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We report on the interplay between the short-range order of molecules in the liquid phase of 1,1,2,2-tetrachloro-
1,2-difluoroethane and the possible molecular conformations, trans and gauche. Two complementary approaches
have been used to get a comprehensive picture: analysis of neutron-diffraction data by a Bayesian fit algorithm and
a molecular dynamics simulation. The results of both show that the population of trans and gauche conformers
in the liquid state can only correspond to the gauche conformer being more stable than the trans conformer.
Distinct conformer geometries induce distinct molecular short-range orders around them, suggesting that a deep
intra- and intermolecular interaction coupling is energetically favoring one of the conformers by reducing the
total molecular free energy.

DOI: 10.1103/PhysRevB.84.064202 PACS number(s): 61.25.Em, 61.05.F−, 33.15.Dj, 61.20.Ja

I. INTRODUCTION

The structure of molecular liquids has been extensively
investigated by both diffraction and simulation techniques in
the last few decades. The evergreen question is the relation
between the intra- and intermolecular parts of the structure. In
this context, one of the most studied systems has been CCl4,
whose intramolecular structure has been well known for a long
time.1,2 In a recent study, partial pair-distribution functions
have shown that the intra- and intermolecular characteristic
distances are well separated from each other.3 However, such
a clear decoupling occurs only in a minority of molecular
systems; even for molecular liquids with one molecular
center, like SbCl5 and WCl6, the interplay between intra-
and intermolecular contributions can be considerable.4 The
structure of liquid water, arguably the most important of all
molecular liquids, has also been widely studied in this respect.
Both the decoupled5 and the coupled6 approaches have been
applied in structural modeling applications. In more complex
systems, such as alcohols,7,8 the intramolecular structure has
been proven to have an effect on the intermolecular structure
at short and even intermediate distances.9

The determination of the intramolecular structure in the
liquid or the solid phases is not an easy task. First, this is
because the diffraction experiments used for its determination
allow access to information only in reciprocal space, and,
second, because any attempt to perform a fit has to deal with
the strong correlations between intramolecular parameters,
making it difficult to find the best fit to the data.9,10 These
difficulties have been summarized in a recent work11 where
a modification of the Levenberg-Marquardt algorithm is
presented. In this paper we present a different approach to
the problem based on Bayes theorem12 that helps to make
nonlinear fits less challenging.13

The case of 1,1,2,2-tetrachloro-1,2-difluoroethane (here-
after F-112) is particularly interesting due to the fact that this
compound has two rotamers and its liquid phase is a mixture
of different intramolecular geometries.

Figure 1 shows the intramolecular structure of the two
possible F-112 conformers, trans and gauche. As there are two
degenerate possibilities for a gauche conformation but only
one for a trans conformation, the fraction of molecules in the
gauche state would be 2/3 if there were no noticeable energy
difference between the gauche and trans conformers. The
structure has been determined at 0 K in the vacuum, i. e., with-
out taking intermolecular interactions into account, through
an ab initio calculation using the program HYPERCHEM14 with
the 6–31G** basis set (see Table I). The atoms are arranged
in staggered conformation and other dihedral angles exist
only in transition states between the conformers. The ab
initio calculation has yielded a very similar energy for both
conformers with a difference �H = 0.006 eV, with gauche
being slightly more stable.

The energy barrier (�H ∗) and energy difference between
the two conformers (�H ) were experimentally determined
using NMR, Raman and far infrared spectroscopy, and specific
heat measurements, which yielded �H ∗ = 0.3 − 0.42 eV
and �H = 0.005 − 0.008 eV.15–19 This means that at 310 K
(kBT ≈ 0.027 eV), hardly any molecule can be found in a
transition state, and the gauche and trans conformers are nearly
equally populated—with a slightly higher number of the lowest
energy conformer.

Usually, trans rotamers are favored over gauche in the
gas state of most substances because atoms in the latter
have a higher steric strain due to being closer to each
other. Nonetheless, several compounds have been reported to
display the opposite behavior, with gauche being more stable,
which has been called the “gauche effect.”20,21 In particular,
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FIG. 1. (Color online) Ab initio calculation of the F-112 molec-
ular structure in the vacuum for the trans (left) and gauche (right)
conformers, together with the name convention of the atoms used in
the present work.

this effect was already reported a long time ago in some
halogenoethanes.22,23

The F-112 NMR spectra were measured for a 33% and a
10% solution, and the trans conformer was found to be at a
lower energy than the gauche.15,16 However, energy differences
between rotational isomers strongly depend on the dielectric
constant of the medium due to interactions between the polar
groups of the molecule and the solvent. Therefore, these results
cannot be simply applied to the case of the pure compound.24,25

Most references simply assumed the trans rotamer to be
the most stable conformer, but a previous calculation of
the intramolecular energy of the rotamer geometries in the
vacuum, where the difference was �H = 0.003 eV, returned
a gauche conformer slightly more stable than the trans.23

The intramolecular structure of F-112 has previously been
assumed to be decoupled from the ordering of molecules at
short distances; in some molecular dynamics simulations, the
molecules are even assumed to be rigid.26 Nevertheless, studies
of the structure at the inter- and intramolecular scale showed
that the interplay of features at these two different length scales
may explain the complex dynamics of F-112.27–29

The present work is focused on the determination of the
intramolecular structure of F-112, its interplay with inter-
molecular ordering in the liquid phase, and a deep analysis of
the short-range order, and is organized as follows: After a short
description of the experimental and simulation procedures, a
fit method to obtain molecular parameters from the neutron
diffraction data is presented. The intramolecular structure of
F-112 will then be obtained from experimental data. Finally,
in order to find out its relation with intermolecular length
scale features, the short-range ordering of molecules will be
determined with molecular dynamics simulation results using
flexible F-112 molecules.

