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Abstract

Explicit finite volume methods are frequently used and widely accepted in
hydraulic models based on the shallow water approximation. The main draw-
back of the approach is the time step size limit imposed by the Courant-
Friedrichs-Lewy numerical stability constraint. This leads to excessively long
computational times in large scale cases of practical interest. At the same
time, the accuracy of the numerical results is associated to the use of fine
computational meshes able to achieve enough spatial resolution. Taking into
account that hydraulic modellers do not have access, in general, to large
computational facilities, suitable and useful parallelization techniques are re-
quired. Furthermore, if High Performance Computing facilities are used, it is
usually necessary to provide an estimation of the requirements of computa-
tional load to cover the length of the simulation. In this work the suitability
of a preprocess static subdomain decomposition is explored and presented as
a promising strategy to improve the efficiency of 2D unsteady shallow water
computational models over dry bed in medium scale computational facilities
and, at the same time, is useful to provide a preprocess computational time
estimation if large scale computational facilities are going to be used.
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1. Introduction

Parallelization strategies offer the possibility to improve the compromise
between stability and efficiency in numerical methods with restrictions in the
time step size. Also, in general, explicit methods used to simulate unsteady
inundation flows do not require to perform calculations in all the cells but
only in those covered by water. As the simulation progresses, the number
of involved computational cells changes. When using a well balanced pre-
process subdomain decomposition, the initial optimal partition becomes bad
balanced as the wave propagation advances. On the other hand, as the num-
ber of partitions grows, the relative weight of this unbalance decreases. Some
authors have proposed different ways to perform this kind of implementation
on structured meshes [12] whereas others [14] have performed the partition
on unstructured meshes using METIS to stablish the partitions according to
the number of wet/dry cells. In the present work the impact of the number
of cells based the partition strategy is analyzed.

2. Mathematical model/Governing equations

The two-dimensional shallow water equations, which represent mass and
momentum conservation in a plane, can be obtained by depth-averaging the
Navier-Stokes equations. Neglecting diffusion of momentum due to viscosity
and turbulence, wind effects and the Coriolis term, they form a system of
equations:
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∂t
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∂y
= S(U,x,y) (1)

where
U = (h, qx, qy)

T (2)

are the conserved variables with h representing the water depth, qx and qy,
with (u, v) the depth averaged components of the velocity vector u along the
(x, y) coordinates respectively. The fluxes of these variables are given by:
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where g is the acceleration of the gravity. The source terms of the system
are split in two kind of terms. The bed slope and friction source terms of the
momentum equations:

S = (0, gh(Sox − Sfx), gh(Soy − Sfy))
T (4)
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where the bed slopes of the bottom level z are

Sox = −∂z

∂x
, Soy = −∂z

∂y
(5)

and the friction losses are written in terms of the Manning’s roughness coef-
ficient n:

Sfx =
n2u

√
u2 + v2

h4/3
, Sfy =

n2v
√
u2 + v2

h4/3
(6)

System (1) is time dependent, non linear, and contains source terms. Un-
der the hypothesis of dominant advection it can be classified and numerically
dealt with as belonging to the family of hyperbolic systems. The mathemati-
cal properties of (1) include the existence of a Jacobian matrix, J

n
, of the flux

normal to a direction given by the unit vector n, En, with E = Fnx +Gny,
defined as

J
n
=

∂En

∂U
=

∂F

∂U
nx +

∂G

∂U
ny (7)

This Jacobian can be used to form the basis of the upwind numerical dis-
cretization that will be outlined in next section.

3. Finite Volume Model

To introduce the finite volume scheme used in this work, (1) is integrated
in a volume or grid cell Ω:

∂

∂t

∫

Ω

UdΩ+

∫

Ω

(
−→∇E)dΩ =

∫

Ω

SdΩ (8)

It is assumed that the third integral can be reformulated as
∫

Ω

SdΩ =

∮

∂Ω

(Tn)dl (9)

where T is a suitable numerical source matrix. This enables the following
formulation

∂

∂t

∫

Ω

UdΩ +

∮

∂Ω

Endl =

∮

∂Ω

Tndl (10)

When the domain is sub-divided in cells Ωi (see Figure 1), using a mesh
fixed in time, (10) can also be applied to each cell. Assuming a first order in
space approach equation (10) reduces to [11]

(Un+1
i −Un

i )

∆t
Ai +

NE∑

k=1

(δE−T)knklk = 0 (11)
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Figure 1: Cell parameters.

where Ai is the cell area, δE = Ej − Ei, with Ei and Ej the values of the
function E at the neighbour cells i and j respectively, nk = (nx, ny), the
outward unit normal vector to the cell edge k, lk is the corresponding edge
length, NE is the number of edges in the cell.

