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Human Adipose Stem Cell-Conditioned Medium
Increases Survival of Friedreich’s Ataxia Cells
Submitted to Oxidative Stress

Jonathan Jones, Alicia Estirado, Carolina Redondo, Carlos Bueno, and Salvador Martinez

Friedreich’s ataxia (FA) is a multisystemic disorder characterized by progressive gait, ataxia, and cardiomy-
opathy. There are few treatments for this disease; thus, we analyzed in vitro the possible beneficial effect of adult
stem cells in FA. To this end, human adipose stem cells from healthy individuals and periodontal ligament cells
from FA patients were isolated and cultured. FA cells are especially vulnerable to oxidative stress; thus, they
were submitted to this condition and cultured in adipose stem cell-conditioned medium. This resulted in
increased cell survival and upregulation of oxidative-stress-related genes as well as frataxin, among other genes.
A number of trophic factors were shown to be expressed by the adipose stem cells, especially brain-derived
neurotrophic factor (BDNF), which was also identified in the conditioned medium. The culture of the ataxic cells
under oxidative stress and in the presence of this trophic factor confirmed its protective effect. Thus, this work
demonstrates that adipose stem cell-conditioned medium from healthy individuals is capable of changing the
transcription levels of oxidative-stress-related genes in cells that are particularly susceptible to this condition,
avoiding cellular degeneration. Also, this work shows how neurotrophic factors, particularly BDNF, are capable
of increasing cell survival in response to oxidative stress, which occurs in many neurodegenerative diseases.

Highlights phenomenon are neurons (especially large sensory neurons of
the dorsal root ganglia in the spinal cord), heart (causing
cardiomyopathy), and the pancreas (many FA patients are
also diabetic) [3,4]. The main cause of death of the patients is
by heart failure, and there is currently no cure for the disease,
while the few treatments that are currently in use do not
ameliorate the progressive neurodegeneration.

Stem cells have been proven to be a potent tool for the
treatment of many diseases, including neurodegenerative
disorders. It has been shown in various animal studies that
stem cells are capable of stopping degenerative processes or
even regenerate lost tissue. This occurs due to several
mechanisms: cell fusion [5-8], trophic factor release [9-11],

1. Periodontal ligament cells from Friedreich’s ataxia (FA)
patients are susceptible to oxidative stress.

2. Adipose-tissue-derived stem cell-conditioned medium
reduces active caspase-3 levels and increases cell sur-
vival.

3. Adipose stem cell-conditioned medium contains a
number of trophic factors, brain-derived neurotrophic
factor (BDNF) being the most significant.

4. BDNEF is a vital trophic factor to protect FA cells from
oxidative stress.

Introduction

ATAXIC DISORDERS are a group of rare diseases character-
ized by the progressive loss of motor functions and co-
ordination, generally resulting in the premature death of the
patient. There are numerous types of ataxia, Friedreich’s
ataxia (FA) being the most prevalent. This disorder is caused
by a GAA-triplet repeat expansion in the frataxin gene, re-
sulting in an overall loss of frataxin protein, located in the
mitochondria [1]. As frataxin is involved in iron homeostasis,
its malfunction provokes an accumulation of iron in the cells,
causing its death [2]. The cells that are most sensitive to this

immunomodulation [12], transdifferentiation [13,14], or ac-
tivation of host progenitor cells [15,16].

In our lab, we have previously shown that bone marrow
stem cells are capable of protecting degenerating neurons in
demyelinating, motorneuron degenerating, and cerebellar
ataxia animal models [14,17-19, respectively]. Previous
works have proven that adipose stem cells have similar ef-
fects as bone marrow [20]. Thus, we decided to investigate
the use of adult stem cells in a FA model. Specifically, we
will analyze the possible neuroprotective effect stem cells
may have on degenerating ataxic cells. To this end, we iso-
lated and expanded periodontal ligament cells from FA
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patients, in order to study in vitro the beneficial effects adult
stem cells may exert. Since FA cells are sensitive to oxida-
tive stress, we submitted the cells to this condition and co-
cultured the cells in adipose stem cell-derived conditioned
medium. The results of this work show how stem-cell-
mediated trophic factor release may increase cell survival
under oxidative stress conditions.

