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ABSTRACT 

The discovery of Hordeum spontaneum C. Koch, a wild ancestor of cultivated barley, in 

Morocco in 1978 led to the proposal of a multicentric origin for this crop, as an alternative to 

the widely accepted theory of a single centre of domestication in the Fertile Crescent. Since this 

discovery, we have tested this hypothesis using the most advanced genetic techniques available 

at the time, from CM-proteins to RFLP and DNA-chloroplast markers. Nowadays, the 

availability of single nucleotide polymorphism (SNP) markers that are spread densely over the 

barley genome provides us with another powerful tool to  give further support for the above. We 

have used 1,536 SNPs from the Barley Oligo Pool Assay 1 (BOPA1) of Illumina to characterize 

107 wild and cultivated barley accessions from the Western Mediterranean, Fertile Crescent, 

Ethiopia, and Tibet. The results have confirmed that each location of the above-mentioned 

germplasm groups clusters separately. Analysis of molecular variance enabled us to focus on 

the chromosomal regions and loci that differentiated these groups of barley germplasm. Some of 

these regions contain vernalization and photoperiod response genes, some of the so-called 

domestication genes, as well as the most important quantitative trait locus for flowering time in 

the Mediterranean region. We have combined these results with other genetic evidence, and 

interpreted them in the framework of current theories on the onset of the Neolithic revolution in 

the Mediterranean region, to conclude that neither Ethiopia nor the Western Mediterranean can 

be ruled out as centres of barley domestication, together with the Fertile Crescent. 
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INTRODUCTION 

 

In 1926, Vavilov defined the centre of origin of a crop as the region where the greatest genetic 

diversity is found and wild and cultivated species coexist (cf. Harlan 1992). Since then, the 

centre of origin of barley has been debated widely, although the majority of researchers 

continue to support the Fertile Crescent as the only location which it was domesticated (review 

in Molina-Cano et al. 2002). 

 

More recently, the debate about the centre of origin of barley has centred on whether the so-

called founder crops (einkorn wheat, Triticum monoccocum L.; emmer wheat, T. turgidum L.; 

barley, Hordeum vulgare L.; lentil, Lens culinaris Medikus; pea, Pisum sativum L.; chickpea, 

Cicer arietinum L.; and bitter vetch, Vicia ervilia (L.) Willd.) have a monophyletic or 

polyphyletic origin inside or outside the Fertile Crescent, and whether domestication is a diffuse 

or rapid process (reviews in Willcox 2005; Weiss et al. 2006; Allaby et al. 2008; Brown et al. 

2008; Purugganan and Fuller 2009; Abbo et al. 2010; Gross and Olsen 2010). Given the 

multiple archaeological excavations that have taken place in the Fertile Crescent region, the 

archaeobotanical record has been presumed to contribute superior evidence to that of the genetic 

approach. This is due to the fact that the latter approach is based on samples from currently 

living populations, which cannot be dated with 14C in contrast to archaeobotanical remains 

(Abbo et al. 2010). 

 

Hordeum spontaneum C.Koch, the wild ancestor of cultivated barley, was discovered in 

Morocco in the mountain pass Tizi-n-Taghatine, which is close to the Djebel Siroua range 

(Molina-Cano and Conde 1980). A second collection trip in 1980 led to the discovery of 25 

additional populations of the species (Molina-Cano et al. 1982). The plants were identified 

conclusively as H. spontaneum by two of the leading authorities on barley phylogeny at the time 

(F.Kh. Bakhtheyev, personal communication; J.R. Harlan, personal communication). 

 

Work on these populations of H. spontaneum has been progressing for more than 30 years, and 

has included the use of the best genetic markers available at the time, such as CM-proteins 

(chloroform-methanol soluble proteins) and agromorphological traits (Molina-Cano et al. 1987), 

RFLPs (Molina-Cano et al. 1999), and chloroplast-DNA SSRs (Molina-Cano et al. 2005). The 

results have always shown clear-cut genetic differences between the Moroccan H. spontaneum 

and both wild and cultivated barleys with other non-Western Mediterranean origins. 

 

The identification of a centre of origin for barley in the Western Mediterranean on the basis of 

our results has been criticized by some researchers (e.g. Badr et al. 2000; Blattner and Madani-
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Méndez 2001; Salamini et al. 2002). In addition, the existence of H. spontaneum in Morocco 

has been attributed to a back mutation in cultivated barley (e.g. R. von Bothmer, personal 

communication). This is unlikely, because H. spontaneum is two-rowed, but 80% of Moroccan 

barley is six-rowed (H Bockelman, pers. comm.), and the populations cultivated in the region of 

collection are all six-rowed. A back mutation would imply that two natural events had occurred: 

1) a change from six- to two-rowed and 2) a change from a tough to a brittle rachis. Both of 

these changes involve the shift from a recessive to a dominant allele of a gene and the first 

involves a change from lack of function to function (Komatsuda et al. 2007). This combination 

of events seems extremely unlikely, especially given that the probability of either of these 

independent mutations occurring is less than 10-5 (N. Jouve personal communication), which 

would give a probability of both occurring simultaneously of around 10-10.  

