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a b s t r a c t

Although neuroactive steroids exert neuroprotective actions in different experimental models of
neurodegenerative diseases, including those of Alzheimer’s disease (AD), their relationships with aged
related physiologic and pathologic brain changes remain to be clarified. In this study the levels of
pregnenolone, dehydroepiandrosterone, progesterone, dihydroprogesterone, tetrahydroprogesterone,
isopregnanolone, testosterone, dihydrotestosterone, 5a-androstane-3a,17b-diol, 5a-androstane-3b,17b-
diol, 17a-estradiol, and 17b-estradiol were assessed in the limbic region of young adult (7 months) and
aged (24 months) male wild type and triple transgenic AD mice. Age related neuropathological changes
in AD brains, such as b-amyloid accumulation and gliosis, were associated with modified levels of specific
neuroactive steroids and particularly with changes in the levels of progesterone and testosterone
metabolites. The altered levels of neuroactive steroids in aged AD brains might impact on the activation
of neuroprotective signaling mediated by classic and nonclassic steroid receptors, like the gamma-
aminobuttyric acid (GABA)-A receptor.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The neuroactive steroid family includes steroid hormones
produced in peripheral glands and steroids directly synthesized in
the nervous system (i.e., neurosteroids) (Melcangi et al., 2008).
They act as important physiological regulators of nervous function,
affecting mood, behavior, reproduction, and cognition, and act as
protective agents in models of injury and disease, including
experimental models of Alzheimer’s disease (AD), Parkinson’s
disease, multiple sclerosis, traumatic brain injury, stroke, autism,
schizophrenia, mood disorders, and peripheral neuropathy
(Melcangi et al., 2008; Panzica et al., 2012; Schumacher et al., 2012).
Although neuroactive steroids have well established neuro-
protective roles, their relationships with normal brain aging and
age-related neurodegenerative diseases remain incompletely
understood. Recent studies have shown that levels of neuroactive
steroids can be affected by pathology or injury, as demonstrated in
experimental models of multiple sclerosis, diabetic neuropathy,
acological and Biomolecular
y, Center of Excellence on
Milano, Italy, Via Balzaretti 9,
02 50318204.
elcangi).

ll rights reserved.
Parkinson’s disease, and trauma (Caruso et al., 2008, 2010a; Giatti
et al., 2010; Meffre et al., 2007; Melcangi and Garcia-Segura,
2010; Melcangi et al., 2012; Pesaresi et al., 2010), using highly
sensitive and specific analytical methods, such as liquid chroma-
tography tandem mass spectrometry (LC-MS/MS).

Still unclear is the relationship between neuroactive steroids
and AD. Evidence from a limited number of studies in postmortem
human brain suggests that age-related depletion of at least some
neuroactive steroids might contribute to development of AD.
For example, brain levels of testosterone in men are inversely
associated with AD risk (Rosario et al., 2004, 2011). Similarly, AD
in women is linked to low brain levels of 17b-estradiol and
estrone (Rosario et al., 2011; Yue et al., 2005). Further, tetrahy-
droprogesterone, also known as allopregnanolone, is also reported
to be significantly lower in AD (Marx et al., 2006). Examination of
androgens (Rosario et al., 2006, 2010), estrogens and progesterone
(Carroll et al., 2007, 2010; Rosario et al., 2010; Yue et al., 2005) and
allopregnanolone (Singh et al., 2011; Wang et al., 2010) in trans-
genic mousemodels of AD has largely supported a protective role of
these neuroactive hormones against the progression of the disease.
In addition to age-related losses of neuroactive steroids contrib-
uting to AD pathogenesis, other evidence indicates that AD
neuropathology might alter neuroactive steroid levels. For instance,
neurosteroidogenesis is impaired in cell lines exposed to b-amyloid
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(Ab) peptide and oxidative stress (Schaeffer et al., 2006, 2008a,
2008b). Interestingly, increased mRNA levels of neurosteroidogenic
enzymes have been reported in AD brain (Luchetti et al., 2011a,
2011b), suggesting the possibility of a compensatory response to
AD-related changes in neuroactive steroids. Further investigation is
necessary to clarify the relationships between aging, AD, and
neuroactive steroids.