Experimental Procedures

Adipose-tissue-derived stem cell isolation
and culture

Human adipose tissue was obtained by liposuction from
healthy individuals, who previously signed a written con-
sent, and immediately refrigerated. No more than 12h after
the extraction, the adipose tissue was processed. First, the
tissue was washed extensively in phosphate-buffered saline
(PBS; Invitrogen) supplemented with 1% penicillin/strepto-
mycin (Invitrogen). Afterward, it was digested in 0.2 mg/mL
animal-component-free collagenase-I (Worthington) for
45min at 37°C, followed by mechanical dissociation. Then,
the tissue was washed extensively to remove the collagenase
and centrifuged at 1,500 rpm for 10 min. The resulting pellet
was washed and centrifuged twice, and counted in a Neu-
bauer chamber before placing in culture. The culture me-
dium used was animal-origin-free mesenchymal stem cell
medium (StemCells Technologies), and the cells were placed
in a cell culture flask at a concentration of 1x10° cells/flask.
The medium was changed 48h after the initial plating and
afterward every 3—4 days. After 7-10 days, when the culture
was almost confluent, the cells were detached using TrypLE
Select animal-origin-free stable trypsin replacement (Gibco)
and replated at a concentration of 50,000 cells/flask. For the
experiments, cells from passages 2-3 were used, which
considered to be adipose-derived stem cells (Fig. 1A). To
confirm this, immunocytochemical staining for CD34, CD44,
CD90, and CD45 was performed (see Fig. 1A-D).

Periodontal-ligament-derived stem cell isolation
and culture

Before extraction, the patients were informed of the pro-
cedures to be performed and signed a written consent. The
teeth used were deciduous teeth in the process of falling out.
The teeth, either after spontaneously falling or by extraction
in a dental clinic, were immediately taken into the laboratory
and processed. After extracting the periodontal ligament, the
tissue was processed in a similar fashion as the adipose tis-
sue (collagenase treatment, followed by mechanical dissoci-
ation and culture). The cells used were at passages 3-5. In the
case where periodontal ligament cells from healthy individ-
uals were used, this was taken from the biobank of our in-
stitution. This cell population is a mixture of different
individuals so as to maintain patient’s privacy. The proce-
dure to extract the cells was the same; only in this case the
teeth were taken from individuals of various ages.

Immunocytochemical analysis

A standard immunocytochemical protocol was used. First,
the cells were fixed in 4% paraformaldehyde, washed, and
blocked with 10% goat serum, 5% bovine albumin, 0.025%
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triton, and PBS. Afterward, they were incubated overnight at
room temperature with the primary antibody, diluted in
blocking solution (10% goat serum, 5% bovine albumin, and
PBS). The following primary antibodies were used: mouse anti-
CD44 (1:200; BD Pharmingen), mouse anti-CD45 (1:200; AbD
Serotec), mouse anti-CD34 (1:200; BD Pharmingen), mouse
anti-CD90 (1:200; BD Pharmingen), and rabbit anti-cleaved
caspase-3 (1:400; Cell Signaling Technology). The following
day, the cells were incubated with the secondary antibodies,
which were either Alexa Fluor antibodies (1:500; Molecular
Probes) or biotinylated secondary antibodies (1:200; Vector
Laboratories) followed by an incubation with streptavidin
conjugated with Cy3 (1:500). DAPI (Molecular Probes) or
Hoechst (Sigma-Aldrich) was used to stain nuclei. Histological
samples were observed and micrographs were taken under a
fluorescence microscope (Leica DMR; Leica Microsystems).

Hydrogen peroxide, brain-derived neurotrophic
factor, and TrkB blocking treatment of cultured cells

Adipose stem cells from healthy individuals and peri-
odontal ligament cells from healthy and FA patients were
cultured in standard medium and supplemented with
0.1mM hydrogen peroxide (Sigma-Aldrich) for 48h. Hy-
drogen peroxide was added twice, once at the beginning of
the experiment and 24 h afterward. To obtain the adipose
stem cell-conditioned media, this was recovered 24 h after
incubation under normal culture conditions. Also, condi-
tioned medium from adipose stem cells exposed to hydrogen
peroxide for 24h was recovered. Both conditioned media
were centrifuged at 1,500 rpm for 10min and the resulting
pellet was discarded. Also, periodontal ligament cells were
cultured in the same hydrogen peroxide medium [labeled
L(H) in the Figs. 3 and 4]. Depending on the stem-cell-
conditioned media, 2 different experimental conditions were
performed: periodontal ligament cells cultured in 0.1 mM
hydrogen peroxide and in adipose stem cell-conditioned
medium [L(H)+A in the Figs. 3 and 4], and periodontal
ligament cells exposed to hydrogen peroxide and in condi-
tioned medium from adipose stem cells that had previously
been submitted to oxidative stress [L+A(H)].

