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Abstract. Materials showing electromagnetic properties that are not attainable
in naturally occurring media, so-called metamaterials, have been lately, and
still are, among the most active topics in optical and materials physics and
engineering. Among these properties, one of the most attractive ones is the sub-
diffraction resolving capability predicted for media having an index of refraction
of −1. Here, we propose a fully three-dimensional, isotropic metamaterial
with strong electric and magnetic responses in the optical regime, based on
spherical metallo-dielectric core–shell nanospheres. The magnetic response
stems from the lowest, magnetic-dipole resonance of the dielectric shell with a
high refractive index, and can be tuned to coincide with the plasmon resonance of
the metal core, responsible for the electric response. Since the response does not
originate from coupling between structures, no particular periodic arrangement
needs to be imposed. Moreover, due to the geometry of the constituents, the
metamaterial is intrinsically isotropic and polarization independent. It could
be realized with current fabrication techniques with materials such as silver
(core) and silicon or germanium (shell). For these particular realistic designs,
the metamaterials present a negative index in the range of 1.2–1.55µm.
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1. Introduction

Once the possibility of building a negative-index metamaterial (NIM) was proven in the
microwave regime [1], extraordinary effort was made to obtain analogous behaviour for
increasingly higher frequencies up to the visible range of the electromagnetic spectrum
[2, 3]. The major obstacle found when trying to translate ideas to higher frequencies was
how to achieve a strong diamagnetic response in the systems designed. Many attempts to
tackle the problem were simple miniaturizations of the canonical designs employed in those
first metamaterials operating in microwaves. As an example, the split-ring configurations,
or slight variations, were reduced up to the nanoscale to obtain such a magnetic response.
Apart from the fundamental limitations inherited from those designs, e.g. anisotropy, and the
increasing complexity of the fabrication procedures, several drawbacks have been found in
this process, some of them being a consequence of the different behavior of metals when
excited with higher frequency waves [4]. Precisely, this different behavior also inspired some
authors to search for different configurations intended to exploit the plasmonic response to
obtain artificial magnetism. In many of them, artificial magnetism is due to coupling between
different plasmonic structures, their drawback thus being the high losses within metallic
parts [5]. In most cases, the proposed designs are restricted to operate under certain polarization
and incidence conditions [6–8] or are not truly three-dimensional (3D) materials [9, 10].
Moreover, in many cases, the behavior of the proposed designs stems from coupling between
the different constituents, thus making particular arrangements necessary. As a consequence,
spatial dispersion effects often appear due to the propagation of waves in the lattice. Lately, some
approaches based on plasmonic waveguides supporting negative-index modes have pushed the
frequencies in which left-handed (LH) behavior is obtained well within the visible spectrum.
However, propagation inside such materials would be limited to the propagation length of the
plasmon in the waveguide, thus making the design a single-layer device, lacking true three-
dimensionality [9, 10]. In addition, various attempts have been made towards NIM by exploiting
magnetic resonances occurring in structures made of high-permittivity materials [11–13].
Some of them combine these structures with secondary structures providing the electrical
response [14–17] or embed them in a metallic host medium [18], thus having inherent high
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losses. Here we report a design that tackles many of the previously mentioned limitations,
namely, a totally 3D isotropic NIM, operating at optical frequencies, whose response is due to
every isolated ‘meta-atom’. Therefore, no particular arrangement of them is needed. We study
the possibility of using a spherical core–shell configuration to obtain with a single structure
both electric and magnetic responses. The core, being metallic, is responsible for the electrical
response, while the shell, made of a high-permittivity dielectric, provides the strong diamagnetic
response. An extension of Mie theory is exploited to rigorously determine the scattering
properties and resonances of the whole spherical core–shell configuration, which essentially
determines the effective material properties [19]. Calculations for core–shell structures built
up with realistic materials (Ag@Si and Ag@Ge) demonstrate the possibility of obtaining
NIM operating at 1.2µm–1.55µm. Since both responses are attained directly from a single
constituent, no particular arrangement of the inclusions is needed. In order to extract the
effective parameters of the metamaterial, we will assume both a random and a simple cubic
distribution. In the case of a random distribution, the Lorentz–Lorenz theory is applied, leading
to simultaneously negative effective permeability and permittivity for several filling fractions.
In the case of a simple cubic lattice arrangement, the finite-element method is applied to
carry out numerical simulations, which fully account for interaction between the periodically
arranged constituents. Effective material constants are then extracted through the standard
S-parameter [20, 21] retrieval procedure, and are tested to fulfill causality and passivity, thus
confirming a true double-negative index. Due to the spherical symmetry of the constituents, the
metamaterial response will be essentially isotropic and polarization independent.