In the current study, the effects of aging and AD-like neuropa-
thology on neuroactive steroid concentrations were characterized
in triple transgenic AD (3xTg-AD) mice. Specifically, we have
analyzed limbic regions of young adult (7 months) and senescent
(24 months) male wild type (WT) and 3xTg-AD mice for levels of
several neuroactive steroids: pregnenolone (5-pregnen-3b-ol-
20-one; PREG); dehydroepiandrosterone (DHEA); progesterone
(PROG) and its metabolites dihydroprogesterone (5a-pregnane-3,
20-dione; DHP), tetrahydroprogesterone (3a-hydroxy-5a-pregnen-
20 one; THP) and isopregnanolone (3b-hydroxy-5a-pregnen-20
one); testosterone and its metabolites dihydrotestosterone
(5a-androstane-17b-ol-3-one; DHT), 5a-androstane-3a,17b-diol
(3a-diol), 5a-androstane-3b,17b-diol (3b-diol); and 17a-estradiol
(17a-E) and 17b-estradiol (17b-E). Age-related development of
neuropathology in 3xTg-AD mice was assessed by quantifying
immunohistochemical indices of Ab accumulation and gliosis.

2. Methods

2.1. Animals

Fifteen male homozygous 3xTg-AD mice (Oddo et al., 2003) and
13 background strain, WT mice (C57BL/6/129S; The Jackson Labo-
ratory, Bar Harbor, ME, USA) were bred and maintained at the
University of Southern California (USC) vivarium facilities with food
and water available ad libitum. At 7 and 24 months of age mice
were anesthetized (80 mg/kg ketamine 5 mg/kg xylazine, intra-
peritoneally) and perfused with ice-cold saline. Brains were bisec-
ted, with 1 hemisphere immersion fixed in 4% paraformaldehyde/
0.1 M phosphate buffered saline for 48 hours. The other hemisphere
was dissected into limbic regions and then frozen on dry ice for
neurosteroid extraction and assessment. All experimentation was
approved by the USC Institutional Animal Care and Use Committee
and carried out in accordance with National Institutes of Health
guidelines.

2.2. Immunohistochemistry

Fixed hemibrains were sectioned exhaustively in the horizontal
plane at 40 mm. Every 8th section was pretreated with formic acid
(99%) for 5 minutes, then immunolabeled using antibodies directed
against Ab (#71-58000, 1:300 dilution, Zymed, San Francisco, CA,
USA). Immunoreactivity was visualized using an avidin:biotinylated
enzyme complex immunoperoxidase method (ABC Elite; Vector,
Burlingame, CA, USA) as previously described (Rosario et al., 2006).
For quantification of Ab immunoreactivity load, gray scale images of
high magnification fields (420 � 330 mm) were digitally captured
(CCD camera coupled to an Olympus Optical BX40 microscope)
then filtered with a predetermined threshold using NIH Image 1.61
to create a binary image identifying positive and negative immu-
nolabeling. Load was calculated as a percentage of total pixel area
positively labeled as previously described (Rosario et al., 2006).
Mean load values were averaged from 2 to 3 nonoverlapping fields
from each brain region in 5 sections per animal.

Other sections were labeled using antibodies directed against
ionized calcium binding adaptor molecule-1 (IBA-1; Wako Chem-
icals, Neuss, Germany) as amarker of microglial activation (Ito et al.,
1998) and glial fibrillary acidic protein (GFAP; clone GA5;
Sigma-Aldrich, Tres Cantos, Spain) as a marker of astrocyte reac-
tivity (Middeldorp and Hol, 2011), as previously described (Barreto
et al., 2009; Ito et al., 1998). IBA-1 and GFAP immunoreactivities
were quantified by volume density morphometric analysis (Weibel,
1979). Experimenters were blinded to treatment conditions during
quantification.

2.3. Assessment of neuroactive steroids by liquid chromatography
tandem mass spectrometry

PREG, PROG, DHP, THP, isopregnanolone, testosterone (T), DHT,
3a-diol, 3b-diol, DHEA, 17a-E, and 17b-E were purchased from
Sigma Aldrich. 17,21,21,21-D4-PREG was kindly synthesized by
Dr P. Ferraboschi (Dept. of Medical Chemistry, Biochemistry
and Biotechnology, University of Milano, Italy); 2,2,4,6,6-17a,
21,21,21-D9-PROG was obtained from Medical Isotopes, (Pelham,
NH, USA); 2,4,16,16-D4-17b-estradiol was obtained from CDN
Isotope Pointe-Claire (Quebec, Canada). SPE cartridges (Discovery
DS-C18 500 mg) were from Supelco, Italy. All solvents and reagents
were high-pressure liquid chromatography (HPLC) grade (Sigma
Aldrich).

