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Abstract
The inflammasomes are intracellular protein complexes that are assembled in response to a variety of perturbations including
infections and injuries. Failure of the inflammasomes to rapidly clear the insults or restore tissue homeostasis can result in chronic
inflammation. Recurring inflammation is also provoked by mutations that cause the constitutive assembly of the components of
these protein platforms. Evidence suggests that chronic inflammation is a shared mechanism in bone loss associated with aging,
dysregulated metabolism, autoinflammatory, and autoimmune diseases. Mechanistically, inflammatory mediators promote bone
resorption while suppressing bone formation, an imbalance which over time leads to bone loss and increased fracture risk. Thus,
while acute inflammation is important for the maintenance of bone integrity, its chronic state damages this tissue. In this review,
we discuss the role of the inflammasomes in inflammation-induced osteolysis.
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Introduction

Nucleotide-binding oligomerization domain-like receptors
(NLRs, e.g., NLRP1) or absent in melanoma 2-like receptors
(ALRs, e.g., AIM 2) associate with caspase-1 directly or indi-
rectly via apoptosis-associated speck-like protein containing a
CARD (ASC) to form intracellular protein complexes called
inflammasomes. These macromolecular structures are assem-
bled in response to perturbations caused bymicrobial products
also known as pathogen-associated molecular patterns
(PAMPs). For example, anthrax lethal factor, bacterial
muramyl dipeptide, and bacterial flagellin induce the nucle-
ation of the NLRP1 inflammasome, NLRP3 inflammasome,
and NLRC4 inflammasome, respectively [1, 2]. The
inflammasomes are also activated by host endogenous cues
from damaged cells or exogenous materials, signals common-
ly known as danger-associated molecular patterns (DAMPs).

In this regard, the NLRP3 inflammasome stands out, owing to
its ability to sense a wide range of structurally different mo-
lecular entities including crystalline materials, misfolded or
aggregated proteins, metabolites, prosthetic implant wear de-
bris, and certain materials found in the environment such as
asbestos and silica particles [3–5] (Fig. 1). The NLRC4
inflammasome and AIM2 inflammasome are also activated
to some extent by endogenous DAMPs [6–8]. The inflamma-
tory responses induced by PAMPs or DAMPs can be either
acute when the perturbation is rapidly resolved, and the ho-
meostasis is restored, or chronic and pathologic when rapid
clearance mechanisms fail. Finally, activating mutations in
NLRP1, NLRP3, NLRC4, or MEFV cause inflammasome as-
sembly independently of PAMPs or DAMPs [9–15].

Caspase-1 processes pro-interleukin-1β (pro-IL-1β) and
pro-IL-18 into IL-1β and IL-18, respectively [16]. It also
cleaves gasdermin D (GSDMD), generating an N-terminal
fragment that translocates from the cytoplasm to the plasma
membrane where it forms pores through which IL-1β and IL-
18 are secreted [17, 18]. However, excessive pore formation
resulting from sustained activation of GSDMD in both infec-
tious and sterile conditions compromises membrane integrity,
and ultimately ruptures the cell, releasing pro-inflammatory
cytoplasmic contents into the extracellular environment. This
form of cell death, termed pyroptosis, is inflammatory and
results in the recruitment of immune cells and the perpetuation
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of inflammation [19, 20]. Caspase-8 and neutrophil elastase
can also generate IL-1β and IL-18 whereas caspase-8,
caspase-11 (ortholog of human caspase-4 and caspase-5),
and neutrophil elastase efficiently process GSDMD [21–28].
Sustained exposure to supra-physiological levels of IL-1β and
IL-18, ultimately, inflicts damage to multiple tissues including
the skeleton.

Coordinated actions of the osteoclasts and the osteoblasts
are essential to maintain bone mass and quality. The