2. Optical properties of metallo-dielectric core–shell meta-atoms

Let us examine the scattering of a plane electromagnetic wave (wavelength λ) from a spherical
core–shell particle without any approximation, which indeed can be done analytically as an
extension of Mie theory, obtained first by Aden and Kerker [22]. Figure 1(a) depicts the
geometry of one of the basic constituents or ‘meta-atoms’: a high-permittivity (ε) dielectric
shell is considered with outer radius R � λ and thickness T , εc and ε0 being the dielectric
constants of the core and the surrounding medium, respectively. The scattering and extinction
efficiencies can be expressed in terms of the material and geometrical parameters through
the scattering coefficients al and bl (which represent, respectively, the different electric and
magnetic multipolar contributions) as

Qsca =
2

y2

∞∑
l=1

(2l + 1)(|al |
2 + |bl |

2), (1)

Qext =
2

y2

∞∑
l=1

(2l + 1)<(al + bl), (2)

where y = k R. The mentioned scattering coefficients can be written in terms of the spherical
Bessel functions of the first ( jl(x)) and the second (yl(x)) class and depend on εc/ε0, ε/ε0, Rin

and R. < denotes the real part. Their explicit form is

al =
ψl(y)[ψ ′

l (ny)− Alχ
′

l (ny)] − nψ ′

l (y)[ψl(ny)− Alχl(ny)]

ξl(y)[ψ ′

l (ny)− Alχ
′

l (ny)] − nξ ′

l (y)[ψl(ny)− Alχl(ny)]
, (3)
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(a) (b)

(c)

(d)

(e)

Figure 1. (a) The geometry of the problem. (b) Dipolar magnetic contribution
to the total scattering efficiency of a silicon (Si) nanoshell with outer radius
R = 170 nm as a function of the inner radius (Rin) and wavelength of the incident
light. (c) Total scattering efficiency, together with the dipolar electric (a1) and
magnetic (b1) contributions to the scattering efficiency for the inner radius
Rin = 45 nm (indicated in (b) by a dashed white line). (d, e) Near-field plots at
the magnetic resonance for the Si shell of (c). (d) Norm of electric field. (e) Out-
of-plane component (only nonzero component of the incident magnetic field) of
H, together with the electric displacement field in white arrows.

bl =
nψl(y)[ψ ′

l (ny)− Blχ
′

l (ny)] −ψ ′

l (y)[ψl(ny)− Blχl(ny)]

nξl(y)[ψ ′

l (ny)− Blχ
′

l (ny)] − ξ ′

l (y)[ψl(ny)− Blχl(ny)]
. (4)

The Ricatti–Bessel functions introduced are ψl(z)= z jl(z), χl(z)= −zyl(z) and ξl(z)=

zh(1)l (z), where h(1)l (z)= jl(z)+ iyl(z) is the spherical Hankel function of the first class. The
coefficients Al and Bl are

Al =
nψl(nx)ψ ′

l (ncx)− mcψ
′

l (ny)ψl(ncx)

nχl(nx)ψ ′

l (nx)− ncχ
′

l (ny)ψl(ncx)
, (5)

Bl =
nψl(ncx)ψ ′

l (nx)− ncψl(ny)ψ ′

l (ncx)

nχ ′

l (nx)ψl(ncx)− ncψ
′

l (nc y)χl(nx)
, (6)

where x = k Rin, n2
= ε/ε0 and n2

c = εc/ε0. It can immediately be realized that all information
about material and geometrical properties of the core is contained in these Al and Bl coefficients.

