in MARS are hinge functions which

take the form of:



Chapter 2. Literature review 17

max(0,x —t) and max(0,t— x)

The building process of MARS includes two steps, the forward and backward
steps. In the forward step, the algorithm starts from a single intercept term and

then adds pairs of hinge functions in order to minimise training error.

At the end of the process, the final model can become very large and this
could potentially overfit the data. Hence, the backward step is an elimination
step where the terms whose removal leads to the smallest increase in residual

squared error are deleted (Hastie et al., 2008).

K-Nearest Neighbors - KNN

K-nearest neighbors is an algorithm that can be used for classification and
regression problems. In KNN, given a positive integer K and a test observation,
the algorithm identifies the K points (known as neighbors) in the training data
that are closest to the testing observation. For regression problems, the outcome
is a single value that is the average of all the values of those K nearest points
(James et al., 2013). KNN is very quick to compute since there is no training phase
to construct a model.

Support Vector Machines - SVM

Support vector machines is a widely used learning algorithm that is based on
the concept of decision planes that define decision boundaries. A decision plane
is one that separates a set of objects having different class memberships. The
goal is to find a plane that has the maximum margin between the available
classes.
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FIGURE 2.2: Visual representation of SVM (Carrasco, 2019).

However, the algorithm can also be used for regression analysis. The goal is
to find a function that deviates from the response by a value no greater than a
threshold, called €. Basically, the method minimises two terms in the objective
function, one of which is the e-insensitive loss function and the other is the
model complexity (Hastie et al., 2008).

One important feature with support vector machines is the use of kernels.
Kernels can map the dataset from the original space to a higher dimensional
space using a set of mathematical functions. By doing this process, the mapped
objects can become linearly separable.

Decision Trees

Decision tree learning is a method that is popular in the machine learning
domain, with various algorithms present in the literature. CART is an algorithm
that creates binary trees. As mentioned earlier, tree models involve selecting
input variables and splitting them into two subsets recursively, until a tree has
been constructed. The selection of a specific input variable and breaking point
is achieved through the use of a greedy algorithm where different split points

are tested using a cost function. The split with the minimum cost is selected.

The recursive splitting procedure is stopped when a criterion is satisfied during

the training phase. A common criterion is the minimum number of samples in
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a leaf node. The smaller the number, the larger the final constructed tree will
be.

The final step is pruning. Simple trees are preferable since they are easy to
understand and less likely to cause overfitting issues. Pruning techniques assess
the quality of leaf nodes and remove the ones that offer no improvement in
the overall performance, hence creating a more compact tree representation
(Breiman et al., 1984).

Decision trees do have some advantages over other supervised learning ap-
proaches such as (James et al., 2013):

e Easy and quick to compute
e Easy to understand and explain
e Can be graphically represented, especially if they are small

However, decision tree learners can create over-complex structures that overfit

the training data.

Figure[2.3|is an example of a decision tree classifier. This example concerns the
development of a method for identifying high risk heart attack patients, once
they have been admitted to the hospital, on the basis of the initial 24-hour data.
This structure classifies incoming patients as HR or LR depending the yes-no
answers to at most three questions (Breiman et al., 1984).

As mentioned in Section another popular decision tree method is CTree.
This algorithm tackles the problem of recursive partitioning in a statistical
framework (Hothorn et al., 2006). For each node, the association between
each independent input feature and the output variable is quantified using a
permutation test and multiple testing correction. If the strongest association
passes a statistical threshold, a binary split is performed in that corresponding

input variable; otherwise the current node is a terminal node.
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FIGURE 2.3: An example of a decision tree structure (Breiman
et al.,[1984).

M5P can be considered as an improvement of CART. The tree generation process
is the same, but instead of having values at the leaves, the constructed trees can
have multivariate linear models; these tree models are analogous to piecewise
linear functions (Quinlan et al.,[1992). In the first stage, the algorithm generates
the tree and instead of using information gain for the binary splits, it uses
a different criterion. According to the authors, the splitting criterion that is
used minimises the intra-subset variation in the class values down each branch.
In the second stage, pruning is applied to the tree back from each leaf. The
difference of this step compared to the one in CART is that when pruning to an
interior node, consideration is given to replace that node by a regression plane
instead of a constant value (Wang and Witten), 1996).

Cubist (Rulequest, 2020), which is a commercially available rule-based regres-
sion model, employs M5P to grow a tree first, which is then collapsed into a
smaller set of if-then rules. This is achieved by removing and combining paths
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from the root to the terminal nodes. One important thing to note it the ability
of the model to have overlapping if-then rules. In other words, samples can
be assigned to multiple rules. A final value is produced by averaging all the

predictions.

Ensemble methods

Ensemble methods are algorithms based on the hypothesis that combining
multiple machine learning models into a single predictive model can improve
results (Hastie et al., 2008). Those multiple models are often called "weak
learners" and each one is trained to solve the same problem. In the end, those
models are combined to obtain better results. Ensemble methods can be divided

into two major groups:

1. Sequential methods, where the base or weak learners are generated se-
quentially, and the overall performance can be boosted by weighing pre-
viously mislabelled examples with higher weights.

2. Parallel methods, where the base learners are generated in parallel. The ba-
sic motivation of parallel methods is to exploit the independence between

the weak learners and reduce the overall error by averaging.

In parallel methods, the most popular approach for training the ‘weak” inde-
pendent learners is called bagging (which stands for bootstrap aggregating).
Bagging randomly creates T subsets by taking samples with replacement from
the original dataset. Then, T models are trained based on those subsets and the
final results are aggregated to achieve better predictive performance. For ag-
gregating the results of the base learners, bagging uses voting for classification
and averaging for regression (Muller and Guido, 2016).

One well-established algorithm that uses bagging is Random Forest, which uses
decision tree algorithms as base learners and generates multiple models in

parallel to improve performance.

The difference with sequential methods is that the various combined weak learn-
ers are no longer trained independently. Each model in the sequence focuses

on the weaknesses of the previous iteration by trying to improve prediction
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accuracy on the samples that were badly handled. At the end of the process, a

strong learner with lower bias is obtained (Breiman, 1996).

Multi-layer perceptron - MLP

MLP is a type of feedforward neural network. It consists of an input layer, a
number of intermediate layers that are known as hidden layers and an output
layer. Each layer has a number of nodes, also known as neurons. The network
is fully connected, which means that the neurons in each layer are connected
to all the neurons in the two neighbour layers. With the exception of the input
layer, the rest of the neurons use an activation function which defines the output
value of those neurons (Hastie et al., 2008). The use of appropriate activation
functions, such as sigmoid or ReLU (Rectified Linear Unit), allows MLP to model
data with non-linear relationship (Gevrey et al.,2003). In terms of training the

network, backpropagation is employed.

2.2 Unsupervised learning

Unsupervised learning techniques are quite different, due to the lack of an
output variable. As mentioned in Section unsupervised techniques can
be useful for performing exploratory data analysis and extracting useful in-
formation or creating different representations of the available data. Popular
methodologies include clustering, dimensionality reduction and various data

transformation techniques.

2.2.1 Clustering

Clustering is one of the most important unsupervised learning domains with
many tools in existence. However, each clustering algorithm has its own
strengths and weaknesses due to the complexity of available information. Tra-
ditional algorithms can be divided into various categories, with 4 of the most

popular adhering to the following principles (Xu and Tian, [2015):
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e partitioning
e hierarchy

e density

e distribution

Clustering algorithms that are based on partitioning, organise the data into clus-
ters and regard the centre of the data points as the centre of the corresponding
cluster. These algorithms are efficient but can be sensitive to initial conditions
and outliers. Popular algorithms include k-means (MacQueen et al.,[1967) and

k-medoids.

Hierarchy-based algorithms work differently. They partition the instances
in either a top-down or bottom-up way. Agglomerative clustering assigns
every instance to its own cluster and then successively merges neighbouring
clusters (bottom-up approach). On the other hand, divisive clustering works
in the reverse order. All the instances belong to a single cluster and then they
are successively divided into sub-cluster (top-down approach) (Maimon and
Rokach, 2005).

Density-based methods identify distinctive clusters in the data, based on the
idea that a cluster in the data space is a continuous region of high point density,
separated from other such clusters by continuous regions of low point density.
By design, these algorithms do not assign outliers to clusters since those data
points do not fall into any regions of high density (Kriegel et al., 2011). Popular
algorithms include DBSCAN (Ester et al., 1996)) and Mean-shift (Comaniciu and
Meer, 2002).

Finally, distribution-based approaches assume that the samples are composed
of distributions. Samples that are generated from the same distribution belong
to the same cluster, otherwise they belong to different clusters (if there exist

several distributions in the original data).

2.2.2 Dimensionality reduction

In cases where the input dataset has a large number of variables, it is often help-

ful to reduce its dimensionality or to find a lower dimensional representation.
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Some of the benefits of reducing the dimensionality of the data include:

e Reduced computational expenses, since the new reduced dataset can help

speed up all the subsequent operations.
e Ability to visualise the data for exploratory analysis.

Approaches can be divided into feature selection and feature extraction (Mohri
et al., 2012). Feature selection methods retain only a subset of the original
input variables and eliminate the rest from the model. There are a number
of different types of feature selection methods such as wrapper, filter and
embedded methods (Hastie et al., 2008).

Wrapper methods search the input space to create subsets of features and
evaluate each subset by fitting a model on the subset. The methods can be
computationally expensive. Similarly, filter algorithms also create subsets of
features but the evaluation is based on a proxy metric, which is easy and
quick to compute instead of fitting a model. On the other hand, embedded
techniques are model-specific, since the creation of a subset is part of the model

construction process.

Feature extraction transforms the data from a high-dimensional to a low-
dimensional space, compressing the data and potentially finding a represen-
tation that is more informative for further processing. One of the most widely
used algorithms for feature extraction is Principal Component Analysis (PCA)
(Hotelling, |1933). Another popular algorithm is autoencoder (Kramer, (1991).

Principal Component Analysis

PCA is a technique for reducing the dimension of a dataset and create new
tfeatures, called principal components. This technique uses an orthogonal
transformation to convert a set of correlated variables into a set of uncorrelated
ones (James et al., 2013). The first principal component is created by being
placed at the direction that maximises the variance of the data points. The next
principal component is perpendicular to the first one. It is worth noting that in
a high-dimensional case, each subsequent principal component is placed along
an axis that maximises the variance of the data, subject to the constraint that is
orthogonal to the preceding component (Witten et al., 2016).
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The user can specify the number of desired components, which is usually
based on the cumulative captured variance of the original data, and create a
reduced representation of the data. One of the most common applications of
PCA is visualising high-dimensional datasets, by selected either a 2D or 3D
representation (2 or 3 principal components respectively) (Muller and Guido,
2016).

2.3 Data transformations

Transformations are very useful since these algorithms create new representa-
tions of the original input space hence making the data easier to understand
and handle, hence enabling the extraction of useful information. It is very
common before training a supervised learning model, to pre-process the data
through various transformations in order to normalise the range of independent
variables.

This is very useful because in many applications, the range of raw data values
can vary and lead to specific variables being more dominant than others in the
final model (Hastie et al., 2008). Two of the most common normalisation tech-
niques are feature scaling through min-max normalisation and standardisation

(also known as Z-score normalisation).

Min-Max feature scaling

This type of normalisation shifts the data such that all the input variables are
within a specified range. It is common for this range to be [0,1]. In this instance,

the data values are calculated by the following formula:

X — Xy
== Tmn (2.1)
Xmax — Xmin
where x is the value of a data point for a specific variable and x,,;,,, X;ax are the

maximum and minimum values of that variable respectively.

In the general case where the user wants to specify a different range, the formula

can be adjusted to a custom range of [a,b] as follows:
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x’:a—i—M.(b—a) (2.2)

Xmax — Xmin

where g and b are the range values specified by the user.

Standardisation

Feature standardisation shifts the value of the input variables in the data to
have zero-mean and unit-variance. This method is commonly used for ma-
chine learning algorithms such as support vector machines and artificial neural

networks (Grus, 2019). This transformation is given by the following formula:

X = (2.3)

where x is the original feature vector, ¥ is the mean of that feature vector and

is the standard deviation.

2.4 Model selection and evaluation

According to Figure model complexity has an impact on performance.
Deciding on the final complexity of a model requires trial and error until the
tinal model has been chosen. During this process, every time a parameter
is changed, a new model is constructed. So in the end, there exists a set of
candidate models to choose from and the objective is to determine which one
best approximates the data.

Standard methodologies for these types of problems include cross validation

and model selection criteria such as information criteria.

2.4.1 Information criteria

Information criteria are measures of the relative goodness of fit of a statistical
model. Two of the most popular are the Akaike Information Criterion (AIC) and
the Bayesian Information Criterion (BIC).
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The AIC and BIC have been established as two of the most frequently used
criteria in the literature for model selection problems with a wide variety of
applications. A couple of examples include the wine industry (Snipes and
Taylor, 2014), where different models are compared in an attempt to explore the
relationship between ratings and prices of wines, and cancer research, where
the AIC was used to develop a prognostic model in patients with germ cell
tumors who experienced treatment failure with chemotherapy (International

Prognostic Factors Study Group), 2010)

These two criteria have also been used in a number of statistical and machine
learning methods such as outlier detection (Lehmann and Losler, 2016) and
feature selection. Kimura and Waki|(2018) proposed a branch-and-bound search
algorithm formulated as a mixed integer nonlinear programming problem,
minimising the value of the AIC to perform feature selection. Sato et al.| (2016)
have also used both the AIC and BIC as measures of the goodness-of-fit to

perform feature selection for logistic regression models.

The general formulation of the AIC and the BIC is as follows (Wagenmakers,
2004):

AIC = —2-In(£) 42K

BIC = —2-In(£) + K -In(n)

where:
In  natural logarithm
L value of the log-likelihood function at its maximum point
K number of parameters in the model
n number of samples in the data

The AIC establishes a relationship between the Kullback-Leibler measure and
maximum likelihood estimation method (Fabozzi et al., 2014). It is an estimate
of the relative distance between the truth and the model that approximates it.
The criterion is based on the idea that no model exists that perfectly describes
the truth so the best we can do is approximate it. Given a set of candidate

models the criterion can identify the model that performs the best.
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The BIC however arises from a Bayesian viewpoint and belongs to a class of
criteria that are ‘dimension-consistent’ which differ from those that are estimates
of the Kullback-Leibler measure. The formulation of the BIC is very similar to
the AIC but the main difference is that the BIC is derived to provide a consistent
estimator of the dimension of the data (Burnham and Anderson, 2003).

The theory of the likelihood function begins with a probability model, given its
parameters (). Assume a model f that describes the probability distribution of
a dataset X. What is known is the form of this model and the parameters that
describe it, f(X|6).

The likelihood function associated with this probability model differs only in
terms of what is known or given. In the probability model, the parameters, the
model and the sample size are known. The interest lies in the probability of

observing a specific event (Burnham and Anderson, 2003).

However, in much of science neither the model parameters nor the model is
known. In the likelihood function the data are given or observed, and the
model is assumed. This time, the interest lies in the estimation of the unknown
parameters of the model, thus the likelihood is a function of only the parameters.

The notation for the likelihood can be considered as £(0|X, g), which describes
the likelihood of a particular numerical value of the unknown parameter 6,
given the data X and a particular model g. The expression [n(L£) in the in-
formation criteria, is the numerical value of the log-likelihood function at its

maximum point.

In regression analysis, if all the candidate models assume normally distributed
errors with constant variance, then the criteria can be reformulated as (Burnham
and Anderson| 2003):

AIC=mn-In (RTSS) + 2K (2.4)
BIC=mn-In (%) + K- In(n) (2.5)

where:

RSS residual sum of squares



Chapter 2. Literature review 29

2.4.2 Cross-validation

Resampling methods are a fundamental tool in statistics and involve repeatedly
drawing samples from a set and refitting a model. Cross-validation (CV) is a
well-known resampling technique that is used to estimate the test error that is
associated with a given learning method in order to evaluate its performance.
Test error is the error that results from using a learning algorithm to predict
the output of previously unseen observations that were not part of the training
phase (James et al., 2013).

