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Mild traumatic brain injury is associated
with effect of inflammation on structural
changes of default mode network in those
developing chronic pain
Xuan Niu1,2,3, Lijun Bai4*, Yingxiang Sun2, Yuan Wang2, Guanghui Bai5, Bo Yin6, Shan Wang4, Shuoqiu Gan2,4,
Xiaoyan Jia4 and Hongjuan Liu1*

Abstract

Background: Mild traumatic brain injury (mTBI) has a higher prevalence (more than 50%) of developing chronic
posttraumatic headache (CPTH) compared with moderate or severe TBI. However, the underlying neural mechanism
for CPTH remains unclear. This study aimed to investigate the inflammation level and cortical volume changes in
patients with acute PTH (APTH) and further examine their potential in identifying patients who finally developed
CPTH at follow-up.

Methods: Seventy-seven mTBI patients initially underwent neuropsychological measurements, 9-plex panel of
serum cytokines and MRI scans within 7 days post-injury (T-1) and 54 (70.1%) of patients completed the same
protocol at a 3-month follow-up (T-2). Forty-two matched healthy controls completed the same protocol at T-1
once.

Results: At baseline, mTBI patients with APTH presented significantly increased GM volume mainly in the right
dorsal anterior cingulate cortex (dACC) and dorsal posterior cingulate cortex (dPCC), of which the dPCC volume can
predict much worse impact of headache on patients’ lives by HIT-6 (β = 0.389, P = 0.007) in acute stage. Serum
levels of C-C motif chemokine ligand 2 (CCL2) were also elevated in these patients, and its effect on the impact of
headache on quality of life was partially mediated by the dPCC volume (mean [SE] indirect effect, 0.088 [0.0462],
95% CI, 0.01–0.164). Longitudinal analysis showed that the dACC and dPCC volumes as well as CCL2 levels had
persistently increased in patients developing CPTH 3months postinjury.

Conclusion: The findings suggested that structural remodelling of DMN brain regions were involved in the
progression from acute to chronic PTH following mTBI, which also mediated the effect of inflammation processes
on pain modulation.

Trial registration: ClinicalTrial.gov ID: NCT02868684; registered 16 August 2016.

Keywords: Mild traumatic brain injury, Posttraumatic headache, Voxel-based morphometry, Inflammation effect
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Introduction
Traumatic brain injury (TBI) is a major global public
health problem that affects 50 million people each year,
and it is estimated that about half the world’s population
will have one or more TBIs over their lifetime [1, 2].
The US Centers for Disease Control and Prevention
reports that mild TBI is experienced in 70%–90% of
TBI-related emergency department (ED) visits [3]. Post
posttraumatic headache (PTH) is a high prevalence of
disabling trauma- and pain-related disorder [4, 5], and
may developed into the chronic pain in patients with
TBI [1, 2]. Unexpectedly, mild TBI (mTBI) is identified
as one of the most vulnerable risk to develop chronic
PTH (CPTH) (prevalence rate: 72.7%–77.9%), compared
with much server cases (moderate or severe TBI, preva-
lence rate: 29.3%–34.9%) [6]. Our recent study found
that acute PTH (APTH) following mTBI led to the dis-
rupted functional connectivity between the periaqueduc-
tal grey (PAG) and default mode network (DMN). This
pain-related cognitive dysregulation may partially due to
the over-attention on brain injury-related symptom.
However, the underlying neurobiological basis and mod-
ulatory component remained unclear.
TBI can induce a multitude of inflammatory biomarkers

perpetuating the secondary injury to the brain [7, 8], which
upregulates central nerve system (CNS) excitability contrib-
uting to the generation and persistent of concomitant head-
ache [9–11]. Multiple pain disorders have altered grey
matter volume (GMV) within the pain matrix [12, 13]. Not-
ably, peripheral inflammatory cytokines/chemokines can
interact with multiple central pathways as a principal chan-
nel for inflammation-brain communication in the develop-
ment of pain states [14, 15]. Considering the potential
effect of trauma-induced systemic inflammation on brain
cell reaction [16, 17], we hypothesized that the inflamma-
tory cytokines level might lead to changes in pain percep-
tion via inflammation-brain mechanism [18, 19],
specifically by affecting cortical morphology alternations in
pain-related cognitive modulation following mTBI [20].
The present study investigated modifications of GM vol-

ume to identify those brain regions related to the emer-
gence and persistence of pain condition known as PTH
following mTBI, and contrasted patients without PTH, in
addition to healthy controls. This study was aimed to
examine whether GMV changes mediated the relationship
between inflammation and PTH in acute mTBI patients.
Longitudinally, we hypothesized that both inflammatory
response and brain morphological alterations contributed
to those mTBI patients who finally developed into CPTH.

Material and methods
Participants
Seventy-seven patients (45 male, ages of 34.7 ± 12.2
years, education level of 8.6 ± 3.8 years) with mTBI and

forty-two matched healthy controls (HC, 21 male, ages
of 35.3 ± 11.2 years, education level of 10.5 ± 5.2 years)
were recruited in the study (Clinical trial:
NCT02868684). All consecutive patients from the local
emergency department (ED) with non-contrast head CT
due to acute head trauma enrolled as the initial popula-
tion. Inclusion criteria for mild TBI were based on the
World Health Organization’s Collaborating Centre for
Neurotrauma Task Force [21]. Mild TBI patients were
excluded:1) history of a previous brain injury, preexisting
headache, neurological disease, long-standing psychiatric
condition, or concurrent substance or alcohol abuse, 2)
structural abnormality on conventional neuroimaging
(CT and MRI), 3) intubation and/or presence of a skull
fracture and administration of sedatives, 4) the manifest-
ation of mild TBI due to medications by other injuries
(e.g., systemic injuries, facial injuries, or spinal cord in-
jury), 5) other problems (e.g., psychological trauma, lan-
guage barrier, or coexisting medical conditions), 6)
caused by penetrating craniocerebral injury. Patients
with structural abnormality on conventional neuroimag-
ing and a premorbid condition, such as history of a pre-
vious brain injury, preexisting headache, neurological
disease, concurrent substance or alcohol abuse were ex-
cluded. MRI scanning for mTBI patients was originally
evaluated within 7 days post-injury (acute phase) and
follow-up at 3 month post-injury (chronic phase). Mea-
sures for patients were circulating markers of inflamma-
tion, clinical and neuropsychological assessments within
48 h of MRI scans.
MTBI patients were divided into two groups based on

the presence of PTH at the acute stage (within 7 days
post-injury): mTBI with and without acute posttraumatic
headache (APTH) according to the Third Edition of the
International Classification of Headache Disorders (ICH-
D-3) [22]. If the headache persists for longer than 3
months after head trauma, it is described as the chronic/
persistent PTH (CPTH/PPTH).
Healthy subjects carefully screened for history of

acute/chronic pain, neurological or psychiatric disorder,
were also recruited. Forty-two age-, sex- and education-
matched healthy volunteers completed an identical neu-
roimaging scan and assessments at a single time point as
a control group. The study was approved by the local
ethics committee in accordance with the Declaration of
Helsinki. Written informed consent was obtained from
all participants. (see online supplementary eMethods).

