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CTCF variants in 39 individuals with a variable
neurodevelopmental disorder broaden the mutational

and clinical spectrum
A full list of authors and affiliations appears at the end of the paper.

Purpose: Pathogenic variants in the chromatin organizer CTCF
were previously reported in seven individuals with a neurodevelop-
mental disorder (NDD).

Methods: Through international collaboration we collected data
from 39 subjects with variants in CTCF. We performed tran-
scriptome analysis on RNA from blood samples and utilized
Drosophila melanogaster to investigate the impact of Ctcf dosage
alteration on nervous system development and function.

Results: The individuals in our cohort carried 2 deletions, 8 likely
gene-disruptive, 2 splice-site, and 20 different missense variants,
most of them de novo. Two cases were familial. The associated
phenotype was of variable severity extending from mild develop-
mental delay or normal IQ to severe intellectual disability. Feeding
difficulties and behavioral abnormalities were common, and
variable other findings including growth restriction and cardiac

defects were observed. RNA-sequencing in five individuals
identified 3828 deregulated genes enriched for known NDD genes
and biological processes such as transcriptional regulation. Ctcf
dosage alteration in Drosophila resulted in impaired gross
neurological functioning and learning and memory deficits.

Conclusion: We significantly broaden the mutational and clinical
spectrum of CTCF-associated NDDs. Our data shed light onto the
functional role of CTCF by identifying deregulated genes and show
that Ctcf alterations result in nervous system defects in Drosophila.

Genetics in Medicine (2019) 21:2723–2733; https://doi.org/10.1038/s41436-
019-0585-z

Keywords: CTCF; neurodevelopmental disorders; Drosophila
melanogaster; intellectual disability; chromatin organization

INTRODUCTION
CCCTC-binding factor CTCF is one of the most important
chromatin organizers in vertebrates. It is crucial for
orchestrating the three-dimensional chromatin structure by
intra- and interchromosomal loop formation and by con-
tributing to the organization of topologically associated
domains.1,2 Additionally, it is involved in many chromatin
regulating processes, including gene regulation, blocking of
heterochromatin spreading, imprinting,3 and X-inactivation.4

CTCF is able to bind various DNA motifs with different
specific combinations of its 11 C2H2-type zinc fingers5 and
has over 30,000 binding sites in the human genome.6

In 2013 Gregor et al. identified a larger de novo deletion
(280 kb, 8 genes), two intragenic likely gene-disruptive (LGD)
variants (c.375dupT, p.(Val126Cysfs*14); c.1186dupA, p.
[Arg496Lysfs*13]) and one missense variant (c.1699C > T, p.
[Arg567Trp]) in CTCF in four individuals with variable
intellectual disability (ID), microcephaly, and growth retarda-
tion7 (mental retardation, autosomal dominant 21, MRD21,
MIM 615502). In three of these individuals RNA-sequencing

was performed, which revealed a broad deregulation of genes
involved in cellular response to extracellular stimuli.7 Since
that initial report, only a few other case studies on intragenic
pathogenic CTCF variants have been published. A de novo
frameshift variant was identified in a girl with developmental
delay, short stature, severe microcephaly, heart defects, and
various other anomalies,8 and very recently, two frameshifting
and the same missense variant as in Gregor et al.7 were
reported in three Chinese individuals with ID, feeding
difficulties, and microcephaly.9 Additionally, two larger
deletions of 1.1 and 1.6 Mb, respectively, encompassing
CTCF, were identified in individuals with developmental
delay and growth impairment.10 Further studies reported the
identification of CTCF variants in large cohorts with various
clinical indications but did not provide detailed clinical
information.11–13

We now report on 39 additional individuals with variants in
CTCF, further delineating the mutational and clinical
spectrum of CTCF-related neurodevelopmental disorders
(NDD). By RNA-sequencing we confirm a broad deregulation
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of genes in five affected individuals. By utilizing Drosophila
melanogaster we could demonstrate that Ctcf is crucial for
learning and memory in a dosage-sensitive manner, thus
confirming loss of function or haploinsufficiency as the
driving force in CTCF-related NDDs.

