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Abstract 19 

Enhancement of Juniperus thurifera recruitment and colonisation by oak and pine species has been related 20 

at the local level to changes in livestock pressure. We used forest inventory data from Castilla y León 21 

Autonomous Region (Central Spain), an area comprising 34% of the world range of J. thurifera, to assess 22 

whether this process is occurring at a larger scale. We compared tree composition and density in a set of 23 

659 permanent plots over a 10-year period. Logistic models and redundancy analysis were used to assess 24 

the effect on this process of parameters such as livestock pressure, propagule availability and climatic 25 

conditions. Between 1992 and 2002, juniper woodlands became denser (1.31% juniper stem year-1) and 26 

tree diversity increased due to rapid colonisation by oaks and pines (2.21% occupied plots year-1). In 27 

addition, the presence of juniper increased in other types of forests at a moderate rate (0.6% y-1). Thus, 28 

we observed both a disruption of the borders between current forest types and a generalised increase in a-29 

diversity of tree species. The seed source was the main factor explaining colonisation rate, suggesting that 30 

the pace of colonisation is critically constrained by the spatial configuration of the landscape and the local 31 

propagule availability of the colonising species. If the current colonization trends continue, monospecific 32 

juniper woodlands will become very scarce by the end of the twenty-first century. 33 

 34 

 35 

 36 

Keywords: Abrupt compositional shift; juniper; land-use change; seed source; tree colonization; 37 

Markovian models. 38 
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Introduction 41 

  42 

Understanding the mechanisms underpinning geographical ranges is a key issue in ecology and 43 

biogeography (Gaston 2003). Species’ ranges of distribution are largely driven by environmental 44 

correlates but also by population interactions and seed dispersal (e.g. Pacala and Hurtt, 1993). Under the 45 

current global change scenario, major shifts in species distribution may become the rule. In fact, range 46 

variations due to climatic conditions have already been described (Brommer 2004; Wilson et al. 2007), 47 

although data in relation to plants are scarcer and mainly centered on shifts of species ranges along 48 

altitudinal gradients (Jump et al. 2009). Moreover, the widespread land-use change may be leading to 49 

additional sources of variation such as habitat fragmentation or reduced habitat quality (Matesanz et al. 50 

2009). 51 

 52 

In Mediterranean countries, human activities have shaped ecosystem structure and function for ages (e.g. 53 

Urbieta et al. 2008), and the transition from a traditional labor-intensive self-consumption driven 54 

agriculture to an industrialized market-oriented agriculture has involved profound changes in land-use 55 

patterns (Gellrich et al. 2007). Production has been intensified in the most fertile spots, whereas vast areas 56 

of marginal lands have been neglected. Hence, formerly productive areas in mountain regions –both by 57 

traditional agriculture or by free ranging livestock– are experiencing landscape changes and undergoing 58 

secondary succession due to recent changes in land use (Mazzoleni et al. 2004, Chauchard et al. 2007).  59 

 60 

The interaction between successional reactivation and other global change drivers may involve the onset 61 

of novel vegetation trajectories. Currently dominant species may be replaced by other taxa from the 62 

regional species pool, which could lead to a new equilibrium state of the ecosystem sensu Rietkerk et al. 63 

(2004). These phenomena are contingent on the ecosystem spatial configuration and on historical effects 64 

determining demographic thresholds in community dynamics (Rietkerk et al. 2004). Concretely, there is 65 

growing evidence of the dramatic role of dispersal syndromes and local seed pools in current forest 66 

community reorganization (Montoya et al. 2008). 67 

 68 

Most of the studies describing potential changes in species distributions in response to global change are 69 

focused on the margins of their distribution range (Anderson et al. 2009). Much less interest has been 70 
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given, however, to the effects of global change across a significant fraction of the species’ range (Purves 71 

2009). This research line is particularly exciting given that plant species usually do not cover their 72 

potential climatically-defined range, and its actual distribution is normally defined by other factors such 73 

as human activities or the availability of seed sources (Svenning and Skov 2004).  74 