In the appendices, the error calculations when using
the Fourier transform are explicitly explained, the proposed
method is validated by fitting artificially generated data of
the structure of an ethene molecule, and the F-112 analysis
is crosschecked by fitting the molecular dynamics results and
comparing the intramolecular parameters with those obtained
from the experimental fit.

II. EXPERIMENTAL AND SIMULATION DETAILS

A. Molecular dynamics simulation

For the molecular dynamics simulations, the initial molec-
ular geometry for F-112 was obtained by optimizing the

molecular geometry at the HF/6-31+G* level using the
GAUSSIAN 03 program.30 Because a generalized AMBER force
field31 was used in the simulation to describe the intra-
and intermolecular interactions of F-112, which provides a
completely flexible molecular model, the molecules could
change between the trans and gauche conformers to reach the
equilibrium population. After assuring that consistent results
were obtained for the simulation irrespective of the initial
molecular conformations, a gauche conformation was adopted
as the initial molecular geometry for all the molecules in the
simulation. The charges used in the simulation were obtained
as best fit to the molecular electrostatic potential in a certain
number of points around the molecule using the CHELPG
procedure.32

The simulations were carried out for liquid F-112 using
the SANDER module in the AMBER8 software package.33 The
simulation box size was on average 78.5 × 79.7 × 77.02 Å

3

containing 2345 molecules of F-112. The temperature of
the isothermal-isobaric ensemble was maintained at 310 K
and the pressure was set to 1 bar using the Nose-Hoover
and the Parrinello-Rahman algorithms, respectively.34 Once
stabilization was reached, the density within the simulation
box varied between 1.64 and 1.65 g/cm3, which is very close
to the experimental density of 1.62 g/cm3.35 The time step for
integrating the equations of motion was 1 fs and the total time
scale of the run was 10 ns.

B. Neutron diffraction experiments

Diffraction patterns of a F-112 sample with 99% purity
(ABCR GmbH & Co. KG, Karlsruhe, Germany) were mea-
sured in the liquid phase at 310 K. Experiments were per-
formed at the liquids and glasses neutron diffractometer D4c
at the Institute Laue-Langevin (Grenoble, France),36 using a
wavelength of λ = 0.5 Å and an angular range for the detectors
that yielded a scattering vector up to qmax ≈ 23 Å

−1
. In order

to correct and normalize the data, the empty cryostat, an empty
sample holder, a boron powder sample, and a vanadium rod
were also measured, as in previous works.37,38 Absorption and
multiple-scattering corrections and normalization of the data
were performed using the program CORRECT.39 Additionally,
inelastic corrections were also carried out by subtracting a
polynomial expansion in powers of q2.40

III. EVALUATION OF THE DIFFRACTION DATA

A. Bayesian fit method

Bayesian methods are routinely used in many branches
of science.41 Their use in condensed matter, although it has
been proven to be very powerful, is still quite scarce.42,43

Among them, the atomic reverse Monte Carlo method44,45

provides a maximum entropy solution to the problem of
finding a molecular configuration that fits diffraction patterns
within their errors. This method has been successfully used
in the study of simple molecules such as water6 or tetrahedral
molecules.3,37 However, usually a careful preparation of the
initial configuration is needed in order to be able to reproduce
the experimental results; a preparation that if not properly done
can be misleading in the case of complex molecules such as
polyalcohols.7
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This problem of a strong dependence of the result on
the initial choice of parameters is typical for fits with many
parameters. In the case of reverse Monte Carlo, the number of
degrees of freedom of the system is extremely high because the
description of the data is done by molecular configurations. To
avoid this problem, we have developed an alternative Bayesian
fit method to extract only the intramolecular structure from
diffraction data. In this way, the number of parameters to
describe a F-112 flexible molecule is reduced to only 23 (see
below for the description of the parameters).

The classical approach to fit models to data sets is
finding the parameters {Pi} that minimize the figure of merit
χ2. In contrast, Bayesian methods allow successive sets of
parameters {P l+1

i }, where l is a given step in the fit process, to
be accepted with a probability

Paccept = exp

[
χ2

{
P l+1

i

} − χ2
{
P l

i

}
2

]
. (1)

This algorithm accepts parameters that do not decrease χ2 if
they are consistent with the data error bars (see Appendix A).
From a geometrical point of view, the parameter values are
allowed to go “uphill” in the χ2{Pi} hypersurface. This method
has two main consequences: (i) The algorithm does not get
stuck in local minima of the parameter space {Pi} during the fit
process. This is why the initial choice of parameter values does
not matter with this fit method.46 (ii) The results are described
by means of probability distribution functions (PDFs) that
reflect all of the complexity of the problem under study. This
is because once the best fit is found, the program explores the
whole parameter space compatible with the data and its errors.
Note that in the following sections, the word “parameter” will
often be used in short for “parameter PDF.”

B. Fit function

Independently from the choice of a Levenberg-Marquardt
or a Bayesian approach to determine the best parameter
set to describe the experimental data, a function has to be
formulated indicating that the algorithm should fit to the
data. In our case, we have applied the Bayesian method
to find molecular structures compatible with a diffraction
pattern—simultaneously in reciprocal and in direct space (see
Appendix B 1). This procedure helps to select the best set
of parameters by optimizing the path used to approach the
minimum in the χ2 hypersurface (see Appendix B 1).