Validation set approach

One of the simplest ways to estimate the test error of fitting a model to a set of
data is the validation set approach. This approach randomly reserves a certain
amount of data samples for testing and uses the remainder for training. The
model is fitted only on the training set and the testing set is used to provide an
estimate of the expected error of the model (Muller and Guido, 2016).

Leave-one-out cross-validation

A variation of the validation set approach is the leave-one-out cross validation.
This approach involves splitting the data into training and testing sets. However,
the testing set is a single sample and the training test is the rest of the dataset.
This procedure is repeated until every sample has been used as part of the
testing set. The resulting model can have bias compared to the validation set
approach since it benefits from the larger size of the training set. Despite being

time consuming, it can provide good estimates on small datasets (Muller and
Guido, 2016).

K-fold cross-validation

In k-fold cross-validation, the dataset is split into k equal partitions or folds, and
at each iteration a single fold is used as testing while the other ones for training.
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Parameter k is user defined and usually takes the value of either 5 or 10. The
procedure of fitting the model on the k — 1 folds and evaluating the error on
the remainder fold is repeated k times and the result is k estimates of the test

error which are typically averaged to obtain the overall error estimate.
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FIGURE 2.4: Data splitting in 5-fold cross-validation (Muller and
Guido), 2016)

Figure illustrates an example of 5-fold cross validation. The dataset is
randomly split into 5 subsets and 5 separate models are trained, each time
selecting different folds for training and testing. One obvious advantage of k-
fold is computational time. In leave-one-out the training procedure is repeated
n times, where 7 is the number of samples in the dataset. Furthermore, since the
testing set consists of multiple data points, the obtained error estimate might be
more accurate than simply randomly picking a single observation to evaluate

the model, especially for larger datasets.

2.5 Machine learning in chemical engineering

It is important to point out how machine learning and artificial intelligence have
been applied to the chemical engineering community. The following summary
is not meant to be a comprehensive review, but a representative survey to

demonstrate recent relevant activities.

Even though machine learning principles have been applied to chemical engi-
neering in the past, recent advances in software and hardware has made it easier
to process and handle large amounts of data in order to extract information

(Venkatasubramanian, 2019). Work has also been done in the development of
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data-driven models to produce hybrid models using machine learning and clas-
sical chemical engineering methods (Psichogios and Ungar, 1992; Thompson
and Kramer,|1994)

Many topics in chemical engineering can benefit from this interest in artificial
intelligence. A few that stand out are materials design, process operations, fault

diagnosis, biomedical and biochemical engineering.

Machine learning is already being used to monitor the performance of oil
wells in the industry, with the goal of improving production and minimising
downtime (Kellner, 2015).

In materials design, the goal is to use machine learning techniques and aid
the design or discovery of materials with desired properties in a quicker and
cheaper way (Venkatasubramanian et al.,1994). The design and discovery of
catalysts using artificial intelligence is also a topic with considerable excitement
(Medford et al., 2018; Tran and Ulissi, 2018).

Machine learning and Al-based models can have an impact on the chemical
engineering community. But as important as it might be, it should always be
handled with caution due to their inability to "understand" the underlying

physical or chemical mechanism (Venkatasubramanian, 2019).

2.6 Machine learning and decision making under

uncertainty

Many important problems involve decisions to be made under uncertainty.
Accounting for the sources of unpredictable and sometimes uncontrollable
conditions is a major challenge. Variations in key parameters and the data used
to mathematically model a system can lead to unexpected deviation from the
predicted behaviour of a system (Kochenderfer, 2015).

Many parameters involved in optimisation problems are subject to uncertainty
due to a variety of reasons. Such uncertain parameters can include product
demands in process planning (Liu and Sahinidis| 1996)), kinetic constants in
reaction-separation-recycling system design (Acevedo and Pistikopoulos, 1998)
and task duration in batch process scheduling (Li and Ierapetritou, 2008) to
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name a few. This issue of uncertainty could render the solution of a problem

infeasible.

To deal with uncertainty, a number of solution techniques have been developed,
such as stochastic programming, chance constrained optimisation and robust
optimisation. Nowadays however, the emergence of machine learning and
the availability of tools and computational power have enabled researchers to
handle decision making from a different perspective (Ning and You, 2019).

A significant amount of research has been done to incorporate machine learning
and handle uncertainty. A few examples are briefly mentioned below. Ning
and You (2018) proposed a data-driven robust optimisation framework that
leveraged the power of principal component analysis and kernel smoothing
for decision making under uncertainty. Another data-driven static robust
optimisation framework was examined by |Shang et al.|(2017), that was based
on support vector clustering and aimed to find a hypersphere with minimal
volume to enclose uncertainty data. Finally, Medina-Gonzalez et al.| (2020)
proposed a scenario reduction algorithm that combines graph theory and lasso
regression to represent information as a network and identify clusters. This
algorithm was applied to two-stage stochastic problems.

Although conventional techniques are the most recognised modelling paradigms
for tackling uncertainty, it is apparent that data-driven mathematical program-
ming frameworks have experienced a rapid growth due to the big interest in
machine learning and is an active domain of both academic and industrial
interest (Ning and You, 2019).

2.7 Concluding remarks

In this chapter, some key elements of machine learning and artificial intelli-
gence are presented. Those key elements include supervised and unsupervised
learning, description of some popular machine learning algorithms as well
as model evaluation techniques and metrics. These topics cover the basics
of a data science workflow, where the scientist has to manipulate some data,
use an algorithm to find any patterns that exist in the data and validate the

performance of the model.
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This work focuses on the development of novel supervised learning algorithms.
These algorithms are based on the idea of segmenting the data into smaller
subsets in order to make the prediction task easier. Those novel algorithms are
making use of mathematical and integer programming techniques. Previous
work on algorithms that follow the principle of data segmentation (e.g. decision
trees) and make use of integer programming are mentioned in this chapter.
These previous studies serve as a background for the novel mathematical
models developed in the current thesis.

The literature review in this chapter aims to give an idea of the level of under-
standing of the current state of classical machine learning, without going into
much detail to the rest of the machine learning domain which covers topics

such as reinforcement learning, artificial neural networks and deep learning.
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3 Development of a piecewise

regression algorithm

This chapter addresses the topic of piecewise linear regression. A description
of a current algorithm is given, upon which two approaches are proposed and
extend the mathematical formulation in order to accommodate information
criteria in the optimisation. The new algorithm is tested using real-world
datasets that are available through online data repositories and its performance

is validated against other established algorithms from the literature.

3.1 Introduction

In linear regression analysis, the variance of the response is described using
linear expressions. However, it is possible that the relationship between input
and output variables are more complex. In some cases, there are data points
where the value of the output changes abruptly when the input changes. Such
points are called break points (Muggeo, 2003).

Piecewise regression is the procedure of identifying such break points and fit
different models to each segment in order to capture the trends that are hidden
within each section. Implementing a simplistic regression method like linear
regression, which is easy to explain and interpret, as a piecewise approach
will result in a predictive model that has better predictive capabilities and also
provide insights to better understand the data.
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FIGURE 3.1: Illustration of a piecewise regression example with
one input and one output variable

Figure3.I)is a simplified example to demonstrate a case where there is evidence
of linear correlation between input variable x and response y but there are
two distinct regions. As mentioned in Section identifying the number of
regions and the values of the break points is a challenging task. The work in
this chapter describes a series of variations of a piecewise regression algorithm

that fits linear expressions to a set of data.

3.2 Proposed algorithm

This section introduces two approaches of a piecewise regression algorithm.
This algorithm is using the optimisation model of the OPLRA algorithm (pre-
sented in Section [3.2.1)). Both of the variations include information criteria in
order to ensure a balance between prediction accuracy and model complexity.
The key difference of the two variants is the way they utilise the information

criteria.
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The first approach adopts an iterative procedure for the task of selecting the
optimal number of regions, by post-processing the results of the optimisation
model to calculate the value of the criteria and use them to terminate the
algorithm. In this case, there is no need for the user to specify any hyper-

parameters before using the algorithm to fit a set of data.

On the other hand, the second approach is working on a different principle.
The optimisation model is now extended to include the information criteria in
the formulation. Instead of post-processing the results, the mathematical model
is now capable of directly optimising the value of the criteria and determining
the optimal number of regions. This is achieved by selecting an upper bound
for the maximum number of allowed regions in the model. The values of the
AIC and the BIC will determine the final number of regions. Sections
and that follow describe the original OPLRA mathematical model as well as
the variants in more detail respectively.

3.2.1 Mathematical formulation of OPLRA (Yang et al., 2016)

In this section, the OPLRA mathematical programming model is described as for-
mulated by Yang et al.[(2016). The model accepts as input a multivariate dataset,
splits it into multiple segments on a specific variable, fits a linear function to
each segment, calculates the optimal regression coefficients and intercepts while
minimising the summation of the absolute deviation of the fitting. All of the

indices, parameters and variables that are used in the formulation are explained

below:
Indices
S data samples,s =1,2,...,S
m features/input variablesm = 1,2,..., M
r regions,r =1,2,...,R
m* partitioning feature/variable
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Parameters

ASI’I’I
Ys

Uy, Uy
€

Variables

Wiy
B,

Prs,
Xmr

numeric value of sample s on feature m
output value of sample s
suitably large positive numbers

suitably small number

regression coefficient for feature m in region r
intercept of regression in region r
predicted output for sample s in region r

break-point value of feature m for region r

Positive variables

D

training error between predicted output and observed output

for sample s

Binary variables

PST’

1 if sample s falls into region r; 0 otherwise

Mathematical Constraints

The following model works by specifying the number of regions and then

splitting the data. The break point values ,X], , are variables to be optimised.

So, for a given number of regions R, the first task is to arrange all of the breaking

points into ascending order. For a breaking point to exist, at least two regions

have to be selected. Furthermore, the number of breaking points will always be

one less than the number of regions.

Xm, r—1 < er

(3.1)
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Having ordered the break points, the next step is sample assignment. A new set
of binary variables is introduced ,F;, for the allocation of samples. For a specific
region r, if a sample s belongs to that region then F;; will take the value of 1.
Otherwise it will be 0. The next two bigM constraints ensure that samples will

be allocated to the correct regions.

Equation [3.2) checks the sample allocation of the region that is to the right of a
specific break point, whereas Equation 3.3|checks in regards to the region that
is to the left. Basically, if a sample s has a value Ay, that is greater than a break
point value, then the sample is always to the right of that break point. Similarly,

if sample s has a value less than a breaking point then it belongs to the left of

that break point.
X, r—1— U1 - (1 —Fy) + € < Ay Vs, r=2,3,..,R, m=m"* (3.2)
Asmgxmr+ul'(1_Fsr)_€ VS, 1’:1,2,...,R—1,m:m* (3.3)

Parameter € is added to the model to make sure that no values of the dataset
will equal any of the break points.

The next equation is a logical constraint that ensures that each sample s will
belong only to one region r. This is achieved by forcing the summation for each
sample of the binary variables F;, for all regions to be equal to 1.

Y Fe=1 Vs (3.4)

Each region has an explicit linear regression model. Equation 3.5/fits a linear
regression model to each region r. Wy, are the slopes of the linear expressions
and B, the intercepts. Variable Pr,, is the predicted response of the model.

Pree =Y Asn Wpr +B,  Vs,r (3.5)
m

However, Equation 3.5 generates a predicted value for a sample s for each
region r, despite the allocation of that sample s to a specific region. The correct
prediction is ensured by Equations3.6/and These constraints formulate the
absolute deviation between prediction and observed value for sample s, but at

the same time contain bigM terms in order to ensure the correct allocation of
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samples and therefore calculate the correct deviation.

DS Z YS - Prsr - u2 * (1 - Fsr) VS,T (3-6)
DS Z Prsr - YS - UZ * (1 - FSV) VS,T’ (3.7)

Finally, the objective function of the model is the minimisation of the absolute

deviation of the error:

min Z Dy (3.8)

The resulting model is formulated as an MILP problem.

In this literature work, the authors proposed a heuristic procedure in order to
identify the partitioning variable and find the optimal number of regions. This
was achieved by using an iterative approach and introducing a new parameter
B, which was used as a threshold to the reduction percentage of the absolute
error. If the reduction percentage of the error was above that parameter, then
a new region was added and the model would be solved again. The entire
process stops once convergence has been achieved.

3.2.2 [Iterative approaches

Since the task at hand is to decide the optimal number of regions, the assump-
tion can be made that each time a new region is introduced, a new regression
model is created with more degrees of freedom. As a result information criteria

are chosen to address the issue of model selection.

Using Equations and modifying them to fit the notation used in this
work, Equations 3.9 and are derived:

2
AIC = || - log (Z|S5%> +2-(IM|+1)-|R| (3.9)

s D3
S|

BIC = |S|-10g< )+(|M|+1)-|R|-ln(|5|) (3.10)
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where:
| M| cardinality of set m, representing the total number of input vari-
ables
S| cardinality of set s, representing the total number of samples
IR| cardinality of set r, representing the total number of regions

Both equations can be analysed through two terms, model accuracy and com-
plexity. Model accuracy is quantified using the residual sum of squares, Y D?,
which is the deviation between prediction and truth. In both criteria the com-
plexity term is (|M| + 1) - |R| since each regression model has | M| coefficients
plus one intercept and it is multiplied by the total number of regions |R|. The
difference of the two criteria is the stricter penalty that the BIC imposes to the
complexity term. It uses a multiplication factor which depends on the size of
the dataset.

For each added region, the value of the criteria changes since the overall model
is expected to have better accuracy and as a result a smaller Y, D? value but also
a larger penalty. So, by minimising the criteria, a balance between complexity

and accuracy is achieved.

This iterative approach is using the mathematical model described in Section
3.2.1jand post-processes the results using either the AIC or the BIC as a termina-
tion criterion. Depending on which metric is used, the variant is called Piecewise
Regression with Iterative Akaike information criterion (PRIA) or Piecewise Regression
with Iterative Bayesian information criterion (PRIB), and can be summarised as

follows:
¢ minimise objective function[3.§|
subject to:

e constraints 3.1H3.7]

e post-process the results with 3.9/ or

The optimisation model still requires a specific partitioning variable as input.

An iterative approach is used to select that partitioning variable as follows:

The number of regions is fixed to R = 2. Then the optimisation model of Section

3.2.1]is solved separately for each input variable. The selected variable is the
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one that yields the minimum error. It is worth noting that it is not necessary
to use the information criteria for this step, since the complexity for all the
different models is the same (number of regions fixed to R = 2). So, the only

factor affecting the results is the fitting error.

The next step of the algorithm is to identify the optimal number of regions. The
algorithm again solves multiple MILP models, but this time the partitioning
variable is fixed and with each iteration a new region is added. At the end
of each iteration, the values of the criteria are checked and compared with
the ones from the previous iteration. If there is an improvement (AIC or BIC
value decreases) then the algorithm iterates again. Otherwise, the iterations are

terminated.

This heuristic approach that is described in Figure for terminating the
algorithm is very similar to the one used in the original OPLRA work. The major
difference is the use of the AIC and BIC in the final loop. This loop replaces the
original stopping criterion with the aim of overcoming over or under fitting.

Yang et al. (2016) introduced a user-specified parameter, called S, as a threshold
to stop the iterations and converge to a solution. Assigning a value to that
parameter required a sensitivity analysis that was performed using specific
examples. At the end of the analysis, a single value was chosen for this param-
eter and it would be used for all future input data. This action has an effect
on overall performance since the algorithm was tailored around those specific
datasets and addressing this issue is a key improvement of the new proposed

methods.
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FIGURE 3.2: Flowchart for the proposed iterative approaches
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3.2.3 Single-level MILP approaches

In this section, a single-level MILP mathematical model is formulated which
extends the optimisation model of Section In this context, single-level
means that the mathematical model can now optimise, in a single MILP, both

the number of regions as well as the break points and the regression coefficients.