Serum biomarker collection and assay
Serum samples for both patients and controls were
collected in the morning around 7–8 am. Sample were
aliquoted and stored at − 80 °C until the time of assay
after collection and centrifugation. Serum cytokine levels
(pg/mL) were measured using reagents on a Luminex

Niu et al. The Journal of Headache and Pain          (2020) 21:135 Page 2 of 12



multiplex bead system (Luminex Austin, TX, USA). A
fluorescence detection laser optic system was used to
analyze binding of each individual protein on the micro-
sphere simultaneously, which permits multiplexed
analysis of several analytes in one sample. Intra- and
inter-assay coefficients of variation observed for Lumi-
nex quantification were less than 20% and 25%, respect-
ively. Samples with levels that were undetectable by the
assay were set to the value of 0.01 pg/mL. The criteria
for cytokines selection were mainly based on whether
it’s related to TBI or clinical symptoms such as PCS and
pain function [23, 24]. The cytokines included (i) the
archetypal pro-inflammatory cytokines: IL-1β, IL-6 and
IL-12, and the anti-inflammatory cytokines IL-4, IL-10;
(ii) chemokine (C-C motif) ligand 2 or monocyte chemo-
attractant protein-1(CCL2 or MCP-1) and member of
the CXC chemokine family (CXCL8) IL-8; (iii)
interferon-γ (IFN-γ); and (iv) tumor necrosis factor α
(TNF-α).

Clinical evaluations and pain symptom measurement
Clinical evaluations included post-injury days, duration
for both the posttraumatic amnesia (PTA) and loss of con-
sciousness (LOC). Intensity of pain symptoms were
assessed by the Visual Analogue Scale (VAS, range 0–10)
[25]. The Pain VAS confines to patient-report (PR) mea-
sures including pain subscales for the current headache
and current general pain as well as mean, best and worst
levels of general pain intensity experienced in the preced-
ing week. The VAS ranges from 0 to 10, with 0 meaning
“no pain at all” and 10 “the worst possible pain” and reli-
ably tested in previous reports [26, 27]. The impact of
headache on patients’ lives was also evaluated with the
Short-Form Headache Impact Test (HIT-6) [28, 29].

Neuropsychological assessment
A comprehensive neuropsychological assessments in-
cluded: i) Trail-Making Test Part A and Digit Symbol
coding score from the Wechsler Adult Intelligence Scale
III (WAIS-III) to examine cognitive information process-
ing speed; ii) Forward Digit Span and Backward Digit
Span from the WAIS-III to assess immediate auditory
span, working memory, and executive function; iii)
Verbal Fluency Test to assess verbal fluency including
language ability, semantic memory and executive func-
tion; iv) Depression severity was assessed using the Beck
Depression Inventory (BDI-II); v) Posttraumatic stress
disorder (PTSD) Checklist - Civilian Version (PCL-C);
vi) Fatigue Severity Scale, Insomnia Severity Index. In
addition, post concussive symptoms (PCS) were mea-
sured with the Rivermead Post-Concussion Symptom
Questionnaire (RPQ) [30] consisting of 16 items, which
was specifically developed to assess the severity of symp-
toms experienced after brain injury.

Image acquisition
The protocol for scanning included a non-contrast CT
scan for acute head injury. MRI scanning was conducted
on 3 T MRI scanner (GE 750) and included the T1-
weighted 3D BRAVO sequence, conventional T1- and
T2-weighted image, and susceptibility weighted imaging
(SWI) (see online supplementary eMethods).

MRI data processing
The T1-MRI images were processed using the Computa-
tional Anatomy Toolbox (CAT12) in Statistical Paramet-
ric Mapping 12 (SPM12; https://www.fil.ion.ucl.ac.uk/
spm/software/spm12/). Anatomical images were firstly
segmented into the gray matter, white matter, and cere-
brospinal fluid (CSF), spatially normalized into the Mon-
treal Neurological institute (MNI) template space, and
then smoothed with an isotropic Gaussian kernel of 8
mm full width at half maximum. Group differences on
GMV using the total intracranial volume, the white mat-
ter volume, age, and sex as covariants were performed
with a cluster forming (voxel-wise) threshold of uncor-
rected p < 0.001 and then corrected for multiple compar-
isons at the cluster level (p < 0.05, family-wise error
(FWE) rate correction). To explore the influence of de-
pression on GMV, we repeated the above analyses of
between-group differences after adding the BDI-II score
as covariate. Absolute threshold masking was set at 0.1
to avoid edge effects between gray and white matter.
Based on the previous studies of pain-related diseases
[31], we performed region of interest (ROI) analysis
within the pain matrix including the anterior and poster-
ior cingulate cortex, prefrontal cortex, insula, hippocam-
pus, middle and inferior temporal gyrus, and thalamus,
according to the Brodmann template using Slice Viewer
in REST V1.8.

Mediation analysis
To examine whether regional GMV could mediate the
effect of inflammation cytokines on pain symptom in
the acute PTH, a mediation analysis was performed
by using the PROCESS tool [32] as implemented in
SPSS v.21. Firstly, a stepwise regression model was
used to calculate the odd ratio of the serum bio-
marker for pain symptom measurements in mTBI pa-
tients. Secondly, based on the results of the stepwise
regression analysis, resulting serum biomarker was en-
tered as the independent variable, pain symptom mea-
surements as the dependent variable. The mean GM
volume for each region showing significant group dif-
ference was tested separately as the mediator variable
in the mediation analyses, and age, sex, education and
injury time as covariates of no interest .
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Longitudinal analysis in CPTH
Changes of the acute serum biomarker related to the
pain symptom were compared over time from acute to
3 months post-injury within each group (mTBI + CPTH
and mTBI – CPTH groups), using the general linear
model of repeated measure analysis of variance (RM-
ANOVA) respectively.

Statistical analysis
Statistical analysis was performed using the Statistical
Package SPSS version 20. The Shapiro-Wilk W test was
used to test for normality distribution of all continuous
variables. Logarithmic transformations were computed if
those variables that were not normally distributed (ie,
the inflammatory biomarkers). The independent two-
sample t-test and the Mann-Whitney test were used to
compare group differences based on data normality.
Chi-square analyses were applied to assess categorical
variables. Continuous variables were compared between
three groups using one-way analysis of variance
(ANOVA), Bonferroni’s post hoc test and Kruskal-
Wallis H Tests. P < 0.05 were considered to indicate a
significant difference. Between-group difference in both
acute and chronic post-injury GM volume abnormalities
was conducted using the general linear model in the
SPM12. Using a conjunction analysis [33], the different
subgroups of mTBI patients (with PTH and without
PTH) were compared to each other and to controls in
both acute and chronic phases respectively. Additionally,
the relationship between the GM volume for each iden-
tified ROI and pain measures were conducted using the
multivariate linear regression analysis after adjusting for
confounding covariates (age, sex, education and injury
time). For each model, pain symptom measurements (P-
VAS and HIT-6) were entered as dependent variables
and brain regions showing significant GMV group differ-
ence were entered as independent variables. This pro-
cedure was repeated for both initial and follow-up data,
and corrected for multiple comparisons using Bonferroni
correction.