MATERIALS AND METHODS
Patients and patient material
Personal communication with colleagues following the initial
report,7 searching the DECIPHER database,14,15 and using
GeneMatcher16 enabled us to collect clinical and mutational
details on 39 individuals with variants in CTCF. Testing (for
individual methods see Table S1) in collaborating centers was
performed either in the setting of routine diagnostic testing
without the requirement for institutional ethics approval or
within research settings approved by the ethical review board
of the respective institutions (University Erlangen-Nurem-
berg, University of Tartu, UZ Leuven, Northern Ostrobothnia
Hospital District, Cambridge South REC, Republic of Ireland
REC; see also Table S1). Informed consent for publication of
patient photos and for testing and for publication of
mutational and clinical data was obtained from the indivi-
duals, or their parents or legal guardians. RNA from blood
lymphocytes was collected with the PAXgene system (Pre-
AnalytiX, BD and Qiagen, Hombrechtikon, Switzerland) from
three individuals with missense variants and two individuals
with LGD variants plus from two individuals with unclear
splice-site or nonsense variants. RNA samples from four
healthy female and four healthy male young adults were used
as controls.
Structural analysis for selected variants was performed as

described in the Supplementary Methods.

Transcriptome analysis
Quality control of RNA samples was performed using a
Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA). Library
preparation was performed using the TruSeq Stranded mRNA
LT Sample Prep Kit (Illumina, San Diego, CA, USA).
Libraries were subjected to single-end sequencing (101 bp)

on a HighSeq-2500 platform (Illumina). The obtained reads
were converted to .fastq format and demultiplexed using
bcl2fastq v2.17.1.14. Quality filtering was performed using
cutadapt v. 1.15;17 then reads were mapped against the human
reference genome (Ensembl GRCh37, release 87) using the
STAR aligner v. 2.5.4a,18 and a STAR genome directory
created by supplying the Ensembl gtf annotation file (release
87). Read counts per gene were obtained using featureCounts
program v. 1.6.119 and the Ensembl gtf annotation file.
Subsequent analyses were performed using R version 3.5.0.20

In particular, differential expression analysis was performed
with the DESeq2 package v.1.20.0.21 Additionally, the lfc
shrink function of the apeglm package was used to control for
expression changes in lowly expressed genes.22 Gene lists were
filtered for protein coding genes with a base mean count of at
least 10. Differentially expressed (DE) genes were identified by
filtering for padj ≤0.01. DE genes with a log2foldchange >0 or

<0 were considered as “upregulated” and “downregulated,”
respectively. Enrichment of GO Terms among DE genes was
analyzed utilizing the PANTHER version 14.023 enrichment
analysis tool on the Gene Ontology24,25 homepage with the
following settings: test: “Fisher’s Exact”; correction: “Calculate
false discovery rate”; and GO-Slim terms as annotation data
set. A list of all expressed genes within controls and the
affected individuals was used as background.

Immunofluorescence and fractionation
Immunofluorescence and fractionation to assess subcellular
localization of CTCF are described in detail in the
Supplementary Material and Methods.

Fly lines and conditions
Flies were kept on standard food containing cornmeal, sugar,
yeast, and agar. Tissue-specific knockdown or overexpression
was attained with the UAS/GAL4 system.26 Crosses were
carried out at 28 °C to induce knockdown and at 25 °C to
induce overexpression (and knockdown for the courtship
conditioning assay). The Ctcf-RNAi line (VDRC 108857/KK)
and the respective control (VDRC 60100) were obtained from
the Vienna Drosophila Resource Center (VDRC, Vienna,
Austria),27 as well as the control (VDRC 60000) used for the
hypomorphic Ctcf mutant line (BL 21162). This line and the
GAL4-driver stocks (BL 4414, actin-GAL4 for ubiquitous
expression; BL 8816, D42-GAL4 for motoneurons; BL 8184,
DJ757-GAL4 expressed in muscle; BL 7415, repo-GAL4
expressed in glia; BL 8765, elav-GAL4/Cyo expressed pan-
neuronal) and the control line for UAS-Ctcf (BL 24749) were
obtained from the Bloomington Drosophila Stock Center
(BDSC, Bloomington, IN, USA). The Ctcf mutant line was
isogenized by backcrossing it with vdrc 60000 for at least 7
generations. UAS-Ctcf was obtained from the Zurich
ORFeome Project (FlyORF, Zurich, Switzerland).28 The driver
lines for class IV dendritic arborization (da) neurons (UAS-
Dcr-2;477-GAL4,UAS-mCD8::GFP;ppk-GAL4/Tm3sb),
mushroom body (UAS-Dcr-2;247-GAL4), and pan-neuronal
expression (elav-GAL4;elav-GAL4) were assembled from
colleagues. We confirmed Ctcf knockdown and overexpres-
sion by quantitative reverse transcription polymerase chain
reaction (RT-PCR) (Fig. S1).