 

Furthermore, the archaeobotanical record of the Central Sahara is very limited compared with 

that of the Fertile Crescent region. As a consequence, it would be critical to prove the existence 

of wild barley in the Central Sahara before the Sahara dried out from the third millennium BC 

onwards (reviews in Muzzolini 1989, Harlan 1992) to establish a link between barley 

domestication in Ethiopia and North Africa from an archaeological perspective, especially as 

this relationship has already been indicated from the available genetic evidence (Molina-Cano et 

al. 2005, data presented herein). An interesting approach to the topic of North African Neolithic 

was pointed out by Muzzolini (1989), who argued that it followed a different pattern from that 

of the Fertile Crescent.  

 

In summary, the discovery of H. spontaneum in sites other than the Fertile Crescent, such as 

Tibet, Morocco, Libya, Egypt, Crete, and Ethiopia (reviewed in Molina-Cano et al. 2002), has 

challenged the prevalent monocentric theory on the origin of barley. With respect to the number 

of domestication events, there are an increasing number of researchers who claim at least a 

diphyletic origin, either inside or outside the Fertile Crescent (e.g. Takahashi 1955; Zohary 

1999; Willcox 2005; Komatsuda et al. 2007; Morrell and Clegg 2007; Orabi et al. 2009; 

Bjørnstad and Abay 2010). 

 

Our aim here was to continue the work of the last 30 years by applying the latest generation of 

molecular markers (1,536 SNPs from the BOPA1 platform) in an attempt to cast more light on 

the origin of barley. 

 

MATERIAL AND METHODS 

Plant material 
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The barley material studied (Table 1; Supplementary Table 1) included a representative sample 

of cultivated barleys from the Western Mediterranean-North Africa (WM), namely accessions 

from Morocco, Libya and Spanish criolla (creole) types (descended from Spanish landraces 

brought to Bolivia in the 15th–16th centuries); Ethiopia (ETH); H.spontaneum (HSP) from 

Morocco, Ethiopia, Israel, Turkey, Afghanistan, Iran, Crete, Cyprus, Libya, and Iraq; and, 

finally, Hordeum agriocrithon E. Åberg (AGR) from Tibet (including some of the accessions 

studied by Konishi 2001). Most of the material included has already been studied using 

chloroplast-SSRs (Molina-Cano et al. 2005), and we wanted to confirm the results obtained 

previously. A total of 107 accessions were used in this study, but complete results were only 

obtained for 103 of them owing to missing data for four entries. 

 

Molecular methods 

Genomic DNA was extracted from one individual plant of each accession. The 107 accessions 

were genotyped for 1,536 single nucleotide polymorphisms (SNPs) using the Barley Oligo Pool 

Assay 1 (BOPA1) of Illumina (Close et al. 2009) at the Southern California Genotyping 

Consortium. Of the original allele calls, AA was coded as 1, BB as 0, and heterozygous data 

were converted to missing values. Monomorphic SNPs or those with more than 20% missing 

values were removed, which left 1015 SNP loci. A subset of 357 SNPs was selected to classify 

the accessions, using the following approach. Markers with an unknown map position, with 

more than 10% missing data, or with a minimum allele frequency of less than 0.05 were 

excluded. From the remaining markers, evenly spaced markers at a distance of at least 1 cM 

were selected. To generate a complete data set, 3.55% of the data, which were missing, were 

imputed on the basis of the closest SNP markers. To justify the use of BOPA1 platform in 

material other than cultivars, we want to quote Russell et al. (2011): ...further research on 

origins will need to extend the use of the BOPA1 assay to geographically matched landraces 

and wild accessions collected from throughout the Fertile Crescent...  

 

Statistical methods 

Principal component analysis (PCA) and Ward clustering were carried out with JMP V8.0.1 

(JMP, SAS Institute, Cary, NC, USA, 2008) using the 357 SNP subset with no missing data. 

The hierarchical clustering method of Ward begins with t separate operational taxonomic units 

(OTUs), groups them successively into t-1, t-2, …, 1 taxa, and at each stage computes a so-

called objective function, which is the sum of the within groups sum of squares (Sneath and 

Sokal 1973). 
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Neighbour-joining clustering on a Jaccard dissimilarity matrix, with 10,000 bootstraps to 

evaluate the reproducibility of nodes, was carried out with DARwin5 (Perrier and Jacquemoud-

Collet 2006).  

 

The groups of genotypes defined by the clustering procedures were used to assess genome-wide 

diversity. For this purpose, the original data set of 1015 SNPs was used. The structure of genetic 

diversity within and among groups was examined through analysis of molecular variance 

(AMOVA) using Arlequin 3.5 (Excoffier and Lischer 2010). The frequency of missing data 

allowed in the analysis was 0.15. Contrasting patterns of genetic diversity within and between 

groups were also used to detect loci under selection, using the hierarchical island model, with 

the same software. To detect loci under selection, for the WM, HSP, and ETH groups, we 

followed the procedure provided by Arlequin, which performs pairwise comparisons of genetic 

diversity (‘heterozygosity’) and differentiation (FST) within and between groups. The 

differentiation between populations or groups (FST) for each locus is then compared with the 

values expected under neutrality, and outliers are detected. These outliers are interpreted as loci 

under selection. The expected FST values must be calculated following a given demographic 

model. We have followed the method put forward by Excoffier et al. (2009), using the 

hierarchical island model. This method reduces the occurrence of false positives in the detection 

of outliers. The loci identified by this method may have been subjected to either balancing or 

diversifying selection. The results are expressed as –log10 of the probability associated with its 

FST value. This figure expresses the probability that such an FST value is expected in the 

absence of selection. We present only the results for loci under diversifying selection, that is, 

loci that may have experienced shifts in frequencies owing to distinct selection agents acting at 

different geographical regions. Balancing selection is not applicable to these data, because the 

individuals are not breeding populations but rather isolated lines. 

