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1. Introduction 36 

Plants are subjected to environmental stresses that bring together an overproduction of reactive oxygen species 37 

(ROS) responsible for cellular oxidative damage and (programmed) cell death [1]. Plants accumulate proline 38 

(Pro) in response to water stress conditions [2] and different hypotheses have been put forward to explain the 39 

role of Pro under this type of stress and others that also result in Pro accumulation. However, none of these 40 

hypotheses has been incontrovertibly demonstrated [3, 4]. One hypothesis is that Pro could non-enzymatically 41 

react with ROS and prevent essential molecules from (photo)oxidative damage [5-7]. Sminorff and Cumbes 42 

evidenced that Pro was an effective hydroxyl radical (
•
OH) scavenger and a rate constant of 4.8x10

8
 M

-1
·s

-1
 for 43 

this reaction was determined [8]. In addition, Matysik and co-workers (2002) [9] proposed a role of singlet 44 

oxygen (
1
O2) scavenger for Pro in plants, but the rate constant for the reaction of Pro with 

1
O2 is still unknown. 45 

The 
1
O2 is easily generated with UV radiation or visible light in the presence of photosensitizers in vitro (or 46 

chlorophylls in green tissues of plants) and its deactivation may occur by phosphorescence emission or 47 

radiationless processes including electronic-to-vibrational energy transfer, charge transfer and electronic energy 48 

transfer [10]. Alia and co-workers (2001) proposed that Pro could deactivate 
1
O2 by physical quenching or by 49 

forming products such as superoxide radical (O2
•–

) or peroxide anion [O–O]
2–

. Since then, the protective role of 50 

Pro against 
1
O2 has been widely considered by the scientific community. Nevertheless, the study by Alia and co-51 

workers (2001) was performed in ethanol and did not unambiguously elucidate if Pro could act as a physical or 52 

chemical quencher. If Pro reacted with 
1
O2 producing O2

•–
 or [O–O]

2–
, Pro should not be regarded as an efficient 53 

non-enzymatic antioxidant in plants because its reaction with 
1
O2 yielded other types of ROS and, additionally, 54 

Pro would be rapidly depleted. However, if Pro could physically quench 
1
O2, it would not be consumed nor 55 

would it yield any additional ROS.  56 

Direct detection of the phosphorescence emission of 
1
O2 at 1270 nm is nowadays the only technique that allows 57 

researchers to establish unambiguously whether 
1
O2 is produced in their system under study or whether the 58 

presence of additional compounds can affect its phosphorescence quantum yield or temporal profile. Because the 59 

quantum yield of 
1
O2 emission in an aqueous or biological system is as low as 10

–6
–10

–7
 and its lifetime rather 60 

short, from few microseconds to few hundreds nanoseconds [10, 11], researchers engaged in 
1
O2 detection use 61 

indirect methods to monitor 
1
O2 production and quenching instead. In these latter cases, 

1
O2 production and 62 

quenching is followed by monitoring the accumulation of a new product that reacts with 
1
O2 or the consumption 63 

of molecular oxygen with spectrophotometric, spectrofluorometric, polarographic or EPR spin trapping 64 

techniques [7, 12-14]. The combination of direct and indirect methods can be useful for a better understanding of 65 

this issue, particularly when other ROS can come into play. 66 

In our attempt to elucidate the bimolecular rate constants for the quenching of 
1
O2 by Pro in neutral aqueous 67 

solutions, we reach the conclusion that Pro is, in fact, an inefficient 
1
O2 scavenger. 68 

2. Results and discussion 69 

2.1 Direct detection of 
1
O2 70 

The temporal profile of the phosphorescence emission by 
1
O2 at 1270 nm produced by riboflavin in the presence 71 

and absence of Pro under oxygen atmosphere is depicted in Figure 1. The observed kinetic traces were fit well to 72 

the biexponential function I(t) = a(k1−k2)
−1

[exp(−k2t) − exp(−k1t)], where a > 0, and the larger and smaller of the 73 

two rate constants determine the rise and decay of the emission signal respectively; here k1 is identified with the 74 

larger rate constant and vice versa. Before the analysis of the rate constants in 20 mM sodium phosphate pH 7.2 75 
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(NaPB), experiments with NaN3 or under a stream of N2 were performed to unambiguously correlate the origin 76 

of the kinetic traces with 
1
O2 emission (data not shown). The temporal profile of 

1
O2 emission showed that1 ≡ 77 

1/k1 = 0.7 µs. A value that agrees with the expected value under oxygen atmosphere [11], where the 78 

concentration of dissolved oxygen is found to be 3.2 times larger [15, 16]. The decay time constant 2 ≡ 1/k2 79 

was slightly larger in 20 mM NaPB (4.5 µs) than that previously determined in pure water (3.7 µs) [15]. When 80 