For the cultures where brain-derived neurotrophic factor
(BDNF) was added, this trophic factor was included along
with the hydrogen peroxide for 2 days, at several concen-
trations (1-100ng/mL; Sigma Aldrich), while in the cell
cultures with the TrkB blocker (recombinant human TrkB Fc
Chimera; R&D Systems), 100 ng/mL was used.

Real-time quantitative PCR

Total mRNA of the cells was isolated using the Trizol
protocol (Invitrogen). Five micrograms of mRNA was re-
verse-transcribed, and ~100ng of cDNA was amplified by
real-time PCR using Power SYBR Green Master mix (Ap-
plied Biosystems). All the samples were run in triplicate
using the StepOne Plus Real-Time PCR system (Applied
Biosystems) and analyzed with the StepOne Software. Ana-
lyses were carried out using the delta C(T) method and
calculated relative to glyceraldehyde 3-phosphate dehydro-
genase (GAPDH) (forward: AGCCACATCGCTCAGACAC,
reverse: GCCCAATACGACCAAATCC). The following
primers were used, taken from the PrimerBank webpage
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(http:/ /pga.mgh.harvard.edu/primerbank/): frataxin (for-
ward: AAGACTAGCAGAGGAAACGCT, reverse: ACCCAG
TTTGACAGTTAAGACAC), superoxide dismutase 1 (SOD1)
(forward: AGGGCATCATCAATTTCGAGTC, reverse: GCCCA
CCGTGTTTTCTGGA), superoxide dismutase 2 (SOD2) (for-
ward: AACCTCAGCCCTAACGGTG, reverse: AGCAGCAA
TTTGTAAGTGTCCC), transferrin receptor (forward: CCCT
CGTGAGGCTGGATCT, reverse: CTATACGCCACATAACC
CCCA), H-ferritin (forward: TCCTACGTTTACCTGTCCA
TGT, reverse: GTTTGTGCAGTTCCAGTAGTGA), L-Ferritin
(forward: ACGAGCGTCTCCTGAAGATG, reverse: CCCAG
GGCATGAAGATCCAAA), BDNF (forward: TAACGGCGG
CAGACAAAAAGA, reverse: TGCACTTGGTCTCGTAGAA
GTAT), glial-derived neurotrophic factor (GDNF) (forward:
GGCAGTGCTTCCTAGAAGAGA, reverse: AAGACACAAC
CCCGGTTITIG), neurotrophin-3 (NT3) (forward: AGACT
CGCTCAATTCCCTCAT, reverse: GCAGTTCGGTGTCCAT
TGC), neurotrophin-4 (NT4) (forward: CTGTGTGCGATGC
AGTCAGT, reverse: TGCAGCGGGTTTCAAAGAAGT), vas-
cular endothelial growth factor (VEGF) (forward: CGCAGC
TACTGCCATCCAAT, reverse: GTGAGGTTTGATCCGCAT
AATCT), platelet-derived growth factor-A (forward: GCAAG
ACCAGGACGGTCATTT, reverse: GGCACTTGACACTGCT
CGT), basic fibroblast growth factor (forward: AGTGTGTG

CTAACCGTTACCT, reverse: ACTGCCCAGTTCGTTTCA
GTG), insulin-like growth factor 1 (forward: GGAGCTGTG
ATCTAAGGAGGC, reverse: GGGCTGATACTTCTGGGT

CTT), nerve growth factor (NGF) (forward: TGTGGGTTGG
GGATAAGACCA, reverse: GCTGTCAACGGGATTTGGGT),
epidermal growth factor (forward: TGGATGTGCTTGATAA
GCGG, reverse: ACCATGTCCTTTCCAGTGTGT), caspase-3
(forward: CATGGAAGCGAATCAATGGACT, reverse: CTG
TACCAGACCGAGATGTCA), NADPH oxidase 1 (NOX1,
forward: TTGTTTGGTTAGGGCTGAATGT, reverse: GCCAA
TGTTGACCCAAGGATTTT), NOX2 (forward: CCATCCGG
AGGTCTTACTTTGA, reverse: ACGTACAATTCGTTCAGC
TCCA), NOX3 (forward: CGTGGCGCATTTCTTCAACC, re-
verse: GCTCTCGTTAGGGGTGTTGC), NOX4 (forward: TTG
GGGCTAGGATTGTGTCTA, reverse: GAGTGTTCGGCACA
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TGGGTA), NOX5 (forward: ATTGGCTGGGTACACGGTTC,
reverse: CGAGGAGGTAGGACAGGTGA), Dual oxidase 1
(DUOX1, forward: GCAGCGATTTGATGGGTGGTA, re-
verse: AGGTGGGGTTCTCCCAAGG), DUOX2 (forward:
CTGGGTCCATCGGGCAATC, reverse: GTCGGCGTAATT
GGCTGGTA), glutathione peroxidase 1 (GPX-1) (forward:
CAGTCGGTGTATGCCTTCTCG, reverse: GAGGGACGCC
ACATTCTCG), Catalase (forward: TGGGATCTCGTTGGA
AATAACAC, reverse: TCAGGACGTAGGCTCCAGAAGQG),
superoxide dismutase 3 (SOD3) (forward: ATGCTGGCGC
TACTGTGTTC, reverse: ACTCCGCCGAGTCAGAGTT).