2.1. Magnetic resonance of a high-permittivity shell

To better understand the underlying physics, we first characterize the magnetic resonance of a
nanoshell for a real dielectric material with a high refractive index. We choose silicon (Si) the
refractive index of which can be considered constant, n =

√
ε/ε0 ∼ 3.5, and lossless, within

the near-infrared (IR) range λ= 1–2µm. In figure 1(b), the contribution is plotted to the total
scattering efficiency of the magnetic dipolar term (b1) as a function of Rin and the incidence
wavelength. It is the dominant contribution, as can be seen in figure 1(c) for the specific case
of Rin = 45 nm. A resonance can be clearly seen, the wavelength of which corresponds to that
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of the Si compact sphere [23] when Rin → 0 and starts to redshift when the shell thickness is
thin enough ( T . R/3) and decreases. Thus the magnetic resonance of the Si nanoshell can be
tuned within a certain range of wavelengths larger than that of the Si sphere resonance.

The behavior of the electromagnetic (EM) fields at the magnetic resonance has been
calculated by full-wave (finite-element method) numerical simulations [24]. The result is
depicted in figures 1(d) and (e). It can be observed that the electric displacement field rotates
in planes parallel to the equator, thus inducing a strong magnetic moment. This pattern
clearly shows that the electrical displacement current −iωεE is strongly confined inside the
shell, and rotates along the φ direction around the incident H-field. Such behavior reveals
that the resonance is qualitatively quite similar to the first resonance of a dielectric ring,
already reported [25], following an LC model with an inductance L ∝ µ0 R associated with the
circulation of the displacement current, and a capacitance C ∝ εR associated with the electric
energy confined in the shell. At resonance, a strong magnetic moment along the direction of the
incident H-field is generated in the same qualitative way as in the dielectric ring analyzed [25].

2.2. Electric and magnetic resonances on core–shell systems

Next we analyze the mutual influence of a metallic core and a dielectric shell. With regard to
the plasmon resonance of the metallic core (i.e. collective oscillations of conduction electrons),
it is well known that for small spheres (Rin � λ) of dielectric permittivity εc(ω), embedded in
a medium with dielectric constant ε0, the induced dipole moment is resonant at the frequency
ωLSPR such that εc(ωLSPR)= −2ε0 [26]. Therefore, when the metallic sphere is coated with a
thick dielectric layer of permittivity ε, the quantity driving the resonance condition is not εc

itself but, instead, the ratio between the permittivities of the core and the coating. That is, for a
small metal core, the resonance occurs when εc/ε ∼ −2 is fulfilled, thus redshifting the localized
surface-plasmon resonance (LSPR) with respect to that in vacuum.

The question now arises as to whether or not the shell magnetic resonance is preserved
when the core is metallic. Since the confinement and rotation of the electric field inside the
coating is directly related to the jump conditions for the normal component of the field between
the shell and the surrounding medium [25], and since the metal is expected to avoid penetration
of the field inside, no significant changes of the magnetic resonance behaviour are expected, at
least for relatively small metallic cores. This will be revealed below, where we plot the scattering
efficiency together with the electric and magnetic dipolar contributions. Such behaviour makes
it possible to still predict the appearance of the magnetic resonance even if a metallic core
is present. Furthermore, the electric and magnetic responses of a metal–dielectric core–shell
nanosphere can be tuned to make both resonances coincide. Let us take silver (Ag) as the
material to build up the core and Si again as a high-permittivity dielectric for the shell. Complex
Ag permittivity values are taken from tabulated data [27]. Our goal is to obtain simultaneously
both the resonances in the near-IR range of the electromagnetic spectrum. The LSPR will be
redshifted to that wavelength such that εAg