osteoclasts remove the old or defective matrix, which is
replenished fully by the osteoblasts; this tightly regulated pro-
cess is known as bone coupling [29]. Several growth factors,
including bone morphogenetic proteins (BMPs) and Wnts
control the differentiation of the osteoblasts from mesenchy-
mal stem cells whereas the osteoclasts differentiate from my-
eloid progenitors exposed to signals generated bymacrophage
colony-stimulating factor (M-CSF) and receptor activator of
NF-κB ligand (RANKL) [30, 31]. The osteoblast and
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Fig. 1 Mechanisms of activation of the NLRP3 inflammasome.
Activation of the NLRP3 inflammasome involves two steps. Induction
of priming signals upon ligation of pathogen recognition receptors
(PRRs) such as TLR4 and TLR2, and cytokine receptors including IL-1
receptor (IL-1R; positive feedback) and TNF receptor (TNFR). These
signals induce the transcription of NLRP3 and pro-IL-1β through NF-
κB; pro-IL-18 is constitutively expressed. Priming of NLRP3 can also be
induced by its deubiquitination, independently of de novo protein synthe-
sis (not depicted). pro-IL-1β mRNA are stabilized by p38α MAPK.
Increased expression of NLRP3 enables the recruitment of pro-caspase-
1 via ASC upon sensing of secondary signals, which are triggered by a
wide range of stimuli including K+ efflux, Ca2+ influx, phagocytosis of
microorganisms, and particulate materials (causing lysosome
destabilization/rupture and release of cathepsins and reactive oxygen spe-
cies (ROS)), andmitochondrial dysfunction.NLRP3-activatingmutations
in the NACHT domain cause constitutive activation of this

inflammasome. Proximity-induced reaction leads to auto-activation of
caspase-1, which then processes pro-IL-1β and pro-IL-18 into IL-1β
and IL-18, respectively. Caspase-1 also cleaves GSDMD into GSDMD-
N-terminal (N-term) and GSDMD-C-terminal (C-term) fragments.
GSDMD-N-term translocates to the plasma membranes where it
oligomerizes and forms pores through which IL-1β and IL-18 are secret-
ed. However, excessive pore formation causes pyroptosis, resulting in the
release of not only IL-1β and IL-18, but also other mediators such as IL-
1α, S100A8/9, and HMGB1. ARE, AU rich elements; ASC, apoptosis-
associated speck-like protein containing a CARD; GSDMD, gasdermin
D; HMGB1, high-mobility group box 1; IL-1, interleukin-1; LPS, lipo-
polysaccharide; NF-κB, nuclear factor kappa B; NLRP3, NLR family,
pyrin domain containing 3; TLR, toll-like receptor; TNF-α, tumor necro-
sis factor-α. Stimulation of the noncanonical NLRP3 inflammasome also
occurs secondarily to the activation of caspase-11, which also cleaves
GSDMD
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osteoclast differentiation programs are antagonized and en-
hanced, respectively, by pro-inflammatory cytokines such as
tumor necrosis factor-α (TNF-α) and IL-1β. Excessive bone
resorption by the osteoclasts at the expenses of bone formation
by the osteoblasts in inflammatory conditions creates an im-
balance, which over time leads to bone loss and increased
fracture risk [32]. In this article, we review the role of the
inflammasomes in bone resorption and highlight the collateral
effects of these protein complexes on other skeletal cells.

Mechanisms of bone resorption that are
relevant to the inflammasomes

IL-1β plays numerous roles in bone pathophysiology. It stim-
ulates RANKL production by mesenchymal cells (e.g., stro-
mal cells, osteoblasts, and osteocytes), synoviocytes, and T
cells directly or indirectly through the regulation of IL-6, IL-
17, and TNF-α expression [33–38]. The reciprocal regulation
of IL-1β production by these cytokines and the reported
RANKL-independent actions of IL-6 and TNF-α in osteoclast
differentiation indicate that these responses are complex and
multidirectional [39, 40]. Irrespective of the hierarchy of the
events, IL-1β and its effectors act in synergy with RANKL to
promote osteoclast differentiation and activity while suppress-
ing osteogenesis [32]. IL-1β also stimulates its own synthesis,
a positive feedbackmechanism that underlies the chronicity of
inflammasome actions in bone diseases [33, 41]. On the other
hand, while pro-inflammatory actions of IL-18 in skin disor-
ders [42] and infection-associated allergic diseases [43] are
well described, the role of this cytokine in bone is ambiguous.
Indeed, IL-18 can inhibit or stimulate bone resorption, de-
pending on cell-contexts [44–46].