Results
Demographic, clinical and neuropsychological measures
Demographic, behavioral and conventional MRI charac-
teristics of the mTBI subgroups (for both initial and
follow-up stages) and HC participants were summarized
in the Table 1. In the acute phase (2.39 ± 1.47 days,
range: 0–6 days), a seventy-seven patients were divided
into two subgroups: 1) mTBI + APTH, 60 individuals
with APTH after mTBI, 2) mTBI – APTH, 17 individ-
uals with mTBI without headache. Forty-two matched
healthy controls were recruited in the study. Fifty-four
patients (70.1%) from the original sample (mTBI +
CPTH: 15; mTBI – CPTH: 39) returned for their follow-

up visit at 3 months post-injury (111.4 ± 22 days, range:
93–198). At follow-up, there were significant difference
between groups in years of age and education. Post-hoc
analysis further showed mTBI + CPTH was significantly
older than that of mTBI – CPTH (p = 0.007) and HCs
(p = 0.046). The years of education in the mTBI + CPTH
was lower than that of HCs (p = 0.017). Twenty-three
patients were excluded for refusing or indefinitely post-
poning follow-up request. 25% of mTBI + APTH pa-
tients converted to persistent PTH known as CPTH
during a follow-up 3month post-injury.
In both acute and chronic stages, there were signifi-

cant differences among the three groups for pain ratings
and impact of pain on patients’ lives, such as 5-item sub-
scale of P-VAS scores and HIT-6 using Kruskal-Wallis
H Tests (p < 0.0001). Post-hoc analysis further showed
mTBI + APTH presented more pain complaints and
higher HIT-6 scores, compared with both mTBI –
APTH and HCs. Similarly, mTBI + CPTH also experi-
enced more pain complaints and higher HIT-6 scores
than that of the mTBI – CPTH and HCs. Additionally,
mTBI + APTH group reported more PCS complaints
than that of the mTBI – APTH group (p = 0.007). Add-
itionally, in comparison with the mTBI – CPTH group,
mTBI + CPTH group developed more PCS complaints
(p = 0.003). Other key clinical measurement of TBI se-
verity showed no between-group differences in patients
(Table 2).

Global tissue volume changes
For both initial and follow-up stages, there were no sig-
nificant differences in the total intracranial volume (p =
0.873; p = 0.825), gray matter volume (p = 0.283; p =
0.779), white matter volume (p = 0.067; p = 0.151), or
cerebrospinal fluid volume (p = 0.129; p = 0.799) among
these three groups (Table 1).

Regional GM volume abnormalities at acute post-injury
stage - effect of onset of PTH
For the ROI-based analysis, mTBI + APTH exhibited in-
creased GM volume in the right ventrolateral prefrontal
cortex/orbitofrontal cortex (VLPFC/OFC), dorsal anter-
ior cingulate cortex (dACC), dorsal posterior cingulate
cortex (dPCC), and bilateral parahippocampal gyrus
compared with both mTBI – APTH and HC groups
(Table 3 and Fig. 1). There was no significantly de-
creased GM volume of regions in the mTBI + APTH
groups. No other regions that fell outside a priori re-
gions of interest was detected.

Regional GM volume abnormalities at chronic post-injury
stage - effect of PTH progression
The increased GM volumes in the dACC and dPCC
were still persistent in the mTBI + CPTH, while there
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were also decreased GM volume in the right dorsolateral
prefrontal cortex/orbitofrontal cortex (DLPFC/OFC), in
comparison with both the mTBI – CPTH and HC
groups (Table 3 and Fig. 2). In addition, mTBI + CPTH

group also showed brain volume increase in the left pri-
mary motor cortex (M1) and cerebellum by using ex-
ploratory whole-brain analysis of GMV. The repeated
analyses with adding the BDI-II score as covariate at

Table 1 Demographic and clinical characteristic for acute/chronic mTBI subgroups and HC participants

HCs
n = 42

Acute phase P value* Chronic phase P value+

mTBI + APTH
n = 60

mTBI - APTH
n = 17

mTBI + CPTH
n = 15

mTBI - CPTH
n = 39

Demographic

Age in years 35.3 ± 11.2 37.47 ± 12.6 30.4 ± 12.8 0.109 44.1 ± 12.8 32.8 ± 12.2 0.009e

Males (%)C 21 (50%) 37 (61.7%) 8 (47%) 0.381 6 (40%) 24(61.6) 0.313

Years of education 10.5 ± 5.2 8.6 ± 4.0 9.0 ± 2.8 0.095 7.0 ± 4.8 9.2 ± 3.5 0.016f

Pain measurement

Present headache pain intensityK 0 4(1–10) 0 p < .0001a 2(1–4) 0 p < .0001g

HIT-6K 36 48(36–68) 36 p < .0001a 50(36–68) 36 p < .0001g

Present general pain intensityK 0 1(0–6) 0(0–4) p < .0001a 0(0–2) 0(0-1) p < .0001g

Average pain intensity 0 4(1–8) 0(0–4) p < .0001a 2(0–5) 0(0-4) p < .0001g

over the past weekK

Best pain intensityK 0 0(0–8) 0(0–2) p < .0001a 0(0–2) 0 p < .0001g

Worst pain intensityK 0 6(2–10) 0(0–6) p < .0001a 4(0–6) 0(0-6) p < .0001g

Neuropsychological ratings

PCL-CK 28A /23.5B 78.0 76.3 p < .0001b 81.7 62.6 p < .0001h

WAIS-III Coding 36.1 ± 15.8 33.7 ± 16.0 31.3 ± 13.8 p < .0001c 33.7 50.8 p = .126

Trail Making A (s) 46.7 ± 16.8 61.1 ± 49 43.4 ± 32.0 0.118 68.7 ± 59.4 38.6 ± 22.3 p = .021i

Forward Digit Span 45.9 ± 33.1 10.2 ± 9.4 8.5 ± 2.8 0.358 7.7 ± 1.7 8.7 ± 1.5 p = .137

Backward Digit Span 8.3 ± 1.5 4.2 ± 2.1 4.2 ± 1.7 0.693 4.1 ± 1.9 4.6 ± 1.5 p = .623