With respect to reciprocal space, in neutron diffraction of
a molecular liquid, the differential scattering cross section per
atom can be separated into the q-dependent coherent contri-
bution from different atomic sites and a constant term arising
from other contributions.47 Because the fit is intended to extract
the intramolecular structure, in reciprocal space we will focus
only on the intramolecular contribution of the aforementioned
q-dependent term as performed previously,8–10,48,49

1

N

[
dσ

d�
(q)

]intra

coh

= 1

m

m∑
i,j �=i

bib
∗
j

sin(qrij )

(qrij )
exp

[ − 〈
δr2

ij

〉
q2

/
2
]
,

(2)

where N is the total number of atoms in the sample; i and j are
sites on the same molecule; m is the number of molecular sites;

bi is the coherent scattering length of the chemical species
at site i; rij is the modulus of the mean separation between
atoms i and j ; and in the Debye-Waller term, 〈δr2

ij 〉 = 〈u2
i 〉 +

〈u2
j 〉, where 〈u2

k〉 (k = i,j ) is the mean-squared vibrational
amplitude for the atom at site k.47

In the case of real space, a radial distribution function
RDF(r) ≡ 4πr2ρg(r) is used, as defined in Ref. 47, derived
from a Taylor-series expansion of the distances through
the quadratic terms of the displacements.50–54 For distances
compatible with those of the intramolecular structure,55

RDFcalc(r) = P (r) + 1

B

m∑
i,j �=i

bib
∗
j

r

rij

exp
[ − 1

2
(r−rij )2

〈δr2
ij 〉

]
√

2π
〈
δr2

ij

〉 , (3)

where B = 1
m

∑m
i,j �=i bib

∗
j is a normalization constant, and

P (r) is a polynomial accounting for the density term (4πρr2)
and any intermolecular contribution that is visible at the in-
tramolecular length scale. The introduction of this polynomial
term is justified by the fact that the width of the first peak
describing the intermolecular structure (≈2–3 Å) is at least
an order of magnitude wider than those contributing to the
intramolecular structure (between 0.01 and 0.1 Å), i.e., the
peaks arising from the intramolecular structure are much
sharper than the first one describing short-range order (see,
for example, Refs. 37 and 7).

Because changing the relative position of a single atom
within the molecule will affect all interatomic distances rij

related to that atom, those parameters have been reduced to
a minimum set of independent variables, and since the fits
are also performed taking into account molecular symmetries,
the m(m − 1) parameters that would describe the molecular
structure have been drastically diminished.

In order to obtain the experimental radial distribution
function (RDF) from diffraction data, one needs to perform
a Fourier transform of the measured scattering function (SF)
to go from reciprocal space to real space. Unfortunately, the
Fourier transformation of experimental data has two main,
well-known, undesired effects in the RDF, which are due to the
finite, experimentally available q range: the peaks described by
Eq. (3) are broadened, and a series of spurious peaks appears in
addition to those defining the molecular structure. The reason
is that due to experimental limitations, the recorded data is
not only the SF, but its product with 
(qmax − q), where 


is the Heaviside step function representing the experimental
window. Therefore, what is obtained in direct space is the
convolution of the Fourier transformation of both functions,47

RDFexp(r) = RDFcalc(r) ⊗ 
′ (r) , (4)

where 
′(r) = [1 − cos (qmaxr)] /r is the Fourier transform of

 (qmax − q).

The spurious peaks can be minimized (but not fully
corrected) by previously applying a smoothing function to
the SF that approaches zero for q = qmax, but this solution
has the drawback that the peaks are even more broadened in
real space, smearing out intramolecular features.56 Instead,
we have carried out this convolution in real space to fully
account for both effects (peak broadening and spurious peaks)
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TABLE I. Comparison of the parameters obtained from the ab initio calculation of the F-112 molecule in the vacuum with the mean and
standard deviation obtained from the normal distributions of the parameters found with the fits of the experimental measurements (gauche
fraction cg , interatomic dihedral angle α and distances rij , and vibrational parameters lij ). Distances related to atomic bonds and atoms bonded
to the same carbon have been considered common parameters to both conformers, and distances related to atoms bonded to different carbons
have been separately fitted for each conformer; those corresponding exclusively to the gauche conformation have been labeled rg . Lengths are
given in Å, the angle α in degrees, and cg is adimensional.

Parameter Ab initio Fit values Parameter Fit values

cg 0.67 0.68 ± 0.02
lCF 0.069 ± 0.001

α 59.7 64 ± 2
lCCl 0.0829 ± 0.0009

rC0F0 1.33 1.361 ± 0.001
lCC 0.27 ± 0.02

rC0Cl1 1.76 1.7446 ± 0.0006
lClF 0.27 ± 0.01

rC0C5 1.56 1.65 ± 0.02
lF1Cl 0.290 ± 0.008

rF0Cl2 2.52 2.536 ± 0.009
lC1Cl 0.16 ± 0.01

rCl1Cl2 2.88 2.64 ± 0.02
lCl1C 0.19 ± 0.01

rC5Cl1 2.73 2.70 ± 0.01
lF2Cl 0.079 ± 0.003

r
g

C5F0
2.31 2.269 ± 0.006

lCl2C 0.13 ± 0.01
r

g

C5Cl2
2.76 2.93 ± 0.02

lF2F <0.002
r

g

C5Cl1
2.73 2.70 ± 0.01

lCl2C 0.07 ± 0.01
r

g

Cl1Cl2
2.89 2.70 ± 0.04

of the limited reciprocal space accessible by the experiment
(see Appendix B 1).57,58