 

 

 

 

RESULTS 

 

Grouping of germplasm 

PCA grouped the accessions into three defined groups [ETH (Ethiopia), WM (Western 

Mediterranean–North Africa), and HSP (H. spontaneum from regions other than Morocco)] in a 

space determined by the three first principal axes, which accounted for 38% of total variance 

(Fig. 1). Some entries were placed in between the three main clusters; they formed a mixed 

group that comprised cultivated barleys from WM and ETH, H. agriocrithon, and an accession 
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of H. spontaneum from Cyprus. Similar groups were also formed by neighbour-joining analysis 

(Supplementary Fig. 1). 

 

The cluster analysis with the Ward method (Fig. 2) also confirmed, in more detail, the four 

groups described above. The cluster WM neatly separated the large majority of the materials 

from the Western Mediterranean and North Africa from the rest of the accessions. The WM 

cluster contained three subgroups; the largest one included barleys from Morocco and Libya, 

and Spanish criolla entries. A second subcluster contaied the Moroccan H. spontaneum, 

together with two two-row Moroccan cultivated barleys (PI 356226 and CIho 3181, Esperance). 

A third subcluster included six entries of Moroccan cultivated barley together with a H. 

spontaneum from Cyprus.   

 

The ETH cluster included cultivated and wild Ethiopian barleys, as well as three Moroccan 

cultivated barleys that corresponded to entries PI 356711 (six-row normal kernel), PI 356713 

(six-row black kernel), and PI 356715 (two-row deficiens type and dark kernel, H. vulgare 

convar. deficiens (Steud.) Mansf. ), with the latter two being of typical Ethiopian phenotype.  

 

The HSP cluster was formed by H. spontaneum accessions from regions other than Morocco, 

and was separated clearly from the other groups.  

 

The mixed group (AGR) contained two subclusters: the first comprised all the H. agriocrithon 

Tibetan entries, together with an H. spontaneum from Afghanistan and a Spanish criolla, 

whereas the other consisted of three Ethiopian entries plus a Spanish criolla and a H. 

spontaneum from Afghanistan. Four of the H. agriocrithon Tibetan entries (HOR 2268, HOR 

2456, HOR 2465, and HOR 2466) were identical with respect to all the BOPA1 markers. 

 

 

Analysis of molecular variance 

 

The clustering of accessions on the basis of the complete set of 357 SNPs revealed the basic 

structure of the germplasm that was then used for further analysis of genetic features with the 

complete set of 1015 markers.  

The partitioning of genetic variance between and within groups was assessed by AMOVA, 

which showed that 42.1% of the variation was between groups (Table 2). The SNP markers 

employed can differentiate between these groups of accessions. Individual comparisons for each 

pair of groups revealed that ETH was the most distinct group, with FST values higher than 0.50 
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upon comparison with WM or HSP, whereas the mixed AGR group was the least distinct (Table 

3). 

 

Detection of loci under selection – Patterns of polymorphism along barley chromosomes 

 

The probability that loci had undergone selection was calculated for all loci individually, but we 

only present the results for SNPs with a known position in the consensus map (Close et al. 

2009). Fig. 3 shows the scans of heterozygosity (or gene diversity) for pairs of the germplasm 

groups considered, as well as the -log10 of the probability that loci were subjected to selection, 

for WM–HSP, WM–ETH, and HSP–ETH. The values were averaged across a sliding window 

of 21 adjacent loci (10 above and 10 below a certain SNP) with a step of one and plotted against 

the linkage map. Average diversity was higher in WM and HSP (0.23 and 0.21, respectively) 

than in the group of Ethiopian barleys (average 0.12). This was more evident along 

chromosomes 3H and 5H, where many loci were almost fixed in the ETH group. The overall 

diversity found in the groups was affected by the different sample sizes. For this reason, it was 

even more remarkable that the lowest diversity was detected on the long arm of chromosome 

7H in WM, the largest group. Although overall heterozygosity was low for ETH, there were 

regions of high diversity for this group, compared to the others, in most chromosomes. 

Examination of the profiles shown in Fig. 3 reveals highly variable patterns of heterozygosity 

across the genome for all germplasm groups. Comparisons of the distributions of heterozygosity 

and FST values point to regions that may contain loci under selection (Fig. 3). The genomic 

regions that were most likely to be under selection were those characterized by low diversity in 

at least one of the two groups in each comparison, together with a peak for the probability of 

‘loci under selection’. We chose a threshold of 1.3 for the moving averages of the –log10(P) 

value of the FST, which corresponds to a P value of 0.05. Below, we describe the regions that 

were likely to be under selection for the three comparisons. 