The exact value of the flux and sources at each cell edge (δE − T)knk

in (11) is unknown, and it is approximated by means of a Godunov type
approximate solver [3], that depends on the values of the variables at both
sides of the cell edge. One option is the Roe’s approximate solution [13]. This
approximation is based on the local linearization of the flux E, by means of
an approximated Jacobian matrix J̃

n,k. This approximated Jacobian matrix

provides a set of three real eigenvalues λ̃m
k and eigenvectors ẽmk .

The problem is reduced to a 1D Riemann problem projected onto the
direction n at each cell edge. The hyperbolic nature of the equations allows
to express the flux and source term as a linear combination with the following
form [10]

(δE−T)knk =
3∑

m=1

(λ̃αθẽ)mk (12)

The λ̃ eigenvalues express the direction of propagation of the information.
They are usefull to provide a correct updating of the conserved variables.
The explicit first order upwind scheme for system (11) gets the form:

Un+1
i = Un

i +∆t
NE∑

k=1

Ψn
i,k (13)
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and is expressed as the sum of each edge contribution, Ψi,k

Ψi,k =

3∑

m=1

(λ̃−αθẽ)mk lk/Ai (14)

with λ̃− = 1

2
(λ̃ − |λ̃|). It is worth mentioning that special care must be

considered when defining the linearization coeficients in (14) to avoid unph-
sical results, as negative values of water depth, when updating the conserved
variables [10].

The scheme as in (13) is explicit and, therefore, conditionally stable. The
dynamic time step in the stability region must be computed following [10]

∆t = min {∆tk}k=1,Nedge , ∆tk =





Amin,k

max
[
|λ̃m

k |
]
lk



 (15)

with Amin,k = min(Ai, Aj) and Nedge the number of cell edges in the domain.

4. Machine Description

The machine where the computation has been made is called Caesarau-
gusta and it is a member of Spanish Supercomputing Network. Its main capa-
bilities are the distributed memory paralellism paradigm using MPI standard
and is briefly described in Table 1.

Technical Characteristics
Processor 512 processors PowerPC 970FX 2.2 GHz
Performance 2994.04 GFlops
Memory 1 TB RAM Memory
Network Interconnection networks Myrinet
O.S. Linux
Total 256 nodes

Table 1: Caesaraugusta specifications.
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Figure 2: Algorithm scheme with new operations highlighted

Algorithm 1 Syncronize ∆U (Send and Receive is applied to DeltaU of
neighbouring cells)

Require: Domain has been decomposed in p ≥ 2
1: if mpirank = 1 then
2: receive from 2 and send to 2
3: else
4: if mpirank = p then
5: send to p− 1 and receive from p− 1
6: else
7: if mpirankMOD(2) = 0 then
8: send tompirank−1, receive frommpirank−1,receive frommpirank+

1 send to mpirank + 1
9: else
10: receive from mpirank +1, send to mpirank +1, send to mpirank − 1

and receive from mpirank − 1
11: end if
12: end if
13: end if

5. Paralellization Strategy

Parallelization on distributed memory machines requires a special way to
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Algorithm 2 Syncronize ∆t

Require: Domain has been decomposed in p ≥ 2
if mpirank = 1 then

2: DT (0) = DT0

for l=1..p-1 do
4: Receive DT (mpirank) from node l

end for
6: To find min δt as (dt = MIN(DT (0..p− 1))

for i=1..p-1 do
8: Send dt to node i

end for
10: else

Find min δt of my domain
12: Send dtrank

Receive dtmin

14: end if

decompose the domain. In 2D problems such as the one solved in the present
work, it is possible to choose between 1D domain decomposition (along a pref-
erential direction) or 2D domain decomposition (no preferential direction).
In either of them, the schematic representation of the procedure to modify
the variable updating given by (13) and the dynamic time step calculation
given by (15) in every subdomain is displayed in Figure 2. The modifications
introduced by the parallelization are highlighted in the flowchart showing the
necessity to provide global information to all the subdomains in every time
step. The particular form to perform this will be detailed later.