Analyses of larval neuromuscular junctions and dendritic
arborization neurons
Analysis of type 1b neuromuscular junctions (NMJs) of larval
muscle 4 as well as analysis of dendritic arborization (da)
neurons were performed as described previously29 (for
detailed description, see Supplementary Methods).

Bang sensitivity and climbing assay
Climbing behavior and bang sensitivity testing was performed
as described elsewhere29 and as in more detail in the
Supplementary Methods upon pan-neuronal (elav-GAL4),
motoneuronal (D42-GAL4), and/or glial (repo-GAL4)
manipulation.
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Courtship conditioning paradigm
The courtship conditioning paradigm assays were performed
as described previously29 with the mutant Ctcf line and upon
mushroom body (UAS-Dcr-2;247-GAL4) specific knockdown
or overexpression of Ctcf. Flies were kept at 25 °C and 70%
humidity at a 12:12 light–dark cycle. Virgin males were
trained individually by pairing them with premated females.
Learning and short-term memory were tested immediately or
1 hour after a training period of 1 hour, respectively. Long-
term memory was tested 24 hours after a training period of
14 hours. The courtship index (CI), the percentage of time
each male spent courting a nonreceptive female, was manually
assessed from 10-minute movies. By comparing the CI of
naïve and trained males a learning index was calculated: LI=
(CInaive − CItrained) / CInaive. Differences between LIs of
control and mutant flies were statistically compared by a
randomization test with 10,000 bootstrap replicates with a
custom R script.30

RESULTS
Mutational spectrum encompasses large deletions, likely
gene-disruptive, and missense variants
The identified aberrations in CTCF include two large
deletions in 16q22.1, encompassing CTCF plus 26 (arr
[GRCh37] 16q22.1[67588276_68173459]×1) or 43 (arr
[GRCh37] 16q22.1[67345851_68899546]×1) neighboring
genes, respectively. In addition, we identified six frameshifting
variants (including a deletion of exon 8); two nonsense
variants; two variants in the splice acceptor site of exon 4, for
one of which in-frame deletion of exon 4 was demonstrated
(Fig. S2a,b); and 20 different missense variants (Fig. 1,
Table S1). Regarding the latter, seven amino acid residues
were recurrently affected: p.Arg342 was twice exchanged to
Cys and to His in three individuals from one family; p.Arg368
was altered twice to Cys and once to His; p.His373 once to
Asp and once to Pro; and p.(Arg377His), p.(Pro378Leu), and
p.(Arg448Gln) were observed twice, respectively (Fig. 1,
Table S1). p.(Arg567Trp) has been reported in two indivi-
duals previously.7,9 All missense variants were located in
exons encoding one of the 11 zinc fingers. Of note, the
majority (6/8) of LGD variants were located in exons 3 and 4,
just upstream of or at the start of the zinc finger domains.
Most variants were shown to be de novo. In six cases one or
both parents were not available for testing, and two cases were
familial with the variant being transmitted from a presumably
healthy mother to her affected son or from an affected father
to his twin children. In the first family, the nonsense variant p.
(Arg654*) was located rather C-terminal, therefore we
confirmed nonsense-mediated messenger RNA (mRNA)
decay by RT-PCR (Fig. S2c). Language barrier prevented a
proper evaluation of the mother’s cognitive capabilities, and
though not indicated by the read distribution in DNA from
blood, a tissue-specific mosaicism in her could not be
excluded. In the second family, structural analysis of the p.
(Arg342His) variant indicated a negative effect on CTCF
stability, mildly weaker compared with the p.(Arg342Cys)

variant observed de novo in two individuals (Fig. S3a–c). One
missense variant was mosaic with an alternative allele
frequency of approximately 13%. Apart from the previously
published p.(Arg567Trp) variant, all missense variants were
novel, affected highly conserved amino acids, and were
predicted to be deleterious by several in vitro prediction
programs (Table S1). The p.(Arg368His) variant occurred
once in gnomAD, while all other variants were absent. Several
residues of identified missense variants, i.e., p.(Arg278Leu), p.
(Asp529Asn), p.(Arg567Trp), carried one other amino acid
exchange in gnomAD (Table S1). Comparing the recurrent
pathogenic variant p.(Arg567Trp) with p.(Arg567Gln) from
gnomAD by structural modeling indicated an only mild
impairment of polar interaction with the phosphate backbone
of the DNA for the Arg567Gln variant, while the Arg567Trp
variant resulted in a significantly reduced binding affinity
(Fig. S3d–f).
According to the guidelines of the American College of