 

 

Western Mediterranean – Hordeum spontaneum 
 
In the comparison of WM and HSP, we identified three chromosomal regions that showed some 

evidence of selection.  In the first one, on chromosome 5H (approximately 51.0–51.6 cM), the 

WM group showed several loci that were almost fixed, whereas there was more diversity in 

HSP. In the second region, on 6H (around 55–59 cM), there was a reduction in diversity in both 

groups but different alleles were fixed in each group. In particular, at 55.7 cM, there were four 

loci that were almost fixed in the WM group. The last region, on 7H (77.9–86.4 cM), 
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corresponded to a broad reduction in diversity in the WM group and there were contrasting 

alleles at a number of SNPs in both groups.  

 

Western Mediterranean – Ethiopia 

 
In the comparison of the WM and ETH groups, we identified three regions with some evidence 

of differentiation. The first was on chromosome 1H (92.8–101.4 cM) and showed low diversity 

in both groups. Around 92.9–99.9 cM, there were several SNPs that showed contrasting alleles. 

The second region was on chromosome 5H (129.4–137.2 cM), and was associated with low 

diversity in ETH. There were 16 loci in this region that were fixed in the ETH group, whereas 

some diversity was found in the WM group. The third region was on 7H (62.9–71.1 cM), and 

showed low diversity and contrasting alleles in both groups compared. 

 

Ethiopia – Hordeum spontaneum 

 

The comparison of ETH and HSP revealed regions that showed differentiation between the two 

groups on all chromosomes. Sixteen regions were identified. This large number of regions was a 

consequence of the low overall diversity of the ETH group. The regions were scattered over all 

the chromosomes. The most relevant features were the highest peak, found on the short arm of 

6H, the large region at 3H (which comprised most of the long arm), and the abundance of 

regions on 2H and 5H.  

 

 

 

DISCUSSION 

 

Genome-wide analysis of SNP markers divided the tested accessions into four groups. The three 

most distinct groups were built around the Ethiopian landraces, Middle Eastern H. spontaneum, 

and Western Mediterranean wild and cultivated barleys, respectively. This classification 

confirmed previous results that were obtained using chloroplast or genomic SSRs (Molina-Cano 

et al. 2005; Orabi et al. 2007). The differentiation and low diversity of Ethiopian barleys were 

also highlighted by Bjørnstad and Abay (2010). These researchers indicated that Ethiopian 

barleys form a very distinct group: they have unique diversity in terms of resistance to certain 

diseases and morphology, but their average diversity with respect to DNA markers or 

nucleotides is substantially less than that of barley from the Fertile Crescent, as found in other 

studies (Saisho and Purugganan 2007).  
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The H. agriocrithon accessions (six-rowed with brittle rachis) that were included in our study 

did not cluster within any of the above-mentioned groups but were found in an intermediate 

position together with some Ethiopian and Western Mediterranean cultivated barleys. The 

intermediate classification of H. agriocrithon accessions confirmed previous findings by Tanno 

and Takeda (2004), who found similar alleles in H. agriocrithon and six-rowed cultivated 

barleys at cMWG699, a diagnostic marker for domestication. They deduced that H. 

agriocrithon probably originated from hybridization between H. spontaneum and six-rowed 

cultivated barley. It is possible that Tibetan H. agriocrithon originated from natural 

hybridization between H. spontaneum and six-rowed barley from Northern Afghanistan, 

Pakistan, or India, after which seeds of their segregants were brought up to Tibet mixed into 

barley or wheat, and resulted in six-rowed barley with brittle rachis (Konishi 2001). In the 

current study, an Afghan H. spontaneum accession (PI 220523) clustered together with f. 

agriocrithon entries (Fig. 2). Other example of natural hybridization between H. spontaneum 

and six-rowed barleys had been  described also in Libya (Hammer et al, 1985). 

 

The present results, obtained with a much larger set of markers than previous studies, though do 

not prove our polyphyletic hypothesis, provide further evidence supporting it. This is so because 

H. spontaneum from Morocco clustered together with cultivated barleys from the same region, 

but not with other H. spontaneum from the WANA (West Asia-North Africa) region, as 

previously reported by Orabi et al. (2009) using genomic SSRs. Since the identification of 

weedy wild barley stands in Morocco (Molina-Cano et al. 1982), the question of whether barley 

could have been domesticated in the North of Africa, in addition to the Fertile Crescent, has 

been the subject of much debate. Evidence to support (Molina-Cano et al. 1987, 1999, 2005) or 

contradict this hypothesis (Badr et al. 2000, Blattner and Badani-Méndez 2001) has been 

presented. The most recent evidence supports the presence of a genetic background specific to 

the Western Mediterranean region. The most relevant information comes from the interpretation 

of results on nucleotide variation at the cMWG699 locus (which encodes elongation factor G), 

and is linked closely to VRS1, the main locus that determines spike type in barley. The D 

haplotype of this locus was described by Tanno et al. (2002) and Baba et al. (2011) to be 

characteristic of the Western Mediterranean region, because it occurred only in some six-rowed 

and two-rowed barley accessions from North Africa and in Moroccan wild barley. Tanno et al. 

(2002) interpreted the distribution of haplotypes for this gene across germplasm groups as 

indirect evidence to support the multiple origin hypothesis for six-rowed barley. Baba et al. 