On the other hand, in unsteady problems like the flooding of dry regions,
it is possible to use constant in time 1D or 2D decompositions (static) or the
dynamic version of both of them that change the domain distribution along
the simulation as the flooding progresses and the number of computational
cells involved in the calculation grows. If the dynamic decomposition is cho-
sen, the computational time required to balance the load among subdomains
becomes critical as the effective computational domain changes along the
simulation. The static decomposition, on the other hand, does not require
an estimation of the computational load each time step as this option does
not offer an optimal distribution. In the present work, the suitability of the
static decomposition strategy for unsteady problems is explored.
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When using a 1D static decomposition, the existence of a preferential
flow direction is implicit and the the good balance of number of cells among
partitions is required. In that case, the communication scheme is as it appears
in Figure 4 and is detailed in Algorithm 1. On the left hand side of Figure
4, the scheme used to exchange information about the variable updating is
said to follow a red/black update where the operation is first applied to ”red”
elements and then to ”black”. To organize the communication, the algorithm
is split in 4 sequential and ordered steps. Independently of the number of
partitions in the domain, in two steps the ”red” elements are sending to
the ”black” elements. In the other two steps, the ”red” elements receive
and the ”black” send. The right hand side of Figure 4 shows the reduction
pattern used to share the information concerning the time step size and is
detailed in Algorithm 2. First, each subdomain sends its time step size to
one of them (previously stated) where the global minimum size is calculated;
then, this value is resent to all of the subdomains in order to share the global
minimum time step. MPI functions Senc/Recv are designed oriented to block
the execution until the function has not ended [8]. In order to synchronize
all the tasks, Algorithm 1 and Algorithm 2 make this function calls ensuring
that, every time-step, the functions have sent/received the neccessary data
to continue with the calculation.

The most important advantage of this strategy is the possibility of stab-
lishing an approximation of the duration of the simulation and of the com-
putational requirements according to the time cost desired. In other words,
when we have enough information about the decomposition in terms of num-
ber of cells per subdomain and the largest number of cell edges (walls) shared
between all subdomains the simulation cost can be bounded as follows:

tX ≤ nsteps((txmax(ncell,i)) + (tcαmax(nwalls,i,j))) (16)

where tx is the calculation time per cell and tcα is the time of communication
per wall.

Values of tx and tcα are obtained through regression analysis. A prelim-
inar test case with 4 partitions with a growing number of cells involved was
run for that purpose. The computaional cost associated to one time step
was measured as a growing function of the number of cells involved. This is
plotted on the left side of Figure 3.

Taking into account that we are looking for the fitting of

tX ≤ nsteps((txmax(ncell,i)) + (tcαmax(nwalls,i,j))) (17)
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Figure 3: Left: Measured execution time required for one time step as a
function of the number of wet cells in a case with 4 subdomains. Right:
Linear regression.

it can be rewritten as a linear function,

tX ≤ nsteps((4.11272E − 06max(ncell,i)) + (0.00242021)) (18)

where the second factor is a constant term independent from the number
of cells involved in each time step and adjustable to each simulation. In a
test case with 40 shared walls, a value of tcα = 5.9028E − 5 was obtained.

Quantifying tx = 4.11272 · 10−6 and tcα = 5.9028 · 10−5 for our machine:

tX ≤ nsteps((4.11272 · 10−6max(ncell,i))+ (5.9028 · 10−5max(nwalls,i,j))) (19)

This value is actually an upper bound since all the cells in the subdomains
are not always wet (h > 0).

6. Results

6.1. Test case 1: Dam break over flat and frictionless bed

The first test case is concerned with the simulation of a dam break flow
(Figure 7) over flat and frictionless bed in a rectangular domain divided by
a solid wall except in a narrow central region where a gate is assumed. A
discontinuity in the water surface between 5m and 0m together with zero
velocity are assumed as initial conditions. After the gate removal, the flow
develops in a simultaneous shock wave advancing over the lower depth reser-
voir and a rarefaction wave smoothly progressing into the higher level side.
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Step 1

Step 2

Step 3

Step 4

Figure 4: Left: Communication scheme for the conservative variables U .
Right: Comunication scheme for ∆t.

For the simulation all the boundaries were assumed as solid walls and 300,000
grid cells were used. The grid is shown on the left part of Figure (5) together
with information concerning the size of the cells. The right part of Figure
(5) displays an example of the partition in 8 subdomains. These are parallel
to the gate due to the symmetry of the test case. The amount of grid cells
used allowed for a large number of partitions and, in particular, up to 128
nodes were used in the calculation.

Figure 5: Test case 1. left: Geometry of the problem. Right: Partition in 8
subdomains

Figure 6(a) and Table 2 shows that the computational time decreases as
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(a) Computational time versus real time (b) Speed-up in 400 s.

Figure 6: Computational time (a), and speed-ud (b) in Test case 1 using
Caesaraugusta

the number of computers increases. However, Figure 6(b) displays that the
gain is not linear; this is due to the constant time spent in communication.