r ∼ −2εSi. This happens at a wavelength of about
720 nm. Nevertheless, we have to keep in mind that, strictly, this would only be a good
approximation for very small metallic particles with relatively thick coatings. Since we want
to push the electric resonance to the IR to make it coincide with a magnetic one stemming from
the Si shell, we can take increasingly larger radius for the core. When the size of a metallic
particle is increased, there is a redshift in the resonance wavelength that can be explained in
terms of depolarization effects [26].
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Figure 2. Optical properties of Ag@Si and Ag@Ge core–shell nanospheres.
(a–c) Dipolar electric contribution (a), dipolar magnetic contribution (b) and
total scattering efficiency (c) of an Ag@Si core–shell nanosphere with outer
radius R = 170 nm as a function of the inner radius (Rin) and wavelength
of the incident light. (d) Extinction and scattering efficiencies, together with
the dipolar electric (a1) and magnetic (b1) contributions to the scattering
efficiency for inner radius Rin = 47 nm (indicated in (c) by a dashed white line).
(e–g) Dipolar electric contribution (e), dipolar magnetic contribution (f) and total
scattering efficiency (g) of an Ag@Ge core–shell nanosphere with outer radius
R = 190 nm as a function of the inner radius (Rin) and wavelength of the incident
light. (h) Extinction and scattering efficiencies, together with the dipolar electric
(a1) and magnetic (b1) contributions to the scattering efficiency for the inner
radius Rin = 55 nm (indicated in (g) by a dashed white line).

Figures 2(a)–(c) depict both, the electric dipolar and the magnetic dipolar contributions to
the scattering efficiency, together with the total scattering efficiency for an Ag@Si core–shell
system of outer radius R = 170 nm as a function of Rin and the incidence wavelength. One
can clearly see an overlap between the electric and magnetic resonances. It occurs within
1150 and 1300 nm and for inner radius Rin = 40–50 nm. We have explicitly plotted the case
Rin = 47 nm (figure 2(d)). An interesting feature that can be observed is that the magnetic
resonance disappears as the inner radius increases. It can be explained by the fact that the
electric displacement field in the core rotates in the opposite direction to that in the shell,
thus reducing the total magnetic moment generated. Another effect can be seen in the electric
dipole contribution. As the inner radius increases the resonance broadens and redshifts as
expected. Interestingly, this behavior changes when the thickness is comparable with Rin, and
the resonance starts to blueshift. This effect can be attributed to the fact that, as the dielectric
shell becomes thinner, the resonance wavelength tends to that of a sphere without coating, thus
blueshifting. Finally, it is important to note that the specific wavelengths at which the electric
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(a) (b)

Figure 3. Near-field plots for an Ag@Si shell with R = 170 nm and T = 123 nm.
(a) Norm of the electric field in log10 scale at combined electromagnetic
resonance and when the system is excited by a purely electric excitation (top-
right, E) and by a purely magnetic one (bottom-right, H). Color scale, incidence
and polarization are preserved in all figures. (b) Out-of-plane component of H,
together with the electric displacement (D) field in black arrows at combined
electromagnetic resonance and when the system is excited by a purely electric
excitation (top-right, E) or a purely magnetic one (bottom-right, H). Color scale,
incidence and polarization are preserved in all figures.

and magnetic resonances overlap are determined by the geometrical parameters of the structure,
as well as by the specific materials used. Therefore, it is possible to tune the wavelength of
overlapping by an appropriate choice of these parameters. This gives the design a great degree
of freedom, and makes it possible to operate at different frequencies. As an example, an Ag@Ge
system with R = 190 nm is presented (figures 2(e)–(h)). In this case, resonances overlap within
1500 and 1620 nm for Rin = 50–60 nm. The particular case with Rin = 55 nm is plotted in
figure 2(h).

In figure 3, the near-field pattern at the combined magnetic (shell) and electric (core)
resonance is shown for the Ag@Si system. Also plotted are the responses of the system to
purely electric and magnetic excitations. These were obtained by placing a perfect mirror at
distances 3λ/4 and λ, respectively, from the center of the structure. The distinctive behavior of
both contributions is preserved in the combined electromagnetic resonance, revealed through
the rotating field confined within the Si shell (as in figure 1(e)), together with the dipolar LSPR
resonance of the Ag core. Note that, indeed, the electric displacements in the core and the
shell rotate in opposite directions and that the magnetic near-field pattern, figure 3(b), can be
explained as a combination of the electric and magnetic contributions. Near-field patterns for
core–shell with Ge covers are similar to those shown here.