The proposed algorithm to find the structure describing
the data within their errors is implemented in the free
and open, publicly available program FABADA,59 and it has
already successfully been used to describe the dynamics
from quasielastic neutron-scattering experiments60,61 and from
dielectric spectroscopy.62

IV. THE INTRAMOLECULAR STRUCTURE OF F-112

The intramolecular structure of F-112 in the liquid phase
has been determined by simultaneously fitting the experimen-
tal neutron-diffraction SF and the RDF obtained from the
Fourier transform of the data to assure the robustness of the best
fit (see Appendices B 1 and B 2). For simplicity, the notation
lij ≡ √〈δr2

ij 〉 has been used. The molecular parameters rij and
lij follow the notation of the atoms in Fig. 1 and, since the two
conformers have different molecular symmetries, the needed
parameters are not the same. Distances related to atomic bonds
and to atoms bonded to the same carbon have been considered
common parameters to both conformers, and distances related
to atoms bonded to different carbons have been separately
fitted for each conformer (see Table I).

Due to the symmetry of the trans conformer, the dihedral
angle between its atoms F–C–C–F has been assumed to be
a distribution around 180◦. The parameter α, shown in the
inset of Fig. 2, has been used to fit the dihedral angle of
the gauche conformer. In order to account for the fraction
of the gauche and trans conformers in the liquid state, the
parameter cg has been introduced. It gives the gauche fraction
(cg) and the reciprocal fraction of the trans (1 − cg) in the
liquid state. Thus, the total radial distribution function can be
written as

RDFintra = (1 − cg)
(
RDFintra

t

) + (cg)
(
RDFintra

g

)
(5)

for the RDF, and, correspondingly,

SFintra = (1 − cg)
(
SFintra

t

) + (cg)
(
SFintra

g

)
(6)

for the SF. It must be stressed that in this equation, cg

and 1 − cg are, like all the parameters through the Bayesian
method, probability distribution functions and not just scalars
(see Appendix B 1).

Since we are interested in the analysis of the intramolecular
part, there is no interference between the scattering contribu-
tions of the distances between atoms in different molecules,
therefore, a simple addition of each conformer contribution
can be performed. However, this approach is based on the
assumption that the molecules are either in the gauche or
in the trans conformation, and only a negligible amount is
in a transition between the two. To address the point of
whether the molecules are mainly present in the gauche or
trans state, the probability Ptransition of finding a molecule in
a transition state between the trans and gauche conformers
at the highest point of the energy barrier, with respect to the

FIG. 2. (Color online) Probability distribution function (PDF) of
the dihedral angle F–C–C–F of the F-112 molecule as extracted from
the molecular dynamics simulation in the liquid state. Inset shows the
definition of the dihedral angle α in a F-112 molecule.
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FIG. 3. (Color online) (a) Experimental SF of F-112 (circles) with
its best fit (dashed orange line) in the range of higher q values (here
7–23 Å), where the intermolecular contribution is not significant, and
the SF is obtained by the molecular dynamics simulation (solid violet
line). The inset zooms into the fitted portion of the experimental SF,
which is shown together with the best fit. (b) Experimental RDF
(circles) with its best fit (dashed orange line) in the intramolecular
distances domain. Note that the experimental RDF is the Fourier
transform of the experimental SF and the fit is the calculated RDF
convolved with 
′.

probability Pconf of finding it in a trans or gauche conformer,
has been calculated as Ptransition/Pconf = exp (�H ∗/kBT ) ≈
10−5–10−7, when taking the literature values for �H ∗. We
can, therefore, assess that molecules will be either in the trans
or gauche conformation.

This fact is also reflected in the molecular dynamics simu-
lation, as can be clearly seen in Fig. 2, where only the dihedral
angles corresponding to trans and gauche conformers are
found. The weighting method to account for the contribution
of each conformer to the RDF and to the SF has been tested
using data from the simulation (see Appendix B 2).

The values obtained from the ab initio simulation have
been used as the initial parameters to fit the composed
diffraction functions [Eqs. (5) and (6)] simultaneously in
direct and reciprocal space. An excellent agreement with the
experimental data is obtained for the whole experimental q

range (Fig. 3). The mean and standard deviations of the normal
PDFs obtained from the fit of the diffraction data of the liquid
phase, together with the parameters obtained from ab initio
calculations in the vacuum, are compiled in Table I. The
molecular structure could be unambiguously determined from
the experiment; of the dynamic parameters, only one related to
the atomic vibrational amplitudes (lF2F) could not. This is due
to the small contribution that these atomic pairs have to the
total intensity of the SF and the RDF (see Appendix B 1). The
results summarized in Table I clearly show that the ab initio
calculations (on vacuum) are substantially different.

One of the most remarkable results presented in Table I is
that the obtained proportion of gauche conformer is (68 ± 2%).
Taking into account the energy differences between trans and
gauche conformers determined by previous experiments, this
fraction should be between 60% and 62% at 310 K if the trans
rotamer is assumed to be the most stable. Conversely, Fig. 4
shows that the cg PDF is clearly peaked at 68%. In addition,
this value is even higher than 2/3, which is the maximal value
that could theoretically be reached at high temperatures if
this were the case. On the other hand, if the gauche rotamer
is assumed to have the lowest energy, the gauche fraction
should be between 71% and 73%, and 2/3 would become

FIG. 4. (Color online) The probability density function (PDF) as-
sociated with the fraction of gauche conformer population in the sam-
ple cg obtained from the fit to the experimental data. Inset shows the χ2

PDF of hypothesis H2/3 (dashed black line) and Hfree (solid red line).

the minimum theoretical value that could be reached at high
temperatures, which is slightly below the actual observed value
of the PDF peak.