(2011) suggested a Moroccan parentage for European six-rowed barleys that have the D allele at 

that locus. The results of our group have demonstrated that the D haplotype is actually 

widespread among six-rowed Spanish landraces and commercial varieties from Central Europe 

(Casas et al. 2005). It is also found in some two-rowed landraces that originated from Spain and 
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Morocco. Phylogenetic analysis after the isolation of VRS1 (Komatsuda et al. 2007) 

demonstrated that the origin of the six-rowed phenotype was probably polyphyletic with origins 

at different times and locations,  and occurred via a series of independent mutations at the VRS1 

locus. The authors identified a six-rowed allele, vrs1.a2, which predominates in the Western 

Mediterranean and probably originated locally from the Vrs1.b2 allele. Again, these findings 

confirm the distinctive genetic characteristics of Western Mediterranean barleys. A definitive 

proof to settle the questions open about barley domestication will soon be technically feasible at 

reasonable cost, with a combination of the advances in next generation sequencing techniques 

and a carefully chosen set of wild and cultivated barley from all genetically distinct areas of 

their worldwide distribution. In any case, this approach will have to bear in mind the influence 

of gene flow between wild populations and cultivated forms, as recently demonstrated by 

Hübner et al. (2012).   

 

In addition to the appearance of the six-rowed spike, the brittle rachis character is considered to 

be a major domestication event in barley (Sakuma et al. 2011), although the genes involved 

have not been isolated yet. Azhaguvel and Komatsuda (2007) have analysed polymorphism in a 

DNA sequence linked closely to the brittle rachis complex in a collection of cultivated barleys, 

wild barleys, and weedy brittle rachis varieties (H. agriocrithon). In a phylogenetic tree, the 

western (btr1-carrying; W-type) and eastern (btr2-carrying; E-type) cultivars clustered 

separately. Some of the Tibetan H. agriocrithon lines were related closely to the E-type and 

others to the W-type of cultivated barleys, which again suggested the hybrid origin of Tibetan 

H. agriocrithon. Two Moroccan wild barleys were also included in this study; they were 

completely homologous to some of the E-type cultivars. The authors stated that, although there 

may be a close relationship between Oriental and North African barley, it is difficult to argue 

that North African wild barley was the immediate ancestor of the modern E-type cultivars. They 

suggested that gene flow had resulted in Western Mediterranean cultivars and North African 

wild barleys sharing alleles that were specific to those regions. Indeed, they concluded that the 

North African wild barley lines may be in a taxonomical situation that is similar to that of 

Tibetan H. agriocrithon.  

 

The patterns of selection footprints that were obtained from the pairwise comparisons of the 

groups were less clear-cut than those obtained in studies that used less diverse germplasm 

(Comadran et al. 2011a). All the regions of selection that were identified showed low diversity 

in at least one of the groups compared (most frequently, in both groups) and different 

predominant alleles at several SNPs.  
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The different sample sizes among the groups prevent definite conclusions being drawn from the 

selection footprints. Nevertheless, some interesting trends are apparent from the comparison of 

SNP frequencies across the groups. It is remarkable that several regions that are apparently 

under selection contain loci that are associated with either the domestication process or the 

adaptation of the crop to geographical areas and agricultural systems. For example, on 

chromosome 1H, there were two regions that appeared to contain loci under selection, one on 

each side of the centromere. The region on the long arm corresponded to the region of PpdH2. 

PpdH2 is one of the most important determinants of flowering time in Mediterranean climates 

(Boyd et al. 2003; Cuesta-Marcos et al. 2008). Three markers that were located at a position 

very similar to the one determined by Cockram et al. (2011) and Comadran et al. (2011b) to be 

the location of PpdH2, showed distinct alleles between the ETH and HSP. In addition, 

Bjørnstad & Abay (2010) have suggested that Ethiopian barleys have a low level of diversity at 

this locus because most Ethiopian barleys carry the allele that is sensitive to short photoperiod. 

These findings support this gene being behind this selection footprint.   

 

For 2H, the comparison between WM and HSP revealed a peak in the region of Eam6 (52–59 

cM) that was just below the threshold level but very prominent locally. Five distinct selection 

signals were identified on 2H when ETH and HSP were compared, although this comparison 

involved the least number of accessions and, thus, the results were less reliable than those of the 

other comparisons. Despite this, it is remarkable that the peak around Eam6 was also the highest 

in the comparison of ETH and HSP. Eam6, together with PpdH2  is shown to be the most 

important gene  in the determination of flowering time in Mediterranean climates. Several 

studies of quantitative trait loci (QTLs) have suggested that the allele that gives the fastest 

flowering response is advantageous in the Mediterranean climate. As a consequence, we might 

expect the allele for fast development to be fixed in accessions originally from the 

Mediterranean area.  The region of 2H that contains Eam6 has been shown to contain major 

QTLs in several studies (Boyd et al. 2003; Castro et al. 2008; Cuesta-Marcos et al. 2008), and 

the gene responsible has been identified as Eam6. Several association mapping studies have 

identified SNPs in that region that are associated with differences in heading date (Cuesta-