 75 

Spanish juniper (Juniperus thurifera L.) woodlands are one of the dominant plant communities in the 76 

scarcely-populated mountain regions of the central Iberian Peninsula (Blanco et al. 1997). In the last 77 

centuries, monospecific juniper woodlands have represented a stable component of Iberian vegetation and 78 

even a climax state (Peinado and Rivas-Martínez 1987). These woodlands have been traditionally 79 

managed as grazed systems combined with timber production for fire wood or construction (Gauquelin et 80 

al. 1999; Olano et al. 2008, Rozas et al. 2008). Recently, a process of densification and colonization by 81 

oak and pine species was described in J. thurifera woodlands at a local scale (DeSoto et al. 2010), as a 82 

consequence of the decline in traditional practices. We hypothesize that changes in J. thurifera woodland 83 

structure may be a widespread phenomena along its distribution range. We tested this hypothesis using 84 

forest inventory data (Second and Third Spanish Forest Inventory in 1992 and 2002, respectively) for the 85 

J. thurifera distribution range in Castilla y León in Spain. We focused on Castilla y León region because 86 

it encompasses 34% of J. thurifera world range and includes the most representative and extensive areas 87 

of formerly managed J. thurifera woodland in Spain. Our specific questions were: 1) Is J. thurifera 88 

woodlands suffering changes in structure and composition? 2) Which is the speed and future direction of 89 

these changes? and 3) Which is the role of key potential factors controlling this process, such as climate, 90 

livestock density and propagule availability? 91 

 92 

Methods 93 

 94 

Study species and area 95 

 96 

Spanish juniper is a long-lived tree, endemic of the western Mediterranean basin. Its most important 97 

populations are located in Spain (95.1% of the world surface) and Morocco (4.8%) with isolated 98 

populations in Argelia, Italy and France (Blanco et al. 1997).  It forms open woodlands that have been 99 

traditionally managed in a wood-pasture system, where the understorey is grazed by sheep and goats. 100 
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During the last century social transformations have caused a progressive abandonment of these traditional 101 

management practices along its European range. Concurrently, juniper woodlands are considered a 102 

priority habitat by the European Union Directive 92/43/EEC, EUNIS 9560 (Davies et al. 2004). Our study 103 

is focused on Castilla y León Autonomous Region, which hosts 214,000 ha of J. thurifera woodland, 104 

comprising a 34.2% of its world surface. Most of these woodlands are located at the eastern half of the 105 

Region (Fig. 1) at altitudes between 800-1300 m under Mediterranean continental climate, on shallow and 106 

stony soils. 107 

 108 

Data collection  109 

The Spanish Forest Inventory (SFI) consists of a systematic recording of permanent plots distributed over 110 

a grid of 1×1 km on forested areas (see details in Ministerio de Medio Ambiente, 2003). In every plot, all 111 

trees were recorded according to both their diameter at breast height (dbh, measured at 1.3 m above 112 

ground) and their distance to the centre of the plot: trees showing dbh between 7.5-12.5 cm were recorded 113 

within a 5 m radius; 10 m for 12.5-22.5 cm; 15 m for 22.5-42.5 cm and 25 m for dbh > 42.5 cm. Such 114 

sampling schema allows estimating density for every species in the plot. In the study area, the Second 115 

Forest Inventory (2-SFI) and the Third Forest Inventory (3-SFI) were accomplished in 1992 and 2002, 116 

respectively. A time-span of ten years may be considered short to study long-lived woody species, 117 

however it is long enough to detect changes in this forested ecosystem (Olano et al. 2009b), especially 118 

considering the large sample size of study plots and the wide study area considered in this work.. 119 

 120 

Plots sampled in both inventories and containing J. thurifera individuals in at least one of them were 121 

included. We discarded those plots whose recorded position in 1992 was not correctly identified in 2002. 122 

As a result, data corresponding to 659 plots were included in the analyses. In each plot UTM coordinates, 123 

municipality and tree density per species were considered. A digital terrain elevation model with 10 m of 124 

resolution was used to obtain physiographic information such as altitude, slope and aspect for every plot. 125 

Climatic data were obtained by using estclima, a multiple regression model based on meteorological 126 

station data (Sánchez-Palomares et al. 1999) that provides monthly averages for temperature and 127 

precipitation with a geographical resolution of 1×1 km. For subsequent analysis we selected a reduced 128 

group of informative climatic parameters: mean July and December temperatures, total spring rainfall, the 129 
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Gorezynski Continentality Index (Gorczynski 1920) and the Mediterraneity Index-Im3 (Rivas-Martínez 130 