Even disregarding the quantitative results reported in the
literature for the energy difference between conformers,
further support can be given to the hypothesis Hfree of having
an additional parameter with any concentration PDF (Eg > Et

or Eg < Et , where Eg and Et are the energies of the gauche
and trans conformers, respectively) over the hypothesis H2/3 of
having a fixed gauche fraction of 2/3 (Eg = Et ), by comparing
the χ2 PDFs of these two models.60 As can be seen in the
inset of Fig. 4, the Hfree model is preferred to the H2/3

model because the χ2 PDF has its peak at a smaller value,
therefore disfavoring the Eg = Et scenario. As mentioned
above, Eg > Et would yield a cg distribution below 2/3,
which is contrary to observation (Fig. 4), thus leading to the
conclusion that in the liquid phase, Eg < Et .

This analysis provides a strong indication that gauche is the
more stable conformer in the F-112 liquid phase. Deviations
of the gauche population from the expected values can be
ascribed to possible differences in the short-range order seen
by trans and gauche molecules, which could energetically
favor one or the other conformer. This is analogous to the
effect produced on the energy difference of the conformers
by different mixtures of solvents with a distinct dielectric
constant, thus coupling its intramolecular structure with the
surrounding intermolecular interactions.24,25

In order to ascertain the validity of the previously stated
assumption concerning the proportion of the gauche conformer
due to differences in the molecular ordering, a molecular
dynamics simulation using flexible molecules was performed.
The simulation yields the same result that is obtained by fitting
experimental data: a large fraction of gauche conformer. The
value of the gauche population obtained in the simulations is
74%, which is even higher than the one obtained experimen-
tally, thus supporting the conclusion that gauche is the most
stable conformer in the liquid phase. This can be qualitatively
observed from the area of the peaks in Fig. 2. Last but not
least, the agreement between experimental results and the
simulations confers a reliable proof of the validity of the
method used here (see Appendix B 2).
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FIG. 5. (Color online) Radial distribution function (RDF) of
the molecular centers of mass (dashed red line) together with the
molecular coordination number (MCN) (solid black line) of F-112
from the molecular dynamics simulation. An upward arrow indicates
the MCN value that corresponds to the RDF minimum, which was
used to define the first neighbor shell. The corresponding MCN (black
point) is 13.

V. THE INTERMOLECULAR SHORT-RANGE
ORDERING OF F-112

The first step to analyze the short-range order of
F-112 is to determine the number of molecules in the first
coordination shell. The molecular coordination number was
obtained through the integration of the RDF of the distances
between the centers of mass (with respect to a central one).
The number of molecules within the first coordination shell is
13, as can be seen in Fig. 5.

We analyze the differences between the relative positions
of F-112 molecules in the first coordination shell around trans
and gauche molecules. Figure 6 displays a scheme to define
the angle φ used to analyze the short-range order around each
conformer. For both conformers, φ is the equatorial molecular
angle defined as the one between the reference molecule plane
(defined by the C–C axis and a fluorine atom) and the neighbor
molecule position plane (defined by the C–C axis of the
reference molecule and the central point of the C–C axis in the
neighbor molecule).

This angle gives direct information about the arrangement
of molecules. Roughly speaking, φ = 0◦ corresponds to
configurations where neighbor molecules are in the direction
of one of the fluorine atoms.

The PDF associated to the equatorial angle φ only for the
first neighbor around trans and gauche conformers is depicted

FIG. 6. (Color online) Scheme of the definition of the equatorial
angle φ between the reference molecule plane and the position plane
of the neighbor molecule in F-112. For both conformers, the reference
molecule plane is defined by the C–C axis and a fluorine atom, and
the position plane of the neighbor molecule is defined by the C–C
axis of the reference molecule and the central point of the C–C axis of
the neighbor molecule. In the case of the trans conformer, the plane
containing the other fluorine atom will be located at φF = 180◦, while
in the case of the gauche conformer, this plane will be located at an
angle φF = α.

in Fig. 7(a). The ordering of the molecules is different around
trans and gauche conformers, as can be directly seen in the
figure. Closest neighbors align preferably in the direction of
the fluorine atoms, hence, due to the different geometries of
both conformers, molecules tend to locate at φ = 0◦ and 180◦
around trans conformers, and at φ = 0 − 60◦ around gauche
conformers (in the direction of the small region between
the fluorine atoms). Both profiles reflect the symmetry of
its conformer geometry, which is the plane going through
the C–C axis with φ = 0◦ and 180◦ for the trans, and the
plane going through the C–C axis with φ = 30◦ and 210◦ for
the gauche.

It is now clear that there is a difference in the ordering of the
first neighboring molecules around a central trans or gauche
conformer. How far does this difference reach? Figures 7(b)
and 7(c) show the probability density of finding a neighbor
molecule at a certain angle φ around a trans or a gauche
reference molecule as a function of the molecular coordination
number. This representation provides information at a first
glance about the angular distribution of neighboring molecules
when moving away from the reference molecule, and thus

FIG. 7. (Color online) (a) Probability density of the equatorial angle of the central point φ of the first neighbor molecule (MCN = 1)
surrounding trans (black lines) and gauche (red lines) conformers, extracted from the molecular dynamics simulation in the liquid state.
Vertical lines show the direction in which the fluorine atoms are found for each conformer. The same probability density as a function of MCN
surrounding (b) trans and (c) gauche conformers (darker shade means higher probability).
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gives a picture of the short-range order inside the whole
first coordination shell. A look at this figure readily tells us
that the relative position of molecules is different for each
conformer, even at rather long distances from the reference
molecule. As expected, at longer distances, the molecular
ordering starts to smear out but, even then, trans and gauche
molecules try to fill the gaps that the closest neighbors left
empty, so a difference in the molecular arrangement is still
maintained, which is a phenomenon observed as well in carbon
tetrachloride.37 A complete characterization of the short-range
order of F-112 using this kind of bivariate analysis63,64 is
being carried out, and additional differences in the relative
orientation of molecules have already been found.