Secretion of IL-1β through GSDMD-assembled pores by
live cells has been reported [18, 26]. This phenomenon re-
ferred to as a hyper-reactive state occurs independently of
pyroptosis and may be characteristic of diseases of low-
grade inflammation as discussed later in this review.
GSDMD pores have an inner diameter of 10–20 nm, which
is much bigger than the diameter of mature IL-1β and IL-18
(approximately 5 nm) [17, 20, 47–49]. There is thus far no
basis for such large pores to facilitate only the secretion of
these cytokines, implying that molecules with smaller sizes
such as eicosanoids, which are also important regulators of
bone resorption may be secreted through GSDMD pores. On
the other hand, pyroptosis is presumably prominent in dis-
eases marked by chronic episodes of high-grade inflammation
such as inflammasomopathies. In this context, IL-1β and IL-
18 are concomitantly secreted alongside alarmins including
IL-1α, S100A8/9, HMGB1 [50, 51], and possibly lipid medi-
ators such as eicosanoids [52]; this outcome may underlie the
limited efficacy of IL-1 blockers in the treatment of bone
diseases. Indeed, not only are these alarmins produced by

myeloid cells, synovial cells, and osteoblasts [53, 54], but they
are also potent modulators of inflammation and osteoclasto-
genesis, regulating the expression of RANKL, TNF-α, IL-1β,
and IL-6 [33, 55]. Inflammasome signaling also leads to the
cleavage of poly(ADP-ribose) polymerase 1 (PARP1) by cas-
pase-7, a response that ultimately promotes the degradation of
this negative regulator of osteoclast differentiation and bone
resorption [56]. Thus, the inflammasomes are key players in
the pathogenesis of inflammatory osteolysis. Understanding
the biology of these signaling platforms is essential for the
development of effective therapies targeting inflammatory
bone loss.

Widespread activities of the inflammasomes
in inflammatory osteolysis

Evidence suggests that the inflammasomes are implicated in a
wide range of diseases of bone loss driven by sterile and non-
sterile inflammation (Table 1).

Cryopyrin-associated periodic syndromes

Cryopyrin-associated periodic syndromes (CAPS), which in-
clude familial cold autoinflammatory syndrome (FCAS),
Muckle–Wells syndrome (MWS), and neonatal-onset multi-
system inflammatory disease (NOMID) are caused by autoso-
mal dominant mutations in the NACHT domain of NLRP3
[63–65, 98]. Additionally, myeloid-restricted somatic mosai-
cism and mutations in NLRP12 and NLRC4 may account for
the inflammatory responses in CAPS patients negative for
mutations in NLRP3 [66]. NLRP3 is believed to switch from
a closed and inactive conformation to an open state in re-
sponse to PAMP- or DAMP-induced cues; NLRP3-activating
mutations locked this protein in the active state, leading to the
constitutive assembly of the inflammasome [67]. Common
features of CAPS include recurring fever episodes, urticaria,
conjunctivitis, and joint pain whereas central nervous system
complications and arthropathies characterized by bone defor-
mities, bulky epiphyses, leg length discrepancy, and short
stature are hallmarks of NOMID, the most severe manifesta-
tion of these disorders [66, 68–70]. Consistent with the tumor-
like features of bony outgrowths, induced pluripotent stem
cells from NOMID patients are more proliferative and exhibit
higher differentiation potential than normal cells [71].
Epiphyseal abnormalities undoubtedly predispose NOMID
patients to joint instability and subsequent development of
osteoarthritis. It is worth noting that skeletal phenotyping is
based on radiographic observations and limited histology that
reveal heterogeneously calcified bone matrix, and severely
disorganized and hypocellular growth plate [70].

Murine models of CAPS in which wild-type Nlrp3 alleles
are replaced by murine or human alleles carrying mutations

Semin Immunopathol (2019) 41:607–618 609



found in patients, reproduce several features of human disor-
ders including early onset of systemic inflammation, skin and
joint pathologies, and growth retardation. Cryopyrinopathies
are in general more severe in rodents than in humans asmutant
mice of all phenotypes (i.e., CAPS, MWS, and NOMID) ex-
hibit short lifespan (3–4 weeks) [72–74]. NOMID mice in
which NLRP3 is activated globally exhibit normal patterning
of skeletal elements but display hypocellular epiphyses due to
massive chondrocyte death, and disorganized growth plate
matrix protruding towards the bone marrow cavity [73].
Unexpectedly, conditional activation of NLRP3 in myeloid
cells but not in osteochondro-progenitors reproduces the ab-
normal cartilage features, suggesting that the phenotype is not
chondrocyte autonomous [75]. CAPSmice also exhibit severe
low bone mass, a phenotype that correlates with a massive
expansion of osteoclast precursors, exuberant osteoclastogen-
esis, and increased osteoclast activity [41, 73, 75–77]. Thus,
while the magnitude of bone resorption in CAPS patients is
not known, this process is prominent and well characterized in
mouse models.