These cases are worst cases because every domain is wet all the time
and hence is the effective calculation domain. On most cases, this situation
is variable as unsteady problems make variable the domain. This test-case
shows the better performance it can be reached as this case does not treat
the wet/dry problem .

Table 2: Performance measurement for test case 1

Performance Measurement Techniques
Number of Processors

2 4 8 16 32 64 128

Speed-Up 1.41 2.45 5.87 11.54 23.02 29.93 58.65
Efficiency 0.70 0.61 0.73 0.72 0.71 0.62 0.45

6.2. Test case 2: Inundation flow in a river

As a second test case of more complexity and interest in practical applica-
tions of Hydraulic Engineering, a realistic inundation event in a reach of the
Ebro river (Spain) has been used. In this case, the simulation has been run
for 38,000 s. The topography is represented on Figure (8). The left part of

11



Figure 7: Evolution of water depth in t=7.5s [Top Left], t=25s [Top Right],
t=32.5s [Bottom Left], t=50s [Bottom Right] in Test case 2

Figure (9) shows the grid of 41,000 cells and an example of its decomposition
in 8 subdomains. The mesh cell size distribution is detailed on the right part
of Figure (9). This case was decomposed up to 24 subdomains and a 1D cri-
terion analogous to the one chosen in the previous example was followed due
to the existence of a preferential direction in the flow. The inlet hydrograph
is a linear curve where Q(t = 0) = 0m3/s,Q(t = 35, 000) = 2, 000m3/s.
The numerical results of the simulation are plotted in Figure (10) in the form
of six snapshots of the water depth contour map at six different times.

In this case, the gain achieved by means of the static subdomain decompo-
sition presented is better than the theorical one. This is due to the increasing
number of cells involved in the calculation as time progresses. The graph of
the computational time versus real time has been plotted in Figure (11) (a)
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and the speed-up achieved at time t = 35, 000s is shown both in Figure (11)
(b) and Table 3. It is worth noting that the algorithm used to include new
cells requires high interaction with the main memory, and this access misses
sometimes in cache memory [6]. Each miss implies time spent accessing to
main memory. The paralellization in subdomains somehow implies also par-
elellizing these accesses therefore decreasing the number of misses in cache
memory.

This case is closer to realistic simulations, where the flooding area is
increasing (or decreasing). In order to make the minimum number of calcu-
lations, to reduce the number of cells wich it is going to make calculations
in, is desired.

Figure 8: Test case 2. Topography of the problem.

Figure 9: Test case 2. Left: Computational grid used and example of parti-
tion in 8 subdomains. Right: Distribution of cell sizes.
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Figure 10: Evolution of water depth in t=0s [Top Left], t=7,000s [Top Right],
t=14,000s [Middle Left], t=21,000s. [Middle Right], t=28,000s. [Bottom
Left] and t=35,000s [Bottom Right] in Test case 2 with input hidrograph
Q(t)=17.5t m3/s

7. Conclusions

In this work, the suitability of a static subdomain decomposition strategy
for realistic unsteady 2D shallow water flows with and without wet/dry fronts
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(a) Computational time versus real time (b) Speed-up in 36,500 s.

Figure 11: Computational time (a), and speed-ud (b) in Test case 2 using
Caesaraugusta

Table 3: Performance measurement for test case 2

Performance Measurement Techniques
Number of Processors

2 4 8 16 24

Speed-Up 1.38 3.06 9.76 19.01 26.55
Efficiency 0.69 0.76 1.22 1.18 1.10

has been analyzed. The parallelization technique has been coupled to a
previously developed explicit upwind finite volume model already tested.
The decomposition of the domain into subdomains has been made part of
the preprocess of the simulation so that the user can choose the number
of processors to reach the simulation time beforehand. Beside this, HPC
infraestructures need an estimation of the CPU time to allocate users in
their queues and the proposed strategy offers a very close approach of that
time.

From the computational point of view, the performance offered by this
kind of decompositions is good since the actual calculation time decreases as
the number of subdomains increases.

It is important to note that the paralellization does not only imply the
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distribution of the calculation steps among different processors but also the
distribution of the memory access. This is the main reason why the achieved
speed-up is non-linear. Present day computer architectures are paying special
attention to this factor, making bigger cache sizes and developing new levels
for them with the only purpose of decreasing the misses associated to main
memory access.

The proposed parallelization strategy is a simple technique easy to adapt
to existing explicit finite volume models. The performance obtained in terms
of computational time reduction for realistic inundation flow problems over
complex topographies is encouraging.
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