Samples were extracted and purified according to Caruso et al.
(2008, 2010b). Briefly, samples were added with internal standards
and homogenized in 3 mL of MeOH/acetic acid (99:1, vol/vol) using
a tissue lyser (Qiagen). After an overnight incubation at 4 �C,
samples were centrifuged at 15,300g for 5 minutes and the pellet
was extracted twice with 1 mL of MeOH/acetic acid (99:1, vol/vol).
The organic phases were combined and dried with a gentle stream
of nitrogen in a 40 �C water bath. Samples were resuspended in
3 mL of MeOH/H2O (10:90, vol/vol) and passed through a SPE
cartridge, previously activated with MeOH (5 mL) and MeOH:H2O
10:90 (vol/vol) (5 mL). Steroids were eluted in MeOH, concentrated,
and transferred into auto-sampler vials before LC-MS/MS analysis.
Quantitative analysis was performed on the basis of calibration
curves prepared and analyzed using deuterated internal standards.
Calibration curves were extracted and analyzed as described above
for samples.

Positive atmospheric pressure chemical ionization experiments
were performed using a linear ion trap-mass spectrometer (LTQ,
ThermoElectron Co, San Jose, CA, USA) using nitrogen as sheath,
auxiliary, and sweep gas, and equipped with a Surveyor LC Pump
Plus and a Surveyor Autosampler Plus (ThermoElectron Co). The
mass spectrometer was employed in MS/MS mode using helium as
collision gas. Samples were analyzed employing the transitions as
previously reported (Pesaresi et al., 2010). The LC mobile phases
were (1) H2O/0.1% formic acid; and (2) methanol (MeOH)/0.1%
formic acid. The gradient (flow rate 0.5 mL/min) was as follows:
T0.0 70%A, T1.5 70%A, T2.0 55%A, T3.0 55%A, T35.0 36%A, T40.0
25%A, T41.0 1%A, T45.0 1%A, T45.2 70%A, and T55.0 70%A. The split
valve was set at 0e6.99 minutes to waste, 6.99e43.93 minutes to
source and 43.93e55 minutes to waste. The Hypersil Gold column
(100 � 3 mm, 3 mm; ThermoElectron Co) was maintained at 40 �C.
The injection volume was 25 mL and the injector needle was
washed with MeOH/H2O 1/1 (vol/vol). Peaks of the LC-MS/MS
were evaluated using a Dell workstation by means of the soft-
ware Excalibur release 2.0 SR2 (ThermoElectron Co).

2.4. Statistical analysis

Unpaired Student t test was applied to couples of indepen-
dent variables. Data from experiments with more than 2 groups
were analyzed by 2-way analysis of variance, with sex and
genotype as 2 independent variables, followed by the Bonferroni
posttest. All analyses were performed using GraphPad PRISM
(version 5).
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3. Results

3.1. Development of neuropathology in male 3xTg-AD mice

Ab immunoreactivity was not detectable in the hippocampal
formation of WT mice. Therefore, Ab immunoreactivity was quanti-
tatively assessed in 3xTg-ADmice only (Fig.1). Ab immunoreactivity
Fig. 1. Age-related increase in b-amyloid (Ab) immunoreactivity in 3xTg-AD mice. Represe
subiculum (C, D) from 7-month-old (A, C) and 24-month-old (B, D) 3xTg-AD mice. (E) Ab
(n ¼ 7) and 24-month-old (n ¼ 7) 3xTg-AD mice. * p < 0.005.
wasmost prominent in the subiculum region of bothyoung and aged
mice (Fig.1C and D). In the hippocampus of the young adultmice, Ab
immunoreactivity was restricted to the CA1 region, primarily
observed in the pyramidal cell layer (Fig. 1A). In the aged mice,
hippocampal Ab immunoreactivitywas observed throughout CA1e3
regions and the dentate gyrus (Fig. 1B). In the aged mice, Ab immu-
noreactive load was greater than 5-fold higher in the hippocampus
ntative photomicrographs show Ab immunoreactivity in hippocampus CA1 (A, B) and
immunoreactive load values in the hippocampus CA1 and subiculum of 7-month-old
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CA1 (p < 0.005) and subiculum (p < 0.001) regions compared with
young adult 3xTg-AD mice (Fig. 1E).