Systemic inflammation and multiple organ pathologies, in-
cluding bone abnormalities, are entirely prevented in NOMID
mice lacking IL-1 receptor [75]. However, persistent residual
inflammation is reported in FCAS mice and MWS mice defi-
cient in IL-1 and IL-18 signaling [78, 79]. These findings
align with clinical studies, which consistently show that
epiphyseal lesions and outgrowths continue to expand for a
significant number of NOMID patients on IL-1 biologics de-
spite the resolution of disease-associated inflammatory symp-
toms [70, 99–101]. Collectively, these observations suggest
that IL-1β is not the primary driver of skeletal outcomes in
CAPS, and that inflammasome-dependent responses other
than IL-1β play a role in these disorders. This view is consis-
tent with findings showing that levels of TNF-α remain ele-
vated in certain CAPS patients on IL-1 blockers, and neutral-
ization of TNF-α activity improves inflammatory endpoints in
CAPS mice [78]. This view is further supported by recent

evidence indicating that the pathogenesis of NOMID in mice
is prevented by (i) genetic ablation of GSDMD and (ii) a novel
inhibitor of the interactions of p38α MAPK and MAPK-
activated kinase 2, which inhibits not only IL-1β, but also
IL-6 and TNF-α [41, 77]. Thus, multiple responses, including
pyroptosis, contribute to inflammasomopathies.

Macrophage activation syndrome

The NLRC4 inflammasome senses bacterial type III and IV
secretion systems and flagellin via NLR family apoptosis in-
hibitory proteins (NAIPs). As noted above, NLRC4-activating
mutations are found in certain FCAS patients. Moreover, re-
cent evidence implicates the NLRC4 inflammasome in the
pathogenesis of sterile inflammatory disorders as patients with
NLRC4 gain-of-function mutations develop cytopenia, high
ferritin levels, hemophagocytosis, and splenomegaly. These
symptoms are associated with excessive levels of IL-18 and
IL-1β, and recurring fever flares, a phenotype that is reminis-
cent of macrophage activation syndrome (MAS) [12, 80].
MAS is a frequent complication of systemic juvenile idiopath-
ic arthritis (sJIA), a disease that interferes with healthy skeletal
development and bone mass acquisition [102]. Although IL-
1β levels are in general lower in MAS compared with CAPS,
IL-1 biologics are efficacious in the treatment of sJIA [103,
104]. Consistent with the role of mutated NLRC4 in the de-
velopment of joint pathologies, transgenic mice expressing
constitutively active NLRC4 produce high levels of IL-1β
and IL-18, and develop arthritis [81]. The NLRC4
inflammasome is also activated by nucleotide-derived metab-
olites (e.g., adenine and N-4-acetylcytidine) [6] and fatty acids
(e.g., lysophosphatidylcholine and palmitate) [89] and is up-
regulated by bone-derived DAMPs during osteoclastogenesis
[90]. An interplay between the NLRP3 and NLRC4
inflammasomes has been noted in these models of sterile in-
flammation as well as in response to Salmonella infection
[105, 106].

Table 1 Inflammasomes and their activators in inflammatory bone diseases

Activators Disorders Description of the activators Inflammasomes

PAMPs Periodontitis[[57–59] Porphyromonas gingivalis NLRP3, AIM2

Osteomyelitis[[60–62] Staphylococcus aureus NLRP3

Mutations CAPS[[63–79] Autosomal dominant NLRP3, NLRC4, NLRP12

MAS[[11, 12, 80, 81] Autosomal dominant NLRC4

FMF[[82, 83] Autosomal recessive Pyrin

DAMPs Sterile CRMO[[22, 23] Unknown NLRP3

Arthritis[[84–88] Self-DNA, other DAMPs? NLRP3, AIM2, others?

Metabolic diseases, aging[[5–8, 89–91] Purine metabolites, fatty acids, other DAMPs? NLRP3, NLRC4, AIM2, others?