VI. CONCLUDING REMARKS

Concerning the intramolecular structure of F-112, it has
been possible to show that within the liquid phase, the gauche
conformer represents (68 ± 2%) of the molecular population,
which supports the conclusion that it is the most stable
conformer in the liquid phase.

The model with a distribution of an adjustable gauche
conformer fraction is preferred over the model with a fixed
fraction of 2/3, which is a reflection that the intra- and
intermolecular degrees of freedom are deeply intertwined in
F-112. Thus, it is essential to use flexible molecular models that
allow conformation population variability to get true insight
into the behavior of this compound.

The departure from the expected conformer population has
been tentatively attributed to the difference in the short-range
order around trans and gauche molecules that energetically
favors one of the conformers, coupling intra- and intermolec-
ular interactions. It has been shown, through the analysis
of molecular dynamics simulations, that the first neighbor
molecules tend to locate in the direction of the fluorine atoms,
therefore, a different molecular short-range ordering around
trans and gauche molecules is induced by each conformer
geometry. Angular distribution differentiates trans and gauche
rotamers up to relatively long distances because even when
defined positions start to blur, a contrast is still preserved since
F-112 molecules fill the gaps that the closest neighbors did not
occupy.

The successful use of the analysis method presented here
to determine the molecular structure from diffraction data,
through the fit of not only the experimentally obtained SF in
the reciprocal space but also simultaneously the RDF in the
real space obtained through Fourier transformation, will help
to pave the way to understanding the molecular structures and
the short-range order in complex disordered systems.
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APPENDIX A: CALCULATING THE ERROR IN FOURIER
TRANSFORMATIONS

Errors associated with the data play a major role in the
proposed fit scheme to obtain molecular structure parameters

because they regulate the capability of the program to go uphill
in the χ2{Pi} hypersurface.

Because the method is optimized by the simultaneous fit
of the functions in both the reciprocal and the direct space,
it is not enough to know the experimental error from the
measured SF; it is also necessary to calculate the errors of
the RDF obtained after Fourier transforming the experimental
data and convolving with 
′. And since this is not an obvious
calculation, it is explained in detail in this Appendix.

Errors have been calculated following two alternative
approaches: by error propagation of the discretized Fourier
transform and by using a Monte Carlo method.65

The discretized version of the Fourier transform that has
been applied to the experimental SF to obtain the RDF is

RDFexp(r)=4πρr2+ 2r

π

n∑
k=1

qkFexp(qk) sin(qkr)�q, (A1)

where k = 1, . . . ,n are the experimental points, �q is the
sampling interval, and Fexp is the differential scattering cross
section per atom subtracted by the constant term σ scatt/4π ,
with [σ scatt/4π ] being the average scattering cross section. If
the theory of error propagation is applied to Eq. (A1) and it is
assumed that errors are normally distributed, a relationship is
obtained between the errors of the SF and the RDF:

εRDF(r) = εF (q)

n∑
k=1

2

π
(qkr) sin (qkr)�q. (A2)
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FIG. 8. (Color online) (a) Scattering function SRND generated as
normally distributed random (RND) data points. (b) Several RDFRND

obtained from Fourier transforming different SRND such as the one
in (a) (thin black lines); errors calculated by Monte Carlo simulation
(points) and by error propagation (thick red line). The inset represents
the distribution of RDFRND values at a single point obtained by
Fourier transforming 1000 SRND, showing that data are also normally
distributed in real space.
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Errors in the RDF calculated in this way have been plotted in
Fig. 8(b), and are essentially linear with respect to r (the slight
sinusoidal modulation can barely be seen).

The Monte Carlo method to calculate errors consists of
Fourier transforming SFs generated with normally distributed
random points and obtaining the PDFs of the points in real
space as a function of r after a number of SFs have been
generated and Fourier transformed in this manner. A single
example of such a SF and several RDFs corresponding to
Fourier transformation of different SF are shown in Figs. 8(a)
and 8(b), respectively. The PDFs of the points have been
calculated, in this case, after Fourier transformation of 1000
random SFs. As can be seen in the inset of Fig. 8(b), normal
distributions for the data were obtained in real space as well,
validating the calculation of errors using Eq. (A2). The error
at each point has been obtained from the standard deviation
of its normal distribution and has been plotted in Fig. 8(b),
together with the errors calculated from error propagation. As
we can see in the figure, both methods lead to the same result
(points from the Monte Carlo calculation lie on top of the
curve from error propagation) despite the fact that the Monte
Carlo method requires a considerably greater computational
effort.

Using the error propagation method, a grid of the RDF
error as a function of r , �q, and qmax has been calculated.
Figure 9 shows two series of error calculations: for fixed
�q and for fixed qmax [points in Figs. 9(a) and 9(b),
respectively].