GFAP and IBA-1 immunoreactivities were assessed as markers of
gliosis in the hippocampus CA1 (Fig. 2). A significant effect of
genotype was observed on both GFAP (p < 0.001) and IBA-1
immunoreactivities (p < 0.001), with greater than 2-fold higher
levels of GFAP and IBA-1 in young adult and aged 3xTg-AD mice
compared with WT mice of the same age. A significant effect of age
was also observed on GFAP (p < 0.001) and IBA-1 (p < 0.001)
immunoreactivities, with an age-related increase in the markers of
gliosis observed in both WT and 3xTg-ADmice at 24 months of age.
No significant interactionwas observed between genotype and age.

3.2. Neuroactive steroid levels in the limbic region of male 3xTg-AD
mice

Levels of neuroactive steroids were measured by LC-MS/MS in
the limbic region of young adult and aged senescent male
Fig. 2. Age-related increase in markers of gliosis in wild type (WT) and 3xTg-AD mice. Repr
ionized calcium binding adaptor molecule-1 (IBA-1) (C, D, G, H) immunoreactivity in hippoc
(E, G), and 24-month-old 3xTg-AD mice (F, H). (I) GFAP immunoreactivity volume density v
region. WT, 7-month-old, n ¼ 6; WT, 24-month-old, n ¼ 5; 3xTg-AD, 7-month-old, n ¼ 7;
3xTg-AD mice. Levels were compared with those measured in WT
animals. A significant effect of genotype (p < 0.01) was observed
on two PROG metabolitesdDHP and isopregnanolone (Fig. 3), and
on 17b-E (Fig. 4). Increased levels of DHP, isopregnanolone, and
17b-E were observed in both young adult and aged 3xTg-AD mice
compared with WT mice of the same age (Figs. 3 and 4). In case of
DHP, a significant effect of age (p < 0.001) also occurred (Fig. 3),
with an age-related increase in DHP levels evident in both WT and
3xTg-AD mice at 24 months of age. However, no significant
interaction was observed between genotype and age. Age also
significantly affected levels of the precursors of DHP, PREG
(p < 0.01) and PROG (p < 0.001), as well as T (p < 0.01) and its
derivatives, DHT (p < 0.01), and 3a-diol (p < 0.01) (Figs. 3 and 4).
For all these neuroactive steroids, with the exception of 3a-diol,
an age-related decrease of their levels occurred in both WT and
3xTg-AD mice at 24 months of age (Figs. 3 and 4). At variance, 3a-
diol levels were upregulated with aging in WT and 3xTg-AD mice
(Fig. 4).
esentative photomicrographs show glial fibrillary acidic protein (GFAP) (A, B, E, F) and
ampus CA1 of 7-month-old WT (A, C), 7-month-old 3xTg-AD (B, D), 24-month-old WT
alues in the CA1 region. (J) IBA-1 immunoreactivity volume density values in the CA1
3xTg-AD, 24-month-old, n ¼ 7. * p < 0.001.
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To investigate potential relationships between precursors and
metabolites we performed correlations between neuroactive
steroid levels. In particular, on the basis of the classic steroidogenic
pathways shown in Fig. 5, we considered correlations among PREG,
PROG and its metabolites (i.e., DHP, THP, and isopregnanolone) in
Table 1; and correlations among PREG, DHEA, T, and its metabolites
(i.e., DHT, 3a-diol, and 3b-diol) and estrogens (i.e., 17a-E and 17b-E)
in Table 2. As reported in Table 1, a positive correlation was
observed between PREG and DHP in young WT animals (p < 0.01).
No significant correlation was observed between PREG and DHP
in 3xTg-AD mice of the same age or with either aging WT or
3xTg-AD mice. Levels of DHP and THP were positively correlated in
young 3xTg-AD mice (p < 0.05), and the levels of DHP and
isopregnanolone were negatively correlated in aged 3xTg-AD mice
(p < 0.01). The levels of THP and isopregnanolone were positively
correlated in young and aged WT (p < 0.05). This did not occur in
3xTg-AD mice.