Wear debris osteolysis[[3, 92, 93] PMMA, CoCrMo, etc. NLRP3, AIM2

Crystal-induced arthropathies[[94–97] MSU crystals (gout), CPPD crystals
(pseudogout), BCP crystals

NLRP3

Semin Immunopathol (2019) 41:607–618610



Familial Mediterranean fever

MEFVencodes pyrin, which activates caspase-1 through ASC
upon sensing post-translationally modified Rho GTPase
[107]. These modifications include phosphorylation, ADP-
ribosylation, and glycosylation and occur upon cell exposure
to Clostridium toxins and in conditions of mevalonate kinase
deficiency or proline-serine-threonine phosphatase-
interacting protein 1 (PSTPIP1) gain-of-function [82,
108–110]. Hyper-activation of the pyrin inflammasome by
MEFV-activating mutations causes FamilialMediterranean fe-
ver (FMF), a disease that is characterized by high levels of IL-
1β, IL-6, IL-8, and IL-12, recurring fever episodes, arthritis,
and low bone mass [83, 111]. FMF is the most prevalent
monogenic autoinflammatory disorder; it affects over
100,000 persons worldwide and causes sporadic and chronic
symptoms [98]. FMF mice develop severe systemic inflam-
mation and exhibit massive cartilage and bone erosion [112].
These mice do not display systemic inflammatory symptoms
upon deletion of GSDMD, IL-1 receptor, or ASC [112, 113].

Arthritis

Inflammasomes are activated in several autoimmune diseases,
including rheumatoid arthritis (RA) and ankylosing spondylitis
(AS). Components of the NLRP3 inflammasomes and various
cytokines including TNF-α, IL-1β, IL-6, IL-7, and IL-17 are
highly expressed in RA [84, 114]. Specific interactions among
these cytokines and other inflammatory mediators may drive
systemic and focal osteolysis in arthritis [115]. Systemic arthritis
and bone loss induced by TNF over-expression are abolished
upon ablation of IL-1β signaling despite the presence of syno-
vial inflammation, suggesting that the effects of TNF-α on bone
are mediated by IL-1β [116]. These findings positioning IL-1β
downstream of TNF-α are in line with the observation that
TNF-α-induced RANKL production by murine stromal cells
is dependent on IL-1β [85, 117]. As noted above, the upregula-
tion of TNF-α by IL-1β is also well known. Components of the
inflammasomes, including NLRP3, ASC, and caspase-1 are up-
regulated in AS, a disease that is also associated with high levels
of IL-1β, TNF-α, IL-6, IL-23, and IL-17 [118]. Bone manifes-
tations in AS include excessive focal bone formation in joints
whereas pronounced trabecular bone loss occurs in vertebral
bodies [119].

Various inflammasomes are assembled in mouse models of
arthritis. For example, NLRP3 and AIM-2 are both upregulat-
ed in the synovium of IL-10-deficient mice exposed to
antigen-induced arthritis, and osteoclast differentiation from
bone marrow cells isolated from these mutant mice is blunted
by the inhibitors of NLRP3 and AIM-2 inflammasomes [120].
Moreover, arthritis induced by DNase II deficiency, which is
associated with accrual of self-DNA, is attenuated by AIM2
ablation [86, 87]. The complexity of inflammasome functions

is underscored by the observations that NLRP3, NLRP1,
NLRC4, and caspase-1, but not ASC are dispensable for
collagen-induced and antigen-induced arthritis [88, 121]; yet
NLRP3 is a key player in joint destruction in a mouse model
of A20 deficiency, in which NLRC4 and AIM2 are expend-
able [122]. Thus, the role of the inflammasomes in
experimental arthritis is mouse model-dependent.

Osteomyelitis

Defective innate immune defense mechanisms including the
inflammasomes underlie the pathogenesis of periodontitis and
osteomyelitis commonly caused by Porphyromonas
gingivalis and Staphylococcus aureus, respectively.
P. gingivalis–derived PAMPs such as LPS are potent activa-
tors of priming signals, which through TLR4 signaling drive
the expression of several components of the inflammasomes
including IL-1β, NLRP3, AIM2, and caspase-11 [57, 58].
Accordingly, the massive alveolar bone destruction caused
by P. gingivalis is attenuated upon loss of NLRP3 [59].
S. aureus bacterial products include peptidoglycans, hemoly-
sins, bacterial lipoproteins, and Panton-Valentine leucocidin
stimulate the inflammasomes through TLR2-mediated activa-
tion of NF-kB [123]. Moreover, some of these factors promote
osteoclastogenesis [124]. The osteoblasts also express the
NLRP3 inflammasome [60] though to lower levels compared
with myeloid cells [73] and contribute to the pathogenesis of
periodontitis and osteomyelitis [61, 125–127].