Western blot analysis

The lysis buffer and process used were similar to that of
Palomo et al. [21]. Cell lysates and culture media were sep-
arated on 15% sodium dodecyl sulfate—polyacrylamide gels,
and probed for mouse anti-frataxin (1:750; Santa Cruz Bio-
technology) and rabbit anti-BDNF (1:500; Santa Cruz Bio-
technology), respectively. Secondary antibodies were
visualized by chemiluminescence (ECL; Amersham). For
protein quantification we used Quantity One software
(BioRad).

Statistical analysis

Statistical significance between control and experimental
groups was calculated with Sigmaplot v11.0 software, using
the paired t-test.

Results

Adipose stem cells exposed to hydrogen peroxide
increase the expression levels of genes implicated
in oxidative stress and iron metabolism

Adipose-tissue-derived stem cells were isolated, cultured,
and characterized as seen in Figure 1. These cells, as in bone
marrow mesenchymal stem cells, express the surface mark-
ers CD44 and CD90, and do not express CD34 and CD45
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FIG. 1. Characterization and effect of oxidative stress in adipose-derived stem cells of healthy individuals. (A-D) Surface
markers of adipose-derived stem cells. These stem cells express many markers similar to bone marrow mesenchymal stem
cells, including CD90 (A) and CD44 (B), and do not express CD34 (C) or CD45 (D). In all images, red is the antibody
indicated, and blue is DAPI staining. (E) Real-time PCR analysis of several genes comparing adipose stem cells under normal
culture conditions (A, gray bar) to the cells cultured in the presence of hydrogen peroxide [A(H), black bar]. Adipose stem cells
under normal conditions is considered as control (value=1). Y-axis indicates the relative quantity of the genes analyzed (RQ).
All genes are expressed relative to GAPDH. Error bars indicate average deviations: *P<0.05, **P <0.005, and ***P <0.001
(n=6). Color images available online at www. liebertpub.com/scd
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(Fig. 1A-D). Also, periodontal ligament cells from FA pa-
tients were isolated and cultured. These cells express sev-
eral stem cell and neural markers, due to their neural crest
origin [22].

The effect of hydrogen peroxide on the expression of
several genes in adipose-tissue-derived stem cells of healthy
individuals was analyzed (Fig. 1E). The genes studied were
superoxide dismutases (SOD1, SOD2, and SOD3), hydrogen
peroxide neutralizing genes (Catalase and GPX-1), NADPH
oxidases (NOX1, NOX2, NOX3, NOX4, and NOX5), dual
oxidases (DUOX1 and DUOX?2), as well as genes implicated
in iron metabolism (frataxin, transferrin, H-ferritin, and L-fer-
ritin). As it can be seen in the histogram, the adipose stem
cells exposed to hydrogen peroxide expressed increased
transcription levels of several oxidative-stress-related genes,
including SOD1, catalase, and several of the NOX and
DUOX2. Also, almost all the iron-related genes, except for L-
ferritin, were upregulated. As the cause for the degeneration
in FA is due to low levels of frataxin and subsequent iron
accumulation, the possible upregulation of these genes in FA
patients is of utmost importance. Overall, these results in-
dicate a possible compensatory response of the cells in order
to increase cell survival due to the oxidative stress condi-
tions, increasing overall the metabolism of the cell.

Comparative gene expression between periodontal
ligament cells isolated from healthy
and FA individuals

Periodontal ligament cells were extracted from both
healthy and FA individuals, and the basal expression levels
of the genes commented in the previous section were ana-
lyzed under normal culture conditions (Fig. 2A). As a result,
FA cells expressed significantly lower levels of frataxin (see
Fig. 2B for western blot analysis), as well as the majority of
the genes analyzed. On the other hand, 2 genes, NOX3 and
DUOX1, presented higher levels of expression. Previous
studies in yeast and human cells have shown that antioxi-
dant enzymes are affected due to the frataxin defect, and are
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not capable of responding to oxidative stress conditions,
corroborating our results [23,24, respectively].