Marcos et al. 2010; Comadran et al. 2011b; Massman et al. 2011). Another region of selection 

on 2H (78–97 cM) may contain VRS1, which is the main gene for the determination of spike 

type in barley and one of the key genes associated with its domestication. The VRS1 locus 

coincided with the region of minimum diversity of the ETH group on this chromosome, which 

was also one of the regions of lowest diversity throughout the entire genome. Synthetic markers 

of the VRS1 gene have been localized at 87 cM in a consensus map (Cuesta-Marcos et al. 2010). 
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Chromosome 3H was remarkable for the extremely low diversity of the ETH group over most 

of the long arm. Other studies, most recently Comadran et al. (2011a), have found evidence of 

selection on 3H, around the estimated position of the nonbrittle rachis loci (btr1/btr2), which is 

located at around 40–50 cM on the OPA consensus map (Close et al., 2009). The work by 

Comadran et al. (2011a) was carried out with elite material from UK and US breeding 

programmes and, in that case, the depression of diversity around btr1/btr2 was evident. In our 

study, the set of accessions is probably much more diverse, because it includes a high 

proportion of landrace material from several geographical regions. The fact that we found no 

selection footprint at this region is actually not surprising. As mentioned above, Komatsuda et 

al. (2004) and Azhaguvel and Komatsuda (2007) used markers linked closely to the btr genes to 

differentiate two main groups of barleys, the occidental (W) and oriental (E) types. The 

classification of the few accessions studied from Spain or North Africa was not clear-cut, but 

they were placed finally with the E group, in contrast with other western cultivated barleys, 

which are W-type. We do not know the allelic composition at the btr loci for most of our 

accessions, but we can speculate that they are a mixture of E and W accessions, which would 

impede the identification of a selection footprint by the method used. 

   

Chromosome 4H showed a large region of low diversity in the HSP group, although we were 

unable to develop a possible explanation for this. The only peak (26–55 cM) that indicated 

possible selection was identified in the ETH–HSP comparison, in the vicinity of the 

INTERMEDIUM-C or INT-C gene. The location of this gene, which was involved in the 

domestication process of barley (Pourkheirandish and Komatsuda 2007; Sakuma et al. 2011), 

has been identified recently with precision, and a candidate has been put forward by Ramsay et 

al. (2011). Distinct alleles were identified for several SNPs in the region (26.2–28.4 cM) in the 

WM and ETH groups, although the peak that indicates the probability of loci under selection is 

just below the threshold chosen (1.26). 

 

On 5H, the most important region appeared to be the one around VRNH1 (129–137 cM). A 

large peak was identified in the comparison between WM and ETH. Distinct alleles were 

identified for four SNPs in this region in the WM and ETH groups. One of these SNPs maps 

very close to VRNH1 (Casao et al. 2011). VRNH1 is one of the most important genes for the 

determination of growth habit in barley (Trevaskis 2010) and, together with VRNH2, separates 

the winter from the spring cultivars, and drives one of the most important classes in barley 

germplasm. As a consequence, it was expected that this gene would be the source of a 

conspicuous selection footprint. Other regions of selection on 5H were evident: around 51 cM in 

the comparison between WM and HSP, and at 61–86 cM in the comparison between ETH and 
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HSP. Genes int-b and vrs2, which are also involved in the domestication process, are located on 

the short arm of 5H (Cuesta-Marcos et al. 2010). 

  

Chromosome 6H displayed a rather marked peak for selection at 55–59 cM in the WM–HSP 

comparison. In the ETH–HSP comparison, two peaks surrounded the location of the former 

peak. Although the locations of these peaks were not exactly the same, the approach used only 

allowed the positions to be estimated roughly, and we cannot rule out an identical location. 

However, we could not find any genes in this segment that might be responsible for the 

selection effect. 

 

The central part of chromosome 7H exhibited a marked decrease in diversity in the WM group. 

Apparently, this group of accessions has been subject to selection pressure towards the fixation 

of alleles on this chromosome. As a consequence, selection footprints were apparent in the 

comparisons between this group and either HSP or ETH, although the positions were slightly 

different (78–86 cM and 63–71 cM, respectively). The range of SNPs affected, especially for 

the WM–HSP comparison, included several SNPs that were in common with the markers used 

by Druka et al. (2011) to genotype backcross mutants in the dense spike 1 (dsp1) gene. This 

gene has been proposed already by Komatsuda et al. (2004) as one of the factors that drove 

barley domestication, through interaction with the nonbrittle rachis btr genes on 3H. Sameri et 

al. (2006) and Taketa et al. (2011) have mapped the dsp1 gene to the region of the SNPs 

detected in the current study.  

 

A possible role of ascertainment bias on our results cannot be ruled out. Ascertainment bias of 

this marker set in barley has been reported (Moragues et al. 2010). This set of SNPs was 

developed to capture diversity in a small set of modern cultivars (Rostoks et al. 2005) and some 

loss of diversity when used on landrace or wild barley materials can be expected. The main 

effect of ascertainment bias is a reduced power to detect recent population differentiation 

(Hübner et al. 2012), so the differences found in our study could actually be underestimated.  

Also, the concentration of differences on diversity in specific regions of the genome, and not at 

random, suggests the action of genetic forces. Genetic bottlenecks and drift and may be a 

possibility underlying the differences in diversity, but in situ adaptation is another plausible 

option.  