Autoinflammatory reactions of unknown etiology causes
confined chronic non-bacterial osteomyelitis (CNO) or sys-
temic chronic recurrent multifocal osteomyelitis (CRMO).
Components of the NLRP3 inflammasome are expressed in
osteoclasts in bone specimens from CRMO patients [62].
Mice carrying an inactivating -mutation in the proline-
serine-threonine phosphatase-interacting protein 2 gene
(Pstpip2) develop a phenotype reminiscent of CRMO, which
is associated with over-production of IL-1β, enhanced osteo-
clastogenesis and bone resorption, responses that depend on
IL-1 receptor and IL-1β, but not IL-1α, and are driven by
neutrophils [21, 22]. Neutrophils in CRMO mice over-
produce IL-1β via redundant actions of caspase-8 and the
NLRP3 inflammasome [23].

Metabolic bone diseases

Inflammasomes have been linked to age- and menopause-
related osteoporosis [6, 90, 91]. Estrogen profoundly affects
the skeleton through various mechanisms including
immunomodulation, suppressive effects on the expression of
TNF-α and IL-1β, induction of osteoclast apoptosis through
ERα, suppression of osteoclast differentiation, inhibition of
RANKL production by osteoblasts, T and B cells, and stimu-
lation of osteoprotegerin (OPG) expression [31, 128, 129].

Semin Immunopathol (2019) 41:607–618 611



Consistent with increased levels of pro-inflammatory cyto-
kines in conditions of estrogen deficiency, blockade of
TNF-α or IL-1β in post-menopausal patients leads to a de-
crease in the levels of bone resorption markers [130].
Accordingly, inhibition of TNF-α or deletion of NLRP3 pro-
tects against ovariectomy-induced bone loss in mice [90, 131].

Aging is associated with low-grade chronic inflammation.
This process is referred to as inflammaging and is associated
with increased levels of circulating IL-18, IL-1 receptor an-
tagonist, and IL-6 [132]. Inflammasome genemodules includ-
ing NLRC4 and IL-1β are upregulated in older people com-
pared with younger individuals; persistent expression of these
genes correlates with the occurrence of age-related complica-
tions, including chronic production of inflammatory cyto-
kines, metabolic dysfunction, and oxidative stress [6]. The
NLRP3 inflammasome also modulates age-related inflamma-
tion in peripheral tissues and age-related bone loss in mice,
though the underlying mechanisms are unknown [91].

The ability of the NLRP3 inflammasome to detect a wide
variety of endogenous DAMPs is likely an important driver in
the development of age- and metabolic-related pathologies.
These DAMPs include crystalline cholesterol, extracellular
ATP, purine and pyrimidinemetabolites, and debris from dam-
aged tissues [6, 133]. For example, metabolites from the pu-
rine and pyrimidine pathways stimulate the NLRP3 and
NLRC4 inflammasomes in THP-1 cells, activate human plate-
lets and neutrophils in cultures, and promote hypertension and
inflammation in mice [6]. The NLRP3 inflammasome may
also be involved in hyper-multinucleation of murine osteo-
clasts caused by purinergic receptor P2X5 signaling [134].
We have shown that bone matrix degradation products regu-
late the NLRP3 and NLRC4 inflammasomes in cells of the
osteoclast lineage [90]. Accordingly, Nlrp3 null mice are
protected from bone loss induced by ovariectomy, sustained
exposure to parathyroid hormone or RANKL. Treatment of
mice with zoledronic acid inhibits inflammasome activation,
thus reinforcing the view that endogenous DAMPs are re-
leased from the bone matrix during bone resorption, causing
autocrine and paracrine effects on osteoclastogenesis [90].

Wear debris-induced osteolysis

Wear particles from articulating prosthetic joint surfaces such
as those from cobalt-chromium-molybdenum (CoCrMo) im-
plants induce inflammatory responses that cause aseptic loos-
ening as a result of uncontrolled osteolysis [135]. The
osteolytic process is associated with the formation at the
implant-bone interface of a cellular membrane enriched in
cells of the monocyte-macrophage lineage [136]. Activation
of the NF-kB pathway through TLR2 signaling by prosthetic
debris promote not only the expression of pro-inflammatory
cytokines such as TNF-α, but also priming signals for the
NLRP3 and AIM2 inflammasomes. Macrophages can also

phagocytose these particles; cellular accumulation of these
non-degradable materials enhances the production of reactive
oxygen species and the rupture of the phagosomes, which
releases cathepsins in the cytoplasm, events that activate the
inflammasomes [92]. The size and shape of CoCrMo alloys
affect the amplitude of the inflammatory responses [93].
Thus, wear debris can provide both priming and assembly
signals that lead to aberrant inflammasome activation.
Consistent with the role of the NLRP3 inflammasome in bone
damage induced by prosthetic particles, bone resorption in-
duced by polymethylmethacrylate (PMMA) particles is re-
duced in the absence of caspase-1 [3, 145]. Thus, both the
metal and plastic components of the prostheses activate the
inflammasomes.