Adipose-tissue-derived stem cell-conditioned
medium increases cell survival and upregulates
the expression levels of genes implicated

in oxidative stress and iron metabolism, in cultured
cells isolated from FA patients

The periodontal ligament cells from FA patients were
submitted to oxidative stress, as in the case of the adipose
stem cells. Cell death was calculated both using Hoechst (Fig.
3A-D) and active caspase-3 staining (Fig. 3E-H). The fol-
lowing culture conditions were performed: periodontal lig-
ament cells under normal culture conditions (Fig. 3A),
periodontal ligament cells exposed to hydrogen peroxide (Fig.
3B), periodontal ligament cells exposed to hydrogen peroxide
and in adipose stem cell-conditioned medium (Fig. 3C), and
periodontal ligament cells exposed to hydrogen peroxide and in
conditioned medium from adipose stem cells previously sub-
mitted to oxidative stress (Fig. 3D). In the case of Hoechst
staining, 20.71%+4.56% of periodontal ligament cells exposed
to hydrogen peroxide presented pyknotic nuclei indicating
that the cells were undergoing cell death processes (Fig. 3E), as
opposed to 1.76%+0.74% and 0.44%+0.58% of the periodon-
tal ligament cells cultured under 1 of the 2 adipose stem cell-
conditioned medium (Fig. 3F, G; n=3). As for active caspase-3
staining, 9.55% *2.55% of the periodontal ligament cells exposed
to hydrogen peroxide expressed active caspase-3 (Fig. 3E).
Meanwhile, in the cultures with adipose stem cell-conditioned
medium (Fig. 3F-G), only 1.40%+0.38% (in the case of FA
periodontal ligament cells under stem-cell-conditioned medi-
um) and 1.69% +0.25% (in the case of FA cells under conditioned
medium from stem cells that have been previously submitted to
oxidative stress) were active caspase-3 positive (11=3).

Active caspase-3 was also analyzed by quantitative PCR
(Fig. 3H), corroborating the immunocytochemistry results,
indicating that stem-cell-conditioned medium increases the
cell survival of FA cells exposed to hydrogen peroxide. In the
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FRATAXIN

Comparative analysis of periodontal ligament cells isolated from healthy and Friedreich’s ataxia (FA) patients under

normal culture conditions. (A) Analysis of periodontal ligament cells of healthy (WT-L, black bars) and FA individuals (AT-L,
gray bars). The cells from healthy individuals are considered as control (value=1). Y-axis indicates the relative quantity of the
genes analyzed (RQ). *P <0.05 and ***P <0.005. (B) Frataxin expression, as detected by western blot analysis, and quantifying
band density (Y-axis) of healthy (WT-L) and FA (AT-L) individuals (P<0.001, n=4).



STEM CELL TREATMENT IN FRIEDREICH’S ATAXIA CELLS

-
-
H

12

l {
0.8
04 -
0.2 4

0

ACTIVE CASPASE-3

RQ
=
(=,

2821

mL(H)
oL(H)+A
OL+A(H)

FIG. 3. Caspase-3 is activated in response to oxidative stress. (A-D) Hoechst staining of periodontal ligament cells in the
various culture conditions: with standard culture medium (A), exposed to hydrogen peroxide (B), exposed to hydrogen
peroxide and in adipose stem cell-conditioned medium (C), and exposed to hydrogen peroxide and in conditioned medium
from adipose stem cells previously submitted to oxidative stress (D). Images taken at 40 xmagnification. (E-G) Active
caspase-3 staining (red) of periodontal ligament cells exposed to hydrogen peroxide (E), exposed to hydrogen peroxide and in
adipose stem cell-conditioned medium (F), and exposed to hydrogen peroxide and in conditioned medium from adipose
stem cells previously submitted to oxidative stress (G). Y-axis indicates the relative quantity of the genes analyzed (RQ).
Nuclei are stained with Hoechst. All images were taken at 200 x magnification. (H) QPCR of active caspase-3. n=3 in all cases.

Color images available online at www liebertpub.com/scd

Fig. 3H, L(H) + A indicates periodontal ligament cells exposed
to hydrogen peroxide and in adipose stem cell-conditioned
medium, whereas L+ A(H) is periodontal ligament cells ex-
posed to hydrogen peroxide and under conditioned medium
from adipose stem cells previously exposed to oxidative
stress. Also, L(H) indicates periodontal ligament cells ex-
posed to hydrogen peroxide.