3. Calculation of effective parameters

What do we expect for a material consisting of such core–shell nanostructures? In general, it
is highly nontrivial to extract the effective constitutive parameters of a metamaterial. Here, two
different methods are applied to obtain the effective parameters of a metamaterial composed of
the core–shell structures presented. In the first one, we will assume a random arrangement of
the constituents, while in the second a metamaterial made of a cubic arrangement of them will
be studied, both leading to negative-index behavior within certain wavelengths.
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3.1. Effective parameters of a random arrangement of core–shell nanospheres

For composites made of a cubic or random arrangement of dipolar particles, the Lorentz–Lorenz
theory is widely used [11, 28], leading to the well-known Clausius–Mossotti formulae relating
the effective permittivity and permeability to the polarizabilities of the particles and the filling
fraction f = (4/3)πN R3, where N is the number of particles per unit volume:

εeff − ε0

εeff + 2ε0
= f

αE

4πR3
,

µeff −µ0

µeff + 2µ0
= f

αM

4πR3
, (7)

where αE and αM are the electric and magnetic polarizabilities of the spherical particles.
For the core–shell structures considered R/λ∼ 1/7. Therefore, we expect them to be well
within the approximation considered in the theory, thus behaving essentially as electric and
magnetic point dipoles. The electric and magnetic polarizabilities, αE and αM , respectively, are
directly proportional to the scattering coefficients a1 and b1 (factor i(k3/6π)−1). In figures 4(a)
and (b), we have plotted the polarizabilities for a core–shell configuration of Rin = 47 nm
and R = 170 nm. It is clear from the graph that there is a spectral region where negative
electric and magnetic polarizabilities are obtained. Interestingly, as mentioned before, no
particular arrangement of the constituents is necessary to build the metamaterial, since the
resonant electric and magnetic responses arise from each core–shell structure separately. Thus,
assuming a random distribution we can compute the effective parameters from (7) for different
filling fractions. Figures 4(c)–(e) depict the calculated effective permittivity, permeability and
refractive index for metamaterials made up of these Ag@Si core–shells with filling fractions
f = 1/3, f = 0.5 and f = 2/3. The metamaterial has simultaneously negative permittivity and
permeability for filling fractions higher than f = 1/3. For a filling fraction of f = 2/3, the
system, moreover, has |neff| ∼ 1, although this relatively high filling fraction would be in the
limit of validity of Clausius–Mossotti formulae. In order to quantify the losses of the system, one
can compute the so-called figure of merit, defined as f.o.m.= |<(neff)|/=(nneff). The computed
f.o.m. in the LH spectral region for this filling fraction is indicated by the black curve, reaching
a maximum value of f.o.m.∼ 0.71, corresponding to <(neff)∼ −0.8. If Ge is used instead of
Si, the NIM behavior starts with lower filling fractions, due to stronger electric and magnetic
responses (see figure 5 and compare the polarizabilities with those of figure 4). Superlensing
capabilities are predicted for filling fractions lower than f = 0.5 (figures 5(c)–(e)). Again,
the f.o.m. for the highest filling fraction is plotted as a black curve. In this case, it reaches a
maximum value of f.o.m.∼ 0.75, corresponding to <(neff)∼ −0.5. Although far from being the
best f.o.m. values reported for double-fishnet metamaterials (f.o.m.∼ 3) [7, 29], the predicted
values are reasonably good, with the obvious advantage of isotropy of this proposal.