Verbal Fluency Test 4.5 ± 2 14.8 ± 5.9 15.0 ± 4.8 0.003b 17.3 ± 7.0 17.8 ± 5.4 p = .668

BDI-II 18.7 ± 6.4 5.2 ± 5.1 4.2 ± 4.5 p < .0001c 5.8 ± 3.9 4.4 ± 2.5 p < .0005j

FSSK 60.5A/48.5B 57.7 67.1 0.138 48.5 48.5 p = 1

ISI 1.6 ± 2.3 7.3 ± 5.8 4.3 ± 3.7 p < .001d 4.4 ± 4.3 2.9 ± 3.3 p = .008k

MRI characteristics

Total intracranial volume 1467.2 ± 149.4 1462.8 ± 141.4 1446.2 ± 119.1 0.873 1454.3 ± 153.9 1448.5 ± 115.1 0.825

Gray matter volume 631.7 ± 70.5 627.0 ± 64.9 602.4 ± 48.5 0.283 617.9 ± 49.9 627.0 ± 64.0 0.779

White matter volume 519.9 ± 66.9 508.5 ± 52.1 480.4 ± 57.8 0.067 505.9 ± 59.7 493.9 ± 51.1 0.151

Cerebrospinal fluid 314.8 ± 89.7 326.4 ± 106.2 374.5 ± 119.2 0.129 329.7 ± 94.3 327.0 ± 99.1 0.799

Mean ± standard deviation are reported. Sex is reported as frequencies. C Chi-square; K Kruskall Wallis (median (range) reported for pain measurement; mean ranks
reported for the other measurement); A Comparisons of mTBI + APTH, mTBI–APTH and HCs; B Comparisons of mTBI + CPTH, mTBI–CPTH and HCs
Abbreviations: HIT-6 Short Form Headache Impact Test, PCL-C PTSD Checklist – Civilian Version, WAIS Wechsler Adult Intelligence Scale – Third Edition, BDI-II the
Beck Depression Inventory- Second Edition, FSS Fatigue Severity Scale, ISI Insomnia Severity Index, mTBI + APTH mild traumatic brain injury and acute post-
traumatic headache, mTBI–APTH mild traumatic brain injury without acute post-traumatic headache, HCs healthy controls, mTBI + CPTH mild traumatic brain injury
and chronic post-traumatic headache, mTBI–CPTH mild traumatic brain injury without chronic post-traumatic headache
* For comparisons among acute mTBI subgroups and HC participants. + For comparisons among chronic mTBI subgroups and HC participants
amTBI + APTH > mTBI – APTH, HCs; p < .0001
bmTBI + APTH, mTBI – APTH > HCs; p < .005
cmTBI + APTH, mTBI – APTH < HCs; p < .005
dmTBI + APTH > HCs; p < .001
emTBI + CPTH > mTBI – CPTH, HCs; p < .05
fmTBI + CPTH < HCs; p < .05
gmTBI + CPTH > mTBI – CPTH, HCs; p < .0001
hmTBI + CPTH, mTBI – CPTH > HCs; p < .0001
imTBI + CPTH > mTBI – CPTH; p < .05
jmTBI + CPTH, mTBI – CPTH < HCs; p < .00005
kmTBI + CPTH > HCs; p < .05
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Table 2 Patients’s clinical data

Initial (acute phase) mTBI + APTH mTBI - APTH P (2-tailed)

Duration after onset of mTBI, day 2.42 ± 1.45 2.29 ± 1.57 0.65

Duration of LOC (min) 9.70 ± 8.94 10.76 ± 12.96 0.78

Duration of PTA (h) 0.28 ± 1.01 0.18 ± 0.53 0.86

PCS (RPQ-6) 10.37 ± 6.95 5.59 ± 3.18 0.007

Follow-up (chronic phase) mTBI + CPTH mTBI - CPTH P (2-tailed)

Duration after onset of mTBI, day 104 ± 12 114.1 ± 23.92 0.14

Duration of LOC (min) 7.9 ± 6.2 9.74 ± 10.2 0.433

Duration of PTA (h) 0.2 ± 0.56 0.15 ± 0.49 0.767

PCS (RPQ-6) 15 ± 7.09 8.13 ± 5.48 0.003

Mean ± standard deviation are reported. mTBI + APTH mild traumatic brain injury and acute post-traumatic headache, mTBI – APTH mild traumatic brain injury
without acute post-traumatic headache, mTBI + CPTH mild traumatic brain injury and chronic post-traumatic headache, mTBI –CPTH mild traumatic brain injury
without chronic post-traumatic headache, PCS Post concussive symptoms, RPQ Rivermead Post-Concussion Symptoms Questionnaire, LOC Loss of consciousness,
PTA Posttraumatic amnesia

Table 3 Regions showing significant GM volume changes at initial and follow-up among different subgroups of mTBI patients and
HCs

Comparisons Findings Cerebral regions Area (Brodmann area) Cluster
size

t Peak
coordinate

Voxels x y z

Initial GM volume abnormalities (acute phase)

mTBI + APTH
vs
Control groupsa

Increased GM
volume

L, R Parahippocampal
gyrus

Parahippocampal (BA
35)

54 4.38 20 −20 −2

R Anterior cingulate dACC (BA 32) 105 4.68 11 15 0

R Posterior cingulate dPCC (BA 31) 47 4.07 6 −24 45

R Inferior frontal gyrus VLPFC/OFC (BA 47, 10) 39 4.50 26 27 48

Follow-up GM volume abnormalities (chronic phase)