Also, quantitative expression of oxidative stress and iron-
metabolism-related genes were analyzed and compared in
periodontal ligament cells under normal culture conditions
and in the presence of hydrogen peroxide (Fig. 4A). As a
result, it was observed that the expression levels of the genes
analyzed in periodontal ligament cells from FA patients
under oxidative stress either did not change or were even
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FIG. 4. Gene and protein expression in response to oxidative stress in FA cells cultured with adipose-tissue-derived stem
cell-conditioned medium. (A) Gene expression in periodontal ligament cells under normal culture media (labeled L in the
histogram, gray bars), which is considered as control, and compared with cells exposed to hydrogen peroxide [L(H), black
bars]. Error bars indicate average deviations: *P<0.05, **P<0.005, and ***P<0.001 (n=6). (B) Transcription comparison
analysis in periodontal ligament cells exposed to hydrogen peroxide [L(H), taken as control, gray bars], exposed to hydrogen
peroxide and in adipose stem cell-conditioned medium [L(H)+ A, black bars], and exposed to hydrogen peroxide and in
conditioned medium from adipose stem cells previously submitted to oxidative stress [L+ A(H), white bars]. NOX1 was not
detected in L+ A(H). In (A) and (B), Y-axis indicates the relative quantity of the genes analyzed (RQ). All genes are expressed
relative to GAPDH. Error bars indicate average deviations: *P <0.05, **P <0.005, and **P <0.001. (C, D) Western blot analysis
of frataxin in periodontal ligaments under standard culture medium (taken as control, black bar), exposed to hydrogen
peroxide (dark gray bar), exposed to hydrogen peroxide and in adipose stem cell-conditioned medium (white bar), and
exposed to hydrogen peroxide and in conditioned medium from adipose stem cells previously submitted to oxidative stress
(light gray bar) (n=6 in control and experimental groups, n=3 in western blot analysis).

decreased. Only NOX1 and NOX2 were upregulated. This
was opposed to what was observed in the adipose stem cells
from healthy individuals (see Fig. 1E, almost all the genes
were upregulated). However, when the periodontal ligament
cells exposed to hydrogen peroxide were cultured under
stem-cell-conditioned medium, there was an overall upre-
gulation of the genes analyzed (Fig. 4B). Of the 2 adipose
stem cell-conditioned media used, the one taken from stem
cells that had previously been exposed to hydrogen peroxide
[L+A(H) in the Fig. 4C] presented the highest amount of
frataxin upregulation, increasing its expression ~4 times.
Also, SOD2, GPX-1, NOX5, DUOX2, transferrin, H-ferritin,
and L-ferritin were increased. Increased frataxin expression at
the protein level was corroborated by western blot analysis
(Fig. 4C, D).

Adipose-tissue-derived stem cells secrete several
trophic factors in response to hydrogen peroxide

As the adipose stem cell-conditioned medium, especially
from cells that had previously been under oxidative stress
conditions, was sufficient to increase oxidative-stress-related

genes as well as frataxin, we decided to analyze the condi-
tioned medium for trophic factors that may induce this up-
regulation. A total of 10 trophic factors were analyzed by
quantitative PCR in the adipose stem cells (Fig. 5A). The result
was that there was a significant increase in BDNF, VEGF, and
NGF when comparing adipose stem cell-conditioned medium
exposed to hydrogen peroxide [A(H) in the figure] compared
with standard culture conditions (A in the Fig. 5A). Specifi-
cally, BDNF was the trophic factor that increased the most,
with a 5-fold increase, compared with VEGF and NGF, which
presented a more modest increase (<2-fold).

Further, western blot analysis demonstrated that BDNF
was secreted in higher quantities in the conditioned medium
from stem cells under oxidative stress (Fig. 5B, C). Interest-
ingly, the strongest band to appear in the gel was at 28 kDa,
corresponding either to the truncated BDNF form [25] or
BDNF-BDNF dimer [26]. Either way, both forms are bio-
logically functional and are capable of binding to the BDNF
receptors.

As periodontal ligament cells express surface receptors
where BDNF may bind to [27,28], it is plausible to consider
that this trophic factor may be an important factor
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responsible for the increase in cell survival observed, as well
as the upregulation of the genes analyzed.