3.2. Effective parameters of a cubic periodic arrangement of core–shell nanospheres

To further test the metamaterial design, we consider now core–shell nanospheres arranged
periodically at the vertices of a cubic lattice. We take germanium as the high-permittivity coating
and choose the geometrical parameters as R = 190 nm and Rin = 55 nm. We consider the case
when the cubic lattice has a period d = 385 nm (corresponding to a filling fraction f ∼ 0.5). Full
numerical simulations (see section 5) of propagation across infinite slabs of different thicknesses
ranging from 9 to 13 unit cells are carried out to ensure convergence. Bloch boundary conditions
are applied in the interfaces with adjacent cells. Therefore, coupling between structures (with an

New Journal of Physics 13 (2011) 123017 (http://www.njp.org/)

http://www.njp.org/


9

(a) (b)

(c) (d)

(e)

Figure 4. (a–e) Electric and magnetic polarizabilities for an Ag@Si core–shell
with Rin = 47 nm and R = 170 nm and effective parameters for a metamaterial
composed of a random arrangement of these structures. (a) Real (red) and
imaginary (blue) parts of the electric polarizability. (b) Real (red) and imaginary
(blue) parts of the magnetic polarizability. (c–e) Real (red) and imaginary (blue)
parts of the effective permittivity (c), permeability (d) and refractive index (e) of
a metamaterial with several filling fractions: f = 1/3 (dotted), f = 0.5 (dashed)
and f = 2/3 (continuous). The black curve and the inset in (e) represent the
f.o.m. for the highest filling fraction in the LH spectral region.

interparticle distance of only 5 nm) is fully considered. The spectral range of the simulation is
1.28–1.7µm and the wave impinges at normal incidence. The effective material parameters are
retrieved from the complex reflection and transmission coefficients through the usual equations
found in the literature [20, 21]. While the imaginary part is unambiguously computed from
the simulation, once a sufficiently high number of unit cells in the propagation direction has
been considered, the real part of the index of refraction must be determined with much more
care. Concretely, one must pay special attention to ensure that the retrieved refractive index
fulfills causality and passivity. In this way we have obtained two bounding values for the real
part of the index, so it fulfills the two mentioned requirements. For a detailed description of
how the index was obtained, see section 5. In figure 6, the obtained bounds for the refractive
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(a) (b)

(c) (d)

(e)

Figure 5. (a–e) Electric and magnetic polarizabilities for an Ag@Ge core–shell
with Rin = 55 nm and R = 190 nm and effective parameters for a metamaterial
composed of a random arrangement of these structures. (a) Real (red) and
imaginary (blue) parts of the electric polarizability. (b) Real (red) and imaginary
(blue) parts of the magnetic polarizability. (c–e) Real (red) and imaginary (blue)
parts of the effective permittivity (c), permeability (d) and refractive index (e) of
a metamaterial with several filling fractions: f = 0.25 (dotted), f = 0.4 (dashed)
and f = 0.5 (continuous). The black curve and the inset in (e) represent the
f.o.m. for the highest filling fraction in the LH spectral region.

index are plotted. With this retrieval technique, a negative index spectral region is predicted.
In the more conservative prediction, corresponding to the higher bound, the real part of the
index reaches a minimum value of neff ∼ −0.77, with an f.o.m.∼ 1.88, corresponding to a
wavelength of 1.347µm. Although the values for the index are lower than those predicted by
Clausius–Mossotti, the negative index frequency band is present and confirms the core–shell
design as a meta-atom candidate for building an NIM. It needs to be pointed out that we are far
from the limit of filling fractions that can be obtained with non-overlapping spheres (cannonball
pile). Since, for interparticle distances as low as 5 nm, we found that coupling does not prevent
the appearance of the magnetic resonance, we expect to reach higher negative values of the index
in other periodic configurations with higher filling fractions. Further investigation of periodic
configurations with other homogenization approaches is left for future work.
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Figure 6. (a) Real and imaginary parts of the retrieved effective index of
refraction of a metamaterial made by Ag@Ge core–shell nanospheres of
R = 190 nm and Rin = 55 nm arranged at the vertices of a cubic lattice with
period d = 385 nm, corresponding to a filling fraction f ∼ 0.5. (b) Detail of the
normalized near electric field norm (color scale, red→1, blue→0) and electric
displacement field (indicated by white arrows) in the periodic structure.