As reported in Table 2, PREG levels positively correlated with T
(p< 0.01), 3a-diol, 3b-diol, and 17b-E (p < 0.05) levels in youngWT
animals. This correlation was lost in 3xTg-AD mice of the same age
and with aging in both WT and 3xTg-AD mice. In young WT
animals, DHEA levels were positively correlated with the levels of
3a-diol, 3b-diol, and 17a-E (p < 0.05). In 3xTg-AD aged animals,
DHEA levels were positively correlated with the levels of T, 17a-E,
and 17b-E (p < 0.05). T levels in young WT mice were positively
correlated with levels of 3b-diol (p < 0.05) and of 17b-E (p < 0.01).
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In aged WT animals, the levels of T and DHT were positively
correlated (p < 0.001), and in aged 3xTg-AD mice, the levels of T,
17a-E, and 17b-E showed a positive correlation (p < 0.05). In young
WT animals, the levels of the first metabolite of T, DHT, were
significantly correlated with those of 3b-diol (p < 0.05), and the
levels of the other metabolite of DHT, 3a-diol, were positively
correlated with those of 17a-E (p < 0.001). These correlations were
lost in 3xTg-AD mice of the same age and with aging in both WT
and 3xTg-AD mice. The levels of 3b-diol showed a positive corre-
lation with the levels of 17a-E (p < 0.01) and 17b-E (p < 0.05) in
young WT animals. 3b-diol levels maintained a positive correlation
with the levels of 17b-E (p < 0.05) in young 3xTg-AD mice. The
levels of 17a-E and 17b-E showed a positive correlation (p< 0.05) in
aged 3xTg-AD mice.
4. Discussion

Here we have characterized the effect of normal and pathologic
aging on neuroactive steroid levels in the learning and memory
center of WT and 3xTg-AD mice. Our findings demonstrate that
aging and AD-related neuropathology have important effects on
neuroactive steroid homeostasis in the region of the brain most
severely affected in AD, the limbic region. The observed effects of
age and AD-neuropathology on neuroactive steroid levels might
contribute to age-related susceptibility to AD pathogenesis and age-
dependent cognitive decline.

For this study we have selected male mice of 7 and 24 months of
age,because thedegreeofpathologicalteration isknowntobeaffected
by age in 3xTg-AD mice (Bittner et al., 2010; Caccamo et al., 2010;



Fig. 5. Schematic representation of neurosteroidogenesis. Framed neuroactive steroids reported have been assessed by liquid chromatography tandem mass spectrometry.
Abbreviations: 17a-E, 17a-estradiol; 17b-E, 17b-estradiol; 3a-DIOL, 5a-androstane-3a,17b-diol; 3b-DIOL, 5a-androstane-3b,17b-diol; DHEA, dehydroepiandrosterone; DHP,
dihydroprogesterone; DHT, dihydrotestosterone; PREG, pregnenolone; PROG, progesterone; T, testosterone; THP, tetrahydroprogesterone.
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Ghosh et al., 2012; Olabarria et al., 2011; Overk et al., 2009). In fact,
the pathologic examination of the brain of 3xTg-AD mice revealed
a 5-fold higher Ab immunoreactive load in CA1 and subiculum at
24 months of age in comparison with 7 months of age. The volume
density of GFAP immunoreactive astrocytes and IBA-1 immunore-
active microglia was also increased at 24 months of age versus
7 months of age in both 3xTg-AD and WT mice. Furthermore, the
volume density of GFAP immunoreactive astrocytes and IBA-1
immunoreactive microglia was increased in 3xTg-AD mice
comparedwithWTat both ages. Therefore, Ab immunoreactive load
and gliosis were affected by age and genotype. Interestingly,
Table 1
Correlation (r value) between the levels of pregnenolone, progesterone, and its metaboli

PREG PROG

WT TG WT TG

Young (n ¼ 8)
PREG - -
PROG NS NS - -
DHP 0.75a NS NS NS
THP NS NS NS NS
Isopregnanolone NS NS NS NS

Aged (n ¼ 5)
PREG - -
PROG NS NS - -
DHP NS NS NS NS
THP NS NS NS NS
Isopregnanolone NS NS NS NS

Key: DHP, dihydroprogesterone; NS, not significant; PREG, pregnenolone; PROG, proges
a p < 0.01.
b p < 0.05.
neuroactive steroid levels, analyzed by LC-MS/MS in the limbic
region, were also affected by age and genotype.