Medical Genetics and Genomics (ACMG), variants in 36
individuals were considered as pathogenic or likely patho-
genic, while three variants (p.[Arg278Leu], p.[Ser360Arg], p.
[Asp529Asn]) remained of unknown significance due to an
atypical phenotype or lack of segregation testing (Table S1).
While structural modeling for the p.(Asp529Asn) variant
indicated that it might be tolerated without significantly
affecting the CTCF structure (Fig. S3d), it suggested a
decreased DNA-binding affinity for the p.(Arg278Leu)
variant (Fig. S3g–h) and impaired DNA base pair recognition
for the p.(Ser360Arg) variant (Fig. S3i–k).

Clinical spectrum is highly variable
All but one (due to young age) of the 36 affected individuals
with intragenic CTCF aberrations classified as pathogenic or
likely pathogenic presented with developmental delay and/or
ID. Cognitive impairment was extremely variable, ranging
from learning difficulties, normal IQ, and attending main-
stream school or graduating from college in seven individuals
to severe ID in three individuals. Walking age ranged from
12 months to three years, and age of first words from
12–18 months to lack of speech at age 12 years. Older
individuals with active speech usually spoke in sentences.
Intrauterine growth restriction or low birth measurements
were reported in ten individuals, and failure to thrive or
feeding difficulties, often requiring tube feeding, occurred in
23 individuals. Postnatal short stature was noted in 6 and
(borderline) microcephaly in 12 individuals. Tall stature and/
or obesity were observed in three individuals. Behavioral
anomalies such as autistic features, attention deficit and
hyperactivity or aggressivity were common and reported in 24
individuals. Cardiac defects occurred in 11 individuals, and
palatal anomalies such as cleft palate or high palate were
present in 12 individuals. Conductive and/or sensorineuronal
hearing loss were reported in 10 and vision anomalies in 15
individuals. Recurrent urinary tract, airway, or middle ear
infections were reported in 14 individuals. Febrile or
nonfebrile seizures or teeth anomalies occurred in four
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individuals, respectively. Furthermore, nonspecific magnetic
resonance image (MRI) anomalies and minor skeletal
anomalies were reported (Table 1, Table S1). Minor facial
dysmorphisms were frequently noted but did not point to a
recognizable, typical facial gestalt (Fig. 2, Table S1). Indivi-
duals 1 and 2 with larger deletions presented with a similar
phenotype with mild to moderate ID and without growth and
other major abnormalities (Table S1). Individual 1 carrying
the 1.5-Mb deletion is at high risk of developing gastric cancer
because CDH1 maps within the deleted fragment. No obvious
genotype–phenotype correlations between LGD and missense

variants or between intragenic variants and larger deletions
could be delineated (Table 1).

Individuals 38 and 39 with variants of unknown signifi-
cance due to lack of parental samples also presented with
similar phenotypes, while in contrast, individual 37 with an
unclear de novo variant did not show any developmental
delay or cognitive impairment, but showed immune defi-
ciency. Although recurrent infections are common in
individuals with CTCF variants, it remains unclear if the
severe proneness to infections in individual 37 might be
caused by the CTCF variant alone.
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Fig. 1 Variants identified in CTCF. a Schematic drawing of the CTCF gene with known and novel variants. Noncoding exons are displayed in light gray,
coding exons in medium gray, and exons encoding zinc fingers in dark gray. b Schematic drawing of the CTCF protein. Missense or in-frame variants are
displayed above and likely gene-disruptive variants below the scheme. Nonbold variants and p.(Arg567Trp) were published previously with or *without
clinical details.7–9, 11–13 Underlined variants are recurrent. All identified pathogenic or likely pathogenic in-frame or missense variants affect one of the 11
zinc finger domains.
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Missense variants in CTCF do not affect its subcellular
localization
To investigate a possible effect of missense variants on the
subcellular localization and DNA-binding capacities of
CTCF, we performed immunofluorescence upon over-
expression of eight different mutant CTCF constructs in
HeLa cells, respectively. All tested variants resulted in a
nuclear localization with traces of protein in the cytosol,
thus closely resembling wild-type CTCF and indicating
that missense variants do not alter gross subcellular
localization or distribution (Fig. S4a). Fractionating lym-
phoblastoid cell lines from two affected individuals into
subcellular compartments did not indicate differences in the
distribution of mutant CTCF compared with a healthy control
(Fig. S4b).