4. Concluding remarks and fabrication possibilities

To obtain a 3D isotropic metamaterial having negative index of refraction in the optical range of
the spectrum has been one of the major challenges in the last decade for scientists and engineers
devoted to electromagnetism. Here we have presented a new design based on core–shell
nanospheres that operates in the near-IR, which helps tackle many of the previously found
problems, namely isotropy, polarization independence and the lack of three dimensionality.
In our system, the effective response of the metamaterial is due to every isolated ‘meta-
atom’. Therefore, no particular arrangement of the constituents is needed. Specifically, we
demonstrated with realistic materials that, for a random arrangement, the system achieves
double-negative index of refraction for different filling fractions and that super-resolution is
possible. We also tested the validity when a very simple periodic realization is assumed.
Although the achieved values in the latter case are worse than predicted by Clausius–Mossotti
for the same filling fractions, we have not explored here some other periodic configurations that
are expected to give a stronger response.

With regard to building these metamaterials, current silicon fabrication techniques allow
the realization of complex nanostructures such as hollow nanospheres [30] and opals [31]. In
some of the processes, the starting point is silica (SiO2) nanostructures, as is the case in [31]
in which Si opals are fabricated by magnesiothermic reduction of SiO2 opals. Since silver
nanospheres have been successfully covered with SiO2 at variable thicknesses [32], there are
plausible ways to realize the metamaterial proposed here, at least with Si covers. Concerning
the fabrication of Ge shells instead, a layer of a different material, suitable to grow it, can
be added between the core and the shell. This layer, if thin, would not affect excessively the
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physical response of the system, opening the possibility of fabrication of this system as well.
The underlying physical principles can, of course, be exploited at lower (far-IR and terahertz)
frequencies, at which some dielectric materials exhibit very large refractive indices and certain
materials (e.g. polar crystals and doped semiconductors) behave as plasmonic metals. Therefore,
the results presented pave the way towards potential isotropic 3D optical metamaterials designed
on the basis of the physics underlying the doubly resonant metallo-dielectric configuration.

5. Methods

Extinction and scattering cross sections based on the extended Mie theory were calculated
with Wolfram Mathematica 8. The near-field plots in figures 1 and 3 were calculated using
the radiofrequency (RF) module of COMSOL Multiphysics v4.0a. The computational domain
consisted of four concentric spheres, which defined four subdomains. The radii of the spheres
were Rin, R, 2R and 2.5R. From the inner to the outer, the subdomains represented the core, the
shell and the embedding medium (air). The last domain was set to a spherical perfectly matched
layer (PML), which absorbed all scattered radiation. The incident radiation was defined as a
plane wave. The mesh was constructed with the software’s built-in algorithm, which generates
a free mesh consisting of tetrahedral elements. The maximum element edge size was set to
15 nm in the whole core–shell structure, with a growth rate of 1.35, meaning that elements
adjacent to a given one should not be bigger than 1.35 times the size of it. For the PML and
air domains, the maximum element edge size was 50 nm. All mesh sizes are below the value
recommended in the program specifications, which sets a maximum edge size of 1/10 of the
effective wavelength for correct meshing. Finally, for the simulation of wave propagation along
an N -unit-cell-thick slab, COMSOL was also used. In this case, the computational domain
consisted of two concentric spheres representing the core–shells and a right rectangular prism
of width and height d = 385 nm and length L = Nd . Bloch periodic boundary conditions were
set in the directions perpendicular to the propagation and two ports activated in the direction
of propagation that allow us to compute the reflection and transmission complex coefficients.
In these cases, the maximum element edge size was set to 40 nm in the core–shell subdomains,
50 nm in the port boundaries and 100 nm in the boundaries where periodic boundary conditions
were applied. A correct solution of the problem requires identical meshing for the pairs of
boundaries where periodic boundary conditions are applied. In all cases the PARDISO solver
was used. As an example, for 9-unit-cell slab simulation, the total mesh consisted of 149 064
elements, and the calculation involved 948 768 degrees of freedom, requiring almost 18 GB of
memory.