 

Closing Remarks 

 

The genetic diversity identified in this study confirmed previous results about the distribution of 

genetic diversity in barley germplasm. The advantage of the present analysis lies in the dense 
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coverage provided, compared with that of previous studies, and also in the relevance of the 

markers themselves, because they are derived from genes and not from non-coding regions. 

Germplasm from the Western Mediterranean region and Ethiopia showed distinct genetic 

characteristics. We identified several regions with distinct allelic content among the groups. 

Some of these regions contain well-known genes for adaptation that may have been the target of 

the selection forces that shaped the distribution of genetic diversity in barley. Two of the 

chromosomal regions detected, around PpdH2 on 1H and Eam6 on 2H, also appeared to be 

involved in the differentiation of germplasm from the Mediterranean area from that of other 

groups; these genes are well known as determinants of the main flowering time in the 

Mediterranean area (Boyd et al. 2003; Cuesta-Marcos et al. 2008). Furthermore, the results 

described herein favour our hypothesis of a polyphyletic origin for cultivated barley, with 

additional centres of origin in the Western Mediterranean and Ethiopia, apart from the widely 

accepted Near-Eastern centre. 
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Table 1. Barley accessions used 

Species Country 
No. of 

Accessions Seed source 
Hordeum vulgare  Morocco 36 USDA National Small Grain Collection 

 Spain* 7 Braunschweig Gene Bank 
 Ethiopia 16 USDA National Small Grain Collection
 Libya 10 IPK Gene Bank Gatersleben 

Total  69  
H. spontaneum Morocco 8 Own collection 

 Israel 4 USDA National Small Grain Collection
 Turkey 2 USDA National Small Grain Collection
 Afghanistan 4 USDA National Small Grain Collection
 Iran 4 USDA National Small Grain Collection
 Crete 1 Own collection 
 Libya 2 IPK Gene Bank Gatersleben 
 Cyprus 1 Cyprus Agricultural Research Institute
 Iraq 2 USDA National Small Grain Collection
 Ethiopia 1 USDA National Small Grain Collection

H. agriocrithon Tibet 9 IPK Gene Bank Gatersleben 
Total  38  

Grand Total  107  
 

*Criolla types derived from landraces of Spanish origin brought to South America by the Spanish in the 15-
16th centuries. 
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Table 2. Analysis of molecular variance (AMOVA) for 103 wild and cultivated barley samples 
classified into four groups. 
 

Source of variation d.f. Sums of 
squares

Variance 
components

Percentage 
of variation

Among populations 3 4617 64.3 Va 42.1

Within populations 99 8775 88.6 Vb 57.9

Total 102 13392 153.0  

Fixation Index  FST: 0.42   
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Table 3. Pairwise comparisons between groups, FST, derived from the analysis of molecular 
variance (AMOVA). 
 

 WM ETH AGR

ETH 0.517   

AGR 0.338 0.388  

HSP 0.424 0.562 0.240
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FIGURE CAPTIONS 

Figure 1. Principal component analysis of the accession groupings in a space determined by the 

three principal axes. Accessions are coloured according to origin: black, Ethiopia; blue, Western 

Mediterranean cultivated barley; pink, Moroccan H. spontaneum; green, H. agriocrithon; and 

red, H. spontaneum from countries other than Morocco. 

 

Figure 2. Ward cluster analysis showing the groupings of genotypes. Colours of the accession 

branches are as in Figure 1. 

 

Figure 3. Selection footprints for three group-to-group comparisons: A) West Mediterranean vs. 

H. spontaneum, B) Western Mediterranean vs. Ethiopian, and C) H. spontaneum vs. Ethiopian. 

For each comparison, the lines on top represents the moving means of diversity 

(heterozygosities, as named in Arlequin), for windows of 21 loci. The lower part of each graph 

(dotted pattern) shows the moving means of the 21-locus windows for –log10P of the probability 

that the loci have undergone selection. 

 

Supp. Mat. Fig. 1. Neighbour-joining analysis tree of the studied germplasm accessions. 
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Supplementary material Table 1 
Accession Country Remarks 