1987).  131 

 132 

In order to assess the potential effects of livestock density on tree establishment we used the Agrarian 133 

Census from the Spanish National Statistics Institute (www.ine.es). Although this census has a high level 134 

of uncertainty, it is the only nationwide register available on livestock density at a local (municipality) 135 

scale. We focused on goats and sheep numbers, since cows are restricted to flat areas in valley bottoms 136 

away from juniper woodlands. We obtained information on goats and sheep abundance per municipality 137 

for 1982 (the first year with data available) and 1999. Although, the effect of livestock in J. thurifera 138 

growth is immediate, restricting primary and secondary growth (Olano et al. 2008; DeSoto et al. 2010). 139 

Its effect on forest composition shows a temporal lag, since trees need several years to reach minimal 140 

sampling size. So, we selected these dates to estimate the trend in livestock density. 141 

 142 

The distance of every plot to a potential seed source was estimated as the shortest distance to a 2-SFI plot 143 

containing at least one adult pine (pineseed), one adult oak (oakseed) or both one pine and one oak 144 

(treeseed). Based on the UTM coordinates of the SFI plots, the nearest neighbourhood distances between 145 

the sampling points was calculated with the Hawth Tool extension of Arc GIS 9.2. Using the source 146 

Juniperus, the average of the three nearest distances to plots with pines, oaks and the set pines+oaks were 147 

calculated. Obviously, since source trees would also be present in the space between sampling plots, our 148 

parameter provides a very conservative estimate of the available seed source. 149 

 150 

 151 

Data analysis 152 

 153 

The plots were classified in four classes according to the dominance of J. thurifera: a) Monospecific 154 

plots; b) Plots with at least two tree species, with J. thurifera representing more than 10% of the stems, 155 

hereafter Mixed plots; c) Plots with J. thurifera comprising less than 10% of the stems, hereafter 156 

Occasional plots; d) Plots without J. thurifera.  157 

 158 
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To evaluate changes in tree species diversity with the Shannon diversity index (Magurran 1989), changes 159 

in plot class and composition between 2-SFI and 3-SFI were compared for every plot using a Wilcoxon 160 

nonparametric test for paired data. Changes in the number of occupied plots and average stem density 161 

were compared for the most abundant species.  162 

 163 

In order to ascertain future changes in stand composition we calculated a transition matrix (Caswell 1989) 164 

describing the probability of transition between the different J. thurifera woodland classes. This matrix 165 

was used to predict the future composition of J. thurifera stands using a Markovian model comprising the 166 

21th century. Number of plots in each class in time t+1 was obtained by multiplying plots in each class in 167 

time t by the transition matrix. We assumed that regeneration and mortality rates of the different tree 168 

species during the next century would be similar to those recorded during the study period, so that this 169 

prediction constitutes an approximation to actual future trends in the composition and extent of J. 170 

thurifera woodlands in Castilla y León. Since the estimation of the parameters for the model is sensitive 171 

to the numbers of non-occupied plots (i.e. potentially available habitat), three numbers of non-occupied 172 

plots (500, 1000 and 2000) were arbitrarily established, in order to evaluate the effect of this parameters 173 

on the results. 174 

 175 

If plot colonization by other tree species is occurring due to a change in climatic conditions, recently 176 

colonized plots will show differences in their climatic conditions from previously occupied plots. This 177 

hypothesis was tested via Redundancy Analysis (RDA) (Legendre and Legendre, 1998). This test was 178 

performed separately for Quercus ilex L. and Q. faginea Lam since both species show different climatic 179 

preferences, whereas pine species were not tested due to the smaller number of plots colonized by these 180 

species. A data set for each species was created, including the previously mentioned climatic variables 181 

and all the plots where the species had been present at any of both sampling dates. A dummy parameter 182 

indicating presence or absence of Q. ilex or Q. faginea in 1992 was used as constraining matrix for each 183 

data set. This dummy parameter was randomly assigned by a Monte Carlo permutation test with 999 184 

randomisations to determine whether there were differences in multivariate climatic space between 185 

groups. The canonical eigenvalue was used to build the F-ratio statistic (ter Braak 1990). These analyses 186 

were conducted using CANOCO for Windows v. 4.0 (ter Braak and Smilauer 1997).  187 