To achieve this, a new set of binary variables is introduced, E,, to represent the
number of selected or "active" regions. Constraints are introduced to formulate
the "activation" of regions and the assignment of samples to them. However,
as stated the goal is to formulate the optimisation model as an MILP and the

non-linear expression of the criteria poses an obstacle.

The answer to overcoming this obstacle is to reformulate the criteria and ap-
proximate their values by using linear expressions. The selected approach is to
use a set of piecewise linear expressions to approximate the logarithm function.
In order to further simplify the formulation, instead of using the residual sum
of squares, the formulation will use the sum of the absolute deviation. The

linear approximation and the added model constraints are explained below:

Indices

i break points for the piecewise expressions of the approximation
Parameters

Vi discrete points for the linearisation

Bi "output"” of the discrete points
Variables

AIC Akaike Information Criterion value

BIC Bayesian Information Criterion value

G approximated value of the logarithm
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Binary variables

E, 1 if region r is selected; 0 otherwise

SOS?2 Variables

A discrete points for the linear approximation

Mathematical Constraints

Given a maximum number of allowable regions R, the optimisation model will
select to "activate" the number of regions that are needed in order to minimise
the value of the information criteria. The following constraint, ensures that
if a region r is active, E, = 1, then the next region can be either active or not.
However, if a region r is not active, E, = 0, then the next r 4 1 region is forced
to be deactivated, E, 1 = 0. As a result, all the subsequent regions will also be

deactivated.
E,1 <E Vr=12,..,R—1 (3.11)

Once a region has been activated, samples can be allocated to this region. The
following constraint ensures that if a region r is active, E, = 1, then the F;,
binary variables for all the samples s are free to be either 0 or 1. However, if a
region is not active, E, = 0, all the F;, variables for that region are forced to 0,

ensuring that no samples will be allocated to this "inactive" region.
F < E, Vr,s (3.12)

The next set of equations is responsible for the approximation of the logarithm
function in the AIC and BIC. The approximation is achieved by piecewise linear
expressions. A set of SOS2 variables (special ordered set of type 2, which means
that at most two variables within this ordered set can take on non-zero values)

is introduced in order to select the correct linear expression. Parameters  and



Chapter 3. Development of a piecewise regression algorithm 45

7 are used to discretise the domain of the function in a given range.

Bi=1In(y;) Vi (3.13)
Y D5 = Z’yi A (3.14)
G=) BiAi (3.15)
Y Ai=1 (3.16)

Figure (3.3|is an example to illustrate how the approximation works. The "true"
natural logarithm function is represented by the red line. The first step is
to choose the number of points for discretising the domain. The higher the
number of points, the higher the accuracy of the approximation at the cost of
computational expense. In this illustration, five points are selected (set i has 5
elements) with the values of y =10, 20, 40, 60 and 80 respectively. The next step
is to calculate the corresponding logarithm values, which are the values of the
B parameter. As a visual aid, the piecewise linear expressions have also been
plotted.

The natural logarithm function

2 .
—_ Natural
1 4 logarithm
X . . . . Linear
- expressions
. Approximated
0 . . . . . value
0 20 x 40 60 80 100
Y1 V2 V3 Va Vs

FIGURE 3.3: Illustration of the linear approximation of the loga-
rithm function
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Suppose that we want to approximate the point x = 28. Point x is between 7,
and 13, so as a result variables A, and A3 will have a non-zero value. The values
of those variables will determine the approximated value y as follows:

X="72-A2+73-A3
y=PBr-A+ B3 A3
A+ A3 =1

substituting the numbers:

28 =20- Ay +40- A5
y=3-1+37-A3
Aoyt Ay =1

This is a system of 3 equations with 3 unknown variables. Solving this system

of equations leads to:

AZ = 0.6, )Lg = 04, Yy = 3.3

A simple way to interpret the result is that the final approximated value is 60%
the value of B, and 40% the value of B3.

In the formulation of Equations the value x that needs to be approxi-
mated is the ) ; D5, whereas the logarithm approximation y is represented with

variable G.

Finally, formulating the objective function depends on the criterion that is
chosen in order to perform model selection. For the AIC case:

min AIC = |S|- G — |S|In(|S|) + 2(|M| + 1) - ) _E, (3.17)
r

Whereas for the BIC case:

min BIC = |S|- G — [S|In(|S]) + In|S| - (|]M| +1) - ) _E, (3.18)

r
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The first term of the right hand side of Equations and is the accuracy of
the fitting, whereas the second term is the complexity of the model. Equations
and [3.18 have different penalty terms, with BIC being more strict since it
depends on the size of the examined dataset. The term |M| + 1 is also part of
model complexity, since there are | M| regression coefficients plus 1 intercept.
Finally, depending on the selected number of active regions, more coeffficients
are added to the model. Hence, the term ), E, is essential to account for the

number of regions.

In this approach, the partitioning variable is selected the same way as in Section
The next step is to specify the maximum number of regions R and the
set of binary variables E, will decide the optimal number of regions. Overall,
the proposed MILP model can be split into two sub-models depending on the
objective function. The first model is the Piecewise Regression with Optimised
Akaike Information Criterion (PROA) and the Piecewise Regression with Optimised
Bayesion Information Criterion (PROB) and can be summarised as follows:

e minimise objective function or[3.1§]

e subject to constraints and

Table 3.1]is a brief summary of the optimisation based regression approaches.

TABLE 3.1: A summary of the of the otpimisation based ap-

proaches
Method Description Equations
OPLRA Original OPLRA model (Yang min Eq. s.t Eq. Eq.

et al.,[2016)
PRIA OPLRA model with AIC post- min Eq. s.t Eq. Eq.

process post Eq.
PRIB OPLRA model with BIC post- min Eq. s.t Eq. Eq.
process post Eq.[3.10

PROA Single level MILP with AIC objec- min Eq. 3.17, s.t. Eq. Eq.
tive function and Eq. - Eq.
PROB Single level MILP with BIC objec- min Eq. s.t. Eq. Eq.
tive function and Eq. 3.12|- Eq.[3.16
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3.3 Numerical and computational section

3.3.1 Algorithm implementation

TheR v3.3.1 programming language was chosen for the implementation of this
algorithm. The language is free and open source with good support from the
community and it includes many powerful and popular libraries that are related
to machine learning. However, for the optimisation parts of the algorithm, GAMS
v24.7.1 and the solver CPLEX v.12.6.3.0 were chosen. The following figure
illustrates the implementation of the algorithm:

Figure 3.4|illustrates the implementation and the integration of GAMS and R. All
the blue elements and boxes have been implemented in R while the yellow ones
in GAMS.

The user has to specify the desired approach (the options are listed in table
and provide the input dataset. The next step of the implementation is to pre-
process the data and transform them into the correct format for conversion. It is
worth noting that this pre-processing step does not perform any data-cleaning
or feature engineering/selection methodologies. It simply handles the data in
order to prepare them for the next step.

The pre-processing step captures all the necessary information that is required
for the optimisation models that are described in Section The next step is
to convert all of the data into an appropriate GAMS format called gdx, using a
package called gdxrrw (Jain and Dirkse, 2018).

The implementation then calls two GAMS scripts which are responsible for iden-
tifying the partitioning variable, as described in Figure and then find the
optimal number of regions depending on which method was selected. Once
this is done, the results are imported back into R, where they are transformed
to a user-friendly format. A custom function for making predictions on new

samples has also been implemented entirely in R.
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FIGURE 3.4: The implementation of the piecewise regression algorithm
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3.3.2 Illustrative example

An example from literature is used to demonstrate the final form of the regres-
sion equations. This example is about the octane rating of fuel. This specific
dataset investigates the octane rating of petrol during a manufacturing process
in a refinery. The rating of the fuel is measured as a function of 3 raw materi-
als, denoted A1, A2 and A3, and a variable that quantifies the manufacturing
conditions of the refinery, denoted Q (Wood, 1973).

TABLE 3.2: Final regression functions for some of the proposed

methods

Method Regression functions

—513-A;4+011- A —0.71- A3 +1.95-Q +95.71, 0 < A3 <0.58

—7.57-A1 —097- Ay —3.70- A3 +3.96 - Q + 98.83, 0.58 < A3 <0.71
PRIA Y =

—813-A; —1.80- Ap —1.82- A3 +2.05- Q +99.00, 0.71 < A3 <092

23-A1+295- Ay +1390- A3+ 6.48 - Q 4 59.15, 071 < A3 <1

—513-A;14+011-Ap —0.71- A3 +1.95-Q +95.71, 0< A3 <0.58
PROA Y=

—-779-A1—-119-A; —01.07- A3 +3.11-Q +97.71, 058 < A3 <1

Table|3.2|is an illustration of the different regression models that are produced
by the iterative and single-level approaches using AIC.

Both approaches were able to identify exactly the same linear expression for
the first region. This linear expression is a function of all four variables with the
corresponding regression coefficients and the intercept. However, the iterative
approach identifies a total of four regions compared to just two of the single
level MILP approach.

Even though both models use exactly the same criterion, the results are not
the same. In order to determine which of the proposed methods has the best

predictive performance, more testing is required. In the next section a number of
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examples are used to test and compare the proposed methods to other literature

algorithms.

3.3.3 Datasets examined in this work

To test the proposed methods a number of real world datasets have been used.
The datasets reported in table 3.3|are derived from numerous online sources.
Specifically, the pharmacokinetics and earthquake data are available through
the datasets package in R, bodyfat and sensory data are available through
StatLib (Vlachos, [2005), distillation data from OpenMV.net and the rest from the
UCI machine learning repository (Dheeru and Karra-Taniskidou, 2017)

TABLE 3.3: Regression datasets examined in piecewise regression

work
Dataset No.samples No.variables
Pharmacokinetics 132 4
Bodyfat 252 14
Distillation 253 26
Yacht Hydrodynamics 308 6
Sensory 576 11
Cooling efficiency 768 8
Heating efficiency 768 8
Earthquake 1000 4
Concrete 1030 8
White wine quality 4898 11

The yacht hydrodynamics set predicts the residuary resistance of sailing yachts
to evaluate the ships’ performance and estimate the required propulsive power.
The energy efficiency dataset (Isanas and Xifara, 2012) assesses the heating and
cooling load requirements of different buildings as a function of 8 parameters.
The concrete dataset (Yeh, 1998) tries to predict the compressive strength of
concrete as a structural material. The wine dataset (Cortez et al., 2009) predicts

the quality of white wine based on its properties.

The pharmacokinetics dataset contains data from a study of the kinetics of

the anti-asthmatic drug theophylline. Twelve subjects were given oral doses
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of the drug and the aim is to predict the final concentration of theophylline
of each subject. The earthquake dataset gives the location of seismic events
that occurred near Fiji since 1964. The bodyfat dataset uses features such as
age, weight and height to measure the percentage of bodyfat in a subject. The
sensory dataset contains data for the evaluation of wine quality by a total
of 6 judges. The distillation dataset is comprised of measurements from a
distillation column, with vapour pressure being the quality variable that was

measured in the lab.

3.3.4 Algorithm validation and comparison

A number of regression algorithms from literature are also implemented for
comparison purposes. The algorithms include KNN, Random Forest, MARS and
SVM regression. All of those methods are implemented in the R programming
language using the FNN (Beygelzimer et al) 2013), randomForest (Liaw and
Wiener, 2002), earth (Milborrow), 2018) and e1071 (Meyer et al, 2017) packages
respectively.

In this work, 5-fold cross-validation is selected to evaluate the performance of
all the examined algorithms. 10 runs will be performed and the Mean Absolute
Error (MAE) between model prediction and the true data will be calculated for
each fold. The final score is the average of all the runs.

It is standard practice in machine learning tasks to perform feature scaling
(Muller and Guido) 2016). For each dataset, min-max feature scaling will be
applied and the selected range is [0,1] according to Equation[2.1] This scaling
will help to eliminate some variable being more dominant than others in the

final regression model.

Additionally, scaling the features to a specific range will make the selection of
the large positive number U; (from the model of Section 3.2.1)) easier, since all
the features are in the same range.

The iterative methods do not require any input or hyper-parameter tuning from
the user. The single-level MILP approaches however require an upper bound
for the maximum allowable number of regions. For the computational runs of

this work, this limit has been set to 5 regions, which is believed to be a suitable
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upper limit for achieving good performance but at the same time keeping the

complexity of the model to reasonable limits.

Furthermore, the hyper-parameters of the established algorithms from the
literature are set to their default values. These default values are the ones
suggested either by the creators of the algorithms or the developers of the

respective packages in R.

3.4 Computational results

3.4.1 Cross-validation runs

Table 3.4l contains the MAE results of all the 5-fold cross-validation runs. For
comparison purposes, the first step is to examine how the new methods perform
against the previous work and seek possible improvements. Next, the new
methods will be compared to established methods from literature. For each
examined dataset, the regression analysis that had the lowest MAE score is

presented with bold.

PROA has the lowest average error on 7 out of the 10 examined datasets compared
to OPLRA. PRIA is also competitive and achieved a better score for multiple
datasets. However, it is worth noting that the BIC-based algorithms all have
worse performance than the AIC-based ones.

It is very important to test and compare the accuracy of the proposed meth-
ods with established ones from literature. Since PROA was the best performer
amongst the proposed methods, it is selected to be compared to the established
methods. We can see that overall, the proposed PROA method has the lowest
error in only 5 datasets. However, upon examining the results closer it becomes
apparent that the method performs well since the error scores are always very
close to the ones that have the best overall performance.

To demonstrate that, a graph is developed comparing the overall performance
of the algorithms. This graph assigns a score to each one of the examined
algorithms in the scale of [1,10]. The score is calculated by looking at the
relative performance of all the algorithms for each dataset. Specifically, for a

single dataset, the algorithm that had the best MAE score is assigned 10 points,



Chapter 3. Development of a piecewise regression algorithm 54

TABLE 3.4: Cross-validation results using MAE for the piecewise
regression work

Yacht Cooling Heating Concrete Wine
OPLRA 0.689 1.275 0.805 4.845 0.551
PRIA 0.680 1.337 0.820 4.840 0.553
PRIB 0.699 1.342 0.909 4.922 0.567
PROA 0.678 1.275 0.806 4.838 0.555
PROB 0.688 1.351 0.906 4.920 0.566
KNN 5.788 2.237 2.063 8.924 0.577
SVM 3.673 1.820 1.456 4.864 0.518
RandFor 2.454 1.326 0.861 4.029 0.439
MARS 1.079 1.340 0.826 4932 0.569

Bodyfat Sensory Distil Pharma  Earthquake

OPLRA 1.273 0.632 2.650 1.613 7.238
PRIA 0.785 0.633 1.110 1.352 7.426
PRIB 0.763 0.652 1.127 1.387 7.357
PROA 0.631 0.626 1.025 1.288 7.238
PROB 1.341 0.636 1.105 1.325 7.256
KNN 2.869 0.642 1.966 1.981 8.464
SVM 1.391 0.613 1.128 1.834 7.250
RandFor 1.532 0.562 1.153 1.677 7.978
MARS 0.389 0.616 1.147 1.420 7.389

whereas the algorithm that had the worst MAE score is assigned 1 point. The

rest of algorithms are within this range.

For example, there are 9 examined algorithms in this chapter. Examining the
Yacht dataset, the MAE results of table 3.4/ show that PROA has the best score. So,
it is awarded 10 points. The second best algorithm for this dataset is PRIA, so it
is awarded 8.88 points. The third best algorithm is awarded 7.75 points and so
on, until the worst performing algorithm, which in this case is KNN, is awarded
1 point. The final score that is plotted on the graph, is the average score of each
algorithm for all the datasets.