mTBI + CPTH vs Control
groupsb

Increased GM
volume

L Anterior cingulate dACC (BA 32) 64 4.54 −
11

12 41

L Posterior cingulate dPCC (BA 31) 78 4.47 −11 −
29

36

L Precentral gyrus M1 (BA 4) 53 4.20 −18 −32 69

L Temporal gyrus ITG (BA 20) 66 4.67 −59 −48 −15

L Cerebellar declive – 65 5.14 −45 −59 −27

mTBI + CPTH vs Control
groupsc

Decreased GM
volume

R Inferior frontal gyrus DLPFC/OFC (BA9,10) 53 4.92 9 59 33

Data were thresholded of P < 0.05 with FWE correction at the cluster level for multiple comparison. Peak coordinates refer to the MNI atlas
dACC dorsal anterior cingulate cortex, dPCC dorsal posterior cingulate cortex, VLPFC Ventrolateral prefrontal cortex, OFC Orbitofrontal cortex. M1 primary motor
cortex, ITG Inferior temporal gyrus, DLPFC Dorsolateral prefrontal cortex, mTBI + APTH Mild traumatic brain injury and acute post-traumatic headache, mTBI – APTH
Mild traumatic brain injury without acute post-traumatic headache, HCs Healthy controls. mTBI + CPTH mild traumatic brain injury and chronic post-traumatic
headache, mTBI – CPTH mild traumatic brain injury without chronic post-traumatic headache, FWE Family-wise error
aConjunction analysis of mTBI + APTH vs mTBI – CPTH and mTBI + APTH vs HCs corrected for age, sex, the white matter volume and total intracranial volume (p <
0.05, FWE corrected)
bConjunction analysis of mTBI + CPTH vs mTBI – CPTH and mTBI + CPTH vs HCs corrected for age, sex, the white matter volume and total intracranial volume (p <
0.05, FWE corrected)
cConjunction analysis of mTBI + CPTH vs mTBI – CPTH and mTBI – CPTH vs HCs corrected for age, sex, the white matter volume and total intracranial volume (p <
0.05, FWE corrected)
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Fig. 1 GM volume changes in mTBI + APTH. Areas showing GM volume changes in patients with mTBI + APTH, compared with HC and mTBI –
APTH groups (conjunction p < 0.05, FWE corrected), represented on a high-resolution T1-weighited template. Regions of increased GM volume
are represented in red (color-coded for their t value). dACC = dorsal anterior cingulate cortex, dPCC = dorsal posterior cingulate cortex, VLPFC =
ventrolateral prefrontal cortex, OFC = orbitofrontal cortex. mTBI + APTH =mild traumatic brain injury and acute post-traumatic headache, mTBI –
APTH =mild traumatic brain injury without acute post-traumatic headache, HCs = healthy controls

Fig. 2 GM volume changes in mTBI + CPTH. Areas showing GM volume changes in patients with mTBI + CPTH, compared with HC and mTBI –
CPTH groups (conjunction p < 0.05, FWE corrected), represented on a high-resolution T1-weighited template. Regions of increased GM volume
are represented in red (color-coded for their t value), and regions of decreased GM volume are shown in blue (color-coded for their t values).
dACC = dorsal anterior cingulate cortex, dPCC = dorsal posterior cingulate cortex, M1 = primary motor cortex, ITG = inferior temporal gyrus, DLPF
C = dorsolateral prefrontal cortex, OFC = orbitofrontal cortex. mTBI + CPTH =mild traumatic brain injury and chronic post-traumatic headache,
mTBI – CPTH =mild traumatic brain injury without chronic post-traumatic headache, HCs = healthy controls
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both acute and chronic post-injury stage yielded similar
results. Thus, the possible influence of depression level
on GM volume changes can be excluded.

Regression analysis
Further regression analysis was restricted within the
clusters showing significant between-group differences
in the GMV for both acute and 3-month follow-up
(Table 3). During the acute stage, higher levels of HIT-6
were significantly correlated with increased GM volume
in the right dACC (β = 0.333, p = 0.005) and dPCC (β =
0.459, p = 0.001) in the whole mTBI cohort, while still
significant in the right dPCC (β = 0.389, P = 0.007) in
mTBI + APTH group. There was no correlation between
GMV and pain symptom measured by P-VAS and HIT-
6 at follow-up stage. Further, Serum biomarker was used
to build a stepwise regression model with pain symptom
measurement. Only higher CCL2 level in the acute stage
was associated with greater severity of HIT-6 scores in
the whole mTBI cohort during the acute phase and se-
lected for further mediation analysis (p = 0.002, effect
size = 0.355) (Table 4). In addition, there were significant
differences among the three groups for acute CCL2 level
using one-way analysis of variance (ANOVA) (F (2,
116) = 3.165, p = 0.046). Post-hoc analysis further
showed that CCL2 was significantly elevated in mTBI +
APTH group, compared with mTBI–APTH group (p =
0.039). It indicated a nonstatistically significant trend of
increased CCL2 level in mTBI + APTH group, com-
pared with the HCs group (p = 0.052). There was no
significant difference in CCL2 level between the mTBI–
APTH and HCs group (p = 0.534).

Mediation analysis
We tested whether GM volume (i.e. increased GM re-
gions) mediates the association between CCL2 levels and

HIT-6 scores. The independent factor was CCL2 levels,
and dependent variable was headache impact severity in-
dicated by the HIT-6, with identified GM volume alter-
ations as mediators. Results indicated that increased
volume in the dPCC partially mediated CCL2 level on
HIT-6 scores (Fig.3, mean [SE] indirect effect, 0.088
[0.0462], 95% CI, 0.01–0.164) in acute mTBI patients.

Longitudinal analysis of CPTH
The CCL2 level significantly increased from acute stage
to 3 months post-injury only in the mTBI + CPTH
group (F (1, 14) = 6.53, p = 0.023), but not in the mTBI
– CPTH group (F (1, 38) = 3.23, p = 0.08) (Fig. 4). In
addition, increased GMV of the dPCC and dACC in
acute PTH also exhibited persistent increases in mTBI +
CPTH group, compared with both mTBI – CPTH and
HC groups.

Discussion
The major findings were increased inflammation levels
accompanied by increased GMV of the dPCC and dACC
in mTBI patients with APTH, relative to both the con-
trol groups (mTBI – APTH and HCs). The inflamma-
tion effect on the headache impact was partially
mediated by the GMV of dPCC. Longitudinally, greater
upregulation in the CCL2 level accompanied by consist-
ently increased GMV in the dPCC and dACC contrib-
uted to those patients who finally developed into the
CPTH.
The observed pattern of increased GMV differs from

some previous studies that commonly reported de-
creased GMV in pain-related disorders, partly due to the
fact that APTH patients experienced a traumatic expos-
ure that can lead to both physical and psychological re-
activity, and thus developed an adaptive anti-nociceptive
mechanism manifesting as regional hypertrophy in pain-

Table 4 Stepwise multiple regression analysis

Inflammatory
Level

Correlation
coefficient

T P Partial
correlation

Collinearity statistics

Tolerance VIF

CCL2a 0.355 3.283 0.002* 0.355 1.000 1.000

IL-1βb 0.015 0.139 0.890 0.016 1.000 1.000

IL-4b 0.010 0.093 0.927 0.011 0.999 1.001

IL-6b − 0.106 −0.981 0.330 − 0.113 0.994 1.006

IL-8b − 0.027 −0.185 0.854 − 0.022 0.542 1.843

IL-10b 0.025 0.229 0.819 0.027 0.991 1.009

IL-12b 0.017 0.156 0.876 0.018 1.000 1.000

IFN-γb 0.038 0.347 0.730 0.040 0.999 1.001

TNF-αb 0.032 0.291 0.772 0.034 1.000 1.000
aEntered variables
bExcluded variables
*p < .05
Outcome: HIT-6
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related areas [34]. Also, prior structural studies in PTH
were typically conducted on patients with chronic course
of headache, confirming that patients with persistent
PTH had significantly reduced grey matter volume
(GMV) or less cortical thickness [13, 35]. To our know-
ledge, it remained unknown that if brain morphologic
abnormality is associated with the acute onset of PTH.
Our findings indicated that acute brain trauma-related
headache (within 7 days) may shift the brain into a state
that fostered rapid defence mechanisms seen in in-
creased GMV. Interestingly, the increased GMV pattern
was found in regions primarily located in the default
mode network (DMN), including dACC, dPCC and
parahippocampal gyrus. Our previous study had found
disruption of periaqueductal grey-DMN functional con-
nectivity in APTH after mTBI. Thus, these findings