Pro was added up to a concentration of 150 mM, mimicking the average natural accumulation of Pro in aqueous 81 

compartments of plant cells in response to adverse environmental stresses, neither the intensity of the 
1
O2 82 

emission nor the rise and decay constants changed within experimental error (Figure 1), indicating that first Pro 83 

does not affect triplet-triplet energy transfer from riboflavin to molecular oxygen and second Pro does not 84 

efficiently deactivate 
1
O2. Similar conclusions were reached when lumiflavin or toluidine blue in 20 mM NaPB 85 

or ethanol were used as 
1
O2 photosensitizers instead of riboflavin (data not shown). 86 

2.2 Oxygen consumption 87 

The putative reaction of Pro with 
1
O2 was also investigated indirectly in a Clark-type electrode, keeping a nearly 88 

constant concentration of 
1
O2 while exciting methylene blue (MB) with a red light-emitting diode (LED) source. 89 

In this experiment, the formation and deactivation of 
1
O2 and, presumably, other types of ROS were investigated. 90 

Figure 2 shows that the addition of 100 mM Pro did not bring together any consumption of oxygen after the 91 

dark-to-light shift, indicating that 
1
O2 photosensitized by MB is simply deactivated by H2O molecules. In 92 

contrast, the addition of furfuryl alcohol (FFA)—a well-known chemical quencher of 
1
O2 [17]—at a 93 

concentration of 0.4 µM consumed oxygen with a rate of 2.0 µM·s
-1

. The rate of oxygen uptake by FFA 94 

decreased to 40% of its initial value when a physical quencher such as NaN3 at a concentration of 1 mM was 95 

present. In contrast, the combined addition of 100 mM Pro and 0.4 µM FFA did not affect the oxygen uptake by 96 

FFA, confirming that Pro is both an inefficient physical and chemical quencher of 
1
O2. Increasing the lifetime of 97 

1
O2 by replacing H2O by D2O (i.e., 20 mM potassium phosphate pD 7.2) did not enhance the quenching 98 

properties of Pro (data not shown). To establish unambiguously that the oxygen consumption observed in the 99 

Clark-type electrode was due to 
1
O2 photosensitization, but not to the production of O2

•–
 or H2O2, further 100 

experiments were performed in the presence of enzymatic antioxidants (i.e., superoxide dismutase, SOD, and 101 

catalase, CAT). Figure 2 shows that the addition of 500 U·mL
-1

 of SOD or CAT did not induce any change in the 102 

photoinduced rate of oxygen uptake, even when 100 mM Pro was present in the medium, indicating that Pro 103 

does not produce O2
•– or [O–O]

2–
 either. 104 

2.3 Deactivation by electronic-to-vibrational energy transfer 105 

The results presented above show that the encounter of Pro with 
1
O2 does not follow any process where an 106 

exciplex with partial charge transfer character becomes deactivated by intersystem crossing (physical quenching) 107 

or chemical reaction. To explore whether Pro could compete with H2O for the deactivation of 
1
O2 by electronic-108 

to-vibrational energy transfer, the energy of the highest frequency mode vibration of Pro was compared with that 109 

of H2O in liquid state. The water molecules in liquid state have stretch vibrations in the 3100–3600 cm
–1

 range 110 

and this vibration band has associated a rate constant for 
1
O2 deactivation of 2900 M

–1
·s

–1
 [10]. The highest 111 

frequency mode vibration (νNH) of Pro in water is 3057 cm
–1

 [18] and has a rate constant for 
1
O2 deactivation of 112 

1530 M
–1

·s
–1

 [10], approximately half of the value for the stretching of water. These values show that Pro 113 

cannot efficiently compete with H2O for 
1
O2 deactivation through electronic-to-vibrational energy transfer in 114 
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(cellular) aqueous media, based simply on the above values for the rate constants and the remarkable difference 115 

in concentration between the solute and the solvent. 116 

2.4 Effect of Pro on TEMPO accumulation  117 

The lines of evidence presented above prove that Pro cannot quench 
1
O2. To better understand why our results 118 

differed from those observed by Alia and co-workers (2001), 
1
O2 production by toluidine blue was followed by 119 

electron paramagnetic resonance (EPR) spectroscopy under continuous illumination of the sample in the EPR 120 

cavity. The oxidation product of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) grew continuously with the 121 

course of time in the absence of Pro; however, TEMPO accumulated slower in the first instance and turned down 122 

after several minutes in the presence of 25 mM Pro (Figure 3). Additionally, the bandwidth of the EPR signal 123 

became narrower. This suggests that Pro do not prevent the oxidation of 2,2,6,6-tetramethylpiperidine (TEMP) 124 

by 
1
O2, but the increase of TEMPO, indicating that the spin adduct with 

1
O2 undergoes a change. 125 

2.5 Possible role of Pro in plants under stress 126 

Pro accumulates in cytosol and chloroplast stroma [19]; where isoforms of the -1-pyrroline-5-carboxylate 127 

synthetase enzyme are localized [20]. Taking into account our results, together with the fact that Pro accumulates 128 

in aqueous compartments of cells, but not in thylakoid membranes, where 
1
O2 is constitutively produced by the 129 

photosystem II and largely damages lipids and membrane proteins under photoinhibition before diffusing into 130 

the surrounding medium, we propose that the Pro does not play any significant role in the scavenging of 
1
O2 in 131 

plants. Several studies have concluded that oxidative damage is lower when Pro accumulates in plants under 132 

stress [21], but this protective effect must then be related to the scavenging of other ROS, for example 
•
OH [6], 133 

but not 
1
O2. In addition, Pro can play other protective roles; it can act as a compatible osmolyte [22, 23] or the 134 