The ranking of Figure 3.5(aids with the interpretation and understanding of
the relative performance of the regression algorithms used in this work. The
PROA algorithm is at the top of the ranking with the highest average score. This
demonstrates that the algorithm is able to compete with other established regres-
sion algorithms, at least for datasets of similar dimensionality and complexity

as the ones examined in this work and in some cases even outperform them.
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OPLRA and PRIA have very similar average scores, while the algorithms that use

the BIC have clearly the worst performance among the proposed algorithms.

— 10
(Present Work) PROA
(Present Work) PRIA
- 8
(Yangetal., 2016) OPLRA -
RandFor ~
- 6
(Present Work) PROB
,"'-4/)
MARS
SVM /L a4
/’
(Present Work) PRIB /
- 2

KNN

FIGURE 3.5: Visualisation of the performance of the methods
based on MAE values.

The bad performance of the BIC-based algorithms compared to the AIC ones
could be explained by the different penalty factors the two criteria use. Equation
which describes AIC, uses a multiplication factor of 2 as a penalty for
complexity. This factor is fixed and independent of the dataset that is used.

In contrast, Equation 2.5/ uses a factor which depends on the size of the dataset.
The bigger the dataset, the larger the penalty that is imposed to complexity.
Since the BIC penalises complexity that much, the regression models have fewer
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number of regions than what AIC produces. As a result, the criterion is not able

to perform well.

3.4.2 Statistical analysis

This ranking, despite being helpful and insightful, should not be the only way
of evaluating the overall performance. Performing a statistical test is vital in
order to check whether the difference between the CV results of table [3.4!is
statistically significant.

The statistical test chosen for this analysis is the Welch’s t-test. This is a two-
sample test which is used to test the hypothesis that two populations have
equal means and is reliable when the samples have unequal variances (Welch,
1947). If there is evidence to reject this hypothesis, then it can be concluded that

the difference between the two means is significant.

For each dataset, the two different populations that will be compared are the
values of the 10 cross validation runs between the PROA algorithm and one
of the rest. If by performing the Welch'’s t-test there is evidence to reject the
null hypothesis, then it can be concluded that there is a statistically significant
difference between the two sample means, and the best method is the one that

has the minimum average error.

More information about the calculation of the t statistic and the degrees of
freedom is available at appendix

e Calculate the ¢ statistic using eq.

e Choose a confidence level of 99% (« = 0.01)

e Calculate the probability p-values of the t distribution
o Reject the null hypothesisif p < a

Figure 3.6|is a visual representation of the statistical analysis performed for the
CV results. The circles contain five groups, one for each competing regression

algorithm. Each group has 10 bars that correspond to the 10 examined datasets.
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FIGURE 3.6: Visualisation of the computational results of this

work. Case (a) is a representation of the statistical analysis using

Welch’s t-test. Case (b) is a representation of the MAE perfor-
mance.
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Figure is a visualisation of the statistical analysis that has been performed
to compare the regression methods. A bar is present only if there is a significant
statistical difference in the results (null hypothesis of the t-test is rejected). For
all the examined examples, there is a difference with KNN. There is a significant
difference in 9 examples with Random Forest and 7 examples both SVM and MARS.
Finally, there is a difference in only 5 examples with OPLRA.

Figure is similar to Figure but this time a bar is present only if PROA
has achieved a lower MAE score for this specific example. It is clear that the
proposed approach has consistently outperformed KNN and OPLRA. Even
though OPLRA shares part of the optimisation model, the addition of the AIC
has greatly improved the results, with PROA providing better MAE score in 8
out of the 10 examples. PROA has achieved lower error values for 8 out of the 10
examples compared to SVM and MARS, but against Random Forest it performed
better for only 7 examples.

To accurately compare those algorithms, both figures should be taken into
account. For a specific dataset, it is desirable to have a bar present in both
figures since that would suggest strong evidence that the MAE averages of all
the CV runs are indeed statistically different and PROA has better performance.
Based on that rule, the proposed algorithm provided better results than OPLRA,
MARS and KNN, while outperforming for the most part Random Forest and SVM.

Figure[.7below is a visual representation of the performance of PROA compared
to the other methods. Each sub-figure is made of two graphs. The outer
ring represents the percentage of examples for which there was a statistically
meaningful difference in the CV results between PROA and another algorithm.
The pie chart in the middle represents the percentage of datasets for which
PROA outperforms the competing regression algorithm, provided that there is a

statistically meaningful difference in the results.

It is clear that when comparing PROA to KNN, there is a statistical difference for
all 10 datasets and PROA is the winner in all 10. PROA also performed very well
compared to MARS since there was a statistical difference in the majority of the

examined datasets and PROA had lower error values in all of them.
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FIGURE 3.7: Percentage of winning between PROA and the other
methods, based only on the datasets with meaningful statistical
difference.
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Comparing the proposed algorithm with OPLRA is interesting. There is a sta-
tistical difference in only half of the examined datasets, but PROA is clearly
outperforming OPLRA on the other half. This can be attributed to two facts. The
first fact is that those two algorithms share part of the optimisation model that
they use to fit the data. The second fact is that some of the examined examples
were also used in the original work. This is a very important detail which
indicates that when the OPLRA algorithm deals with new datasets, it struggles
to generalise well. It was mentioned at Section that this behaviour can
be attributed to the heuristic approach that was used by the original authors,
which leads to potential overfitting models.

PROA is able to compete against SVM by providing lower error values for the
majority of the statistically significant datasets. However, there is a significant
difference only for 6 out of the 10 examined examples. Finally, Random Forest is
the biggest competitor for the examined examples, achieving lower error values

for 33% of the statistically significant datasets.

3.5 Concluding remarks

The work in this chapter proposes a piecewise regression algorithm. This
algorithm uses the optimisation model of the existing OPLRA algorithm and
extends its formulation to include information criteria. The information criteria
are taken into consideration by two different ways. The first one is an iterative
post-process approach, where the values of the criteria are calculated after the
optimisation stage. The second way directly optimises the values of the criteria,
since they are the objective functions of the corresponding optimisation models.

The inclusion of the criteria is the key contribution of this novel algorithm. The
task of identifying the optimal number of required regions is now decided by the
minimisation of the information criteria. The first step of the proposed variants
is the selection of the best partitioning features. For the iterative approaches, the
next step is the execution of the optimisation model of Section by adding
a new region at each iteration. The iterations stop when the post-processed
values of the criteria stop decreasing. For the single-level MILP approaches,
given a maximum number of allowable regions, the optimal number is decided

by the execution of a single model.
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The predictive performance of the algorithm is tested through 10 runs of 5-
fold cross-validation. The datasets used in this work are real-world examples
that are available through online public repositories. Various well-established
algorithms are used for comparison purposes. The results indicate that the new
algorithm, especially the PROA variant, is a good regression alternative to other
established algorithms. The validity of the results is proven by performing a
statistical analysis to check for significance. Furthermore, the algorithm has
the added benefit of using linear models for each region which are easy to
understand, and the number of regions decided by the model require minimal

user input.

The core concept of the optimisation model is used in the next chapter to
develop a decision tree regressor. Instead of splitting the data into multiple
regions, the regressor creates binary splitting rules. The use of information
criteria and their formulation as an MILP model are utilised again and applied

to solve the problem of identifying the “optimal” partitioning feature.
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4 Development of a decision tree

regressor

The work in this chapter deals with the development of a decision tree regressor.
A description of an existing algorithm is given and its optimisation model
is used in order to create the novel method. An established statistical test is
introduced and a novel variable selection optimisation model is developed to
create the new decision tree algorithm. The proposed approach is tested using
data that were retrieved from online sources and its performance is compared

to various established tree algorithms from the literature.

4.1 Introduction

Decision trees can be used to visually and explicitly represent decision making
by using tree-like models. Decision trees are also widely used in machine
learning for both regression and classification tasks (Muller and Guido, 2016).

In machine learning, tree models employ a recursive binary splitting approach
of the input data in order to generate a tree-like structure. Depending on the
task at hand, the splitting approach minimises a cost function which tries to
find the most homogeneous branches. Stopping the tree generation process can
involve rules such as setting a minimum number of training samples on each
terminal node or setting a maximum depth size, which refers to the length of
the longest path from the root to a leaf. Many algorithms also apply a pruning
step that reduces the final size of the constructed tree by removing branches
that have low importance and therefore reducing the risk of overfitting.

The work in this chapter describes the development of a tree regression al-
gorithm that uses an MILP formulation to optimally split nodes and a well
established statistical test for assessing the tree generation process. Finally a



Chapter 4. Development of a decision tree regressor 63

novel mathematical formulation of a subset selection model to identify a subset

of candidate variables to be considered for binary splitting.

4.2 Proposed algorithm

This section proposes two variations of a novel regression algorithm that is
based on the partitioning model that is presented in Section That model is
part of the MPtree algorithm and it is responsible for optimally splitting a node
into two child nodes while minimising the absolute deviation of the fitting.

The first variant of the algorithm uses the same optimisation model, but the
criterion to assess node splittings and ultimately terminate the tree generation
process is substituted with the Chow statistical test. The second variant intro-
duces a new mathematical formulation that minimises the value of the BIC to

select an optimal subset of input variables to be considered for splitting.

4.2.1 Mathematical formulation of MPtree (Yang et al., 2017)

In this section, the mathematical programming model that was used in the
MPtree algorithm is described as formulated by Yang et al. (2017). This model
accepts a multivariate dataset as input and splits it into two nodes on a specific
variable and fits a regression model with quadratic terms to each new node.
The model calculates the optimal regression coefficients and intercepts of the
regression while minimising the summation of the absolute deviation of the

fitting. The mathematical model is presented below:
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Indices

o

S 3 3 °

Sets

Cn
Sn

Parameters

AST}’I
YS

Uy, Uy
€

Variables

B.
Prg.
Wl
Wzmc

Xm

child node of the current parent node; ¢ = left represents left
child node, and ¢ = right represents right child node

data samples,s =1,2,...,S

tfeatures/input variablesm = 1,2,..., M

partitioning feature/variable

current node

set of child nodes of the current parent node n

set of samples in the current parent node n

numeric value of sample s on feature m
output value of sample s
suitably large positive numbers

suitably small number

intercept of regression function in child node c

predicted output for sample s in child node c

regression coefficient for feature m in child node c; for linear
terms

regression coefficient for feature m in child node c; for quadratic
terms

break-point value on feature m

Positive variables

Ds

training error between predicted output and observed output

for sample s
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Binary variables

Fsc 1 if sample s falls into child node c; 0 otherwise

Mathematical Constraints

This model is based on the OPLRA model described in Section The dif-
ference this time is that instead of having multiple regions, the model now is

splitting into two nodes.

The two following constraints formulate the assignment of samples to one of
the child nodes. Binary variables are introduced for the assignment of samples
into the child nodes. Equation 4.1|is responsible for allocating samples to the
left child node whereas Equation 4.2 to the right.

Ay < X+ U;- (1 —Fy) —€ Vs €Sy c=left, m=m" 4.1)
Xy —Up-(1—Fy) +e < Asm Vs €Sy, c=right, m=m" (4.2)

The following constraint formulates that each sample belongs only to one child
node. This is achieved by forcing the summation of the binary variables F;. for
both child nodes to be equal to 1, for each sample s.

Y Fe=1 VseS, (4.3)

ceCy

A regression model is fitted to each child node c. Each regression function con-

tains both linear and quadratic terms in order to improve predictive accuracy.

Proe =Y A, W2+ Y Asu-Wlue+B. Vs €Sy, c€Cy (4.4)
m m

For any sample s, its training error is equal to the absolute deviation between
the real output and the predicted output for the child node c where it belongs.
This can be expressed with the following two constraints:

D52Y5_Prsc_u2(1_Psc) VSESn,CGCn (4.5)
DSZPTSC—YS—Uz(l—PSC) VSESn,CGCn (4.6)
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The objective function is to minimise the sum of absolute training errors of

splitting the current node 7 into its child nodes:

min ) _ D (4.7)
sES,

The resulting model can be summarised as:
objective function (4.7)

subject to (4.1)-(4.6) constraints

and is formulated as an MILP problem.

4.2.2 Variant I: Introduction of a statistical test
The Chow statistical test

In regression analysis, the F statistical test can be used to assess the quality of
segmented regression models. Assuming there is a structural break in the data,
splitting them and fitting mathematical functions to the subsets can improve
prediction accuracy. However, this action adds to the complexity of the model
and might lead to overfitting. Therefore, the Chow test can be applied to
compare the predictive performance of a segmented and a non-segmented
regression model (Chow, 1960).

Suppose that there are two subsets and the question is whether to perform
regression on the entire dataset consisting of both subsets (we denote this
model 1), or to apply separate regression models for each subset (we denote this
model 2). So RSS; is the residual sum of squares for the first model and RSS; is
the residual sum of squares for model 2 (which in this case is the sum of the
RSS for each subset). In general, there will be an improvement when splitting
the data (RSS, < RSS;), with equality occurring only when all the regression
coefficients for the two models coincide (Dougherty, 2011). However, there is
a trade-off due to the added complexity of the overall regression model. By
splitting the data into two subsets and performing separate regressions, more
parameters are added to the model and hence more degrees of freedom.
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The F statistic for the Chow test can be computed as follows (Dougherty, 2011):

where:

RS54

RSS,

p1
P2

(R551 — RSSz)

_ p2—pl

F = RSS, (4.8)
n — pz

residual sum of squares of model 1 (single regression
for the entire dataset)

residual sum of squares of model 2 (separate regression
for each subset)

regression parameters of model 1

regression parameters of model 2

total number of samples in the dataset

The null hypothesis states that model 2 does not provide a significantly better

fit than model 1. So the procedure to either reject or accept the null hypothesis

is as follows:

e Calculate the F statistic using Equation [4.§]

e Choose an appropriate confidence level (e.g. 99%)

e Calculate the critical F,,;; value of the F-distribution

e Reject the null hypothesis if F > F,;;

According to the steps above, if there is evidence to reject the null hypothesis, it

is accepted that model 2 does provide a significant improvement in predictive

performance.

Application to tree regression

The use of this test can aid the process of generating regression trees, since it

can be used as a criterion for splitting nodes. Every node can be considered a

population that can be split into two separate subsets and a decision has to be

made of either accepting or rejecting the splitting.

As with other tree algorithms, recursive splitting is used to generate the tree.
For each node, the partitioning model of Section is applied to split nodes
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into two child nodes. Then the Chow test is applied to compare the linear
regression model with the segmented regression model. If there is significantly
better predictive performance by splitting the node, then the partitioning is
approved and the algorithm starts again by following the same procedure for
all the new nodes. However, if a node splitting is rejected then this current node
will no longer be considered for splitting and becomes a leaf. The entire tree
generation process is terminated when there are no more nodes that are eligible

for splitting.

In previous work, the proposed MPtree algorithm used a heuristic approach to
control the tree generation process. This heuristic introduced a new parameter
which was used as a threshold to the reduction percentage of the absolute
deviation. That reduction in error was a comparison between the current
examined node and the root node. By performing a sensitivity analysis, the
authors concluded that the parameter should be set to the value of 0.015, as it
yielded the best results.

The proposed algorithm, from now on called StatTree, is briefly explained

below.

e Exhaustive search over the entire set of input variables. Apply the parti-
tioning model of Section to split variables into two child nodes.

e Identification of the optimal partitioning variable. This variable is the one

that has the minimum fitting error from the previous step.

o Assess the quality of the splitting by performing the Chow test. If the
hypothesis is rejected, then the splitting is approved and the new nodes
can be considered candidates for further splitting. Otherwise, the current
node becomes a leaf node.

e Repeat those steps until there are no more candidate nodes left to be
checked.

4.2.3 Variant II: Variable selection for splitting nodes

According to the proposed algorithm in the previous section, identifying the
best partitioning variable employs an exhaustive search approach. Multiple

MILP models are solved in order to select the partitioning variable that yields
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the minimum error which adds to the overall computational time of training a
model, hence making the use of this algorithm on datasets with a large number

of variables impractical.