complement and extend existing literature by indicating
a potential structural basis for the disrupted functional
connectivity of the DMN involved in the antinociceptive
descending modulation network following mTBI [36].
Neuropsychological assessment showed that both the

mTBI + APTH and mTBI + CPTH groups reported
higher insomnia severity index (ISI) scores than HC
group, which support the notion that PTH has impacts
on sleep quality and can lead to poor recovery after
mTBI [37]. Correlation analysis further revealed that the
higher GMV in the right dACC and dPCC contributed
to the impact of PTH on the poorer quality of life. DMN
dysfunction has been reported to be involved in both
acute and chronic pain conditions, serving as a potential
biomarker for pain-related cognitive regulation (i.e., at-
tention impairment) [38, 39]. Importantly, our previous

Fig. 3 Mediation model. The relationship among CCL2 level, GMV of dPCC from conjunction analysis and HIT scores. Alteration of gray matter
volume in the dPCC mediates the relationship between CCL2 level and HIT scores in early mTBI patients. Covariates (age, sex, education, injury
time) were included in the model. Abbreviations: dPCC = dorsal posterior cingulate cortex; CCL2 = C-C motif chemokine ligand 2; HIT = short form
headache impact test

Fig. 4 CCL2 level changes at acute and chronic phase post-injury. The CCL2 level significantly increased between the acute and chronic phase
post-injury in the mTBI + CPTH group (*p < 0.05, repeated measures analysis of covariance [RM-ANCOVA]), but not in the mTBI – CPTH group
(p = 0.08, RM-ANCOVA). mTBI + CPTH =mild traumatic brain injury and chronic post-traumatic headache, mTBI – CPTH =mild traumatic brain
injury without chronic post-traumatic headache
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study have demonstrated that patients with APTH ex-
hibit more attentions on injury-related pain symptoms
[20]. In the current study, mTBI + CPTH group showed
worse information processing speed (IPS) performance
indicated by higher Trail Making A scores than mTBI –
CPTH group, accompanying with the persistent GM in-
crease in the dACC and dPCC, which can be engaged in
cognitive regulation [40]. These structural changes may
be coupled with alterations in the high-order brain areas
within the DMN in mTBI + APTH group [41], reflecting
the DMN dysfunction in pain cognitive modulation. It
also suggested that morphometric alterations can be an
appropriate parameter for monitoring PTH in the early
stage following mTBI.
The current study also provided some promising to

explore the cellular basis for such increased GMV. We
found that increased CCL2 level is an independent risk
for more headache impact on lives in patients with
mTBI. CCL2 is one of chemokines that increases rapidly
after various forms of experimental mTBI [42, 43], con-
tributing to secondary brain damage through attracting
monocytes to sites of injury and inflammation [44].
Moreover, mTBI-induced disruption of the blood-brain
barrier (BBB) [45] allows the passage of inflammatory
cells out of the injured brain, and initiates to an elevated
systemic immune response to the genesis of nociceptor
hypersensitivity post-TBI [11]. Of particular interest is
the finding of macroscopic GM hypertrophy in the
dPCC (a core region in the DMN), which is related to
the arousal, self-reference and breadth of attention [40],
can mediate the contribution of circulating inflammatory
biomarker (i.e. CCL2 level) on pain impact severity dur-
ing early stage after mTBI. This inflammation-brain
communication can be supported by the evidence that
astrocytes, which constitute 90% cortical tissue volume,
can be activated by proinflammatory cytokines released
in the early stage of inflammation and exhibit morpho-
logical changes (e.g. hypertrophy) [46, 47]. Thus, we
speculate that GM tissue cells can become hyper-
reactive by trauma-induced neuroinflammatory effect,
and then undergo plastic changes reflected by GMV in-
creases. Unfortunately, VBM-based analysis was limited
to determine the specific histopathology underlying GM
macrostructural changes. Further study still need to ex-
plore the neural mechanism underpinning the bi-
directional changes of GMV observed in the progression
of chronic PTH. Nevertheless, significant CCL2 rise over
time and GM volume increase in dPCC were found in
patients developing the CPTH, suggesting that the con-
sistently observed associations of inflammation on PTH
were at least partially attributable to their effect on
GMV alternations. Taken together, the current study
highlighted the role of the circulating CCL2 level in the
pathogenesis and progression of PTH [48–50], and

emphasized on the neuroinflammatory mechanism in
morphological alternations associated with pain modula-
tion in cognitive domain.

Conclusions
In the current study, we demonstrated that GMV alter-
ation can mediate the relationship between the inflam-
mation and pain dysfunction following early mTBI, and
such regional change was primarily located within key
DMN region (dPCC). Our finding also held the possibil-
ity that both the significant upregulation of CCL2 level
and persistent GMV increase (dACC and dPCC) only in
the patients with CPTH and can be served as potential
predictors and targets of response for therapeutic
method.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s10194-020-01201-7.

Additional file 1.

Abbreviations
dACC: Dorsal anterior cingulate cortex; dPCC: Dorsal posterior cingulate
cortex; VLPFC: Ventrolateral prefrontal cortex; OFC: Orbitofrontal cortex; mTBI
+ APTH: Mild traumatic brain injury and acute post-traumatic headache;
CCL2: C-C motif chemokine ligand 2; HIT: Short form headache impact test;
mTBI – APTH: Mild traumatic brain injury without acute post-traumatic head-
ache; HCs: Healthy controls; mTBI + CPTH: Mild traumatic brain injury and
chronic post-traumatic headache; mTBI – CPTH: Mild traumatic brain injury
without chronic post-traumatic headache

Acknowledgements
We thank all patients and healthy volunteers that participated in the study.

Authors’ contributions
XN, HL and LB designed the study and draft of the manuscript. GB, BY
performed the experiments. YS, YW, SW, SG and XJ analyzed the data. All
authors read and approved the final manuscript.

Funding
This research was supported by the National Natural Science Foundation of
China [Grant Numbers 81771914, 82071993]; Natural Science Foundation of
Zhejiang Province [Grant Number LY15H090016, LY19H180003,
LY16H180009] and Wenzhou Municipal Sci-Tech Bureau [Grant Number
Y20140577].

Availability of data and materials
The datasets generated during and/or analysed during the current study are
available from the corresponding author on reasonable request.

Ethics approval and consent to participate
The study was approved by the local ethics committee in accordance with
the Declaration of Helsinki. Written informed consent was obtained from all
participants.

Consent for publication
Not application.