BDNF increases the expression of SODs, NOXs,
frataxin, and iron-metabolism-related molecules
in response to hydrogen peroxide

To confirm whether BDNF alone is capable of protecting
FA periodontal ligament cells from oxidative stress, we co-
cultured for 2 days the cells in different concentrations of the
trophic factor (1-100ng/mL). There was a dose-dependent
response to BDNF, being the most significant improvement
when the trophic factor was used at 100ng/mL. Active
caspase-3 was analyzed by quantitative PCR, resulting in less
expression of this gene in cells cultured with BDNF (Fig. 6A).
As in the other culture conditions, oxidative stress and iron-
metabolism-related genes were analyzed, several of these
being significantly upregulated. These results were similar to
those seen with the adipose stem cell-conditioned medium
(see Fig. 4B). Thus, BDNF seems to be capable of protecting
FA cells from oxidative stress and may be at least partially
responsible for the increase in cell survival, as well as up-
regulation of the genes analyzed.

To confirm the protective effect of BDNF under oxidative
stress, the receptor for BDNF, TrkB, was blocked using a
recombinant human antibody. Periodontal ligament cells
cultured with this antibody were not affected (Fig. 6C).
However, when the periodontal ligament cells were cultured
with the antibody and exposed to hydrogen peroxide, there
was massive cell death, even under stem-cell-conditioned
medium (Fig. 6D-F, respectively). This was clearly visible in
the cultures, where numerous cells died and detached from
the culture dishes. Active caspase-3 and Hoechst staining
was performed and quantified in the various cultures. As a
result, 2.75% +0.47% of the periodontal ligament cells under

—— | —

FIG. 5. Trophic factors released by
adipose-tissue-derived stem cells. (A)
Histogram depicting various trophic
factors released by adipose stem cells
under normal culture conditions (A,
gray bar) compared with the cells cul-
tured in the presence of hydrogen
peroxide [A(H), black bar]. Adipose
stem cells under normal conditions are
considered as control (value=1). Y-
axis indicates the relative quantity of
the genes analyzed (RQ). The most
significant increases in response to
hydrogen peroxide are brain-derived
neurotrophic factor (BDNF), nerve
growth factor (NGF), and vascular
endothelial growth factor (VEGEF). All
genes are expressed relative to
o GAPDH. Error bars indicate average
deviations: *P<0.05. (B, C) Western
blot analysis of BDNF in conditioned
medium from adipose stem cells under
standard culture medium (black bar)
and exposed to hydrogen peroxide
(gray bar). **P<0.01 (n=6 in all cases).

normal cell culture and with the TrkB blocker presented
pyknotic nuclei, and 2.60%*1.48% were active caspase-3
positive. In the other culture conditions, not only was there a
very significant loss of cell density, but also significantly
higher percentages of pyknotic nuclei (7.73%*1.16% in the
case of periodontal ligament cells exposed to hydrogen
peroxide, 10.32%+4.23% in the case of periodontal ligament
cells exposed to hydrogen peroxide and under stem-cell-
conditioned medium, and 10.31%=*1.87% in the cells ex-
posed to hydrogen peroxide and under conditioned medium
from adipose stem cells that have previously been submitted
to oxidative stress, n=3). This was corroborated by active
caspase-3 immunostaining (2.99% *0.53% of the periodontal
ligament cells exposed to hydrogen peroxide, 1.35%+0.90%
of the cells under stem-cell-conditioned medium, and
4.65%%3.10% of the cells under conditioned medium from
stem cells that had previously been submitted to oxidative
stress, n=3).

Active caspase-3 gene expression was also analyzed by
quantitative PCR (Fig. 6G, left histogram). As a result, all
treatments presented higher active caspase-3 expression
compared with control cultures, coinciding with the immu-
nohistochemical analysis. Further, the gene expression anal-
ysis by quantitative PCR indicated no significant difference
in the expression of frataxin, SOD1, SOD2, catalase, NOX3,
DUOX2, or L-ferritin. However, the expression levels of the
other genes (SOD3, GPX-1, NOX2, NOX4, NOX5, DUOX1,
transferrin, and H-ferritin) were increased in the periodontal
ligament cells exposed to hydrogen peroxide and under
conditioned medium of stem cells submitted to oxidative
stress, despite the TrkB blocker. Thus, blocking the BDNF
receptor decreased the effectiveness of the adipose stem cell-
conditioned medium, increasing cell death, although other
factors in the conditioned medium were capable of upregu-
lating oxidative-stress-related genes.
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FIG. 6. Gene expression analysis of periodontal ligament cells cultured in 100ng/mL BDNF, and with recombinant TrkB
antibody. (A) Active caspase-3 expression as measured by QPCR periodontal ligament cells exposed to hydrogen peroxide and
with or without BDNF (gray and black bars, respectively). (B) Gene expression levels measured by QPCR in periodontal ligament
cells exposed to hydrogen peroxide without BDNF (black bars) and with the trophic factor (gray bars). NOX1 was not detected.
*P<0.05, *P<0.005, and **P<0.001 (n=4 in control and experimental groups). (C-F) Periodontal ligament cells cultured with
100 ng/mL recombinant TrkB antibody. Images were taken after 48 h of culture. The images correspond to periodontal ligament
cells with recombinant antibody and in normal culture medium (C), exposed to hydrogen peroxide (D), exposed to hydrogen
peroxide and in adipose stem cell-conditioned medium (E), and exposed to hydrogen peroxide and in conditioned medium from
adipose stem cells previously submitted to oxidative stress (F). Blue is Hoechst staining. All images were taken at 40 X magni-
fication. (G) QPCR analysis of the genes depicted on the histogram of the various cell culture conditions in the presence of the
recombinant TrkB antibody. Periodontal ligament cells under standard culture medium and with the TrkB blocker are used as
control (value=1). In all histograms, Y-axis indicates the relative quantity of the genes analyzed (RQ). n=4 in all cases. Color
images available online at www. liebertpub.com/scd