Transcriptome analysis reveals a broad deregulation of
genes
RNA-sequencing on RNA from blood cells of five individuals
with pathogenic CTCF variants and eight healthy controls
confirmed similarly decreased CTCF expression for the two
LGD variants (log2 fold changes=−0.94 and −1.07,
respectively), indicating nonsense-mediated mRNA decay as
previously confirmed for two other frameshifting variants.7 In
accordance with previous findings,7 at least two of the three
individuals with missense variants had only mildly decreased
CTCF levels compared with controls (log2 fold changes
p.[Arg368Cys]: −0.83; p.[Arg342Cys]: −0.02; p.[Glu336Gln]:

−0.2) (Table S2). Affected individuals clustered with each
other as did controls regarding differentially expressed genes
(Fig. 3a).
There were 3828 genes that were differentially expressed

between affected individuals and controls; 1667 were
upregulated and 2161 were downregulated (Table S2).
Regarding differentially expressed genes, affected individuals
behaved more similarly within their mutational group (likely
gene-disruptive variants vs. missense variants) (Fig. 3a).
Nevertheless, we found significant overlap between differen-
tially expressed genes in the two individuals with LGD
variants and the three individuals with missense variants (p <
1 × 10−16, hypergeometric test), indicating similar conse-
quences of various types of pathogenic variants on gene
regulation.
To investigate the role of differentially expressed genes in

neurodevelopmental function and dysfunction, we calculated
enrichment of known NDD-associated genes (SysID, status
November 2018, Table S2) among the deregulated genes. This
was significant for both the upregulated and the down-
regulated genes (p= 4.13 × 10−4 and 2.2 × 10−16, respectively,
chi-square test).
Downregulated genes were enriched for Gene Ontology

(GO) terms such as transcription-related processes and
regulation of biological processes (Fig. 3b, Table S2).
Upregulated genes were enriched for translational processes
and ribonucleoprotein and ribosomal processes (Fig. 3c,
Table S2).

Table 1 Main clinical features in individuals with pathogenic or likely pathogenic variants in CTCF

LGD variants

n= 8

Missense/in-frame variants

n= 26

Published variantsa

n= 7

Total intragenic Large deletionsb

n= 5

IUGR/SGA 2/8 8/25 5/7 37% 0/5

Feeding difficulties/FTT 6/8 17/23 7/7 78% 3/5

Short stature 1/8 5/25 5/7 27% 2–3/5c

Microcephaly 3/7 7–9/22 7/7 52% 2–3/5c

Walking age 14–32 months 12–36 months 14 months to >3.5 years 23 months to >4.2 years

Age first words 12 months–4 years 12 mo—no speech 12 months to >3.5 years 18 months to >4.2 years