 188 
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A logistic model (Legendre and Legendre, 1998) was used in order to determine which factors provided a 189 

better prediction of tree colonization in the monospecific plots in 2-SFI. Four groups of variables were 190 

considered: 1) Climatic variables affecting J. thurifera growth (Rozas et al. 2009, Camarero et al. 2010): 191 

July and December temperatures, spring rainfall, Gorezynski Continentality Index and Mediterraneity 192 

Index. 2) Physiographic variables: altitude, slope and aspect. 3) Variables related to land use: population 193 

in 1999/(population in 1961+1), goats+sheep number in 1999/(goats+sheep number in 1982+1). And 4) 194 

variables related to seed source distance: pineseed, oakseed and treeseed. Variables were included in the 195 

model by the Wald forward stepwise selection. Cut-off value for inclusion in the model was 0.05, and 0.1 196 

to exclude a previously included variable. Overall model significance was evaluated using log likelihood 197 

ratio (Hosmer and Lemeshaw 2000). Additionally, Receiver Operating Characteristic (ROC) curve was 198 

employed to test the validity of the logistic regressions. ROC curves provide an evaluation of the model 199 

sensitivity (rate of true positives) and specificity (rate of false positives). The validity is estimated by the 200 

C statistics that measures the area under the curve and compares it with the null hypothesis (Hosmer and 201 

Lemeshaw 2000). 202 

 203 

Results 204 

 205 

The number of plots including J. thurifera increased 6.1% (0.6% plots y-1) between 1992 and 2002. Most 206 

plots were monospecific (62.7% in 1992; 48.5% in 2002) with a smaller percentage of mixed plots 207 

(30.3% in 1992; 38.5% in 2002) and a reduced number of occasional plots (6.9% in 1992; 13% in 2002). 208 

The richness of tree species per plot increased during the study period (1.47 in 1992; 1.71 in 2002; Z = –209 

11.648, P < 0.0001), even after excluding monospecific plots (Z = –6.468, P < 0.0001). The same pattern 210 

holds for tree diversity (0.199 in 1992; 0.317 in 2002;  Z = –10.404, P < 0.0001), even after excluding 211 

monospecific plots (Z = –4.132, P < 0.0001). 212 

 213 

The number of monospecific plots declined from 389 to 319 (Fig. 2); since all these plots still presented J. 214 

thurifera individuals in 2002, this decline (18 % of the plots, 2.21% plots y-1) is explained by the 215 

colonization by other tree species. The transition matrix showed an increase of the number of mixed plots 216 

at the expense of monospecific plots (Fig. 2), with the incorporation of 39 newly colonized plots. 217 

Markovian models predict very similar results in spite of the colonizing threshold (Fig. 3). The number of 218 
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monospecific plots will be surpassed by that of mixed plots as soon as 2012 and by occasional plots in 219 

2042, becoming increasingly rare. J. thurifera will increase significantly its occupied area in the three 220 

scenarios, from 33 to 44%. 221 

 222 

This increase in species richness and diversity is related to the rapid colonization by oaks (Q. ilex and Q. 223 

faginea) and to a lesser extent by pines (P. pinaster Ait., P. sylvestris L. and P. nigra Arnold) (Tab. 1). 224 

The number of pine individuals increased substantially from 13.63% for P. nigra to 52.42% for P. 225 

sylvestris. Plot colonization was faster than species recruitment in Q. faginea and P. nigra, thus leading to 226 

a decrease in mean stem density per occupied plot. Contrarily, the other tree species increased their 227 

densities. J. thurifera showed a relevant increase in total tree number and density per occupied plot from 228 