Competing interests
The authors declare no potential conflicts of interest with respect to the
research, authorship, and/or publication of this article.

Niu et al. The Journal of Headache and Pain          (2020) 21:135 Page 10 of 12

https://doi.org/10.1186/s10194-020-01201-7
https://doi.org/10.1186/s10194-020-01201-7


Author details
1Department of Critical Care Medicine, The First Affiliated Hospital of Xi’an
Jiaotong University, Xi’an, China. 2Department of Medical Imaging, The First
Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China. 3Department of
Radiology, Washington University School of Medicine, St. Louis, MO 63110,
USA. 4The Key Laboratory of Biomedical Information Engineering, Ministry of
Education, Department of Biomedical Engineering, School of Life Science
and Technology, Xi’an Jiaotong University, Xi’an 710049, China. 5Department
of Radiology, The Second Affiliated Hospital and Yuying Children’s Hospital
of Wenzhou Medical University, Wenzhou, China. 6Department of
Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital
of Wenzhou Medical University, Wenzhou, China.

Received: 6 August 2020 Accepted: 10 November 2020

References
1. Taylor CA, Bell JM, Breiding MJ, Xu L (2017) Traumatic Brain Injury-Related

Emergency Department Visits, Hospitalizations, and Deaths - United States,
2007 and 2013. MMWR Surveil Summ 66(2017):1–16

2. Jiang JY, Gao GY, Feng JF, Mao Q, Chen LG, Yang XF et al (2019) Traumatic
brain injury in China. Lancet Neurol 18(2019):286–295

3. Styrke J, Stalnacke BM, Sojka P, Bjornstig U (2007) Traumatic brain injuries in
a well-defined population: epidemiological aspects and severity. J
Neurotrauma 24(2007):1425–1436

4. Beetar JT, Guilmette TJ, Sparadeo FR (1996) Sleep and pain complaints in
symptomatic traumatic brain injury and neurologic populations. Arch Phys
Med Rehabil 77(1996):1298–1302

5. Nordhaug LH, Hagen K, Vik A, Stovner LJ, Follestad T, Pedersen T et al
(2018) Headache following head injury: a population-based longitudinal
cohort study (HUNT). J Headache Pain 19(1):8

6. Nampiaparampil DE (2008) Prevalence of chronic pain after traumatic brain
injury: a systematic review. JAMA. 300(2008):711–719

7. Johnson VE, Stewart JE, Begbie FD, Trojanowski JQ, Smith DH, Stewart W
(2013) Inflammation and white matter degeneration persist for years after a
single traumatic brain injury. Brain. 136(2013):28–42

8. Simon DW, McGeachy MJ, Bayir H, Clark RS, Loane DJ, Kochanek PM (2017)
The far-reaching scope of neuroinflammation after traumatic brain injury.
Nat Rev Neurol 13(2017):171–191

9. Clausen F, Marklund N, Hillered L (2019) Acute inflammatory biomarker
responses to diffuse traumatic brain injury in the rat monitored by a novel
microdialysis technique. J Neurotrauma 36(2019):201–211

10. Mohamadpour M, Whitney K, Bergold PJ (2019) The importance of
therapeutic time window in the treatment of traumatic brain injury. Front
Neurosci 13(2019):07

11. Rowe RK, Ellis GI, Harrison JL, Bachstetter AD, Corder GF, Van Eldik LJ et al
(2016) Diffuse traumatic brain injury induces prolonged immune
dysregulation and potentiates hyperalgesia following a peripheral immune
challenge. Mol Pain 12(2016):1744806916647055

12. Obermann M, Nebel K, Schumann C, Holle D, Gizewski ER, Maschke M et al
(2009) Gray matter changes related to chronic posttraumatic headache.
Neurology. 73(2009):978–983

13. Chong CD, Berisha V, Chiang CC, Ross K, Schwedt TJ (2018) Less cortical
thickness in patients with persistent post-traumatic headache compared
with healthy controls: an MRI study. Headache. 58(2018):53–61

14. Schrepf A, Kaplan CM, Ichesco E, Larkin T, Harte SE, Harris RE, Murray AD
(2018) A multi-modal MRI study of the central response to inflammation in
rheumatoid arthritis. Nat Commun 9(2018):2243

15. Miyazawa Y, Takahashi Y, Watabe AM, Kato F (2018) Predominant
synaptic potentiation and activation in the right central amygdala are
independent of bilateral parabrachial activation in the hemilateral
trigeminal inflammatory pain model of rats. Mol Pain 14(2018):
1744806918807102

16. Witcher KG, Bray CE, Dziabis JE, McKim DB, Benner BN, Rowe RK et al (2018)
Traumatic brain injury-induced neuronal damage in the somatosensory
cortex causes formation of rod-shaped microglia that promote astrogliosis
and persistent neuroinflammation. Glia 66(2018):2719–2736

17. Smith C, Gentleman SM, Leclercq PD, Murray LS, Griffin WS, Graham DI,
Nicoll JA (2013) The neuroinflammatory response in humans after traumatic
brain injury. Neuropathol Appl Neurobiol 39(2013):654–666

18. Capuron L, Miller AH (2011) Immune system to brain signaling:
neuropsychopharmacological implications. Pharmacol Ther 130(2011):226–
238

19. Sankowski R, Mader S, Valdes-Ferrer SI (2015) Systemic inflammation and
the brain: novel roles of genetic, molecular, and environmental cues as
drivers of neurodegeneration. Front Cell Neurosci 9(2015):28

20. Niu X, Bai L (2019) Disruption of periaqueductal grey-default mode network
functional connectivity predicts persistent post-traumatic headache in mild
traumatic brain injury. J Neurol Neurosurg Psychiatry 90(2019):326–332

21. Holm L, Cassidy JD, Carroll LJ, Borg J (2005) Summary of the WHO
collaborating Centre for Neurotrauma Task Force on mild traumatic brain
injury. J Rehabil Med 37(2005):137–141

22. Headache Classification Committee of the International Headache Society
(IHS) (2013) The International Classification of Headache Disorders, 3rd
edition (beta version). Cephalalgia 33(2013):629–808

23. Rathbone AT, Tharmaradinam S, Jiang S, Rathbone MP, Kumbhare DA
(2015) A review of the neuro- and systemic inflammatory responses in post
concussion symptoms: introduction of the “post-inflammatory brain
syndrome” PIBS. Brain Behav Immun 46(2015):1–16

24. Miotla Zarebska J, Chanalaris A, Driscoll C, Burleigh A, Miller RE, Malfait AM
et al (2017) CCL2 and CCR2 regulate pain-related behaviour and early gene
expression in post-traumatic murine osteoarthritis but contribute little to
chondropathy. Osteoarthr Cartil 25(2017):406–412