Unspecified DD/ID 0/8 7/25 1/7 20% 0/5

Mild/borderline DD/ID 5/8 9/25 3/7 42% 2/5

Moderate ID 3/8 6/25 1/7 25% 3/5

Severe ID 0/8 3/25 2/7 12% 0/5

Behavioral anomalies 5/6 19/23 4/7 77% 4/5

Seizures 1/8 3/23 0/7 10% 1/5

Cardiac defects 2/6 9/23 3/7 38% 0/5

Palatal anomalies 3/8 9/23 2/7 36% 0/5

Hearing loss 0/8 10/23 0/7 26% 1/5

Vision anomalies 6/8 9/19 6/7 61% 3/5

Recurrent infections 2/7 12/23 3/7 45% 1/5
DD developmental delay, FTT failure to thrive, ID intellectual disability, IUGR intrauterine growth restriction, LGD likely gene-disruptive, SGA small for gestational age.
aSee refs. 7–9.
bTwo patients from this study plus three published ones.7–10
cOne patient was treated with growth hormones.
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Ctcf dosage alterations in Drosophila melanogaster impair
gross neurological functioning and complex learning and
memory behavior
Given that CTCF haploinsufficiency leads to disease, we
utilized Drosophila melanogaster as a model organism to
investigate the consequences of altered Ctcf dosage on nervous
system development and function. First, we investigated
whether altered levels of Ctcf resulted in altered development
and morphology of larval neuromuscular junctions (NMJs).
These large synapses represent an established model system
for vertebrate glutamatergic synapses.31 We did not observe
any significant or consistent alterations regarding NMJ area,
length, or number of synaptic boutons or active zones in the
mutant, or upon pan-neuronal knockdown or overexpression
(Fig. S5a–c). As a significant decrease of dendritic branching
has been reported in a conditional Ctcf knockout mouse,32 we
examined the large dendritic arborization (da) neurons in
Drosophila larvae. We did not observe any significant
alterations regarding number or length of dendrites upon
knockdown of Ctcf in these neurons compared with controls,

while overexpressing Ctcf resulted in a mild increase in total
length (Fig. S6). Also testing for bang sensitivity, a model for
seizure susceptibility,33 did not result in aberrant phenotypes
upon pan-neuronal knockdown or overexpression or in the
mutant condition (Fig. S5d–f).

The impact of Ctcf dosage alteration on gross neurological
function was addressed with the climbing assay, which is
based on the negative geotaxis, an innate behavior to climb up
after being tapped down.34 Flies with knockdown of Ctcf in all
neurons or specifically in motoneurons showed a significant
impairment in their climbing abilities while it was not altered
in flies with glial knockdown. Pan-neuronal overexpression of
Ctcf did not result in impaired climbing behavior, but
overexpression in motoneurons or particularly in glia cells did
(Fig. 4a, c).
Finally, we tested the consequences of Ctcf dosage

alterations on complex learning and memory processes
utilizing the courtship condition paradigm.35 Ubiquitous
low levels of Ctcf in the hypomorphic mutant as well as
knockdown of Ctcf specifically in the mushroom body, the fly

l4 l5 l8 l13

l17l15l11l9

l18 l23 l24 l27 l28 l29

l31 l33 l34 l35

Fig. 2 Facial gestalt of individuals with pathogenic variants in CTCF. Note minor facial dysmorphism such as a long face (e.g., I5, I8, I11, I27), a
prominent forehead (e.g., I4, I8, I18, I33, I35) or a bulbous nasal tip and long palpebral fissures in several individuals, but no overall distinct, recognizable
facial gestalt.
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center for learning and memory, resulted in significantly
impaired learning and short-term memory compared with the
respective controls. Overexpression of Ctcf in the mushroom
body did not result in significantly altered learning and short-
term memory, but in significantly reduced long-term memory
(Fig. 4d–f), indicating a crucial role of correct Ctcf dosage for
complex learning and memory processes.

DISCUSSION
By assembling data on additional 36 individuals with
pathogenic or likely pathogenic variants in CTCF we
considerably contribute to the delineation of the mutational
and clinical spectrum of CTCF-associated NDDs. The
phenotype associated with CTCF aberrations is highly
variable. All individuals presented with developmental delay
and/or a variable degree of learning or cognitive difficulties,
extending into (low) normal IQ ranges. The mild end of the
phenotypic spectrum is reflected by two familial cases in our
cohort. As also true for other, potentially mild NDDs,
autosomal dominant inheritance has to be considered,
particularly in trio exome approaches when primarily
searching for de novo variants. Our observations might also
imply that due to a possibly very mild phenotype or
incomplete penetrance, very rare presence of a variant in

public databases such as ExAC or gnomAD is not necessarily
an exclusion criterion for its pathogenicity.
Feeding anomalies and failure to thrive, as well as

behavioral anomalies, were the most frequently associated
symptoms. In addition, postnatal short stature and micro-
cephaly, as well as a whole range of different birth
malformations and anomalies, including cardiac defects, cleft
palate, hearing loss, vision anomalies, recurrent infections,
and muscular hypotonia were noted. Despite this wide range
of anomalies and despite noticing minor facial dysmorphism
in many of the affected individuals, we consider the
phenotype not sufficiently distinct as to be clinically
recognizable.
Previous studies have pointed to haploinsufficiency of