Discussion BDNF. In response to this trophic factor, the ataxic cells in-

crease frataxin expression ~4 times, while increasing the ex-

The work presented here shows for the first time that
adipose-tissue-derived stem cells are capable of protecting FA
cells submitted to oxidative stress. This is due to the secre-
tion of trophic factors in response to the damage, mainly

pression of many genes implicated in hydrogen peroxide
removal, as well as other factors implicated in iron metabo-
lism (ferritins and transferrin). Recently, an article has been
published showing that bone marrow mesenchymal stem cell-
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conditioned medium from healthy patients had similar effects
on fibroblasts isolated from FA patients as those observed in
this work [29]. Our work elucidates on the possible mecha-
nisms by which the conditioned medium induces the increase
in cell survival as well as frataxin upregulation. Particularly, it
seems that the release of certain neurotrophic factors seems to
be the main cause for the observed effect.

It has been previously shown by other authors that adi-
pose stem cells, similar to bone marrow cells, are capable of
expressing and secreting many trophic factors, including
BDNF [30] and NGF [31]. On the other hand, periodontal
ligament cells present surface receptors where BDNF may
bind to, such as LNGFR (low-affinity NGF receptor, also
known as p75) [27] and TrkB [28]. This trophic factor is
known to be implicated in processes of cell survival, differ-
entiation, and proliferation, among other functions [32,33].
Further, it has been shown that inoculating BDNF transgene
into an ataxic mouse model improved the behavior test in
ataxia cells, corroborating that this trophic factor is an im-
portant factor for neuroprotection in these disorders [34]. In
our lab, we saw that bone marrow mesenchymal stem cells
are capable of protecting Purkinje cells in a cerebellar ataxia
model by expressing BDNF and to a lesser degree NT3 and
GDNEF, resulting in improved behavior results [19].

Interestingly, our western blot analysis of the conditioned
media showed that the most abundant form of BDNF being
secreted is a 28kDa isoform. The mature form of BDNF is
14kDa, while the pro-BDNF (in the endoplasmic reticulum)
weighs 32 kDa. The 28 kDa may either be a BDNF dimer, which
is also secreted and is fully functional [26], or it may be a
truncated, immature form of BDNF, which is also biologically
active [25]. Either way, this isoform is completely capable of
binding to its ligands, mainly TrkB, thus increasing cell survival.

With these results, it would indicate that BDNF adminis-
tration could help protect the neurons and cardiomyocytes in
FA patients. Indeed, BDNF administration was initially
performed in ALS patients, but failed since the trophic factor
is not capable of surpassing the blood-brain barrier without a
proper vehicle [35]. Intrathecal administration of BDNF, on
the other hand, seemed a feasible option, but the clinical
trials showed no improvement with respect to placebo con-
trols [36-39]. Also, it must be noted that BDNF administra-
tion presents a number of secondary effects that may
debilitate the patient, such as hypersensitivity to pain [40].
Thus, although it seems that the use of this trophic factor
alone may help ameliorate the progression of the disease,
previous results in other diseases, such as ALS, indicate the
contrary. On the other hand, stem cell transplantation may
act as a biological pump that administers not only BDNF but
also other trophic factors in the correct dosage without the
side effects commented previously.

Thus, our work demonstrates that adipose-tissue-derived
stem cells of healthy individuals are capable of protecting FA
cells from oxidative stress and induce the expression of genes
implicated in iron metabolism, including and most impor-
tantly frataxin.
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