Feature or subset selection methods are useful for determining a subset of
variables of the original input space. This leads to potential improvements in
prediction accuracy and interpretability. However, one of the main reasons for
applying a feature selection method to the proposed tree regression algorithm is
to avoid the exhaustive search for the identification of the partitioning variable.
In that case, the optimisation model of Section will go through a set of

candidate variables, greatly reducing the overall training time.

Jian et al. (2017) proposed a variable selection method through mixed integer
quadratic programming by utilising the BIC, whereas Miyashiro and Takano
(2015) developed a mixed integer programming approach to deal with the
problem of subset selection using Mallows” C,,.

The feature selection model that is presented below is an MILP formulation.
Decision variables are included to determine which input variables should be
included in the final subset. The selection is based on fitting a linear regression
model to the data while minimising the BIC to determine the final number of
selected variables. The formulation of the BIC is based on the formulation of
the model in Section3.2.3

Indices

»

data samples, s=1,2,...,S
m features/input variablesm = 1,2,.., M

i break points for the piecewise expressions of the approximation
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Parameters

Asm
Ys
LO
up
i
Bi
N

Variables

Wm
B
Pr,
DS

BIC

numeric value of sample s on feature m

output value of sample s

lower limit for the linear regression coefficients

upper limit for the linear regression coefficients

discrete points for the linearisation

"output” values of the discrete points

maximum number of variables to be selected by the model

regression coefficient for feature m in child node ¢

intercept of regression function

predicted output for sample s

training error between predicted output and real output for
sample s

Bayesian Information Criterion value

approximated value of the logarithm

Positive Variables

Ds

training error between predicted output and observed output

for sample s

Binary variables

Zm

SOS2 variables

A

1 if feature m is selected; 0 otherwise

discrete points used for the linear approximation
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Mathematical Constraints

This implementation of feature selection employs binary variables, Z,,, that will
decide which features should be selected in the final subset. A linear regression

model is fitted to the data based on the following equation.

Prs =Y Asm -Wu+B Vs (4.9)
m

The absolute deviation between the observed values and the model predictions

is formulated by the following pair of equations.

DS Z Ys - Prs v S (4.10)
DS Z Prs - YS v S (4.].].)

For every feature that is selected, the corresponding variable takes the value
of Z,, = 1, otherwise Z,, = 0. This formulation restricts the values of the
coefficients between specified upper and lower bounds. According to the
next set of equations, if a variable m is not selected, then the corresponding
coefficient will be forced to zero. Otherwise, the coefficient can take any value
between the bounds. By setting very large positive and negative values for
those bounds, the regression coefficients are essentially free to take any real

value if the corresponding features are selected.

Wy >LO-Z, Vm (4.12)
Wy, <UP-Z, VYm (4.13)

Additional constraints are formulated to ensure that at least one variable has
to be selected in the final regression model and that a maximum number of N
variables can be selected. N is a user specified parameter that can take integer

values, enabling the user to control the size of the selected subset.

Y Zn>1 (4.14)

Y Zu <N (4.15)

Following the formulation of the model in Section the logarithm function
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will be approximated through the use of piecewise linear expressions. Set
i represents the number of breaking points and parameters 8 and <y define
the actual breaking points for the approximation. Finally, SOS2 variables are
introduced to decide the "correct” linear expression (see Figure [3.3).

Bi=Iny; Vi (4.16)
Y D5 = Z’yi A (4.17)
G=) Bi-Ai (4.18)
Y Ai=1 (4.19)

The objective function is the value of BIC which is formulated as follows:

min BIC = |S| -G — |S| - In|S| 4+ In|S] - <sz+1) (4.20)
m

|S| is the total number of samples in the dataset and G is the piecewise linear
approximation of the logarithm. As mentioned in Section[2.4.1} the minimisation
of the BIC results in a balance between model accuracy and model complexity.
In this instance, that balance translates to creating a linear regression model that
is as accurate as possible but at the same time uses the least number of input
variables. The complexity of the model, which is the last term of Equation [4.20]
is the total number of selected variables (}_,, Z;) plus an extra degree for the
intercept of the regression.

The resulting model, from now on known as FSelect, is an MILP formulation

that can be summarised as:
e minimise objective function [4.20]
e subject to constraints 4.94.19

A maximum number of selected variables is specified by the user with the final
number being decided by the optimisation model.
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FIGURE 4.1: The proposed variants. Case (a) is the exhaustive
search based on all the variables. Case (b) selects a subset of size

N to consider for splitting.
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4.3 Numerical and computational section

4.3.1 Algorithm implementation

Once again, a combination of R and GAMS was chosen for the implementation
of the proposed algorithm, illustrated in Figure All the blue boxes are
implemented in R while the yellow ones in GAMS. This time, the user can specify
whether he desires to use the FSelect variable selection model. If not, then the
StaTree version with exhaustive search is selected by default. The first step of
the algorithm is to prepare the data for conversion to gdx format. Once this is

done, GAMS is called for with the optimisation part.

If selected by the user, the first optimisation stage is the subset selection MILP
model. The results are exported to gdx and imported to the next optimisation
stage which splits nodes into two subsets. This script contains a loop that
checks to find the best partitioning variable based on the subset selected in the
previous step (or exhaustive search in case the FSelect option is not chosen).

The results are exported to gdx and imported into R, where the F test is applied
to assess the splitting. If the null hypothesis is rejected, then the splitting
is approved and the next available node is selected to start the optimisation
process again. At this point, the difference between the implementation of
Figure 3.4/and this one becomes apparent. In Figure GAMS was responsible
for the loop over the set of regions and deciding the optimal number. However,
this time GAMS is called through R multiple times, each time checking a single
node partitioning without any post-processing of the results. The final step is
to post-process the results and transform them into a readable format for the
user. A custom function for making predictions on new samples has also been

implemented entirely in R.
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4.3.2 Illustrative example

This example describes a continuous stirred tank reactor (CSTR), where a chain
reaction takes place A — B — C. The dataset contains 4 input variables that
describe the temperature of the reactor (T), concentration of reactant A (CX‘)
and B (Cg‘) in the inlet stream and the volume of the reactor (V). The output to
be predicted is the production rate of reactant B (Y) (Palmer and Realff, 2002).

Figures and are the generated trees by applying the algorithms in
Figures and respectively. For this example, the tree in Figure was
constructed by setting N = 1 as the maximum number of selected variables,
showcasing the difference between the two extreme cases of exhaustive search

and a greedy approach of selecting a single candidate variable.

The generated trees look similar, since both of them have 7 leaf nodes which
translates to 7 regression models. However, the breaking rules are different.

The main difference is that the root node is split on a different variable.
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T <312.24 T >312.24

V <45.92 V>45.92 V<4616 V>46.16
V <2584 V> 25 84 T< 301 56 T> 301 56 cin <2396 C7'>2396
Leaf L2 Leaf L3| | LeafL4| |LeafL5 Leaf L6 Leaf L7

(A) Tree generated from StatTree algorithm as described in

Figure

V<42.48 V>42.48
T < 315.20 T>315 20 T < 316.52 T > 316.52
Leaf L1
V <25.84 V > 25.84 T< 301 40 T> 301 40 C'" <2396 C'" > 2396
Leaf L2 Leaf L3 Leaf L4 Leaf L5 Leaf L6 Leaf L7

(B) Tree generated from StatTree algorithm as described in
Figure [d.1b]

FIGURE 4.3: Regression trees of the CSTR example as generated
by the proposed algorithms.
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4.3.3 Datasets examined in this work

A number of examples are considered in this work which are summarised in
table Six new additional datasets are introduced in this chapter which
include abalone and speeding that are available through the datasets package
in R, boston is available at StatLib and Dee, plastic and Wankara are availabe
through KEEL (Alcalé-Fdez et al., 2011).

TABLE 4.1: Regression datasets examined in this work

Data Predictors Samples Data Predictors Samples
Concrete 8 1030 Octane 4 82
Cooling 8 768 Pharma Z 132
Heating 8 768 Plastic 2 1650
Yacht 6 308 Sensory 11 576
Bodyfat 14 252 Wankara 9 1609
Boston 13 506 Abalone 8 4177
Dee 6 365 Speeding 3 8437
Earthquake 4 1000

Dee predicts the daily average price of electricity in Spain. The dataset contains
values about the daily consumption of energy from various sources such as
hydroelectric, fuel, natural gas and more. Plastic computes how much pressure
a given piece of plastic can withstand when a force is applied on it at a fixed
temperature. Wankara contains observations about weather information of
Ankara during 1994-1998, with the goal of predicting the average temperature.
Abalone predicts the age of abalone from physical measurements which are
easy obtain. The Speeding dataset has been collected from a study that tried
to identify the effect of warnings signs on speeding patterns. The speed mea-
surements were taken before the erection of a warning sign, after shortly after
the erection of the sign and finally after the sign had been in place for some
time. Finally, Boston consists of observations that predict the price of houses in

various places in Boston.
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4.3.4 Algorithm validation and comparison

For comparison purposes, various literature methods are implemented to test
the performance against the proposed approaches. These methods include CART
using the rpart package (Therneau et al., 2018), M5P regression using the RWeka
package (Hornik et al., 2009; Witten et al., 2016), CTree using the partykit
package (Hothorn and Zeileis, 2015) and MPtree which was implemented in R
and GAMS.

Once again, 5-fold cross-validation is selected to evaluate the performance of
the proposed algorithm. This procedure is repeated 10 times and the MAE is
calculated. The final reported score is the average of all the runs.

All of the datasets examined in this work undergo feature scaling in the range
of [0,1] for the reasons that have already been explained in Sections [2.3|and
Once again, feature scaling will make the selection of the parameters for

the bigM constraints easier.

The confidence level of the StatTree algorithm is set to 99% for these computa-
tional runs. Such a selection means that the statistical test will be very strict in
terms of rejecting the null hypothesis of the Chow test and generate new nodes.

The hyper-parameters of the competing decision tree regressors are set to their
default values. These values are the ones proposed by the researchers that
created the algorithms or the developers of the packages in the R programming

language.

4.4 Computational results

44.1 Cross-validation runs

Table 4.2/ contains the MAE results of all the runs of cross validation. For each
dataset, the method that performed the best is marked with bold. StatTree
has the best performance in terms of the MAE metric for 7 out of 15 examples.
Cubist is the next best performer with 3 out 15, MPtree and M5P both have 2
out 15 and CART only has a single dataset. However, that alone is not a good

indication of overall performance.
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TABLE 4.2: Cross-validation results using MAE

StatTree MPtree Cubist CART M5P CTree

Concrete 4.329 4.868 4.267 7.239 4.656 5.295
Cooling 1.175 0.891 0938 2400 1.210 1.403
Heating 0.367 0.354 0.347 2.011 0.693 0.665
Yacht 0.539 0.539 0.557 1.669 0.931 0.802
Bodyfat 0.183 5.282 0.205 1.356 0.373 0.911
Boston 2.568 4.644 2587 3234 2.501 3.014
Dee 0.313 0.975 0316 0381 0.316 0.356
Earthquake 7.345 12.427 7294 8223 7.273 7.884
Octane 0.391 0.805 0384 0.602 0.464 0.591
Pharma 0.900 0.870 1.053 1.339 1.328 1.566
Plastic 1.226 1.230 1229 1.658 1.234 1.410
Sensory 0.610 0.663 0.602 0.578 0.601 0.593
Wankara 0.972 3.605 1.000 3.213 0977 1.574
Abalone 1.490 1.512 1.500 1.731 1.521 1.600
Speeding 4.143 4243 4188 4.524 4.239 4.581

Constructing a figure to visualise the comparison of the various methods will
aid the interpretation of the overall predictive performance. The procedure

followed for the creation of this figure is the same as the one of Figure
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FIGURE 4.4: Visualisation of the performance of the methods
based on the MAE results

Looking at Figure 4.4 makes it easier to compare the overall performance of
the algorithms. A large performance gap exists between StatTree and MPtree,
which indicates that the new proposed method improves upon the weaknesses
of the previous one. Cubist is the only method that can provide competitive
results. However, since the performance of those two methods is very close, a
statistical test has to be applied in order to check whether there is a statistically

significant difference in the results.

4.4.2 Statistical analysis

The same statistical testing procedure that was applied in Section will
be followed here as well. The Welch’s t-test is well suited for checking the
hypothesis that two populations have equal means when they have unequal
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variances. The same steps will be followed which include the calculation of the
t-statistic using Equation [B.1} selection of a confidence level of 99% (x = 0.01),
calculation of the probability p-values of the t distribution and finally the
rejection of the null hypothesis if p < «.

Once again the two different populations will be the CV results of table
between StatTree and one of the other established regression algorithms. If
there is a statistically significant difference in the results, then the method that
achieved lower average error values will be considered the better one.

Figure[4.5)is a visual representation of the statistical analysis. The circles contain
tive groups, one for each competing tree regression algorithm. Each group
has 15 bars that correspond to the 15 examined datasets. Figure is a
visualisation of the statistical analysis that has been performed to compare the
methods. A bar is present only if there is a statistically significant difference
in the results (null hypothesis of the t-test is rejected). For all the examined
examples, there is a difference with CART and CTree. There is a significant
difference in 11 and 8 examples with M5P and MPtree respectively. With Cubist

however, there is a difference in only 6 examples.

Figure is similar to but this time a bar is present only if StatTree
has achieved a lower MAE score for this specific example. It is clear that the
proposed approach has consistently outperformed CART, CTree and M5P. Even
though MPtree is based on the same optimisation model for splitting nodes, the
addition of the F-test has greatly improved the results, with StatTree providing
better MAE score in 12 out of the 15 examples.
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FIGURE 4.5: Visualisation of the computational results of this

work. Case (a) is a representation of the statistical analysis using

Welch’s t-test. Case (b) is a representation of the MAE perfor-
mance.
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To accurately compare those algorithms, both figures should be taken into
account. So, for a specific example it is desirable to have a bar present in both
figures. If that is the case, that translates to strong evidence of suggesting that
the MAE averages of all the CV runs are indeed different and StatTree has
provided better error values than the competitor.

Figure is a representation of the performance of StatTree. Similarly to
Section each sub-figure contains two graphs. The outer ring represents the
percentage of examples for which there is a statistically meaningful difference in
the results. The pie chart in the middle represents the percentage of datasets for
which StatTree is better than the competitor in terms of MAE score, provided
that there is a statistical difference in the results.

CTree and CART have clearly underperformed compared to the proposed algo-
rithm. There is a statistical difference in every single examined dataset and it is
clear that StatTree has better performance, since it is better in 93% of the cases.
M5P performs a bit better, but it is still not able to beat the work presented in
this chapter.

Compared to MPtree, which shares the same optimisation model for splitting
nodes, the results are indicative of the improvements of the new method. There
is statistical difference in about half of the examined examples, which could be
explained by the fact that some datasets are common in both works. However
StatTree is better 75% of the time which is a significant improvement.

Finally, against Cubist there is a difference in only 40% of the examined datasets
and a winning percentage of 67%. Both of these numbers are the lowest out of
all the algorithms, but the proposed approach is still able to beat the competitor.
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FIGURE 4.6: Percentage of winning between StatTree and the
other methods, based only on the datasets with meaningful statis-
tical difference.
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4.4.3 Variable selection model

This section is dedicated to testing the performance of the algorithm of figure
The inclusion of the FSelect model in the overall StatTree algorithm adds
the benefit of reduced training time. However, there might be a compromise in
performance, especially when the maximum number of selected features is set
to low values.