CTCF as the main disease-causing mechanism.7,8,10 An earlier
hypothesis suggested a possible genotype–phenotype correla-
tion between missense and LGD variants but was based on a
very small number of affected individuals.7 Our extensive
follow-up study does not indicate any clear correlation
between nature and location of variants and clinical
presentation. Furthermore, differentially expressed genes
significantly overlapped between individuals with either
missense or LGD variants, and we did not observe effects
on gene regulation or gross subcellular localization, though
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subtle changes would still be possible. Both the previous and
all newly identified missense variants are located within
several of the 11 zinc finger domains, most likely resulting in
loss of function by impaired DNA binding, as also indicated
by structural modeling for several variants. Of note, the
neurodevelopmental phenotype in individuals with larger
deletions encompassing CTCF is not markedly different or
more severe than in individuals with intragenic missense or
LGD variants. This indicates that no other dosage-sensitive
genes relevant for neurodevelopment are located nearby and
further implies (functional) haploinsufficiency of CTCF
resulting from all kinds of pathogenic variants as the most
likely disease mechanism.
Considering the crucial and extremely broad role of CTCF in

chromatin organization and regulation it is still very surprising
that its haploinsufficiency or loss of function can result in such a
relatively mild phenotype. Nevertheless, transcriptome analysis
showed a broad deregulation of genes. In line with a previous
report7 and with gene expression profiles in conditional
knockout mice,32 we detected more downregulated than

upregulated genes, further supporting a primarily activating
role of CTCF for target genes involved in the pathomechanism
of CTCF-related disorders. Differentially expressed genes were
enriched for biological processes and for general ribosomal and
transcriptional processes. They were also enriched for known
NDD-associated genes, emphasizing the role of CTCF in
neurodevelopmental function and dysfunction. CTCF-deficient
mice die in early implantation stages,36 highlighting its essential
role in embryonic development. Conditional knockout in
postmitotic projection neurons or in the developing brain
resulted in postnatal growth retardation, abnormal behavior,
dendritic arborization anomalies, and death within one month
or in deficits in neuroprogenitor differentiation resulting in
microcephaly and perinatal death, respectively.32,37 These
observations support a crucial role of CTCF in neurodevelop-
ment, but the early lethality prevents investigating the role of
CTCF for learning and memory processes in vivo. We chose
Drosophila as a model because existence of a viable hypo-
morphic mutant and tissue-specific knockdown and over-
expression could circumvent lethality. In contrast to
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Fig. 4 Impact of Ctcf dosage alteration on fly gross neurological functioning and learning and memory. a–c Flies with knockdown of Ctcf in a
motoneurons and b all neurons but not in c glia showed significant locomotor impairment in the climbing assay. Pan-neuronal overexpression b had no
effect, but c glial and amotoneuronal driven overexpression of Ctcf resulted in significant locomotor impairment. The numbers below the columns represent
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body–driven (UAS-Dcr-2;247-GAL4) knockdown of Ctcf resulted in significantly reduced short-term memory (STM). Similar tendencies were observed for L
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observations of reduced dendritic arborization and spine
numbers in mice,32,37 we did not observe alterations in
Drosophila larval dendritic arborization neurons or neuromus-
cular junctions upon knockdown of Ctcf and only mildly
significant changes of dendritic length upon overexpression.
Such discordant findings might be related to the fact that, in
contrast to mammals, Drosophila possesses three other insulator
binding proteins next to Ctcf that could take over some of the
Ctcf functions.38 This might be the reason why Ctcf is less
crucial for setting up genome organization or global gene
expression during Drosophila embryogenesis and development,
despite its many binding sites throughout the fly genome.39,40 In
accordance with a more important role in adult flies39 we
observed climbing deficits upon pan-neuronal or motoneuronal
knockdown and upon motoneuronal and glial overexpression.
The marked phenotype upon glial overexpression might point
to a so-far underestimated role of Ctcf in glia, but would require
further experimental follow-up. In accordance with cognitive
deficits in humans with pathogenic CTCF variants, we observed
learning and memory deficits in the hypomorphic mutant line
and upon mushroom body–specific knockdown or overexpres-
sion. These observations confirm the importance of proper Ctcf/
CTCF dosage for learning and memory processes.
In summary, our study extensively broadens the clinical and

mutational spectrum of CTCF-related NDDs. A high number
of deregulated genes from transcriptome analyses and gross
neurological as well as learning and memory deficits in
Drosophila melanogaster provide insights into the role of
proper CTCF/Ctcf dosage for postnatal neurological and
cognitive function and dysfunction.

URLs
Gene Ontology http://geneontology.org/ Homologene https://
www.ncbi.nlm.nih.gov/homologene OMIM https://www.
omim.org/ PANTHER http://pantherdb.org/ Primer3 http://
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