38-PI356226 MOR_V H. vulgare Morocco 
39-PI356672 MOR_V            "           "                  " 
40-PI356673 MOR_V            "           "                  " 
41-PI356674 MOR_V            "           "                  " 
42-PI356683 MOR_V            "           "                  " 
43-PI356690 MOR_V            "           "                  " 
44-PI356696 MOR_V            "           "                  " 
45-PI356711 MOR_V            "           "                  " 
46-PI356713 MOR_V            "           "                  " 
47-PI356715 MOR_V            "           "                  " 
48-PI356718 MOR_V            "           "                  " 
49-PI356719 MOR_V            "           "                  " 
50-PI356732 MOR_V            "           "                  " 
51-PI356734 MOR_V            "           "                  " 
52-PI356737 MOR_V            "           "                  " 
53-PI356738 MOR_V            "           "                  " 
54-PI356741 MOR_V            "           "                  " 
55-PI356742 MOR_V            "           "                  " 
56-PI356746 MOR_V            "           "                  " 
57-PI356750 MOR_V            "           "                  " 
58-PI356755 MOR_V            "           "                  " 
59-PI356759 MOR_V            "           "                  " 
60-PI356763 MOR_V            "           "                  " 
61-PI356771 MOR_V            "           "                  " 
62-PI356775 MOR_V            "           "                  " 
63-PI516592 MOR_V            "           "                  " 
64-PI328938 MOR_V            "           "                  " 
65-CIho8335 MOR_V            "           "                  " 
66-CIho8336 MOR_V            "           "                  " 
67-CIho9778 MOR_V            "           "                  " 
68-CIho11206 MOR_V            "           "                  " 
69-CIho11207 MOR_V            "           "                  " 
70-CIho11208 MOR_V            "           "                  " 
71-CIho11961 MOR_V            "           "                  " 
72-CIho12024 MOR_V            "           "                  " 
73-CIho13181 MOR_V            "           "                  " 
93-HS1 MOR_S H. spontaneum Morocco 
94-HS2 MOR_S            "           "                  " 
95-HS3 MOR_S            "           "                  " 
96-HS4 MOR_S            "           "                  " 
97-HS5 MOR_S            "           "                  " 
98-HS6 MOR_S            "           "                  " 
99-HS7 MOR_S            "           "                  " 
100-HS8 MOR_S            "           "                  " 
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102-PI 282615 ISR_S H. spontaneum Israel 
103-PI 466577 ISR_S H. spontaneum Israel 
104-PI 466528 ISR_S H. spontaneum Israel 
106-PI 466664 TUR_S H. spontaneum Turkey 
107-PI 596285 TUR_S H. spontaneum Turkey 
108-87-341 CYP_S H. spontaneum Cyprus 
111-PI 220523 AFG_S H. spontaneum Afghanistan 
112-PI 366431 AFG_S H. spontaneum Afghanistan 
113-PI 466606 IRN_S H. spontaneum Iran 
114-PI 466627 IRN_S H. spontaneum Iran 
115-PI 466634 IRN_S H. spontaneum Iran 
122-HS20 CRE_S H. spontaneum Crete 
123-PI 466322 ISR_S H. spontaneum Israel 
124-PI 219921 AFG_S H. spontaneum Afghanistan 
125-PI 401367 IRN_S H. spontaneum Iran 
126-AHOR 
9719/82 LIB_S H. spontaneum Libya 
127-PI 219796 IRQ_S H. spontaneum Iraq 
128-PI 254894 IRQ_S H. spontaneum Iraq 
129-PI 220664 AFG_S H. spontaneum Afghanistan 
131-PI356061 ETH_S H. spontaneum Ethiopia 
133-AHOR 
9721/82 LIB_S H. spontaneum Libya 
136-Criolla 3 SPA_V H. vulgare Spain* 
137-Criolla 4 SPA_V H. vulgare Spain* 
138-Criolla 5 SPA_V H. vulgare Spain* 
139-Criolla 6 SPA_V H. vulgare Spain* 
140-Criolla 7 SPA_V H. vulgare Spain* 
141-Criolla 8 SPA_V H. vulgare Spain* 
143-Criolla 10 SPA_V H. vulgare Spain* 
144-PI 58754 ETH_V H. vulgare Ethiopia 
145-PI 193538 ETH_V H. vulgare Ethiopia 
146-PI 195971 ETH_V H. vulgare Ethiopia 
148-PI 277383 ETH_V H. vulgare Ethiopia 
149-ID 277403 ETH_V H. vulgare Ethiopia 
150-PI 298765 ETH_V H. vulgare Ethiopia 
151-PI 298794 ETH_V H. vulgare Ethiopia 
152-PI 298796 ETH_V H. vulgare Ethiopia 
154-PI 316793 ETH_V H. vulgare Ethiopia 
156-PI 316849 ETH_V H. vulgare Ethiopia 
158-PI 328964 ETH_V H. vulgare Ethiopia 
166-PI 382668 ETH_V H. vulgare Ethiopia 
168-PI 382731 ETH_V H. vulgare Ethiopia 
169-PI 382865 ETH_V H. vulgare Ethiopia 
170-PI 382872 ETH_V H. vulgare Ethiopia 
172-PI 383041 ETH_V H. vulgare Ethiopia 
174-PI 26179 LIB_V H. vulgare Libya 
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175-PI 39192 LIB_V H. vulgare Libya 
176-PI 53239 LIB_V H. vulgare Libya 
177-PI 60660 LIB_V H. vulgare Libya 
178-PI 60661 LIB_V H. vulgare Libya 
179-PI 60663 LIB_V H. vulgare Libya 
180-PI 60664 LIB_V H. vulgare Libya 
181-PI235186 LIB_V H. vulgare Libya 
182-PI264210 LIB_V H. vulgare Libya 
183-PI410437 LIB_V H. vulgare Libya 
HOR1645 AGRO H. agriocrithon Tibet 
HOR2268 AGRO H. agriocrithon Tibet 
HOR2456 AGRO H. agriocrithon Tibet 
HOR2459 AGRO H. agriocrithon Tibet 
HOR2462 AGRO H. agriocrithon Tibet 
HOR2463 AGRO H. agriocrithon Tibet 
HOR2465 AGRO H. agriocrithon Tibet 
HOR2466 AGRO H. agriocrithon Tibet 
HOR2507 AGRO H. agriocrithon Tibet 

* Landrace of old Spanish origin collected in the Andean region 
(Molina-Cano et al 
2005) 

 
 
 
 