In order to test how performance is affected, the same validation and statisti-
cal testing procedure will be followed for the same datasets. The comparison
will be between StatTree — exhaustive search, StatTree —Fselect N = 1 and
StatTree — Fselect N = 3. The value of N = 1 is chosen in order to demon-
strate the extreme case where the user desires to obtain a single variable in the
optimal subset. Such a value is expected to reduce computational expenses
drastically but at the cost of accuracy. On the other hand, the value of N = 3 is
expected to be somewhere in the middle when it comes to gains in computa-
tional time and sacrifices in accuracy, at least for the complexity of the examined
datasets.

Higher values could have been tested for parameter N. However not all of the
examined datasets in this work have large dimensionalities, which means that
the value of parameter N in some cases would have been very close to the full
input space and resemble exhaustive search.

Table [4.3| contains the results of the 10 cross validation runs. The table captures
the MAE metric for each dataset but also the total CPU time in seconds. It is
apparent that the exhaustive search approach provides the best MAE scores for
most of the examples. However, as in the previous sections, a statistical analysis

should provide a better and more in-depth understanding of the results.

Figure[4.7]is a visualisation similar to Figures4.5|and The top part of the
figure is the result of the statistical analysis while the bottom part is predictive
performance using the MAE metric. The main algorithm that is represented
in the circular barplots it the exhaustive search and it is compared against
StatTree with the FSelect model.
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TABLE 4.3: Comparison between exhaustive search and subset

selection
StatTree - Exhaustive Search StatTree with FSelect
N=3 N=1

MAE CPU(s) MAE CPU(s) | MAE CPU(s)
Concrete 4.329 618 4.067 469 4.728 302
Cooling 1.175 243 1.187 107 1.448 46
Heating 0.367 233 0.396 154 0.575 74
Yacht 0.539 97 0.538 43 0.540 30
Bodyfat 0.183 341 0.183 20 0.183 16
Boston 2.568 574 3.016 190 3.174 124
Dee 0.313 61 0.313 31 0.313 31
Earthquake 7.345 153 7.376 94 7.367 70
Octane 0.391 4 0.391 4 0.391 4
Pharma 0.900 16 0.905 16 1.046 12
Plastic 1.226 55 1.226 55 1.226 42
Sensory 0.610 81 0.600 18 0.609 13
Wankara 0.972 1215 0.987 600 1.016 758
Abalone 1.490 2567 1.530 1320 | 1.521 640
Speeding 4.143 700 4357 378 | 4319 460

Note that even though there is a difference in the MAE results in favour of
exhaustive search, the statistical analysis indicates that there is not enough
evidence to assume that the difference is significant. Especially in the case of
N = 3, there is a statistical difference in only 3 datasets while in the case of
N =1, as expected, there is a difference in 5 datasets. So, in the case where
the user provides a dataset with a large number of features, the addition of the
FSelect model provides an interesting alternative in order to reduce the CPU
time of training a model without sacrificing predictive performance.
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FIGURE 4.7: Visualisation of the computational results of this

work. Case (a) is a representation of the statistical analysis using

Welch’s t-test. Case (b) is a representation of the MAE perfor-
mance.
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At this point, it is worth noting that the there is a small difference in the MAE
results between StatTree and StatTree with FSelect for all the datasets except
for one. The performance on the Boston dataset is significantly worse when
using FSelect. However, it has a similar score for the different values of the N

parameter.

A closer inspection at the generated trees showed that the introduction of the
FSelect caused the root of the trees to be split on a different feature compared
to exhaustive search. So, all the subsequent tree branches were very different
compared to StatTree, hence the significant difference in performance. Luckily,
this pattern of considerably poorer performance when using feature selection
was not observed for the other datasets.

4.5 Concluding remarks

In this chapter, a novel decision tree regressor is developed. This regressor
uses an existing mathematical formulation for splitting nodes into child nodes
and introduces a statistical test to control the creation of new nodes. The intro-
duction of the Chow statistical test is a vital addition for assessing the quality
of splittings compared to the previous work that developed the optimisation
model (Yang et al.,2017), which used a heuristic rule for this step.

In order to enhance the capabilities of the proposed algorithm and make its use
more practical, a novel optimisation model is proposed that tackles the topic
of variable selection. This model is used to choose a partitioning variable and

speed up overall training time.

The novel algorithm is tested by performing 10 runs of 5-fold cross-validation
across a range of publicly available datasets. A number of decision tree al-
gorithms are used in order to compare and evaluate the performance of the
proposed method. In addition to cross-validation, a statistical analysis is per-
formed as well to check for significance in the results. The insights gained
from the analysis suggest that the novel algorithm is an improvement over
the original MPtree work and is also a very competitive alternative to other
established methods. Finally, the use of the variable selection model has been
proven to have an impact on computational time while preserving much of the

predictive performance.
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The next chapter introduces another decision tree algorithm. However, the
supervised task it targets is classification instead of regression. For the purposes
of this algorithm, a novel optimisation model is developed to assign samples
into classes.
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5 Development of decision tree

classifier

This chapter deals with the development of a novel decision tree classifier. A
novel mathematical model that applies a linear transformation to the data and
then assigns samples into classes is developed. Various real-world examples
are used to test and compare the performance of the algorithm against other

classifiers.

5.1 Introduction

As mentioned in Section decision trees are easy to understand and imple-
ment but also powerful for making predictions. As a consequence, tree models
are also widely used for classification tasks as well. So, instead of predicting a

continuous number, the models assign samples to classes.

The construction of trees still follows the same recursive procedure of splitting
nodes into two subsets. This process is repeated until all the instances at a spe-
cific node have the same class assignment. Once this happens, the development
of that part of the tree is terminated (Witten et al., 2016).

Deciding the partitioning variable for each node is still a very important step.
In classification analysis, the goal is to create a measure to capture the purity of
each node, hence selecting the splitting variable that leads to the purest child
nodes. One such popular metric is the information gain, that was introduced
in Section This metric is based on the change of information entropy
between two states. In decision trees, the two states can be viewed as the
splitting of a node into two subsets. Depending on which variable is chosen
for the partitioning, different information gain values are obtained. The one
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that returns the highest value is viewed as being the one that results in the most

homogeneous branches.

To address overfitting, standard approaches are applied in order to control the
tree generation process. These approaches include stopping criteria, such as
metrics and statistical tests as the ones described in Chapters [3|and 4}, heuristic
rules like defining the minimum number of samples before splitting a node or
the maximum number of samples per leaf node. Another common practice is
pruning, which has been described in Chapter

In this chapter, a novel decision tree classifier is proposed. This algorithm
utilises a novel mathematical formulation that identifies the optimal splitting
variable of a node, optimise the value of the break point and assign samples into
classes while minimising the number of misclassified samples. To achieve this,
the mathematical model first applies a linear transformation to the data to create
a new pseudo-feature, based on which the classification task will take place.
The algorithm uses this formulation in a recursive way in order to generate a
tree structure.

5.2 Proposed algorithm

This section proposes a novel decision tree classifier which uses an MILP model
to split samples into nodes and assign them to classes. The algorithm, from
now on know as Optimal Decision Tree Classifier (ODT), accepts a multivariate
dataset with a single multi-class output variable and numerical input variables
and returns a decision tree in which each leaf node contains rules for classifying

samples into class ranges.

A brief description of the proposed algorithm is presented first and then the
detailed mathematical model. Grasping the core idea of how the method works
will make it easier to understand the optimisation model that is the basis of the

classifier.
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5.2.1 Description of the algorithm

As with other classic decision tree approaches, this classifier employs recursive
binary splitting for generating the tree. The main idea of the algorithm can be
explained in three basic steps, even though the model achieves the results with
a single iteration. For each node splitting, the optimisation model applies the

following procedure:

1. First, the optimal partitioning variable is identified and the value of the
break point is calculated. This is the essential step for generating new
nodes. The membership of each sample, meaning whether a sample now

belongs to the left or right child node, is also calculated.

2. The second step focuses on the child nodes. At each child, a linear expres-
sion is fitted to the data to create a new pseudo-feature. Despite sacrificing
part of the interpretability of the final classification model, this step re-
duces the dimensionality of the input data down to a single variable and
enables the model to capture part of the non-linear trends that might exist
in the data.

This step is similar to approaches such as Linear Discriminant Analysis
(LDA) or Principal Component Analysis (PCA). Both of these approaches
create new representations of the data by projecting them onto new axes.
Similarly, the optimisation model that has been developed for the pro-
posed algorithm projects the samples of each child node to a new axis,

using a linear expression.

3. The third step is to assign samples to a class based on the new pseudo-
feature that was generated in the previous step. This class assignment is
achieved by introducing the idea of ranges. Each class in the dataset is
represented by a specific range on the new axis. The bounds of the ranges
are calculated by the optimisation model. If a sample falls in the wrong
range, then it will be considered missclassified. The objective of the model

is to minimise the number of missclassified samples.

Once the classifier has been trained, it is later presented with new data to make
predictions. The samples first follow the path from the root node to the "correct"
leaf node, then they go through the linear transformation and based on their
value they can be assigned to a class. It is important to note that if there is
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a sample that after the transformation has a value that does not fall within a

range, then it will be assigned to closest the range.

In order to better illustrate the proposed classification methodology, a simple
example is provided in Figure This example is a synthetic dataset that was
created for illustration purposes only and has two input variables (x; and x7),

50 samples and 3 classes (red, blue and green).

The top of the figure is a visualisation of the dataset. Note that the input
variables have both been scaled to the range of [0,1]. The optimisation model
will optimise simultaneously the splitting variable and the value of the break
point. The resulting tree structure is presented next to the scatter plot and is a
simple tree with two leaf nodes. The chosen variable by the model is x; at the
value of 0.600.

A closer examination of each child node separately is needed to understand
how the algorithm works. The left child contains samples that belong to the
green and red classes. The linear expression that was applied by the model is
capable of separating these two classes hence making it easy to visualise the
bounds of the constructed ranges. The result is 0 misclassifications.

Things are easier at the right child with only a single class being present. The
linear expression uses variable x; in order to generate values for the new
pseudo-feature. The result is a single range representing the only available

class.
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FIGURE 5.1: An example of the classification algorithm
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5.2.2 Mathematical formulation of the optimisation model

The mathematical formulation of the model is presented below, along with

the definition of all the indices, sets, parameters and variables used in the

formulation

Indices

gk

Sets

Qg

Parameters

Asm
Uy, Up
€

Variables

Wmc
Bc

data samples,s =1,2,...,S

features/input variablesm = 1,2, ..., M

child node of the current parent node; c = left represents left
child node, and c = right represents right child node

available classes

set of samples that belong to class g

numeric value of sample s on feature m
suitably large positive numbers

suitably small number

regression coefficient for feature m in child node c
intercept of regression function in child node c

Positive variables

break-point value on feature m
predicted output for sample s in child node ¢
lower bound of class g at child node ¢

upper bound of class g at child node c
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Binary variables

Fsc 1 if sample s belongs to child c; 0 otherwise

Zm 1 if variable m is selected as the partitioning variable; 0 other-
wise

Es. 1 if sample s is correctly classified at child c; 0 otherwise

ngc 1if class g is to the left of class k at child c; 0 otherwise

Ogc 1 if class g is present at child c; 0 otherwise

Mathematical constraints

The first step is to create a set of equations to split samples into two child nodes.
To achieve this, a set of binary variables is used, Fs, that allocates samples s
to either the left or the right child node c. A new set of binary variables is
introduced, Z,,, to capture the best partitioning variable. If for a specific input
variable m the corresponding binary variable Z,, = 1 then this input variable is
selected for the splitting, otherwise Z,;, = 0.

Equation]5.1]assigns samples to the left child while Equation[5.2]assigns samples
to the right child. Parameter € is used to ensure that there will be a minimum

difference between the break point values and the training samples.

Xp—Uy1-(2—Zy—Fse) + €1 < Agy V's,m,c = right (5.2)

The next two constraints formulate the assignment of samples to a single child
node and the selection of the optimal partitioning variable. Equation [5.3|en-
forces that each sample s can be assigned to one child c, since the summation
is in terms of the ¢ index and the equation is generated for every sample s.
Equation 5.4{chooses a single variable m as the partitioning feature since only
one binary variable Z,, can take the value of 1.

ZFSC — 1 \V/S (5-3)
[

Y Zn=1 (5.4)
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Binary variables Eg. represent whether a sample s has been misclassified at
child c. If Es; = 1 then that sample is correctly classified. Equation [5.5|states
that if a sample s does not belong to child ¢ then that sample cannot be correctly
classified at this child. A sample can be correctly classified at a child c only if it
actually belongs to that child.

This is ensured by the following inequality. If Fsc = 0, then Es. will be forced to
the value of 0 since it is a binary variable. In contrast, if F;c = 1, then Es. is free
to be {0,1}.

Ege < Fs¢ Vs, c (5.5)

As already stated, this mathematical formulation applies a linear expression to
the data, reducing the dimensionality to a single new pseudo-feature. Such an
approach could potentially capture part of the complexities that exist in the data
and improve predictive performance. The following constraint is a standard
linear expression with slope coefficients Wy, and an intercept B..

Prec =Y Asm-Wpe+ B Vs,c (5.6)
m

The following constraints assign samples to the correct class range. One of the
tasks of the mathematical model is to partition the domain of the pseudo-feature
of constraint5.6)into ranges and each one will represent a single class. Every
sample that falls within that range, gets the corresponding class assignment.

Variables Lgc and Uy, are the upper and lower bounds of the class ranges respec-
tively. The bigM constraints [5.7|and 5.8 formulate that if sample s belongs to
child c and is also correctly classified, then the pseudo-feature value Ps. should
be within the upper and lower bounds of that class range. The supervised
information is passed into these constraints through the (), dynamic set, which
maps the observed class assignment of each sample. As a result, the following
set of equations is only generated when sample s belongs to class g.

Prsc > Lge — Uy - (2 — Esc — Fc) Ve, 8,5 € Qg (5.7)
Prsc S Ugc —I'_ U2 * (2 - ESC - Psc) vc,g,S 6 Qg (5.8)

Two new sets of binary variables are introduced in the formulation, Yg, and

Ogc. These two represent the relative position of the classes based on the
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new pseudo-feature and the existence of a class in a child node respectively.
Equations 5.9/and formulate the position of the upper and lower bounds of
all the available classes at a child c. These two equations examine the available
classes in a pairwise fashion. To ensure that no combination of two classes will
be repeated and examined twice, the constraints will be generated only when
g>k. For example, checking the position of the bounds for classes A and B is
exactly the same as checking the bounds for B and A and therefore it should
not be checked twice.

ugc ter < L+ U (3 - Ogc — Ogc — ngc) Ve k,g >k (5.9)
Uke + €2 < Lgc + Us - (2— Og¢c — Ok + ngc) Ve, k,g >k (5.10)

Each child node will have a number of ranges representing the available classes.
Hence, the model should enforce that if a class g is not present at child c, then
the corresponding upper and lower bound values of the ranges should be
zero. Otherwise, the model should be free to select any appropriate value.
The following two constraints address this issue using bigM constraints. If
the binary variable Ogc = 1, then class g is present at child ¢ and therefore is
multiplied with parameter U, to guarantee that the bounds are free to receive
an appropriate value. On the other hand, if binary variable Ogc = 0, then class

g is not present at child c and as a result the bounds are forced to zero.

Lgc S u2 : Ogc vg,C (5.11)

The next constraint allows the user to select the number of classes that are
allowed to be present at child c. Parameter N is user specified and can affect
the computational time of training. The larger the value of this parameter, the
more binary variables are introduced to the optimisation, making the model

more expensive.

Y O <N Ve (5.13)
8

If a class g is present at child ¢, then the upper and lower bounds for that class
should have different values, with the lower bound always being smaller than
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the upper bound. Parameter €3 controls the difference between the two bounds.
Ugc Z Lgc + €3 - Ogc Vg, C (5.14)

Similarly to Equation 5.5, an additional constraint is required to check whether
sample s has been correctly classified at child c. The added constraint formulates
that the class of sample s has to be present at child c in order for that sample
to be correctly classified. At Equation that follows, if binary variable
Ogc = 1, then class g is present at child ¢ which enables the binary Es. to be
{0,1}. Otherwise, if Ogc = 0, then E, is forced to be zero. It is worth noting that
this constraint is only generated for the elements of the (), set which includes
the supervised information of the classification task.