Our data extend previous observations showing that neuroac-
tive steroid levels are affected by aging in the central nervous
system of nonpathologic animals (Schumacher et al., 2003). We
observed an age-related decrease in the levels of PROG, together
with an increase in the levels of its metabolite DHP, in the limbic
region of WT and 3xTg-AD male mice. The levels of other neuro-
active steroids were also affected by aging. For instance, in bothWT
and 3xTg-AD aged mice, the levels of T and its direct metabolite,
DHT, were both decreased. Previous studies have similarly reported
tes in limbic area of young (7 months) and aged (24 months) WT or TG rats

DHP THP Isopregnanolone

WT TG WT TG WT TG

- NS
NS 0.66b - -
NS NS 0.50b NS - -

- -
NS NS - -
NS �0.87a 0.76b NS - -

terone; TG, 3xTg-AD; THP, tetrahydroprogesterone; WT, wild type.



Table 2
Correlation (r value) between the levels of pregnenolone, dehydroepiandrosterone, testosterone and its metabolites, and estrogens in limbic area of young (7 months) and aged
(24 months) WT or TG mice

PREG DHEA T DHT 3a-DIOL 3b-DIOL 17a-E 17b-E

WT TG WT TG WT TG WT TG WT TG WT TG WT TG WT TG

Young (n ¼ 8)
PREG - -
DHEA NS NS - -
T 0.77a NS NS NS - -
DHT NS NS NS NS NS NS - -
3a-DIOL 0.57b NS 0.50b NS NS NS NS NS - -
3b-DIOL 0.64b NS 0.51b NS 0.54b NS 0.55b NS 0.55 NS - -
17a-E NS NS 0.63b NS NS NS NS NS 0.89c NS 0.75a NS - -
17b-E 0.60b NS NS NS 0.73a NS NS NS NS NS 0.56b 0.66b NS NS - -

Aged (n ¼ 5)
PREG - -
DHEA NS NS - -
T NS NS NS 0.75b - -
DHT NS NS NS NS 0.99c NS - -
3a-DIOL NS NS NS NS NS NS NS NS - -
3b-DIOL NS NS NS NS NS NS NS NS NS NS - -
17a-E NS NS NS 0.89a NS 0.84b NS NS NS NS NS NS - -
17b-E NS NS NS 0.74b NS 0.74b NS NS NS NS NS NS NS 0.90a - -

Key: 17a-E, 17a-estradiol; 17b-E, 17b-estradiol; 3a-DIOL, 5a-androstane-3a,17b-diol; 3b-DIOL, 5a-androstane-3b,17b-diol; DHEA, dehydroepiandrosterone; DHT, dihy-
drotestosterone; NS, not significant; PREG, pregnenolone; T, testosterone; TG, 3xTg-AD; WT, wild type.

a p < 0.01.
b p < 0.05.
c p < 0.001.
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an age-related depletion in androgens in male rats (Rosario et al.,
2009) and human frontal cortex (Rosario et al., 2011). Interest-
ingly, in men, circulating levels of DHT do not change with age
(Kaufman and Vermeulen, 2005), despite depleted brain levels of
DHT (Rosario et al., 2011), highlighting the importance of charac-
terizing age-related neuroactive steroid changes directly in the
brain.

These age-related changes in neuroactive steroid levels might
contribute to susceptibility to cognitive decline and AD-related
neuropathology with advancing age. Furthermore, previous studies
have demonstrated that androgens elicit anti-inflammatory effects,
for example testosterone reduces reactive gliosis after a stab wound
in castrated rats (Arevalo et al., 2010; Barreto et al., 2007). Therefore,
the age-related decline in androgens might contribute to the
increased levels of gliosis observed in agedmice. Indeed, age-related
depletion of androgens in males is believed to be an important risk
factor for AD and might promote Ab accumulation, with previous
studies demonstrating that testosteroneexerts a therapeutic effect in
3xTg-AD mice (Rosario et al., 2010).

The decrease in the levels of T and its directmetabolite, DHT, was
associated with an increase in the levels of the further metabolite,
3a-diol. It is interesting to note that at variance to T and DHT, which
bind to androgen receptor, 3a-diol interacts with GABA-A receptor
(Melcangi et al., 2008). Thus, the increase in 3a-diol levels with
aging might affect activation of GABA-A receptor.