From the calculated ε(r,�q,qmax) at different qmax and �q,
the following relationship has been obtained:

εRDF(r) = m(qmax,�q) · r, (A3)

where the value of the slope m(qmax,�q) satisfies the empirical
equation log10 m = 1.5341. log10 qmax + 0.495 · log10 �q −
0.646. The advantage of using this equation is that since
qmax and �q are usually constant parameters in diffraction
experiments, m(qmax,�q) has to be computed only once, and
the error is linear with r.

The errors obtained using the proposed relationship have
also been plotted in Fig. 9 as straight lines. Excellent
agreement between both validates the proposed relationship as
a convenient way to estimate errors of RDFs obtained through
the Fourier transform of experimental SFs.
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FIG. 9. Calculation of RDF errors after Fourier transformation
of the SF using error propagation of random data with a normal
distribution (dots) and convenient estimation of these errors through
Eq. (A3) (lines). Errors have been calculated as (a) a function of qmax,
with �q fixed and (b) vice versa.

FIG. 10. (Color online) Structure of the ethene molecule used to
validate the proposed algorithm, together with the name convention
used in Table II.

APPENDIX B: BAYESIAN FIT METHOD VALIDATION

In order to attest the validity and robustness of the proposed
fit method to obtain molecular structure parameters from
diffraction data, the whole process will be performed on two
known samples so that the outcome of the fit can be compared
to the real values.

1. Fitting a synthetic test molecule

The sample used for this test consists of a generated SF
data set corresponding to a deuterated ethene molecule (see
Fig. 10) with a known geometry. The SF has been generated
using Eq. (2) without the polynomial term P (r) and adding
normally distributed random numbers to those values so that
the error associated with the generated experimental data set
is σ = 0.002. The geometric parameters used to build the
molecule, listed in Table II, do not exactly correspond to the
empirical ones. Once the distance between carbon atoms rCC

and between carbon and deuterium atoms rCD, and the angle
between two deuterium atoms bonded to the same carbon
αDCD, are known, the structure of this molecule can be fully
determined. Furthermore, as far as the vibrational parameters
lij are concerned, only six have been considered independent
after taking into account the molecular symmetry.

In Fig. 11, we show the RDF of ethene obtained by
Fourier transformation of the constructed experimental SF and
the RDF obtained directly from the model [calculated using
the seed parameters of Table II in Eq. (3) after convolving
the model with 
′]. Good agreement of the latter (see inset in

TABLE II. Comparison of the parameters used to generate the
ethene molecular data (interatomic distances rij and angle αijk , and
vibrational parameters lij ) with the mean and standard deviation of
the normal distributions of the parameters obtained from the fits.
Lengths are in Å and angles are in degrees.

Parameter Seed values Fit values

rC1C2 1.3 1.294 ± 0.004
rC1D1 1.1 1.100 ± 0.001
αDCD 117.0 116.9 ± 0.4
lC1C2 0.05 See Fig. 13
lC1D1 0.1 0.103 ± 0.001
lC1D2 0.1 0.098 ± 0.003
lD1D4 0.1 0.107 ± 0.005
lD1D2 0.2 0.200 ± 0.010
lD1D3 0.2 0.200 ± 0.015
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FIG. 11. (Color online) RDF of ethene obtained by Fourier
transformation of the generated SF (circles), RDF calculated directly
using the model (dash-dotted red line), and RDF obtained through
the convolution of the model with 
′ (solid blue line). Dashed black
lines are individual contributions from the different atomic pairs (also
convolved with 
′). Inset zooms the part of the RDF where the small
rCC contribution is located (solid black line).

Fig. 11) supports the validity of both the Taylor approximation
in Eq. (3) and the method used to account for the truncation
effects in the SF.

Two ways of fitting the generated data have been undertaken
to check the suitability of the proposed method: using only the
SF, and using both the SF and the RDF. As can be seen in
Fig. 12(a), although both methods are able to describe the
data within experimental error, the second method leads to
a smaller χ2 value for the SF (inset of this figure). In order
to clarify why fitting in both direct and reciprocal space is
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FIG. 12. (Color online) Best fits of the generated molecular
structure of ethene (black circles) using only the SF (dashed red
line) or using both the SF and the RDF (solid black line) of the
generated data set. (a) Normalized SFs and (b) RDFs. Inset shows
in semilogarithmic scale the χ 2 evolution of the SF through the fit
process using one or both functions.
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parameters of ethene, with the x axis rescaled by the most probable
value of each parameter: rCD (red squares), rCC (black circles), and
αDCD (blue triangles). (b) PDF obtained for lCC, the vibrational
parameter of the two carbon atoms of ethene.

more desirable than just in reciprocal space, we have plotted
in Fig. 12(b) the RDFs obtained with the fit of only the SF and
the fit where direct and reciprocal space were simultaneously
used. As can readily be seen in this figure, very similar
functions in reciprocal space (both of them fit the SF data
within the error) may be completely different in real space,
leading in some extreme cases such as this one to results
devoid of physical meaning. That is because the profile of the
χ2{Pi} hypersurface is different in reciprocal and direct space,
and, since the parameters we are using for the fit are natural
real-space magnitudes, their minima appear better defined in
real space. Fitting in both spaces at the same time helps thus
to select the sets of parameters that are more likely to yield a
closer description to the real system. Consequently, fits were
performed hereafter in this way.

Figure 13 shows the PDFs as a function of rescaled
parameters (rCC, rCD, αDCD) with respect to their maxi-
mum probability values. Figure 13(a) clearly evidences that
PDFs are well described by normal distributions. Errors
were calculated as usual in these PDFs, i.e., one standard
deviation from the mean of the PDF containing 68% of
values.