Esc < Oge Ve, 8,8 € Qg (5.15)

Finally, the objective function of this mathematical model is the minimisation
of the total misclassified samples. A sample can be correctly classified in only
one child. If that sample is correctly classified, then Es; = 1, hence minimising
the difference 1 — E,..

min ) | (1 - ZESC> (5.16)

5.3 Numerical and computational section

5.3.1 Algorithm implementation

For the implementation of this algorithm, the selected language was python
v.3.6 (Python Software Foundation , 2018) combined with GAMS for the optimi-
sation parts. Python is a high-level, general-purpose programming language
that has become very popular in the machine learning community due to its

powerful libraries. Figure [5.2]illustrates the implementation of the algorithm.

The concept of calling GAMS using another programming language is present in
this implementation as well. All the elements that are in blue boxes have been
implemented in python, whereas the yellow ones in GAMS.
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As an input, the user has to specify a parameter which controls the minimum
number of samples allowed at each leaf node, as well as parameter N (defined
at Equation which controls the maximum number of allowable classes
per node and provide the input dataset. The next step of the implementation
is to process the data and transform them into the correct format. Once again,
the format used for this implementation is . gdx and the conversion is achieved
through a library called gdxpds.

The dataset is later exported using the . gdx format and it is imported into GAMS,
where the optimisation model of Section is executed. This optimisation
model simultaneously identifies the partitioning variable and the value of the
break point.

Once the model converges to a solution, the results are exported to .gdx and
re-imported to python for further analysis. The python script checks whether
the termination criterion has been satisfied and chooses which node should be
examined next for further splitting, or if a node should be flagged as terminal
and finish the generation process for that part of the tree branch. When the
tree generation process stops, the final classification model is extracted. It is
a tree structure where each leaf node contains the parameters of the linear

transformation and the upper and lower bounds for each class.

The implementation of this algorithm follows the rules of the popular machine
learning library scikit-learn (Pedregosa et al., 2011) for creating a custom
estimator. scikit-learn is a python library that contains state-of-the-art ma-
chine learning algorithms for various tasks such as regression, classification
and clustering, as well as functionalities such as model evaluation, grid search,
pipelines etc. Creating a custom estimator by following the scikit-learn con-
ventions and rules is very useful, since the resulting implementation will be
compatible with all of the functionalities and utilities of the library, making
it easier to apply various machine learning methodologies to the developer’s
custom work. One additional advantage is the fact that future users will be able
to use this custom work without any extra training if they are already familiar

with the scikit-learn library.
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5.3.2 Illustrative example
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(A) Scatter plot of the examined data
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(B) Constructed tree

FIGURE 5.3: Illustrative example for the Optimal Decision Tree
classifier. Figure (a) is a scatter plot of the examined dataset.
Figure (b) is the constructed tree.
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A synthetic dataset from the literature is used to demonstrate a classification
model generated by 0DT. This dataset is commonly used for both clustering and
classification tasks and it consists of 3 classes that follow a spiral shape (Chang
and Yeung), 2008). Figure is an illustration of the dataset which has 312

samples, 2 input variables and each class is represented with a different colour.

Figure[5.3b]is the tree structure that was generated by ODT. The resulting tree is
relatively small with only 4 leaf nodes. Table 5.1|that follows summarises the
rules of each leaf node that comprise the overall classification model.

TABLE 5.1: Final classification model using the ODT algorithm

Leaf Transformation Ranges

purple: [0.101 — 0.366]
L1 P =0430-x

yellow: [0.000 — 0.100]

purple: [0.489 — 0.589]

L2 Py = —0.306 - x; — 0.654 - xp + 0.840  green: [0.000 — 0.488]

yellow: [0.590 — 0.690]

purple: [0.202 — 0.302]

L3 Pr3 = 0.464 - x; — 0.513 - x5 + 0.320 green: [0.000 — 0.100]

yellow: [0.101 — 0.201]

purple: [0.000 — 0.100]

L4 Prqy = —0.568 - x; — 0.386 - xp +0.823  green: [0.101 — 0.201]

[

yellow: [0.202 — 0.302]

The final classification model contains 7 nodes, 4 of which are terminal nodes.
Each terminal node has a linear expression that transforms the multivariate
data into a new pseudo-feature, called P. Furthermore, each leaf node contains
the class ranges that have been determined by the optimisation model, based
on that new feature.

Predicting the class of new samples involves the following:

e Assignment to correct leaf node, by following the path from the root node

until a leaf node based on the break point values.

e Application of the linear transformation, and calculation of the new fea-
ture (P).
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e Assignment to one of the class ranges. If the sample does not fall into any

of the ranges, then the sample is assigned to the nearest range.

5.3.3 Datasets examined in this work

A number of examples are considered in this work which are summarised in
table Two datasets are synthetic and have been generated using software,
whereas the rest are available through online sources. The UCI repository is the

main online source of classification examples for this work.

TABLE 5.2: Classification datasets

Name Samples Variables Classes
Gaussian 1000 2 2
Normally 1000 2 4

Aggregation 788 2 7
Compound 399 2 6
Firm_1 46 4 2
Firm_2 83 13 2
Iris 150 4 3
Pathbased 300 2 3
Toy 373 2 2
Sale 440 6 3
Wifi 2000 7 4
Banknote 1372 4 2
Patients 579 11 2
Modeling 403 5 4

The Iris dataset describes the morphologic variation of Iris flowers of three re-
lated species (Anderson, 1936; Fisher, 1936). The objective is to classify samples
into one of the three available classes. The Sale dataset refers to clients of a
wholesale distributor and includes the annual spending in monetary units on
diverse product. The objective is to classify samples into one of three available
classes that represent regions.
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The wifi set contains data that were collected to perform experimentation
on how wifi signal strength can be used for user localisation in an indoor
environment. The Patients dataset contains data about liver patients. This is a
binary classification problem with the target variable being positive or negative

at being a liver patient (Ramana et al., 2012).

Two additional small examples are introduced in this work for comparison
purposes. Firm_1 consists of four financial rations and the target is either to
classify samples as bankrupt or non-bankrupt firms (Nath and Jones, [1988).
Firm_2 is related to the corporate bankruptcy in US electric power industry and

once again the target variable contains two classes (Sueyoshi, 2006).

A number of shape sets have been used in this work that are available online
(Franti and Sieranoja, 2019, 2018). These include the Aggregation, Compound,
Toy and Pathbased datasets. Additionally, two more synthetic examples have
been introduced to test the predictive performance of the proposed algorithm.

The Gaussian synthetic dataset, which was constructed with the use of make_
gaussian_quantiles utility of the scikit-learn library, contains 1000 sam-
ples, 2 input variables and 2 classes and it was constructed by taking a multi-
dimensional standard normal distribution and defining classes separated by
nested concentric multi-dimensional spheres. Similarly, the Normally synthetic
dataset was constructed by the make_classification utility, contains 1000
samples with 2 input variables and 2 classes, and it has clusters of normally

distributed points.

Figure 5.4|that follows, contains the scatter plots of the two syntetic datasets in
order to illustrate the degree of difficulty of the classification task. Figure[5.4a]
describes the Gaussian dataset. This dataset is designed to test the performance
of the classification algorithm on non-linear data. On the other hand, Figure
will test the perfromance of the algorithm in the case of linear correlation in the
data. The two datasets represent a more and less challenging task respectively.
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FIGURE 5.4: Scatter plots of the constructed synthetic datasets
using python and the scikit-learn library

5.3.4 Algorithm validation and comparison

Various classifiers are implemented in this work in order to compare the predic-
tive performance of the novel proposed algorithm. These classifiers are all part
of the scikit-learn library in python and include Random Forest, Decision Trees
(CART), Multi-layer Perceptron (MLP), Linear Discriminant Analysis (LDA), Quadratic
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Discriminant Analysis (QDA), and Support Vector Machines with both linear and
radial basis function kernels (LSVM and RSVM respectively). Once again, 5-fold
cross-validation is selected to evaluate the performance of the proposed algo-
rithm. This procedure is repeated 10 times and the accuracy score is calculated

for each fold. The final score is the average of all the runs.

All of the datasets examined in this work undergo feature scaling in the range
of [0,1]. Once again, feature scaling will make the selection of the parameters
for the bigM constraints easier.

The minimum number of samples per leaf node, is set to be the number of
features of each examined dataset. Furthermore, parameter N is set to the value
of |g|/2 of each examined dataset, rounding up when needed. Based on the
notation of the mathematical formulation, |g| is the cardinality of the g set and
it represents the number of available classes. The exception to that rule are

datasets that only have 2 classes.

The hyper-parameters of the competing classifiers are set to their default values.
These values are the ones proposed by the developers of the library in python.

54 Computational results

5.4.1 Cross validation runs

Table 5.3|contains the accuracy scores of all the runs of cross validation and once
again the method with the highest accuracy for each dataset is marked with
bold. The proposed 0DT algorithm provides competitive predictive performance
for the examined case studies.

Examining the two constructed synthetic datasets, all of the methods provide
similar accuracy scores, with 0DT being the best performer on the Normally
dataset and having good accuracy on the Gaussian dataset. It is worth noting
that for the Gaussian dataset, ODT is able to perform better than Decision Trees
(CART), which indicates that the linear transformation of the samples at each

leaf node has an effect on performance.
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TABLE 5.3: Classification performance of CV runs based on accu-
racy percentage (%)

ODT RandFor CART MLP

Gaussian 97.52 96.20 94.80  98.60
Normally  99.50 98.30 98.10  98.60
Aggregation 100.00  100.00  100.00 99.74
Compound  97.00 97.00 97.00  93.48
Firm_1 84.00 82.00 74.00  82.00
Firm_2 89.20 92.94 89.42  90.58

Iris 99.30 95.35 94.02  98.68
Pathbased  99.32 98.70 94.68  100.00
Toy 99.00 99.75 97.60  96.02
Sale 71.40 66.15 5890  72.30
Wifi 97.10 98.20 96.78  97.10

Banknote 99.80 98.80 98.28  99.70
Patients 73.00 72.40 65.50 71.54
Modeling 95.30 90.80 87.90  94.30

LDAC QDAC LSVM RSVM

Gaussian 53.80 96.80 64.20  98.80
Normally  98.60 99.00 99.10  98.80
Aggregation  99.50 99.75 96.30  96.20
Compound  87.75 96.50 82.70  83.00
Firm_1 80.00 90.00 78.00  76.00
Firm_2 92.94 96.46 9410  76.50

Iris 99.00 97.34 95.36  96.00
Pathbased  62.68 97.00 66.00 7232
Toy 93.35 93.35 97.00  96.30
Sale 72.05 52.50 7230 71.62
Wifi 97.08 97.00 97.00  97.70

Banknote 93.32 98.90 98.00  98.40
Patients 71.90 56.20 73.00 71.20
Modeling 93.30 93.80 90.65  93.82

Another interesting fact is the poor performance of all the algorithms for the

Sale and Patients datasets. This level of performance can be attributed to the
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fact that there is a very poor correlation between input and output. Each feature
is correlated less than 0.05 and 0.15 with the output of the Sale and Patients data
respectively. These datasets were included to test how the various algorithms
could handle such a task. For any practical application, these datasets would
have to undergo feature engineering first, in order to improve classification

performance.

ODT has the highest accuracy score for 7 of the examined examples, but again
this table is not a clear comparison of all the classifiers. Similarly to Sections

13.4.1land 4.4.1} a graph is developed in order to rank the overall performance

of each algorithm. The procedure followed for the creation of this figure is the
same as the one of Figure 3.5 and Figure

—— 10
(PresentWork) ODT  —
- 8
MLP
RandFor  _|
— 6
QDAC —
LSVM —;
RSVM - 4
LDAC
CART
- 2

FIGURE 5.5: Visualisation of the performance of the methods
based on the MAE results
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Figure |5.5|is a visual aid of the overall comparison of the classifiers. This figure
illustrates that there is a difference between standard Decision Trees and the
proposed algorithm, whereas Random Forest and MLP are closer in terms of
performance. Random Forest is expected to perform better than CART since it is

an ensemble method with decision trees as the base classifier.

5.4.2 Statistical analysis

Figure [5.5/is not fully representative of the actual performance since many meth-
ods have similar performance with small differences in accuracy. Following the
same approach as described in the previous chapters, the Welch’s t-test will be
applied to the results of the CV runs.

The two examined samples are the 10 runs of 5-fold cross-validation of the
proposed ODT algorithm and one of the rest. Through this pairwise compar-
ison, figure is constructed which is a visual representation of the overall
comparison. Sub-Figure is a representation of the statistical analysis where
a bar is present if there is a statistically meaningful difference in the means
of the CV runs. There is a stastically meaningful difference between 0DT and
CART, RSVM, LSVMand Random Forest for most of the examples. This is not the
case however with MLP and QDAC, with a statistical difference only for 4 and 5

examples respectivelly.

On the other hand, sub-Figure is a representation of table 5.3 where a bar
is present if ODT has a better accuracy score than the competing classifiers. For
the most part, ODT is able to perform equally good or even better compared to

the rest of the algorithms.

In order to compare the accuracy scores of all the classifiers, both sub-figures
should be taken into account. If for a specific example there is a bar present
in both figures then this translates to a statistically meaningful difference in
the accuracy scores of the CV runs, with ODT providing better performance.
Otherwise, the competing classifier is better, or there is not enough evidence to

declare a winner.
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Based on that statement, there is no clear winner compared to MLP, LDAC and
QDAC. Against these classifiers, there is no evidence of statistical difference in
the results for 10, 8 and 9 datasets respectively. So, even though for the rest of
the examples ODT is able to outperform the competitors, most of the times the

results are so similar that it is hard to come to a conclusion.

Against Random Forest, the proposed algorithm performed better for 6 datasets
while losing in 2, with the rest not having a statistically meaningful difference.
Compared to LDAC, the null hypothesis of the statistical analysis was not rejected
for 8 examples. Despite that, for the rest 6 datasets the proposed classifier is the
winner. Similar results were obtained against RSVM where ODT performs better
for half of the examined examples.

Finally, the same results are acquired against CART and LSVM, with ODT winning
in 7 examples, losing in 1 and not providing statistically different accuracy

scores for the rest 6 of the examples.

5.5 Concluding remarks

This chapter introduces a decision tree classifier that is based on a novel mathe-
matical formulation. This formulation is an MILP optimisation model that is
responsible for splitting a node into two subsets. The model can identify the
partitioning feature for the splitting and perform a linear transformation to the
data by optimising the linear coefficient terms. The objective function of the

mathematical model is to minimise the number of misclassified samples.

For the evaluation of the algorithm, various real world and synthetic datasets
are used. Once again, 10 runs of 5-fold cross-validation are performed as well as
a statistical analysis. Popular algorithms from the literature are used to compare
the performance of the proposed algorithm. The results of the analysis indicate
that the algorithm is able to compete and provide good accuracy scores against
other methods.

The next chapter contains some concluding remarks about this thesis. It also
highlights the main contributions of this work and includes suggestions about

potential future steps.
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6 Concluding remarks

This chapter summarises the main findings of this doctoral thesis. Furthermore,
in this section some possible directions for future work are outlined.
a

The work presented in this thesis is concerned with developing machine learn-
ing algorithms using mathematical programming models and mixed integer
optimisation. This study involves the development of supervised learning algo-
rithms that can deal with regression and classification tasks and provide new
alternatives to the ever-growing library of machine learning and data mining

algorithms.