197 stems ha-1 in 1992 to 220 in 2002 (Z = –7.110, P < 0. 001). 229 

 230 

Climatic parameters did not differ between the colonized plots and the previously occupied ones for Q. 231 

ilex (F = 0.169, P = 0.199) or Q. faginea (F = 0.72, P = 0.419). A satisfactory logistic model was 232 

achieved (Table 2) including two parameters, distance to seed source (treeseed) and altitude. Colonization 233 

was slower in areas far from available seed source (Quercus or Pinus) or at higher altitudes. ROC curve 234 

showed that the logistic model reasonably predicted colonization (C = 0.683, P < 0.001). 235 

 236 

 237 

Discussion 238 

 239 

As we hypothesized previously, the composition of juniper woodlands is changing along all the studied 240 

area. Oaks and pines are colonizing monospecific stands at a rapid pace (2.21% year-1), simultaneously 241 

with a sharp increase in juniper stem density (1.31% year-1). Although in 1992 most Juniper plots were 242 

monospecific, the Markovian models consistently predict that J. thurifera monospecific stands will 243 

become extremely rare during the 21th century. 244 

 245 

Monospecificity of J. thurifera woodlands has been traditionally attributed to environmental constraints 246 

such as harsh continental climate and shallow soils that would limit the performance of other tree species 247 

(Peinado and Rivas-Martínez 1987). The colonization of juniper woodlands by species such as oaks and 248 
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pines might be interpreted as a result of an improvement of climatic conditions, as has already been 249 

reported for other plant species in the Iberian Peninsula (Sanz-Elorza et al. 2003). However, since climate 250 

factors were excluded by the logistic model as drivers for plot changes, nor colonized plots differ in their 251 

climatic conditions from those previously occupied by Q. ilex and Q. faginea, no support was provided to 252 

a climatic basis in the observed changes. Alternatively, the observed increase in recruitment of juniper, 253 

and the rapid colonization of juniper woodlands by other tree species with a lower tolerance to browsing, 254 

has been interpreted as a consequence of the reduction of density of domestic herbivores at local scale 255 

(DeSoto et al. 2010). Nevertheless, we did not obtained any statistical relationship between colonization 256 

rate and livestock abundance in our data set. The absence of detailed free-ranging livestock records and 257 

the different scales between forest inventory data (a few square meters) and livestock density data (tenths 258 

of square kilometres) severely limit our ability to consistently compare forest composition and herbivory 259 

rates. Thus, the causal force behind this process could not be ascertained. 260 

 261 

In spite of the conservative proxy used for propagule availability, the colonization of J. thurifera 262 

woodlands by oaks and pines was related to the proximity of mature trees of these species. This result is 263 

in agreement with the role of dispersal limitation in structuring plant communities (Gómez-Aparicio et al. 264 

2009) and its potential to modulate the response of forest species to global change (Pacala and Hurtt 265 

1993). The importance of limited dispersal in community organization can be exacerbated in fragmented 266 

landscapes such as those characterizing Mediterranean areas, where the frequency of long-distance 267 

dispersal events has a major influence on the probability of plant colonization and its persistence in 268 

habitat patches (Zavala and Zea 2004; Montoya et al. 2008). On the other hand, a higher colonization rate 269 

was observed in plots located at lower altitude which may be related to the relative abundance of J. 270 

thurifera stands at the top of plateaus. In these positions juniper woodlands can persist as monospecific 271 

stands for longer periods since dispersal of other tree species more abundant in lower areas is complicated 272 

due to gravimetric constraints and dispersers’ behavior. However, although propagule availability can 273 

modulate the pace of the colonization process, it can not be considered as a cause for the colonization 274 

process. 275 

 276 

Interestingly, less-competitive Spanish juniper is expanding into other forested environments, mainly pine 277 

and oak forests, albeit at a slower pace (0.6% year-1). According to our model, this would lead to a large 278 
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range increase (over 30%) during the present century. The arrival of juniper propagules to forested areas 279 

is not a novel phenomenon. In spite of a large pre-dispersive mortality (Montesinos et al. 2010), this 280 

species possess a high colonizing capacity at larger distances, due to its dispersal by different thrush 281 

species (Santos et al. 1999). Thus, the effective establishment of J. thurifera occurring nowadays may be 282 

a consequence of the release of pre-existing limiting factors, probably related to traditional forestry 283 

management practices. Moreover, it is important to note that our estimates of future changes in Juniper 284 