In addition to being affected by aging, our findings suggest that
AD neuropathology might also alter neuroactive steroid levels.
Previous observations in postmortem brain tissue of AD patients
have demonstrated altered neuroactive steroid levels in brain
regions affected by AD neuropathology (Luchetti et al., 2011a,
2011b; Marx et al., 2006; Rosario et al., 2011; Yue et al., 2005).
However, these studies have not been able to clearly determine if
altered neuroactive steroid levels are a risk factor for AD or an
outcome of AD pathogenesis. In the 3xTg-AD mice, an age-
dependent increase in Ab pathology was associated with
increased markers of gliosis compared withWTmice. Furthermore,
increased levels of the neuroactive steroids DHP, isopregnanolone,
and 17b-E were also observed in 3xTg-AD compared withWTmice.
In the current study, androgens were affected by aging but not AD
neuropathology in the 3xTg-AD mice, supporting the notion that in
the male brain, depleted androgens is a risk factor for AD, not
a consequence of AD neuropathology.

Concerning PROG metabolites in the limbic region, we detected
a significant increase in the levels of DHP and isopregnanolone, in
3xTg-AD compared with WT mice. In addition, DHP positively
correlated with THP in young 3xTg-AD mice, and negatively
correlated isopregnanolone in aged 3xTg-AD mice. These correla-
tions were not detected in WT mice. In contrast, 3xTg-AD mice did
not show the positive correlations in the levels of PREG and DHP
and in the levels of THP and isopregnanolone that were detected in
young and older WT mice, respectively. These findings suggest that
the metabolism of PROG is altered in the limbic region of 3xTg-AD
mice. This alteration is of relevance, because PROGmetabolites have
been shown to exert neuroprotective actions (Brinton and Wang,
2006; Brinton et al., 2008; Sun et al., 2012). Indeed, treatment of
3xTg-AD mice with THP decreases Ab accumulation (Chen et al.,
2011), reverses cognitive deficits, and promotes neurogenesis
(Singh et al., 2011; Wang et al., 2010). The protective action of THP
might be related with its ability to activate the GABA-A receptor
(Melcangi et al., 2008). In contrast, isopregnanolone, which as
shown here is increased in the limbic region of 3xTg-AD mice, does
not bind directly to the GABA-A receptor (Bitran et al., 1991), but it
antagonizes the effect of THP on the GABA-A receptor (Wang et al.,
2002). Moreover, in this context, it is also important to highlight
that, as recently reported (Luchetti et al., 2011a, 2011b), the
expression of several GABA-A receptor subunits is significantly
reduced in postmortem brain tissue of AD patients. Indeed, alter-
ations of GABA signals might play an important role in the cognitive
and behavioral alterations which occur in AD (Birzniece et al., 2006;
Lanctot et al., 2007). Therefore, brain alterations in PROG metabo-
lites that modulate GABA-A receptor function, might contribute to
the cognitive alterations of AD patients.

Another important modification detected in the limbic region of
3xTg-AD mice was a significant increase in the levels of 17b-E. This
might represent an endogenous neuroprotective response to Ab
accumulation in the 3xTg-AD mice. Indeed, aromatase, the enzyme
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responsible for the synthesis of 17b-E from T, shows increased
expression under neurodegenerative conditions (Azcoitia et al.,
2001; Garcia-Segura and Balthazart, 2009; Garcia-Segura et al.,
2003), including within the AD brain (Luchetti et al., 2011a,
2011b). In the aged 3xTg-AD mice, DHEA and T levels were posi-
tively correlated with 17b-E levels, supporting the notion that the
elevated 17b-E levels observed in the 3xTg-AD mice are endoge-
nously synthesized in the limbic region from T. Furthermore, 3b-
diol levels showed a positive correlation with 17b-E levels in young
3xTg-AD mice. These findings suggest a role in AD pathology for
androgen receptor, target of the action of T and possibly of DHEA,
and for estrogen receptors, target of the action of 17b-E and 3b-diol.
Indeed, androgens and estrogens have been shown to exert a ther-
apeutic effect in 3xTg-AD mice (Carroll et al., 2007; Rosario et al.,
2006, 2010).

In conclusion, the present results show age-related modification
in specific neuroactive steroid levels in the limbic region of 3xTg-AD
mice brains in association with age-related pathologic changes
(i.e., Ab immunoreactive load and gliosis). Because of the well-
ascertained neuroprotective capacity of neuroactive steroids, the
present findings might represent a preclinical background for
a therapy based on these molecules to be applied in AD. In partic-
ular, the fact that some neuroactive steroids observed to be modi-
fied in 3xTg-AD mice are able to interact with classic steroid
receptors (i.e., androgen, progesterone, or estrogen receptors), and
others interact with nonclassic steroid receptors (i.e., GABA-A
receptor), might open new therapeutic strategies based on
specific synthetic ligands for classic and nonclassic steroid
receptors.
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