Overall, this work is characterised by several proposed algorithms that extend
and add novel pieces to the existing literature. These features include the
addition of model selection metrics to a current algorithm in order to extend
its mathematical formulation and improve its predictive accuracy and the
introduction of statistical testing to a tree regression algorithm to control the
tree generation process. Other novelties include a subset selection optimisation
model to reduce the input space when searching for a partitioning variable for
a tree regression algorithm and a new mathematical formulation for generating

decision trees for classification.

All of the new additions and the novel mathematical formulations that were
developed are described in detail in separate chapters of this thesis. A summary
of the main contributions and findings of this work is discussed in the following
sections.

6.1 Development of a piecewise regression algorithm

In this work, a novel piecewise regression algorithm that employs mathematical
optimisation models to perform the analysis was proposed. The work extended

the model of the existing OPLRA algorithm and proposed four different variants.
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The existing OPLRA algorithm used an MILP model to segment the dataset into
regions and then a heuristic iterative approach in order to select the optimal
number of regions for the regression model. This heuristic approach introduced
a new parameter, called 3, as a threshold to the reduction percentage of the
absolute error while adding regions.

To eliminate this parameter, this work proposed the use of the Akaike and
the Bayesian Information Criteria. These two criteria are well established for
model selection tasks and were used to select the final number of regions. To
achieve this, two different approaches were proposed for the new variants. The
first approach employed an iterative procedure, where multiple optimisation
models were solved until the optimal number of regions was identified. After
each iteration, the values of the information criteria were calculated by post-
processing the optimisation results. The second approach employed a single-
level MILP strategy, where a single model was solved and the objective function
of the model was the actual criterion. In this approach, an upped bound for the
maximum number of regions was provided and then the model decided on the
optimal solution.

To test the accuracy of the new approaches and the potential improvements
over the OPLRA algorithm, a total of 10 real-world datasets were used. The
evaluation of the model was achieved by performing 10 runs of 5-fold cross-
validation on all the datasets. The results were compared to other regression
algorithms from the literature. Based on the results of this work, the variant
called PROA outperformed many of the competing regression algorithms for half
of the examined datasets and also achieved competitive performance for the
remaining examples.

A statistical analysis was performed on the results in order to check for statistical
significance. The analysis determined that the reported difference in the MAE
scores between PROA and the other algorithms was proven to be statistically
significant in most cases. It was noted that the BIC-based methods could not
perform as well as PROA.

It was therefore concluded that the single-level MILP variant called PROA was
a good regression alternative that had competitive performance against other

established methods as it outperformed them in some examined datasets.
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However, despite the competitive performance, one of the key limitations of
this algorithm was the inability to handle big datasets with a large number of
samples. But for relatively smaller datasets that are similar to the ones examined
in this work, the algorithm was performing well, while retaining interpretability

and an easy to understand model.

6.2 Development of a decision tree regressor

The work in Chapter | addressed the issue of multivariate regression analysis
by generating tree structures. In previous work, a regression tree algorithm
was developed called MPtree, which constructed tree structures using an MILP
model and then assessed the quality of the partitions based on a heuristic. This
heuristic rule introduced a new parameter that was used as a threshold in the
reduction of the error of each new split compared to the error on the root node.

A new approach was proposed that used the same optimisation model to split
data into nodes, but introduced the well established Chow statistical test to
control the tree generation process. The algorithm generated tree structures by
deciding the partitioning variable for every node through an iterative approach
and optimised the corresponding break point values and regression parameters.
The objective function of the model was the summation of the absolute deviation

between predictions and observed values.

Several real-world examples were used in this work in order to test the al-
gorithm. Its performance was compared to other established tree regression
algorithms that were available in the literature. Computational experiments
indicated that the proposed method consistently performed well and provided
competitive performance against the examined algorithms. Focusing more on
the comparison against MPtree, which shares the same optimisation model for
splitting nodes, it was seen that there was a big gain in predictive accuracy in
favour of the novel algorithm. This could be an indication that the introduction
of the Chow statistical test had an impact on the generated trees.

In addition to the core algorithm, a novel mathematical model was introduced
to perform subset selection and handle the task of reducing the dimensionality
of the input space when searching for the optimal partitioning variable. This
novel formulation was an MILP model that applied a linear regression model to
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the data and used binary variables in order to select features. The selection was
based on the minimisation of the BIC metric. Computational runs proved that
one advantage of using this novel model was the reduced training time, which
allowed the algorithm to handle datasets with a larger number of variables.
Furthermore, it was demonstrated that there was not a big compromise in
predictive performance, since the results were very similar and in most cases

the differences between them were proven to be insignificant.

6.3 Development of a decision tree classifier

This work concerned the development of a novel classification algorithm that
generated decision trees. This novel algorithm used an optimisation model in
order to split nodes into two subsets. At each new child node, the model fitted
a linear expression to the samples of that node and generated a new pseudo-
feature. Based on the values of this new pseudo-feature, the model created
ranges of samples and each range was assigned to a class. Every sample that
fell into that range was assigned to that class. The objective of the optimisation

model was to minimise the number of misclassified samples.

Several examples were used to test the performance of this classification algo-
rithm. Those examples included both synthetic and real-world examples in
order to cover a variety of classification tasks. The selected validation approach
was to perform 10 runs of 5-fold cross-validation. The computational results
demonstrated that the proposed algorithm was able to achieve classification
performance that was very similar to other established classifiers and in many
cases better than the competitors. However, the statistical analysis showed that
there was no statically significant difference when compared to two of the seven

competing classifiers.

Despite this fact, the proposed method was proven to be a good alternative
classification algorithm that generated compact tree structures due to the added
step of the linear transformation of the data at the leaf nodes. Computational
complexity still remained an issue since the algorithm was not able to handle a

large number of training samples.
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6.4 Summary of main contributions

The main contributions of this work are:

e A piecewise regression algorithm that included model selection criteria
to select the optimal number of regions. The novel variations of this
algorithm included the post-processing of the optimisation results to
include the criteria, as well as an extension of an existing mathematical
model that was able to directly optimise the criteria and decide on the

optimal number of regions.

e The introduction of a well-established statistical test to address the issues
of an existing tree regression algorithm. This statistical test assessed
the quality of splitting nodes hence providing a way of terminating the

generation of new nodes.

e An additional subset selection mathematical model that selected an op-
timal subset of variables of the original input space. This model was
combined with the tree regression algorithm in order to speed up the
process of generating new nodes, by eliminating the previous approach

of exhaustive search over the entire set of variables.

¢ A novel mathematical model for generating decision tree classifiers. This
model identified the optimal partitioning variable, applied a linear expres-
sion to the data and assigned them to "ranges" that represented classes.

The model minimised the number of misclassified samples.

6.5 Directions for future work

6.5.1 Extending this research

In this work, mathematical models and algorithms concerning supervised ma-
chine learning tasks were developed. These tasks include regression (Chapters
and @) and classification (Chapter [5). These algorithms were tested using
real world datasets form online sources and compared to other established

algorithms. In this last section, a few recommendations and items for future
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work are discussed that can potentially improve the algorithms both in terms

of performance and computational speed.

e The piecewise regression algorithm of Chapter 3|is based on the partition-
ing of the input dataset into multiple segments and the fitting of a linear
expression to each one. The resulting model is a collection of disjoint

linear expressions, that are characterised by a number of break points.

A possible future direction lies in the subject of continuity. There might
be a case study in which ensuring continuity between the different lin-
ear segments is important. In recent work, Kong and Maravelias (2020)
proposed mixed-integer programming models for fitting univariate dis-
crete data points with continuous piecewise linear functions. Extending
the proposed algorithm to ensure continuity while handling multivariate
datsets, is an interesting topic for further research.

e Chapter [ proposes a decision tree regressor. This algorithm uses an MILP
model for splitting nodes and a statistical test check for significance and
control the tree generation process. This algorithm follows the “conven-
tional” way of splitting nodes, which means that each binary splitting rule
is characterised by the selection of a single input variable. That variable

can different at each node, but it is always a single variable.

Research has been done to expand this idea and incorporate splitting
rules that are based on multivariate selection instead of a single variable
(Bertsimas and Dunn, 2017). The resulting tree is a collection of nodes
where each node contains a rule that is a function of the input variables.
A multivariate function can describe the input space better than a single
feature and thus capture the behaviour of the data. Such an approach can

potentially lead to improvement in predictive performance.

A similar approach might worth investigating for the proposed algorithm.
By modifying the constraints of the optimisation model in Section it
is possible to create multivariate splitting rules. These rules and modifica-
tions would also eliminate the exhaustive search approach for identifying
the best partitioning variable, as well as the need of the variable selection
model that was developed in Section [4.2.3]
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However, having a function in the place of single variable rule has its
drawbacks. One of the key advantages of decision trees is model inter-
pretability. The inclusion of multivariate function rules adds an extra step
of complexity and therefore creates tree structures which are more diffi-
cult to understand. Another drawback is added model complexity, and
which leads to longer training times. New optimisation variables will be
introduced to the optimisation model that affect both the computational

time and the convergence of the model to a solution.

e Finally, a novel classification algorithm was developed in Chapter 5 This
decision tree classifier minimises the number of misclassified samples
by applying a linear transformation to the data. Similarly to Chapter [
the resulting tree nodes contain binary splitting rules considering only a
single input feature. In this formulation, the model decides on the best
partitioning feature without the need of exhaustive search. The selection
of the partitioning feature comes at the cost of computational time, due
to the inclusion of the binary variables needed for this task. Moreover,
this approach can lead to potential equivalent solutions. That means that
two or more input features can lead to the same number of misclassified

samples.

A possible future direction could be the investigation of a way to select the
best partitioning feature. Two of the most popular and well-established
metrics for this task are the information gain and the gini impurity (Quin{
lan| 1986). These two metrics have been extensively used by other al-
gorithms with success. However, novel mathematical models could be
developed to include these metrics in an optimisation framework.

These mathematical models could be used in order to determine the best
partitioning feature at each node. Then the resulting information would
be used as input to the existing mathematical model of Chapter [5.2.2}
hence eliminating the need for the additional binary variables and making
the optimisation model less expensive. Another implementation could
be the inclusion of such metrics to the optimisation model of Section
directly. Instead of having a two-step approach of feature selection
first and then the splitting of the nodes, this time the optimisation model
would identify the partitioning variable, apply the linear transformation

and classify the samples by directly optimising one of the metrics.
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The main drawback of these approaches would be the non-linear na-
ture of the metrics. The resulting models would be MINLP formulations.
Throughout the development of the algorithms in this thesis, it was al-
ways desirable to have linear formulations that can be solved to global
optimality with the available solvers. An MINLP formulation would add
extra complexity that would have to be addressed.

6.5.2 Broader recommendations

The models and algorithms developed in this research work, which are based on
the premise of data segmentation to enhance performance, enable the creation
of supervised learning models that are useful for capturing the underlying
mechanism that might exist in labelled datasets. It would be very interesting
to use the propsed algorithms as black-box models to chemical engineering
problems. An example was presented in Section where the proposed
decision tree regressor was used to describe the operation of CSTR reactor. This
example, albeit small, demonstrated the ability to use this method as a way
to create a surrogate model to describe a physical system. Future work could
be targeted at finding additional case studies and test the performance of the
algorithms to real world chemical engineering problems

Another direction could be the use of these models in data-driven approaches
for model identification in kinetics. In recent work, Quaglio et al.|(2020) com-
bined supervised learning (training a neural network) to recognise kinetic
models from experimental data. Specifically, the authors created synthetic data
by using a library of possible kinetic models and generated random parameters
for these models. For each kinetic model, the simulation procedure was re-
peated multiple times using different parameters, in order to generate a labelled
dataset. A classifier was trained on the generated dataset to learn the physical
properties of the system. Instead of training a neural network which is hard
to interpret, it would be very interesting to apply the proposed decision tree
classifier to such a case study. The generated decision tree could also provide
insights about the kinetic models, by visualising the results.

However, for any practical application, the issue of dimensionality would have
to be addressed as the current proposed methodologies can handle only a

certain number of samples and variables. This is a common issue with integer
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programming models, which can be become hard to solve when the number of
decision variables becomes large. This poses a problem since in the real world,
the available datasets would be much larger.

This issue of dimensionality however, was partially addressed by |Cardoso-
Silva et al. (2019). The authors used the base mathematical model of the OPLRA
algorithm and extended it to incorporate feature selection with regularisation.
They applied their method to Quantitative Structure-Activity Relationship
(QSAR) models, where the datasets typically involve a large number of features.
A similar approach could be incorporated to the proposed algorithms in this
work to handle slightly larger datasets, with the goal of applying this work to

real chemical engineering problems.
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A Chow test

The Chow test is a statistical test to check whether the coefficients in two linear
regression models on different data sets are equal (Chow, 1960). It is most
commonly used to test for the presence of a structural break in the data. In
order to use the F-distribution to apply the statistical test, the first step is to
compute the Chow F-statistic using equation[4.8] The equation is also presented

in this appendix:
(RS S1— RSSz)
_\ p2—pl
F = RSS, (A.1)
n— PZ
where:
RSSq residual sum of squares of model 1 (single regression
for the entire dataset)
RSS; total residual sum of squares of model 2 (separate re-
gression for each subset)
p1 regression parameters of model 1
p2 regression parameters of model 2
n total number of samples in the dataset

The degrees of freedom for this statistical test can be computed by the two
following equations:

P2 — P1 (A.2)
n—pa (A.3)
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where:
p1 regression parameters of model 1
p2 regression parameters of model 2
n total number of samples in the dataset

Once the F-statistic and the degrees of freedom have been computed, the F-
distribution can be used to test the null hypothesis.



125

B Welch’s t-test

The Welch'’s t-test is a two-sample test which is used to check the hypothesis

that two populations have the equal means. In statistics, this test is also known

as unequal variances t-test due to the fact that it is designed for samples with
unequal variances (Welch, |1947). As stated in section the procedure for
applying the test includes calculating the t-statistic and then either the p-values

or the critical f-value from the t-distribution table. The t-statistic is formulated
as follows (Ruxton, 2006):

where

Xl/ X2
2 2
51,83

N1, Np

t = K- X (B.1)
5
Ny N

mean of the 1% and 2™ sample respectively
variance of the 15 and 2" sample respectively
size of the 1% and 2™ sample respectively

Calculating the p-values/t-critical value requires computing the degrees of

freedom associated with the variance estimate first. The formula for the degrees

of freedom is as follows (Ruxton, 2006):

2
3.3
Nt Ny (B2)
V= .
g




Appendix B. Welch’s t-test 126

where
v1=N;—1 degrees of freedom associated with the 1! variance
vp=Np—1 degrees of freedom associated with the 2" yariance

Once the t-statistic and the degrees of freedom have been computed, the t-
distribution can be used to test the null hypothesis using a two-tailed test.
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Publications that have arisen from this work

e Gkioulekas, I. and Papageorgiou, L.G. (2020). Tree regression models
using statistical testing and mixed integer programming. Under review

e Gkioulekas, I. and Papageorgiou, L. G. (2019). Optimal regression tree
models through mixed integer programming. Data Science - Analytics and
Applications, 57 - 62.

e Gkioulekas, I. and Papageorgiou, L.G. (2019). Piecewise regression analy-
sis through information criteria using mathematical programming. Expert
Systems with Applications, 121: 362 - 372

e Gkioulekas, I. and Papageorgiou, L.G. (2018). Piecewise regression anal-
ysis through the Akaike information criterion using mathematical pro-
gramming. IFAC-PapersOnlLine, 51: 730 - 735.

Conference participation

e 2" International Data Science Conference, iDSC 2019. Salzburg, Austria.
Oral presentation: Optimal regression tree models through mixed integer

programming.

o ChemEngDay UK. 2019. Edinburgh, UK.
Oral presentation: Optimal regression tree models through mixed integer
programming. Awarded prize for best oral presentation in the Modelling
and Process Systems.

e J[FAC Symposium on System Identification, SYSID 2018. Stockholm, Swe-
den.
Oral presentation: Piecewise Regression Analysis through Information
Criteria using Mathematical Programming.
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