25. Varndell W, Fry M, Elliott D (2017) A systematic review of observational pain
assessment instruments for use with nonverbal intubated critically ill adult
patients in the emergency department: an assessment of their suitability
and psychometric properties. J Clin Nurs 26(2017):7–32

26. Kwong WJ, Pathak DS (2007) Validation of the eleven-point pain scale in the
measurement of migraine headache pain. Cephalalgia 27(2007):336–342

27. Flaherty SA (1996) Pain measurement tools for clinical practice and research.
AANA J 64(1996):133–140

28. Shin HE, Park JW, Kim YI, Lee KS (2008) Headache Impact Test-6 (HIT-6)
scores for migraine patients: Their relation to disability as measured from a
headache diary. J Clin Neurol 4(2008):158–163

29. Nachit-Ouinekh F, Dartigues JF, Henry P, Becg JP, Chastan G, Lemaire N, El
Hasnaoui A (2005) Use of the headache impact test (HIT-6) in general
practice: relationship with quality of life and severity. Eur J Neurol 12(2005):
189–193

30. King NS, Crawford S, Wenden FJ, Moss NE, Wade DT (1995) The Rivermead
post concussion symptoms questionnaire: a measure of symptoms
commonly experienced after head injury and its reliability. J Neurol
242(1995):587–592

31. Martucci KT, Mackey SC (2018) Neuroimaging of pain: human evidence and
clinical relevance of central nervous system processes and modulation.
Anesthesiology. 128(2018):1241–1254

32. Hayes A (2013) Introduction to mediation, moderation, and conditional
process analysis. J Educ Meas 51(2013):335–337

33. Messina R, Rocca MA, Colombo B, Pagani E, Falini A, Goadsby PJ, Filippi M
(2018) Gray matter volume modifications in migraine: a cross-sectional and
longitudinal study. Neurology. 91(2018):e280–ee92

34. Teutsch S, Herken W, Bingel U, Schoell E, May A (2008) Changes in brain
gray matter due to repetitive painful stimulation. NeuroImage. 42(2008):
845–849

35. Burrowes SAB, Rhodes CS, Meeker TJ, Greenspan JD, Gullapalli RP,
Seminowicz DA (2019) Decreased grey matter volume in mTBI patients with
post-traumatic headache compared to headache-free mTBI patients and
healthy controls: a longitudinal MRI study. Brain Imaging Behav (2019).
https://doi.org/10.1007/s11682-019-00095-7

36. Strigo IA, Spadoni AD, Lohr J, Simmons AN (2014) Too hard to control:
compromised pain anticipation and modulation in mild traumatic brain
injury. Transl Psychiatry 4(2014):e340

37. Lavigne G, Khoury S, Chauny JM, Desautels A (2015) Pain and sleep in post-
concussion/mild traumatic brain injury. Pain. 2015(156):S75–S85

38. Alshelh Z, Marciszewski KK, Akhter R, Di Pietro F, Mills EP, Vickers ER et al
(2018) Disruption of default mode network dynamics in acute and chronic
pain states. NeuroImage Clinical 17(2018):222–231

39. Baliki MN, Geha PY, Apkarian AV, Chialvo DR (2008) Beyond feeling: chronic
pain hurts the brain, disrupting the default-mode network dynamics. J
Neurosci 28(2008):1398–1403

40. Leech R, Sharp DJ (2014) The role of the posterior cingulate cortex in
cognition and disease. Brain 137(2014):12–32

Niu et al. The Journal of Headache and Pain          (2020) 21:135 Page 11 of 12

https://doi.org/10.1007/s11682-019-00095-7


41. Zhou Y, Milham MP, Lui YW, Miles L, Reaume J, Sodickson DK et al (2012)
Default-mode network disruption in mild traumatic brain injury. Radiology.
265(2012):882–892

42. Truettner JS, Bramlett HM, Dietrich WD (2018) Hyperthermia and mild
traumatic brain injury: effects on inflammation and the cerebral vasculature.
J Neurotrauma 35(7):940–952

43. Febinger HY, Thomasy HE, Pavlova MN, Ringgold KM, Barf PR, George AM
et al (2015) Time-dependent effects of CX3CR1 in a mouse model of mild
traumatic brain injury. J Neuroinflammation 12(2015):154

44. Raghu H, Lepus CM, Wang Q, Wong HH, Lingampalli N, Oliviero F et al
(2017) CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment,
inflammation and cartilage destruction in osteoarthritis. Ann Rheum Dis
76(2017):914–922

45. Shetty AK, Mishra V, Kodali M, Hattiangady B (2014) Blood brain barrier
dysfunction and delayed neurological deficits in mild traumatic brain injury
induced by blast shock waves. Front Cell Neurosci 8(2014):232

46. Liberto CM, Albrecht PJ, Herx LM, Yong VW, Levison SW (2004) Pro-
regenerative properties of cytokine-activated astrocytes. J Neurochem
89(2004):1092–1100

47. Li T, Chen X, Zhang C, Zhang Y, Yao W (2019) An update on reactive
astrocytes in chronic pain. J Neuroinflammation 16(2019):140

48. Zhu X, Cao S, Zhu MD, Liu JQ, Chen JJ, Gao YJ (2014) Contribution of
chemokine CCL2/CCR2 signaling in the dorsal root ganglion and spinal
cord to the maintenance of neuropathic pain in a rat model of lumbar disc
herniation. J Pain 15(2014):516–526

49. Illias AM, Gist AC, Zhang H, Kosturakis AK, Dougherty PM (2018) Chemokine
CCL2 and its receptor CCR2 in the dorsal root ganglion contribute to
oxaliplatin-induced mechanical hypersensitivity. Pain. 159(2018):1308–1316

50. Miller RE, Tran PB, Das R, Ghoreishi-Haack N, Ren D, Miller RJ, Malfait AM
(2012) CCR2 chemokine receptor signaling mediates pain in experimental
osteoarthritis. Proc Natl Acad Sci U S A 109(2012):20602–20607

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Niu et al. The Journal of Headache and Pain          (2020) 21:135 Page 12 of 12


	Mild traumatic brain injury is associated with effect of inflammation on structural changes of default mode network in those developing chronic pain
	Authors

	Abstract
	Background
	Methods
	Results
	Conclusion
	Trial registration

	Introduction
	Material and methods
	Participants
	Serum biomarker collection and assay
	Clinical evaluations and pain symptom measurement
	Neuropsychological assessment
	Image acquisition
	MRI data processing
	Mediation analysis
	Longitudinal analysis in CPTH
	Statistical analysis

	Results
	Demographic, clinical and neuropsychological measures
	Global tissue volume changes
	Regional GM volume abnormalities at acute post-injury stage - effect of onset of PTH
	Regional GM volume abnormalities at chronic post-injury stage - effect of PTH progression
	Regression analysis
	Mediation analysis
	Longitudinal analysis of CPTH

	Discussion
	Conclusions
	Supplementary Information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