The same conclusion (not shown) has been obtained for
the vibrational lij parameters (Table II), except lCC, which
could not be described at all by a normal distribution. Because
not even the length scale of lCC could be determined, a
maximum-ignorance prior distribution in a logarithmic scale,
or Jeffreys prior,66 has been used to calculate its PDF, which
is shown in Fig. 13(b). From the figure, it is clear that it
makes no sense to give a value to this parameter, because
any lCC will be able to fit both the SF and RDF equally well
within the error. In order to further understand this fact, a
zoom of the area in the RDF where this peak is located has
been displayed in the inset of Fig. 11. The contribution of
the carbon-carbon term is so small that the peak can barely
be distinguished in this figure; that is the reason why lCC

cannot be determined. Nevertheless, we would like to point
out that, even if this peak is not visible, since the fit is
performed taking into account the whole molecular geometry,
and differences in the distance between carbon atoms induce
changes in the positions of many other peaks, it has been
possible to accurately determine the parameter rCC concerning
the peak position of the distance between the carbon atoms’
contribution.
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FIG. 14. (Color online) (a) Scattering function and (b) radial
distribution function obtained from the molecular dynamics simu-
lation (black circles) together with the best SF fit obtained through
the proposed algorithm (red line). The inset shows the RDF
intramolecular contribution of the simulation, together with the RDF
calculated from the parameters of the SF best fit.

2. Fitting the intramolecular parameters from a molecular
dynamics simulation

The mathematical procedure, i.e., the fit method and the way
it has taken into account the termination effects of experimental
data, has been already tested in the preceding section using a
synthetic data set generated from a reasonably simple, known
molecular geometry. Nevertheless, it would be useful to test
the validity of the method from a data set not directly obtained
from a mathematical description of a known geometry, but
from a situation much closer to the experiment.

In this test, the known sample will be the SF and RDF data
sets obtained from the F-112 molecular dynamics simulation.
The molecular structure obtained from the SF fit will be
compared to the molecular parameters that have been used
in the simulation. Special attention has been devoted to test
if the fit procedure is able to obtain the parameter accounting
for the concentration of gauche conformer cg; that is to say,
whether the existence of two conformers with two different
geometries can be accounted for by generating a function
weighted by that concentration PDF [see Eqs. (5) and (6)].
In Fig. 14(a), we show the excellent agreement between the
SF obtained from the simulation and its best fit obtained using
the proposed algorithm. The intramolecular parameters used
in the simulation and those obtained from the fit procedure are
in all cases compatible with the errors.

To quantify the discrepancies between the original in-
tramolecular structure and the parameters obtained from
the fit, we introduce the relative error calculated as
(PMD − Pfit) /PMD, where PMD are the parameters that have
been used in the molecular dynamics simulation, and Pfit

are the parameters obtained from the fit of the SF produced
by the simulation. This relative error ranges from 0.03% to
0.5% for the intramolecular distances, and from 0.6% to 13%
for the vibrational parameters. As discussed in the previous
section, vibrational parameters are in the first approximation
uncorrelated for every atomic pair, and are thus subjected

to a greater error. This error is greatly increased, even to
the extreme of avoiding its determination, if the atomic-pair
contribution to the total SF is small. Concerning the gauche
conformer concentration, the determination from the fit has
a relative error of 2%, a value which lies within the cg error
given by its resolved PDF. Therefore, we conclude that Eq. (2)
correctly describes the data, and that the fit procedure is able to
reproduce the original values used in the molecular dynamics
simulation, including the gauche conformer fraction.

In order to verify whether Eq. (3) is a valid approximation,
we have also calculated the intramolecular RDF, shown in
the inset of Fig. 14, using the parameters that have been
obtained through the fit of the SF. The resemblance between
the intramolecular RDF calculated from the simulation and
the one calculated from the SF fit is virtually perfect, thus
evidencing that the approximation in Eq. (3) used to describe
the RDF is appropriate. Moreover, we have also tested which
is the effect of modeling the intermolecular contribution as a
polynomial, as it is performed in our work with the real data.
The fit obtained using this approximation is extremely good,
as can be seen in Fig. 14(b). The parameters determined from
this fit are again close to those used in the simulation. In this
case, the relative errors of the distances range from 0.1% to
3%, errors from the vibrational parameters range from 0.6%
to 7%, and the error in the gauche concentration is about 2%,
all of which are within the error bars of the fit determination.

3. Validation summary

The tests performed using generated ethene SF and RDF
data sets, and performed on molecular dynamics data, allow
us to conclude the following:

(i) We properly accounted for finite information effects of
the experimental data (termination effects of the SF).

(ii) The approximation used to describe the RDF derived
from a Taylor-series expansion of the distances through the
quadratic terms of the displacements is valid.

(iii) The fit procedure is robust, both determining in-
tramolecular distances and rotamer concentrations, due to
the fact that these parameters are strongly interrelated. Even
distances whose contribution cannot be observed either in the
SF or the RDF can be determined due to their dependence on
the remaining intramolecular distances.

(iv) Vibrational parameters may be determined only if their
contribution is significant enough. But in any case, the obtained
PDFs using the proposed method allow us, at least, to limit their
values.

(v) A polynomial can be used to model the intermolecular
contribution to the RDF, with the drawback of slightly increas-
ing the associated errors of the intramolecular parameters. For
the particular case of F-112, the modelization carried out to
take into account the rotamer population in the calculation
of the SF and the RDF has been successfully established by
weighting each conformer contribution by its concentration.
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