Crystal-induced arthropathies

Endogenous crystalline particles are involved in the pathogen-
esis of arthropathies. For example, gouty arthritis is caused by
precipitation of monosodium urate (MSU) crystals [94], cal-
cium pyrophosphate deposition disease (CPDD) is driven by
calcium pyrophosphate dihydrate (CPPD) crystals [94], and
degenerative arthropathies such as osteoarthritis and
Milwaukee shoulder are the result of abnormal accumulation
of basic calcium phosphate (BCP) crystals [137]. Shared
mechanisms among these diseases include phagocytosis of
crystals by myeloid cells, an event that activates several in-
flammatory pathways including the inflammasomes, chondro-
cyte apoptosis, and matrix calcification [138–140]. Bone ero-
sions in gout stems from continuous recruitment of macro-
phages to tophi [95]; sporadic CPDD is characterized by the
presence of CPPD crystals in articular cartilage whereas pa-
tients with CPDD familial patterns have low bone mineral
density though the extent to which bone resorption is impact-
ed is not known [141]. BCP crystals, particularly hydroxyap-
atite crystals, promote osteoclast formation in vitro in NLRP3
inflammasome-dependent manner [90, 96, 142]. However, the
actions of BCP on NLRP3 inflammasome-mediated
skeletal pathology are controversial. Lack of components of
the NLRP3 inflammasome prevents the development of neu-
trophil inflammation in the air-pouch model of synovitis and
decreased pathology in the Ank-deficient model of arthritis
[97]. By contrast, inflammatory responses induced by the in-
jection of BCP crystals into the knees or intra-peritoneally are
independent of the NLRP3 inflammasome [143, 144].
Alternative processing of IL-1β by caspase-8 and pyroptosis
may account for these discrepant observations.

Therapeutic perspective

Anti-resorptive drugs such as bisphosphonates and denosumab
are efficacious in the prevention of inflammation-associated

Semin Immunopathol (2019) 41:607–618612



bone fractures, but they do not impact the course of inflamma-
tion (Fig. 2). Thus, inhibition of osteoclast differentiation and/or
activity is not sufficient to arrest the damage to the bone sur-
rounding soft tissues such as the synovium in conditions of
high-grade inflammation. On the other hand, biologics are suc-
cessfully used in the clinic to temper down inflammation (Fig.
2). However, biologics have their shortcomings such as high
costs, the requirement for parenteral delivery, the development
of resistance, and immunosuppression. In addition, the efficacy
of these drugs is restrained by redundancy among signaling
pathways as they target specific inflammatory instigators.
Thus, there is still an unmet medical need for the development

of adequate therapeutic strategies; in-depth understanding of the
mechanism of action of key inflammatory pathways is required
to achieve this goal. Recent breakthroughs revealing that aber-
rant activities of the inflammasomes cause pyroptosis, a lytic
form of cell death that concomitantly unleashes several inflam-
matory mediators to the extracellular milieu offer novel perspec-
tives for drug discovery. For example, strategies aimed at
preventing pyroptosis through selective blockade of individual
components of the inflammasomes such as caspase-1, NLRP3,
or GSDMD or inhibiting signaling nodes that integrate several
inflammatory cues such as p38 MAPK are being fiercely
explored.
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Fig. 2 Inflammatory osteolysis and therapeutic interventions.
Cytokines (e.g., IL-1α, IL-1β, IL-6, IL-17, and TNF-α) stimulate bone
resorption directly, acting on the osteoclast lineage or indirectly by
inducing RANKL expression by mesenchymal cells, T cells, and B
cells. These cytokines also inhibit bone formation. Bone resorption is

directly blocked by anti-resorptive drugs such as bisphosphonates and
denosumab or indirectly by biologics targeting IL-1α/IL-1β, IL-6, IL-
17, or TNF-α. In conditions of low-grade inflammation, bone resorption
is amplified by DAMPs that are released from bone matrix
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