5.1. Effective index retrieval procedure

The effective refractive index for the metamaterial structure, shown in figure 6, was calculated
from complex transmission and reflection coefficients following [21]. As mentioned before, we
performed simulations of wave propagation across infinite slabs of different thicknesses. After
a sufficient number of unit cells is considered, we get convergence of the results. We needed
to consider up to 9 unit cells in the direction of propagation to get convergence. Then, we
performed the simulation for 11- and 13-unit-cell-thick slabs.

It is well known that, when extracting the effective index through transmission and
reflection coefficients, an ambiguity arises related to the branches of the complex logarithm
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Figure 7. A very large number of branches of the real part of the retrieved
refractive index for 9 (red asterisks), 11 (black squares) and 13 (blue circles)
unit cells thick metamaterial slabs, composed of Ag@Ge core–shell nanospheres
of R = 190 nm and Rin = 55 nm arranged in the vertices of a cubic lattice with
period d = 385 nm, corresponding to a filling fraction f ∼ 0.5. The branches
that are independent of the thickness of the slab are indicated by a surrounding
ellipse. The dashed blue line represents the real part obtained from the imaginary
part by the Kramers–Kronig relations, plus a constant factor to fit the only
thickness-independent index showing good agreement.

function. This ambiguity only affects the determination of the real part of the index, the
imaginary one being univocally defined. It is a common assumption that the real part of the
index can be found plotting different branches for different thicknesses. The physical index
is assumed to be the one independent of the thickness of the slab. However, this assumption
may be ambiguous as well. The reason is that, if one plots a sufficiently high number of
branches one will find more than one unique index independent of the thickness. In figure 7,
this situation is shown. We have plotted a very large number of branches corresponding to the
Ag@Ge core–shell periodic configuration of section 3.2. It can be clearly seen that there is more
than one situation in which the index is independent of the thickness. Therefore, although this
requirement for thickness independence of the retrieved index is clearly physically acceptable,
we should not take it as a sufficient condition.

In fact, we should impose more conditions on the retrieved index. It must, no doubt, fulfill
the basic requirement of causality, expressed mathematically by the Kramers–Kronig relations.
Since, fortunately, we can unambiguously determine the imaginary part of the index, it is
possible to apply the Kramers–Kronig relations to get the real part of the index [33]. We need
to point out that, actually, by this technique one can only compute the corresponding real part
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up to a constant factor. The value of this factor, interpreted physically as the value of the index
when the frequency tends to infinity, needs to be determined somehow. The question then, is
whether any of the indices that do not depend on thickness also fulfills causality. In figure 7, the
real part of the index, retrieved through the Kramers–Kronig relations applied to the imaginary
part, is plotted on top of the only thickness-independent index for which the fitting is in good
agreement (the constant factor added is 6.35). It is apparent that the agreement is quite good.
It should be noted that this index is the only one for which the fitting is good, thus fulfilling the
causality constraint.

However, one more constraint must be imposed in order to get an acceptable effective
index. The resulting effective medium should be passive. This condition demands no
spontaneous generation of energy and mathematically relates the real and imaginary parts of
the effective index to the real and imaginary parts of the effective impedance of the slab. This
impedance can be computed also from the complex reflection and transmission coefficients [21].
Applying this condition we find that none of the indices retrieved directly from the transmission
and reflection complex coefficients fulfill both causality and passivity. Nevertheless, one can still
compute a physically acceptable effective index of refraction. If one uses the passivity condition,
it is possible to impose upper and lower bounds on the constant factor in the Kramers–Kronig
relations. An index with a real part given directly by the Kramers–Kronig relations, applied
to the univocally computed imaginary part, and a constant factor between the two bounds will
necessarily fulfill both conditions. We found that, in fact, the upper and lower bounds imposed
by passivity are quite close in value, being a restrictive condition on the possible values of the
index of refraction. The two boundary values for the index are plotted in figure 6(a).
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