woodland composition may be conservative, since we only considered the expansion of juniper into 285 

previously forested areas, thus overlooking the colonization of abandoned fields, which is actually 286 

occurring at similar pace (Pueyo and Alados 2007, Olano et al. 2009a). 287 

 288 

Our results provide evidence on how rapid changes in community composition and species range are 289 

occurring over large areas, even in the centre of the species range, and not only at the boundary of its 290 

range. Changes in juniper woodland composition in central Spain, due to oak and pine colonization, occur 291 

over a large area corresponding to 25% of juniper worldwide range, which will increase the rarity of the 292 

currently dominating woodland type, the monospecific J. thurifera woodland. Conservation of this 293 

priority habitat (Davies et al. 2004) should incorporate compositional changes as part of the dynamics of 294 

this ecosystem (DeSoto et al. 2010). This process is occuring simultaneously with a spread of Spanish 295 

juniper into surrounding forested areas and abandoned fields, which increases significantly its actual 296 

range. Consequently, both a disruption of the borders between currently existing forest types and an 297 

overall increase of tree species α-diversity are occurring simultaneously. Our results do not preclude the 298 

impact of climatic change in this process, but remarks that additional factors different from climate 299 

should be considered to understand and anticipate forthcoming changes in Mediterranean forest (Linares 300 

et al. 2009). 301 
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 400 
 401 

 402 
 403 
Table 1: Number of occupied plots, stems and stem density per occupied plot in 1992, 404 

and percentage of change per tree species between 1992 and 2002. Note that density is 405 

based on the number of occupied plots, so it can decrease even if total stem number 406 

increases. 407 

 408 
 409 

 Plots in 1992 
Change (%) 
1992-2002 

Total 
stem number 

Change (%) 
1992-2002 

 
Density in 1992 

(stems ha-1) 

Change (%) 
1992-2002 

Juniperus thurifera 620 6.13% 122,382 22.46% 197 15.38% 

Pinus nigra 49 22.45% 17,405 13.63% 370 -10.99% 

Pinus pinaster 92 11.96% 12,857 36.14% 139 21.60% 
Pinus sylvestris 50 21.95% 4,370 52.42% 106 24.98% 

Quercus ilex 111 36.94% 36,427 13.63% 328 12.48% 
Quercus faginea 34 50.00% 8,489 19.86% 249 -20.10% 
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 410 
 411 
Table 2: Logistic model for colonization of monospecific stands between 1992 and 412 

2002. β is the coefficient for each of the parameters 413 

 414 

Number of 
stands 

Model P Parameters in 
the model 

Parame
ter P 

β 

376 <0.001 Constant 0.022 3.671 
  Treeseed 0.008 -0.001 
  Altitude 0.005 -0.004 

 415 
 416 
 417 



18 
 

Figure 1: Study area and sampling sites location, showing the four categories 418 
recognized for changes in J. thurifera plots distribution and composition in the period 419 
1992-2002. Pure and mixed plots in 1992 and 2002 are differentiated of plots that 420 
changed since pure to mixed, and new colonized stands by J. thurifera, in this period. 421 
Solid line corresponds to the limit of Castilla y León region. Names and dashed lines 422 
correspond to Castilla y León provinces. 423 
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Figure 2: Transition matrix among the different plot classes in J. thurifera woodlands 426 
in Castilla y León, Spain, in the period 1992-2002. Numbers in the boxes indicate the 427 
number of stands in each state in 1992 and 2002. Arrows show the probability of 428 
transition, in percentage, of the 1992 plots. The exception is the transition from absent 429 
to occasional J. thurifera plots, which shows the absolute number of plots.  430 
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 433 
 434 
Figure 3: Observed (1992-2002) and predicted (>2002) number of occupied plots for 435 
the different plot classes between 1992 and 2002. Different lines represent different 436 
colonizing thresholds (dashed black for 500 potentially colonized stands, grey for 1000 437 
and solid black line for 2000). 438 
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 460 
 461 
Appendix 1. Distribution of Juniperus thurifera plots in 1992 (black dots) and 462 
neighboring plots occupied by Pinus (grey triangles) or Quercus (white quadrates) 463 
species. 464 
 465 
 466 
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