Pro synthesis and catabolism can play essential role in redox balance [24]. Probably, both Pro itself and Pro 135 

synthesis and catabolism play combined functions in the stress adaptation of plants. 136 

Conclusions 137 

In brief, we determine that Pro does not quench 
1
O2 either chemically or physically using methods that include 138 

the direct detection of the 
1
O2

 
emission, oxygen consumption in a Clark-type electrode or EPR spin trapping. 139 

Moreover, stretching vibrations of Pro do not exceed the water vibrations and so the presence of Pro in the 140 

medium does not increase the ability to quench 
1
O2 by electronic-to-vibrational energy transfer. On the basis of 141 

these facts, we conclude that Pro accumulation does not play any significant role in the scavenging of 
1
O2 in 142 

plants under stress and that other roles in osmoprotection, 
•
OH scavenging or contribution in redox homeostasis 143 

should be considered. 144 

 145 

3 Methods 146 

4.1 Time-Resolved 
1
O2 measurements 147 

Time-resolved emission of 
1
O2 at 1270 nm was studied in 20 mM NaPB under oxygen atmosphere at room 148 

temperature. Further details about the experimental setup have already been described in sufficient detail in 149 

Arellano et al. (2007) and Li et al. (2012). An absorbance of 0.9 at 445 nm for riboflavin was used to 150 

photosensitize 
1
O2 in the assay buffer. The concentration of Pro ranged from 0 to 150 mM. 151 

4.2 Oxygen Consumption 152 

Oxygen uptake by 
1
O2 scavengers was measured polarographically using a Chlorolab 2 system (Hansatech 153 

Instruments, England) at 20°C. Samples were buffered at pH 7.2 with 20 mM NaPB and contained MB with an 154 
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absorbance of 0.15 at 665 nm to photosensitize 
1
O2. When needed, 0.4 µM FFA or 500 U·mL

-1
 of SOD or CAT 155 

were added to scavenge 
1
O2, O2

•–
 or H2O2. All samples were incubated in the dark for 1 min before the red LED 156 

source was switched on. The light irradiance in the electrode chamber was 2 mE·m
-2

s
-1

.  157 

4.3 
1
O2 detection by spin trapping EPR  158 

A reaction mixture containing 1mM toluidine blue and 10 mM TEMP was continuously irradiated with a 50 W 159 

Tungsten lamp with an optical fiber connected to the cavity (0.3 mW·cm
-2

) and the EPR signal of TEMPO 160 

monitored at different intervals, in the absence or presence of 25 mM Pro. EPR measurements were done using a 161 

JEOL free radical monitor machine (JES-FR30) with a cylindrical cavity (TE011 mode) working in the 9.1–9.5 162 

GHz range. The receiver gain of the EPR instrument was 200, modulation width 0.2 mT and power 4 mW. 163 

Experiments were done at room temperature and in ethanol as a solvent. 164 
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Legends to figures 220 

Figure 1. Temporal profile of 
1
O2 phosphorescence in the presence and absence of Pro. 

1
O2 was 221 

photosensitized by riboflavin in 20 mM NaPB with no further additions (black traces) and 90 mM Pro (red 222 

traces) under oxygen atmosphere. The absorbance of riboflavin was 0.9 at 445 nm. The phosphorescence 223 

emission was measured at 1270 nm. The number of averaged scans was 128. The residuals are also shown for 224 

both experiments. 225 

Figure 2. Oxygen uptake in the Clark-type electrode chamber using MB as 
1
O2 photosensitizer, and Pro 226 

and FFA as 
1
O2 quenchers. Experiments were carried out in 20 mM NaPB. FFA at a concentration of 0.4 µM 227 

was present in all the experiments except when indicated. The absorbance of MB was 0.15 at 665 nm. S&C 228 

represents 500 U·mL
-1

 of SOD and CAT. Arrows with on and off indicate when the red LED source was turned 229 

on and off respectively. * SD = ± 0.06. 230 

Figure 3. Effect of Pro on TEMPO accumulation. The EPR signal was monitored in the absence of Pro (Black 231 

squares and solid line) and 25 mM Pro (red circles and dotted line). A reaction mixture containing 1mM 232 

toluidine blue and 10 mM TEMP was continuously irradiated with a 50 W Tungsten lamp with an optical fiber 233 
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connected to the cavity (0.3 mW·cm
-2

) and the EPR signal of TEMPO monitored at different intervals. The inset 234 

shows the normalized EPR signal in the presence and absence of Pro for the comparison of the EPR bandwidth. 235 

 236 
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